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Abstract
Factor analysis models are widely used in health research to summarize hard-to-
measure predictor or outcome variable constructs. For example, in the ELEMENT
study, factor models are used to summarize lead exposure biomarkers which are
thought to indirectly measure prenatal exposure to lead. Classic latent factor models
are fitted assuming that factor loadings are constant across all covariate levels (e.g.,
maternal age in ELEMENT); that is, measurement invariance (MI) is assumed. When
the MI is not met, measurement bias is introduced. Traditionally, MI is examined by
defining subgroups of the data based on covariates, fitting multi-group factor analysis,
and testing differences in factor loadings across covariate groups. In this paper, we
develop novel tests of measurement invariance by modeling the factor loadings as
varying coefficients, i.e., letting the factor loading vary across continuous covariate
values instead of groups. These varying coefficients are estimated using penalized
splines, where spline coefficients are penalized by treating them as random coeffi-
cients. The test of MI is then carried out by conducting a likelihood ratio test for the
null hypothesis that the variance of the random spline coefficients equals zero. We use
a Monte Carlo EM algorithm for estimation, and obtain the likelihood using Monte
Carlo integration. Using simulations, we compare the Type I error and power of our
testing approach and the multi-group testing method. We apply the proposed methods
to summarize data on prenatal biomarkers of lead exposure from the ELEMENT study
and find violations of MI due to maternal age.
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1 Introduction

Latent factor models are typically used to summarize multivariate data for the purpose
of deriving or relating factor scores to other covariates [3], and are widely used in
biomedical and epidemiological studies. In environmental epidemiology studies, for
example, factor models are used to summarize several air pollution exposures [4,10,
17]. Factor models relate observed variables that reflect the underlying latent factors
through a system of regression equations termed the measurement model. However,
in order to maintain a consistent and valid interpretation of the latent factors, certain
measurement invariance conditions need to be satisfied [16]. Measurement invariance
(MI) means the parameters in the measurement model are the same regardless of how
the data are grouped in terms of covariates. Otherwise, measurement bias is introduced
because the effect of variables other than the latent factor on the observed variables
is not accounted for [15]. For instance, when MI is violated the factor scores derived
from the model will be biased estimates of the underlying latent factor. The two most
critical invariance conditions are invariance of the intercept and factor loadings in the
measurement model. Simulation studies have shown that it is harder to detect bias
coming from non-constant factor loadings [2].

Thisworkwasmotivated by research conducted as part of theEarlyLifeExposure in
Mexico toEnvironmental Toxicants (ELEMENT) project. TheELEMENTprojectwas
designed to examine the influence of environmental pollutants, including metals such
as lead (Pb), on child development; data for ELEMENT are collected from mother–
child pairs enrolled in three birth cohorts in Mexico City. Latent factor models have
been used to summarize biomarkers for lead exposure, collected from mothers near
the time of their child’s birth, in order to assess the influence of lead exposure on
the children’s mental development and physical growth [22]. In this setting, the latent
factor represents the underlying but unobserved true prenatal exposure for the infants.
However, since Téllez-Rojo et al. [27] show that lead metabolism in human bodies
may vary by age, we raise the question of whether the factor loadings may vary across
maternal age. Preliminary stratified factor analyses of these biomarkers suggest the
factor loading for lead concentration in cord blood lead may vary by maternal age
(Fig. 1), hence potentially violating the measurement invariance assumption. If the
factor loadings do vary by maternal age, the estimated factors would be a biased
measure of the latent exposure and potentially bias exposure–outcome associations. In
this study, we focus specifically on approaches examining themeasurement invariance
assumption in factor models that are used to derive exposure estimates.

Assessing the measurement invariance assumption is an established model diag-
nostic step for factor models in social and behavioral studies, where measurement
invariance is traditionally studied throughmulti-group factor analysis [3].Multi-group
factor analysis divides the data into groups according to covariates, for example, age
and gender. Then a different measurement model is fitted for each covariate group,
and differences in parameters across groups are tested. The main disadvantage of this
approach is its less satisfactory bias detection rate, especially when the measurement
bias is related to a continuous covariate and is due to arbitrary group membership
assignment that results in less accuracy and efficiency of parameter estimates [1,2].
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Fig. 1 Factor loadings of different lead measurements from stratified confirmatory factor analyses. In these
analyses one latent factor is used to summarize the underlying prenatal lead exposure. The data are evenly
split into six age groups, and each dot on the plot represents the factor loading from the analysis of one
stratum. Cord blood lead and blood lead 1 month after delivery are analyzed under the logarithmic scale

Novel models that allow factor loadings to vary as continuous functions of some
covariates offer alternative strategies for addressing the issue of measurement invari-
ance [2,33,34]. Zhang et al. [34] and Zhang and Lee [33] use bootstrap simulations to
construct confidence intervals for non-constant factor loadings and examine whether
a factor loading varies across covariate values. Barendse et al. [2] compare the ability
of restricted factor analysis (RFA) and multi-group models to detect measurement
bias. The simulation study of Barendse et al. [2] shows RFA models have better bias
detection rates than multi-group models.

In this paper we develop a strategy to test if a factor loading deviates significantly
fromaconstant.Our approach is basedon estimating factor loadings that vary smoothly
across the entire range of covariate values. We use penalized splines to model the
factor loadings as varying coefficients [11], where the spline coefficients are treated as
random, and the smoothing process is incorporated into the likelihood [18]. We then
test whether a factor loading is constant by using a LRT that tests whether the variance
of the spline coefficients differs from zero.

However, because the null value of the variance is zero and is at the boundary of
its support, the asymptotic null distribution of the LRT statistic is not easy to derive.
This test for non-zero variance components has been extensively studied in the mixed
model framework [5,9,13,23,26]. Except for Stoel et al. [25], we are not aware of this
type of testing problem within the latent variable framework. Following Greven et al.
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[9], we use a parametric bootstrap method to approximate the null distribution of the
LRT statistic and compare the power of the LRT in our model to the power of the
LRT in the multi-group model. We investigate how the performance of the test for one
factor loading changes with the estimation of other factor loadings.

We present the model and the hypothesis test of interest in Sect. 2. Section 3 details
the estimation method and some technical aspects of the nested Monte Carlo EM
(MCEM) algorithm in the context of our proposed methods [28]. We also discuss
computing the likelihood usingMonte Carlo integration and the construction of confi-
dence intervals for the non-constant factor loadings. In Sect. 4 we carry out simulation
studies to investigate the Type I error and power of the LRT for detecting non-constant
factor loadings.We also study use of the parametric bootstrap for obtaining the critical
value for the LRT. In Sect. 5 we apply the proposed methods to our motivating data
from the ELEMENT project. Section 6 ends with a discussion and future directions.

2 Model and Hypothesis

We model the factor loadings as non-constant functions of covariates so that the mea-
surement model can differ across covariate values. For ease of exposition, suppose
there is only one latent variable ηi and one continuous covariate, zi , for i = 1, 2, . . . , n

subjects. Let yp,i be the pth observed variablemeasured on subject i and ηi
iid∼ N (0, 1)

be the latent factor underlying the P observed variables. The observed variables are
related to the latent factor as

yp,i = μp,i + λp,iηi + εp,i , p = 1, . . . , P, i = 1, . . . , n. (1)

In this model, the factor loading λp,i for the pth observed variable includes a subscript
i because the factor loading is assumed to vary smoothly across continuous values of
the covariate z, i.e., λp,i = λp(zi ) (more details below). We assume the residual

error εp,i
iid∼ N (0,�ε) is independent of ηi . Without loss of generality, we assume

μp,i = 0 and omit it from the mean for yp,i since yp,i can easily be centered to
have zero mean; centering observed variables yp,i is a common data pre-processing
practice in factor analysis [3]. Further, de-trending the observed dependent variables
yp,i to remove covariate effects on their mean can be readily implemented. In Sect. 5
we use residuals from additive models that regress yp,i on z as the adjusted observed
outcomes. By doing so, we ensure that non-constant values of λp,i are due to changes
in the partial correlation among observed values across the range of z after we remove
the effect of z on their means. Models where covariates are allowed to influence yp,i
are available [19]. Here, centering and de-trending the data enables the testingmethods
to focus specifically on differences in the factor loadings associated with covariate z,
which give rise to a more challenging estimation problem and are harder to detect [2],
and are hence our primary focus.

We use penalized regression splines to model λp,i = λp,0 + f p(zi ) = λp,0 +xiβ∗
p,

where f p(z) has mean zero across the covariate values (i.e.,
∫

f p(z)dz = 0), which
is needed for the identifiability of λp,0. We note that when f p(z) = 0, the model sim-
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plifies to standard factor analysis. In other words, f p(z) represents the non-constant
component of the factor loading. We use cubic B-spline basis functions to model
f p(zi ), and let xi be a row vector containing the value of each basis function evalu-
ated at zi [30]. The spline coefficients, which differ across the P observed variables,
are β∗

p. We use a quadratic penalty, (β∗
p)

TS∗β∗
p, to penalize the magnitude of the

coefficients, where S∗ is the first difference penalty matrix [7]. In comparison to
other penalties, ours is straightforward to compute [30] and it has the advantage of
shrinking the estimate of f to zero [7], thereby shrinking the factor loading to a con-
stant. To implement the penalty on the splines, we use the fact that penalized splines
can be represented as a mixed model [18,31]. Hence, we rewrite (1) as a regression
model:

yp,. = ηλp,0 + Xηβ p + ε p,., (2)

where yp,. = [yp,1, . . . , yp,n]T, η = [η1, . . . , ηn]T, Xη = [xT1 η1, . . . , xTn ηn]TS−1,
ε p,. = [εp,1, . . . , εp,n]T; and β p = Sβ∗

p where S satisfies STS = S∗ and
can be derived according to the spectral decomposition of S∗. Under the param-
eterization of (2), the quadratic penalty on the coefficients equals to βT

pβ p and
is implemented by setting β p as random variables [18,31]; specifically, β p ∼
N (0, σ 2

p,bIK ) (see more details in Sect. 3). In this approach, σ 2
p,b takes the

role of the smoothing parameter so that a smaller value of σ̂ 2
p,b leads to a

smaller value of β̂ p, and when σ̂ 2
p,b → 0, f̂ p → 0, which makes λ̂p,i →

λ̂p,0.
We aim to test if, for a particular observed variable yp,., its factor loading is constant,

i.e.,
H0 : λp,i = λp,0 for all i vs. Ha : λp,i �= λp,0 for some i . (3)

This is equivalent to testing H0 : β p = 0 vs. Ha : β p �= 0. The test in (3) then
becomes

H0 : σ 2
p,b = 0 vs. Ha : σ 2

p,b > 0. (4)

Note that we are only testing for the factor loading of one variable, that is, σ 2
p,b

for a particular p according to the test in (4). We let other variables not being tested
have either constant or non-constant factor loadings under both the null and alternative
hypotheses. Even though the hypotheses in (3) and (4) focus on one factor loading only,
they could be expanded to include testingmore than one factor loading simultaneously.
Further, the model fitted under the null could include non-constant factor loadings for
other variables than for the one being tested.

3 Estimation and Inference

3.1 Likelihood

We use the EM algorithm for estimation, and treat ηi and β p as the augmented
missing data. The log-likelihood when conditioning upon the augmented data is
logL(θ |y, η,β p) and is proportional to
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− 1

2

P∑

p=1

{

n log(σ 2
p,ε) + ‖yp,. − ηλp,0 − Xηβ p‖2

σ 2
p,ε

+ K log(σ 2
p,b) + ‖β p‖2

σ 2
p,b

,

}

(5)
where θ = {λp,0,β p, σ

2
p,ε , σ

2
p,b|p = 1, . . . , P} represents all the parameters. In (5),

we assume all factor loadings are non-constant. However, if the factor loading for the
pth observed variable is instead assumed as constant a priori, we only need to remove
σ 2
p,b from the likelihood and set β p = 0. The details of the E-step andM-step are given

in Supplementary Material A.1 and A.2. Computational considerations for speeding
up the E–M using nested iterations are discussed in Supplementary Material A.3.

3.2 Likelihood Ratio Test (LRT)

Since we use random spline coefficients to incorporate the smoothing of splines into
the likelihood, we can use the LRT to assess measurement invariance assumption.
The LRT test statistic is constructed as 2

{
logL(̂θa |y) − logL(̂θ0|y)

}
, where θ̂a and

θ̂0 represent, respectively, the parameter estimates from the model under the null
and alternative hypotheses. Supplementary Material A.4 discusses details to carry out
Monte Carlo integration with importance sampling to obtain the likelihood. Since the
test involves one or potentially more variance components, the null distribution of
the test statistic will generally be unknown. Hence, we propose using a parametric
bootstrap approach to generate the null distribution of the test statistic.

Since the parametric bootstrap can be computationally intensive, both because of
the numerical algorithms used to fit the model and because of the very large number of
simulations needed to approximate well the tail of the null distribution, it is desirable
to look for faster and/or parametric approximations. The rest of this section focuses on
the case of testing one factor loading, and thus one variance component, where faster
approximations for the null distribution can be derived, compared to the standard
parametric bootstrap [6].

Approaches to testing one variance component have been widely studied. Stram
and Lee [26] prove that with linear mixed models, the asymptotic null distribution of
the LRT statistic when testing for a single variance component, similar to (4), follows
a 50–50 mixture of χ2

0 and χ2
1 ; we denote this mixture distribution as 1

2χ
2
0 + 1

2χ
2
1 .

However, Crainiceanu andRuppert [5] argue that using 1
2χ

2
0 + 1

2χ
2
1 gives a conservative

test, because the asymptotic assumption is rarely reached in real cases and also is not
directly applicable to penalized regression spline models. Their approach is instead
to find the exact null distribution of the LRT statistic numerically when there is only
one variance component in the model. Greven et al. [9] propose an approximation to
the parametric bootstrap that assumes the distribution of the test statistic under the
null is a mixture of chi-square distribution following the form, πχ2

0 + (1 − π)aχ2
1 ,

where π is the mixture probability and also the probability of the statistic being
zero, and a is a scaling factor that gives more flexibility for the distribution. For
clarity we refer to Greven’s approximation of the parametric bootstrap as a “chi-
square” bootstrap, and use the term “full bootstrap” to refer to the ordinary parametric
bootstrap.

123



640 Statistics in Biosciences (2018) 10:634–650

For a given data set, deriving the null distribution of the LRT statistics using
chi-square bootstrap is straightforward. First, M∗ parametric bootstrap data sets are
generated using the parameters estimated from the null model. LRT statistics are com-
puted for each of the M∗ data sets and are used to estimate π and a using the method
of moments as described by Greven et al. [9]. Since the 95th percentile of the null LRT
is derived from a fitted parametric family of distributions, a fewer number of boot-
strap samples M∗ are needed to obtain equally precise estimates of the tail quantiles
compared to the full bootstrap if the chi-square mixture approximates the true null
distribution well (also see Greven et al. [9] for details). Our simulation results confirm
this advantage of the chi-square bootstrap in our particular application to factor mod-
els (see Supplementary Material B). After computing estimates p̂ and â, for p and a,

respectively, we set the 95th percentile of the null LRT statistic as âF−1
χ2
1

0.95−π̂
1−π̂

, where

Fχ2
1
represents the cumulative distribution function of a χ2

1 distribution. p-values

can also be derived using (1 − π̂)F−1
χ2
1

[ 1
â (LRT statistic)

]
. For the data application in

Sect. 5, we use the chi-square bootstrap. This is because through simulation studies
we find that chi-square bootstrap can perform as well as the full bootstrap (Supple-
mentary Material B) and in practice we want to use chi-square bootstrap to reduce
computational cost.

3.3 Confidence Intervals and Confidence Bands

Since the construction of LRT statistic and the ensuing parametric bootstrap is com-
putationally intensive, we also examine the use of confidence intervals as a way to
examine MI. Confidence intervals can be directly derived using samples obtained at
the E-step. Supplementary Material C describes approaches to derive pointwise confi-
dence intervals and confidence bands for the non-constant part of the factor loadings.
Examining whether the confidence intervals or bands do not contain zero for some
portion of the range of the covariate implicated in MI can give guidance as to the
nature of the violation of MI. As shown in the simulations, this approach has high
power and maintains Type I error. This approach also works well in practice, as show
in the example section.

4 Simulation Study

4.1 Simulation Objectives and Set-Up

In this simulation study, we want to compare the Type I error and power of the LRT for
testing the hypothesis in (3) using our proposed model and multi-group models under
different scenarios. Under our model, we actually test (4), the hypothesis about the
variance of the random spline coefficients using LRT. We can obtain the critical cutoff
value for the LRT statistic using parametric bootstrap as detailed in Sect. 3.2. Ideally,
for each simulated data set, we would carry out a full bootstrap or the chi-square
bootstrap to obtain the cutoff value. However, in order to reduce computational cost,
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we instead use the 95th percentile of the LRT statistics calculated for all the simulated
data sets from the null scenario. Therefore, the Type I error is exactly nominal. Then
we use this correct cutoff value to examine the true power of the LRT for our model.
This simulation represents the results we would obtain when we use a full bootstrap,
because we are basically carrying out a bootstrap under the true parameter values (see
Greven et al. [9] for a similar simulation approach). The results also reflect what would
be obtained with the chi-square approximation for the full bootstrap, since the cutoff
values from these two approaches match very closely (see Supplementary Material).
As a comparison, we also examine the use of 1

2χ
2
0 + 1

2χ
2
1 since it would lead to

substantial computational savings over any bootstrap approach. For the multi-group
model approach, we also use LRT, but the cutoff value is straightforward to obtain
since the parameter values under the null are not in the boundary of the parameter
space.

For all the scenarios that are further described below,we let each of 10,000 simulated
data sets have three observed variables, yp,., p = 1, 2, 3, and n = 2000; values of zi
are equally spaced within the range of [0, 1]. We set the total variance of the observed
variables, λ2p,0+σ 2

p,ε = 8 and let λ2p,0/(λ
2
p,0 + σ 2

p,ε) = 0.5 so that we have a medium
signal-to-noise ratio, which is also in the middle of the range of signal-to-noise ratio
in our data example. The factor loadings are generated as λp = λp,0 + f p.

We vary the shapes of f1 and f2 for different simulation scenarios. First, we set
the first factor loading as non-constant, that is, f1 �= 0, but set f2 = 0, f3 = 0. Since
the shape of f1 could potentially impact the power of the various approaches, we let
f1 take on two different shapes, (1) a cyclic shape: f1(zi ) = κ{−0.1 cos(6π zi )}, (2)
a monotone trend added: f1(zi ) = κ{c + (1.6zi − 0.8z2i ) − 0.1 cos(6π zi )}. In the
formulas, c is the constant that ensures

∫
z∈[0,1] f1(z)dz = 0 and κ is an amplitude

parameter that changes the magnitude of f1 so that we can examine the power of the
test. Second, we let f1 be the same as above, but we let f2(zi ) = 0.6(zi − 0.5), while
f3 still remains equal to zero.
For each scenario, we estimate two variations of our proposed model: one where

only f1 is estimated and one where both f1 and f2 are estimated. However, following
Sect. 3.2, we only test for one non-constant factor loading, specifically f1. This allows
us to assess any potential bias in tests when the fitted model is correct or misspecified.
For example, we have a misspecified model when f2 �= 0 and we omit its estimation.
We can also examine the potential loss in power when the model is more flexible than
necessary. This happens when f2 = 0 and we unnecessarily estimate it.

In amulti-groupmodel, the factor loadings are allowed to be different across groups
of data points, but the factor loading within each group is still assumed constant.
Therefore, this approach can overlook important differences in the factor loadings and
the estimation also depends on how the group is assigned [2]. In this study we use
tertiles and quartiles of z to group the data, and we jointly model the different groups.

We repeat the same two variations of estimated models using the multi-group
approach. The non-constant factor loadings in themodel take the following formwhen
we use tertiles of zi , λp,i = λp,0 +α1 I (zi ≤ Q1)+α2 I (Q1 < zi ≤ Q2)+α3 I (zi >

Q2), where Q1, Q2 represent the first and second tertiles of zi , respectively. For quar-
tiles, the formula is similar. We constrain the residual variances to be the same across
groups because they do not contribute to the measurement bias and also because our
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Table 1 Rejection rate for testing H0: f1 = 0 versus f1 �= 0 when only f1 is non-zero and being estimated

f1 κ Random coefficient Multi-group

Exact 1
2χ2

0 + 1
2χ2

1 Quartile Tertile

Null 0 5.0 3.0 5.1 5.3

Cyclic 0.3 7.4 4.9 6.7 4.9

0.75 64.9 59.7 19.0 4.9

0.85 82.5 78.7 23.2 5.3

1 96.2 94.9 31.2 5.9

Monotone 0.2 11.9 8.0 9.6 10.4

0.5 50.1 41.4 37.7 42.3

0.75 85.3 79.7 72.9 77.3

1 98.2 96.7 94.1 95.4

Null, cyclic, and monotone refer to the three shapes f1 takes; κ is the amplitude parameter for the cyclic
and monotone shapes. For random coefficient models, we use either the 95th percentile of the LRT statistic
from the scenario where f1 is null (referred to as ‘Exact’) or the 95th percentile of 1

2χ2
0 + 1

2χ2
1 as the

critical value for the other scenarios in the group. For multi-group models, we examine the rejection rate
when tertiles or quantiles of zi are used to group the data

simulation objective is to estimate the factor loadings. We also use a LRT for testing
non-constant factor loadings in the multi-group models. In this case, the LRT statistic
asymptotically follows a chi-square distribution with degrees of freedom equal to two
and three for tertile and quartile models, respectively.

4.2 Simulation Results

Type I error and power when the model is correctly specified. We first focus on Type
I error, the rejection rate when κ = 0 for the scenario where f2 = 0 and we only
estimate f1. We can see that, in the row labeled ‘Null’ in Table 1, using 1

2χ
2
0 + 1

2χ
2
1

as the null distribution leads to a 3.0% rejection rate. This is because the estimated
spline was reduced to zero more than half of the time, and this makes 1

2χ
2
0 + 1

2χ
2
1 a

conservative null distribution. As stated above, because the cutoff value is determined
from the 95th percentile of the true distribution of the null LRT statistic, the rejection
rate from the ‘Exact’ column is 5%. Tests from multi-group analyses preserve their
nominal rate since the distributions are known.

Next we use increasing values of κ so that f1 is non-zero, and the rejection rate
reflects the power of the test. The rows labeled ‘Cyclic’ and ‘Monotone’ in Table 1
show the results. Here, f2 = 0 and is not estimated, so the model is correctly specified.
The larger κ is, the more f1 deviates from zero, and thus the power increases. Since
1
2χ

2
0 + 1

2χ
2
1 is conservative for the LRT, it also lowers the power of the test compared

with the rejection rate from the ‘Exact’ column in Table 1, the true power of the
LRT. The multi-group models have lower power than our model because they cannot
always capture the shape of f1, especially when f1 has a cyclic pattern. For example,
in scenarios where f1 is cyclic, these tests cannot detect a non-zero f1 when we use
tertiles because f1 has a threefold repeated pattern.
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Table 2 Rejection rate for
testing H0: f1 = 0 versus
f1 �= 0 when the model fitted is
more flexible than needed (i.e.,
f2 = 0 but is estimated as
non-zero) or when it is
misspecified (i.e., f2 �= 0 but is
fixed at zero)

f1 Random coefficient Multi-group

Exact 1
2χ2

0 + 1
2χ2

1 Quartile Tertile

f2(z) = 0 is unnecessarily estimated

Null 5.0 2.8 5.0 5.0

Cyclic 82.6 78.8 23.0 5.3

Monotone 85.2 79.0 71.2 75.6

f2(z) �= 0 is incorrectly fixed at 0

Null 8.0 5.1 7.0 7.7

Cyclic 83.5 80.1 26.3 7.9

Monotone 67.3 59.2 52.2 58.0

For f1, null, cyclic, and monotone refer to the three shapes f1 takes.
The amplitude parameter for the cyclic and monotone shapes are κ =
0.85 and 0.75, respectively. For random coefficient models we use
either the 95th percentile of the LRT statistic from the scenario where
f1 and f2 are both null (referred to as ‘Exact’) or the 95th percentile
of 1

2χ2
0 + 1

2χ2
1 as the critical value for the other scenarios in the group.

For multi-group models, we examine the rejection rate when tertiles
or quantiles of zi are used to group the data

When both f1 and f2 are non-zero, and both functions are estimated so that we
have a more complex but correctly specified model, the power for testing H0 : f1 = 0
is similar to the results shown in Table 1 for all testing approaches (results not shown).

Type I error and power when the model is unnecessarily flexible or misspecified.
When f2 = 0 but it is estimated, thenwehave an unnecessarily flexiblemodel for f2. In
Table 2 we see similar patterns for Type I error as described above, and we also see that
no power is lost in this model, because (1) our proposed model gives a stable estimate
of f1 whether f2 is estimated or not, and (2) when f2 is estimated unnecessarily, the
model is able to shrink the estimate to zero a large proportion (> 50%) of the time,
and the fitted model reflects the correct and simpler model.

On the other hand, when f2 �= 0 but f2 is not estimated, then the model is mis-
specified for f2. As can be expected for misspecified models, we find that this results
in biased f̂1, shown in Fig. 2. For our specific models, λ̂2,i will be positively biased
for zi < 0.5 and negatively biased for zi > 0.5. This in turn influences λ̂1,i in the
same direction. Because of the bias, Type I error is inflated for the LRT. In Table 2, the
rejection rate in the ‘Exact’ column is 8.0%. Here, the cutoff value is determined from
the simulation scenario of Table 1, where f2 = 0 and f2 is not estimated, because
this is the scenario we have wrongly assumed and it is also the scenario we would
have used for the bootstrap. Even though the Type I error in the ‘ 12χ

2
0 + 1

2χ
2
1 ’ column

seems nominal (5.1%), compared with Table 1, this also reflects the inflation due to
the biased f̂1.

Power is higher for the misspecified model than the correctly specified model in
Table 1 under the scenario where f1 is cyclic. Aside from the inflated Type I error, the
power increase is likely also due to the positive bias of the estimated amplitude of f̂1.
However, despite the inflated Type I error, power is lower when f1 has a monotone
trend because the amplitude is instead attenuated, which is also shown in Fig. 2. The
multi-group approach suffers similar consequences when the model is misspecified.
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Fig. 2 Comparison of f̂1 from different scenarios in Table 1. The dotted line is the true f1. The solid line
is f̂1 from the scenario where f2 = 0 and f2 is not estimated. The long dashed line is f̂1 from the scenario
where f2 �= 0 but f2 is incorrectly fixed at zero during estimation. The short dashed line is f̂1 from the
scenario where f2 �= 0 and f2 is estimated. a Cyclic shape, b monotone trend added

Confidence intervals. Since the construction of the LRT statistic and the ensuing
parametric bootstrap is computationally intensive, we also examined the use of confi-
dence intervals for testing purposes. Pointwise confidence intervals and simultaneous
confidence bands can be directly derived using samples obtained at the E-step and can
be informally used to assess deviations from a non-constant factor loading; see Sec-
tion C of the Supplementary Materials for more details. We find that using pointwise
confidence intervals, but not simultaneous confidence bands, as a way to make this
assessment yields a rejection rate around the nominal 5% level (5.2%), and power as
high as the LRT described above.

5 Application to Prenatal LeadMeasurements from the ELEMENT
Study

We use data collected from 880 mother/child pairs from the Early Life Exposure in
Mexico to Environmental Toxicants (ELEMENT) project. Mothers were between 18
and 44 years old at recruitment (mean=25.8, SD=5.0). The ELEMENT project con-
sists of three sequentially enrolled cohorts of pregnant women and their offspring,
recruited in Mexico City between 1994 and 2003 to investigate the long-term conse-
quences of lead exposure on child development. The project took prenatal and postnatal
measurements frommothers and also followed the children longitudinally [8,27]. The
four observed variables we are interested in are maternal levels of cord blood lead,
blood lead one month after delivery, patella bone lead, and tibia bone lead. Since these
lead biomarkers can be conceptualized as manifestations of latent lead exposure dur-
ing pregnancy [22], we use a one factor model to summarize them.We are interested in
looking at whether and how the factor loadings for each observed variable differ with
maternal age because lead metabolism processes, such as bone resorption, depend on
maternal age [27]. Thus, the correlation between blood and bone lead measures may
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Fig. 3 The non-constant component for the factor loadings of cord blood lead and tibia bone lead. The solid
line shows f̂ p(zi ) from Model A. The dashed line and the dotted line show the 95% pointwise confidence
intervals and the simultaneous confidence band, respectively. a Cord blood lead, b tibia bone lead

vary with maternal age, which in turn causes the factor loadings to vary with maternal
age. As described in Sect. 2, we first de-trend the four biomarkers for lead exposure
to remove any potential covariate effects on the mean. To do so, we use an additive
model [30] for each biomarker with indicators for participant’s cohort membership
and a smooth term of maternal age. We take the residuals from these models as the
input to our factor model.

Theoretically some factor loadings can be shrunk exactly to a constant in our model
when the variance of the random spline coefficients, σ̂ 2

p,b, is zero. However, the esti-

mation is built on the normal distribution of β p, so even when σ̂ 2
p,b approaches zero as

the algorithm converges, it will not be exactly zero since a non-degenerate distribution
is needed to sample β p. Thus, in an initial exploratory analysis where all four factor
loadings were estimated as non-constant, we examined convergence of σ 2

p,b for all
four variables and decided to set the factor loading for blood lead after delivery and
patella bone lead as constant and proceeded to model the factor loadings of cord blood
lead and tibia bone lead as varying with maternal age.

Next we conducted analyses in two models to illustrate the testing approaches
previously described. In Model A, the factor loadings of both cord blood lead and
tibia bone lead are modeled as non-constant, while in Model B only one of the two
observed variables, either cord blood lead (Model B1) or tibia bone lead (Model B2),
has a non-constant factor loading. In both models, and for both biomarkers, we find
that the factor loadings deviate from a constant, although the deviation for cord blood
lead’s factor loading is much stronger (Fig. 3).

The patterns of the two factor loadings are similar between Model A and Model
B. However, as we saw in the simulations, if a truly non-constant factor loading is
estimated as constant, the estimation for the other non-constant factor loadings can
be affected. By comparing Models A and B1, and Models A and B2, we find that
the amplitudes of f̂ p for both cord blood lead and tibia bone lead, respectively, are
attenuated when the other factor loading is estimated as constant (figure not shown).
This attenuation can also be seen numerically in Table 3 by examining σ̂ 2

p,b, the vari-
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Table 3 Parameter estimates for the model fitted under the alternative hypothesis, and LRT p-values for
the ELEMENT study data

Model or observed variable Estimates p-values

λ̂p,0 σ̂ 2
p,ε σ̂ 2

p,b 50:50 Mix PBoot MG(Tert) MG(Quart)

Model A

Cord blood lead 0.68 0.52 0.049 0.005 0.0035 0.0001 0.027

Tibia bone lead 0.32 0.89 0.0023 0.29 0.18 0.42 0.19

Blood lead after delivery 0.82 0.32 – – – – –

Patella bone lead 0.41 0.83 – – – – –

Model B1

Cord blood lead 0.68 0.52 0.044 0.006 0.004 0.00011 0.029

Tibia bone lead 0.32 0.9 – – – – –

Blood lead after delivery 0.83 0.31 – – – – –

Patella bone lead 0.4 0.84 – – – – –

Model B2

Cord blood lead 0.68 0.53 – – – – –

Tibia bone lead 0.32 0.89 0.0012 0.37 0.23 0.48 0.2

Blood lead after delivery 0.83 0.31 – – – – –

Patella bone lead 0.4 0.84 – – – – –

The p-values are obtained using the 50:50 mixture: 1
2χ2

0 + 1
2χ2

1 ; the parametric bootstrap distribution

(PBoot): π̂χ2
0 + (1 − π̂ )̂aχ2

1 ; and the multi-group analysis with maternal age in tertiles [MG(Tert)] or in

quartiles [MG(Quart)]. M∗ = 1000 parametric bootstrap samples are used to fit π̂χ2
0 + (1 − π̂ )̂aχ2

1 . The
parametric bootstrap samples are generated from parameters obtained by fitting the model under the null
hypothesis, i.e., the factor loading being tested is estimated as constant, but the other factor loadings are
constant (Models B1 and B2) or not (Model A)

ance of the random spline coefficients. A bigger σ̂ 2
p,b is related to a more pronounced

deviation of f̂ p from zero. We find that σ̂ 2
p,b from Model B is smaller than Model A.

The pointwise confidence intervals in both Model A and B suggest that the factor
loading of cord blood lead, but not tibia lead, is non-constant (Fig. 3). Results from
LRT using critical values from either 1

2χ
2
0 + 1

2χ
2
1 orπχ2

0 +(1−π)aχ2
1 , where π̂ = 0.7

and â ≈ 0.9 for both Model A and B, confirm this conclusion (Table 3). The p-values
obtained through the multiple group analyses depend on whether tertiles or quartiles
of the maternal age distribution are used to group the observations. In particular, the
p-value obtained when using tertiles is smaller for cord blood lead, whichmakes sense
because the pattern of the factor loading is U-shaped, and thus age tertiles capture the
difference of middle tertile compared to the other two more accurately. In contrast,
the p-value for the tibia lead factor loading, which follows a linear pattern, is smaller
when using quartiles than tertiles.

In these data, the factor loading of cord blood lead differs depending on maternal
age. The non-linear pattern in the non-constant component of the factor loading for
cord blood implies that the factor loading among the youngest and oldest mothers is
lower compared to mothers in the center of the age distribution. This implies that the

123



Statistics in Biosciences (2018) 10:634–650 647

use of a latent factor model with constant factor loadings may introduce measurement
bias into any resulting summaries. In other words, the factor scores created from a
model assuming constant factor loadings may not correctly rank overall exposure
levels among study participants, and the bias in rankings would be related to maternal
age. We plan to examine the impact of this bias on estimated associations between
this latent exposure factor and other factors in future work.

6 Discussion

The assumption of measurement invariance (MI) is common in latent factor models,
as this assumption makes parameter estimation simple and provides straightforward
interpretation of the derived factors. Assessing whether or not this assumption is
violated is difficult when the covariates related to violation of MI are continuous; a
widely used approach is to create categories, usually based on empirical quantiles,
and assess for differences in measurement model parameters among these categories.
We proposed an approach to examine this assumption, founded on the connections
between varying coefficient models, splines and mixed effect models. We presented
simulation-based evidence for the validity and power of our test, showed it is more
efficient to existing approaches based on categories, and demonstrated its application
to a motivating example. The approach was implemented in SAS proc IML, and code
is available as a supplementary material.

Our methods are applicable to cases where both the latent factor and observed vari-
ables are continuous andnormally distributed. Extensions to latent factormodelswhere
observed data followother distributions are a potential avenue of further research. Such
approaches could build upon existing latent variable methods for outcomes of mixed
types [20,24] and methods for testing variance components in the generalized linear
mixed model framework [14,32]. Violations of normality may preclude the use of the
chi-square approximation to the parametric bootstrap that we proposed here. However,
if diagnostics [21] indicate deviations from normality, alternate parametric bootstrap
approaches [6] that do not rely on simulating data sets using normal distributions
could be used; for example data sets could be generated by permuting conditional
residuals for each observed variable across subjects from the model fit under the null
hypothesis. While this approach would lose the computational efficiency afforded by
the chi-square approximation to the parametric bootstrap, it would still provide correct
inference.

We assessed the validity and power of our test for models where only one latent
factor is assumed, and used a few items for the latent factor. The choice of the num-
ber of factors in factor analysis remains a balance between variance explained in
interpretability of the model, and was thus not our focus. However, the number of
latent factors determined empirically from a given data set could potentially depend
on whether measurement invariance holds and vice versa. Often times, the number of
factors may be determined a priori based on knowledge of the underlying constructs.
In our example, we were interested in a single construct of lead exposure. Neverthe-
less, in models with more than one latent factor, diagnosing the measurement model of
each factor separately is likely advantageous so that misspecification of the measure-
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ment model for one latent factor does not contaminate parameter estimates for other
components of the model [12]. Still, extensions to include additional factors are of
interest because in some instances an observed variable could load on more than one
latent factor and also because a broader definition of measurement invariance involves
the question of whether the number of latent factors is the same across groups. The
mechanics of extending the model to include more latent factors is relatively straight-
forward, albeit more computationally expensive. Increasing the number of observed
variables per each latent variable is also a straightforward extension, and results in
greater power to detect lack of a constant factor loading for one variable at a time.
This is because having more observed variables increases the ability to estimate the
latent factor more accurately, i.e., reduces noise (not shown).

Althoughour simulation studies focusedprimarily on the validity andpower for test-
ing one factor loading, the simulation studies and the data example also demonstrated
the feasibility of fitting more than one non-constant factor loading simultaneously
using our proposed methods. We also demonstrated in simulations that pointwise and
simultaneous confidence intervals for the non-constant factor loadings can be readily
constructedusing the posterior distributionof the spline coefficients.More importantly,
we found that pointwise confidence intervals can be used to assess MI with essentially
equal power as the proposed LRT. Importantly, given that smoothing induces a large
degree of correlation among adjacent confidence intervals, Type I error is also main-
tained. Thus, constructing confidence intervals be a useful strategy to assess lack of
constant factor loadings for several variables simultaneously. Developing fast approx-
imations for formally testing (i.e., producing p-values) more than one factor loading
at a time (i.e., more than one variance component) is a natural next step. We choose
[9] parametric bootstrap over the exact method proposed by Crainiceanu and Ruppert
[5] because the exact method requires the eigenvalues of Xη in (2), but in our case η

is unobserved.
Our current methods assume that all covariates that could be responsible for

measurement invariance have been identified and no missing values exist. Since non-
constant factor loadings can be viewed as an interaction between the latent factor
and a third variable, we suggest that variables for testing be selected on the basis
of biological knowledge. In our data example, maternal age is known to affect lead
metabolism, and could thus result in different correlations among lead biomarkers
and imply non-constant factor loadings. Nevertheless, extensions of our methods to
determine which, among a large set of covariates, could be responsible for measure-
ment invariance are of interest. A potential avenue for this research could be to apply
variable selection approaches to select non-zero variance components of the random
effects used to parametrize the non-constant component of the factor loadings. How-
ever, given the computational nature of random effects approaches that are well suited
for testing as presented here, variables to assess measurement invariance based on
cross-validation (e.g., [34]) maybe better suited for selection of factor loadings that
violate the MI assumption. Missing data could be incorporated within the EM algo-
rithm we developed here, but it is unknown how varying degrees of missing data
would influence the operating characteristics of the proposed test. We focused on data
sets that have a relatively large sample size. Increasing/decreasing sample size would
naturally increase/reduce power. However, extending existing sample size recommen-
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dations for latent variablemodels [29] would be useful in light of the additional sample
size needed to estimate smooth terms.

In summary, we proposed novel approaches to test for measurement invariance that
are based on estimating factor loadings that vary smoothly as functions of covariates.
The supplementary materials contain SAS code to implement the approach and thus
enhance the application of our proposedmethod in practice. Further, our approach lays
the foundation for developing approaches to systematically and efficiently examine
the measurement invariance assumption in other types of factor models.
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