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Abstract
In this article, we propose a new joint modeling approach for the analysis of longi-
tudinal data with informative observation times and a dependent terminal event. We
specify a semiparametric mixed effects model for the longitudinal process, a propor-
tional rate frailty model for the observation process, and a proportional hazards frailty
model for the terminal event. The association among the three related processes is
modeled via two latent variables. Estimating equation approaches are developed for
parameter estimation, and the asymptotic properties of the proposed estimators are
established. The finite sample performance of the proposed estimators is examined
through simulation studies, and an application to a medical cost study of chronic heart
failure patients is illustrated.
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1 Introduction

Longitudinal data are frequently encountered in a wide variety of fields, such as
medical follow-up studies and observational investigations. In many applications,
observation times are usually irregular, and may be correlated with the longitudinal
process. Variousmethods for analyzing longitudinal data with informative observation
times have been developed [1,5,9,13–16,20,22]. For example, Lin et al. [9] considered
a marginal regression model and proposed a class of inverse intensity-of-visit process-
weighted estimators. Sun et al. [16] suggested a joint model for the longitudinal and
observation processes via a shared latent variable. Liang et al. [5] proposed a class of
joint models via two latent variables. All the above methods primarily analyze longi-
tudinal data with informative observation times in the absence of a dependent terminal
event.

In many situations, a dependent terminal event such as death, which precludes the
follow-up, may exist. Moreover, Liu et al. [11] indicated that regarding the dependent
terminal event as noninformative censoring may yield biased estimates in modeling
the hospital visits and the longitudinal medical costs. It is also common that the
longitudinal process may be correlated with both observation times and a terminal
event. For example, Liu et al. [10] and Sun et al. [17], in analyzing data from a
medical cost study, found that patients visiting the hospital more often tended to pay
more for each visit, and these patients also had a higher mortality rate. That is, the
longitudinal medical costs could be correlated with both hospital visits and death.
Thus, there is clearly a need to develop suitable models for analyzing longitudinal
data, which accounts for both informative observation times and a dependent terminal
event simultaneously.

However, researches on the joint analysis of longitudinal data with informative
observation times and a dependent terminal event are limited. Liu et al. [10] suggested
a joint random effects model, where the random effects are assumed to be normally
distributed. Sun et al. [17] proposed a joint modeling approach via two latent vari-
ables,where the dependence structure between two latent variables are left unspecified.
Moreover, in the analysis of a bladder cancer data conducted by the Veterans Admin-
istration Cooperative Urological Research Group, Liang et al. [5] argued that the
treatment assignment has a random effect on the tumor recurrence process. However,
the existing methods for analyzing longitudinal data with informative observation
times and a dependent terminal event did not consider the case where some covariates
have random effects. This motivates us to develop the present study.

In this article, we propose a new joint model for analysis of longitudinal data
with informative observation times and a dependent terminal event in the spirit of
the works of Liang et al. [5], which allows for inference about the random effects
of covariates. Specifically, a semiparametric mixed effects model is specified for the
longitudinal process, a proportional rate frailty model is used for the observation
process, and a proportional hazards frailty model is used for the terminal event. The
association among the three related processes is modeled via two latent variables.
The proposed joint model generalizes the approach of Liang et al. [5] by taking the
terminal event into account. In addition, unlike Liang et al. [5], our model does not
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assume that the observation process is a nonhomogeneous Poisson process. Thus, it
is more comprehensive and flexible.

The rest of the article is organized as follows. Section 2 describes the joint model
of the longitudinal process, the observation times, and the terminal event. In Sect. 3,
estimating equation approaches are proposed for regression parameters of interest, and
the asymptotic properties of the proposed estimators are established. Some simulation
results for evaluating the proposed methods are reported in Sect. 4. An application to
a medical cost study of chronic heart failure patients from the University of Virginia
Health System is provided in Sect. 5, and some concluding remarks are given in Sect. 6.
All proofs are relegated to the Appendix.

2 Model Specification

Consider a longitudinal study involving n independent subjects. For the i th subject,
i = 1, . . . , n, denote Yi (t) as the longitudinal process of interest at time t . Let Xi (t)
be the p× 1 vector of external covariates as described in Kalbfleisch and Prentice [2].
Also, let Ci be the censoring time and Di be the terminal event time such as death. In
addition, define Ti = min(Ci , Di ) and �i (t) = I (Ti ≥ t), where I (·) is the indicator
function. Let Ñ R

i (t) be the counting process denoting the number of the observation
times in the time interval [0, t] and the observation process N R

i (t) = Ñ R
i (t∧Ti ), where

a ∧ b is the minimum of a and b. Note that the longitudinal process Yi (t) is observed
only at the jump points of N R

i (t). Let Ñ D
i (t) denote the terminal process before or at

time t, and ND
i (t) = Ñ D

i (t ∧ Ti ). Also let υi be a nonnegative unobserved frailty. In
what follows, we assume that given Xi (t), the censoring time Ci is independent of
{Yi (·), Ñ R

i (·), Ñ D
i (·), Di , υi }.

For the longitudinal process, following Liang et al. [5], we consider the following
semiparametric mixed effects model for Yi (t):

Yi (t) = μ0(t) + γ T
0 Xi (t) + uTi Zi (t) + εi (t), (1)

where μ0(t) is an unspecified smooth function, γ0 is a vector of unknown regression
parameters, Zi (t) is a q-dimensional subvector of (1, Xi (t)T )T , ui is a q-dimensional
vector of subject-specific random effects, and εi (t) is a zero-mean measurement error
process and independent of ui . For identifiability of model (1), the random effects ui
are assumed to have zero mean.

Following Ye et al. [19], we consider a (partial) marginal rate of the observation
times given Xi (t), Di = s and υi , which is defined as

d�R(t |υi , Xi (t)) = P{dÑ R
i (t) = 1|υi , Xi (t), Di = s}, s ≥ t .

For the analysis, we specify the observation process model as

d�R(t |υi , Xi (t)) = υi exp{βT
0 Xi (t)}d�R

0 (t), (2)
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where β0 is an unspecified p-dimensional regression parameters, and �R
0 (t) is cumu-

lative baseline function. Note that d�R(t |υi , Xi (t)) may depend on Xi (t) and the
frailty υi , but does not depend on the terminal event time Di = s ≥ t . This
implies that given covariates Xi (t), υi accounts for the correlation between the
observation times and the terminal event. Also, it follows that d�R(t |υi , Xi (t)) =
P{dÑ R

i (t) = 1|υi , Xi (t), Di ≥ t} (e.g., [3]), which indicates that given Xi (t) and υi ,
d�R(t |υi , Xi (t)) specifies themarginal rate of the observation times among those sub-
jects surviving to time t . In addition, P{dÑ R

i (t) = 1|υi , Xi (t), Di = s} = 0, s < t ,
that is, the occurrence of additional observation times is precluded by the terminal
event.

For the terminal event,we consider the followingproportional hazards frailtymodel:

d�D(t |υi , Xi (t)) = υi exp{αT
0 Xi (t)}d�D

0 (t), (3)

whereα0 is an unknown p-dimensional regression parameters, and�D
0 (t) is the cumu-

lative baseline hazard function.
For models (1), (2), and (3), we assume that the association between the random

effects ui and υi is formulized as E(ui |υi ) = η0(υi − 1), where η is a q-dimensional
parameter. As in Ye et al. [19], we assume that given Xi (t), the frailty υi has a
gamma distribution with mean 1 and variance θ , where E(υi |Xi (t)) = 1 is fixed for
identifiability of models (1), (2), and (3).

Remark 1 In the medical cost study of chronic heart failure patients in Sect. 5, a higher
mortality rate is associated with a higher frequency of hospital visits. Thus, we assume
that the observation process and the terminal event have a positive association through
a common frailty variable υi in the same fashion. However, the proposed method can
be extended to allow for a negative association between the observation process and
the terminal event. More details can be found in the third paragraph of Sect. 6.

Remark 2 Note that

E
{
Yi (t) − μ0(t) − γ T

0 Xi (t)|υi , Xi (t)
} = E

{
uTi |υi , Xi (t)

}
Zi (t).

We followed the suggestion of Liang et al. [5] to assume the linear relationship between
ui and υi for computational simplicity. In fact, the proposed method can be extended
to the case that E

{
ui |υi , Xi (t)

} = g(υi ; η), where g(υi ; η) is a q-dimensional vector
with each component being a polynomial in υi . A further discussion can be found in
the second paragraph of Sect. 6.

Remark 3 Although model (1) that allows for inference about the random effects of
covariates was considered by Liang et al. [5] and others (e.g., [16,22]), and models (2)
and (3) that allow the common frailty to directly relate to the association between the
observation and terminal event processes were investigated by Kalbfleisch et al. [3], a
joint modeling for simultaneously accommodating all of the aforementioned features
has not been considered in the literature. The proposedmodel fits this gap and provides
a flexible framework to allow subject-specific observation process with continuous
missing patterns as well as various types of associations between the longitudinal
process and the observation times in the presence of a dependent terminal event.
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3 Estimation Procedure

To handle the unobserved frailty υi we proceed with the estimation procedure by
analyzing the average rates obtained by taking the conditional expectation of models
(2) and (3) with respect to υi given Di ≥ t and Xi (t) ([3]). Note that

E[υi |Di ≥ t, Xi (t)] = 1

1 + θ
∫ t
0 exp{αT Xi (u)}d�D

0 (u)
.

Then we have the following marginal rates:

d�R(t |Xi (t)) = ψi (t)
−1 exp{βT

0 Xi (t)}d�R
0 (t), (4)

and

d�D(t |Xi (t)) = ψi (t)
−1 exp{αT

0 Xi (t)}d�D
0 (t), (5)

where

ψi (t) ≡ ψi (t;α, θ,�D
0 ) = 1 + θ

∫ t

0
exp{αT Xi (u)}d�D

0 (u).

For the unobserved random effects ui , using E(ui |υi ) = η0(υi − 1) and taking the
conditional expectation of ui given Di ≥ t and Xi (t), we obtain

E[ui |Di ≥ t, Xi (t)] = η0
[
(1 + θ)/ψi (t) − 1

]
. (6)

LetA0(t) = ∫ t
0 μ0(s)d�R

0 (s), ξ = (αT , βT , θ, γ T , ηT )T , and ξ0 = (αT
0 , βT

0 , θ0, γ
T
0 ,

ηT0 )T be the true value of ξ. Define

dMi (t; ξ,A) = Yi (t)ψi (t)dN
R
i (t) − �i (t)

{
γ T Xi (t) + ηT Bi (t)

}
exp{βT Xi (t)}d�R

0 (t)

− �i (t) exp{βT Xi (t)}dA(t), (7)

where

Bi (t) ≡ Bi (t;α, θ,�D
0 ) = [

(1 + θ)/ψi (t) − 1
]
Zi (t).

In view of (4) and (6), we have that E{Mi (t; ξ0,A0)|Xi (t),�i (t)} = 0 under models
(1) and (2). Thus, for given ξ, d�R

0 (t), ψi (t), and Bi (t), a reasonable estimator of
A0(t) is the solution to the following estimating equation:

n∑

i=1

∫ t

0

[
Yi (u)ψi (u)dN R

i (u) − {
γ T Xi (u) + ηT Bi (u)

}
exp{βT Xi (u)}d�R

0 (u)

− �i (u) exp{βT Xi (u)}dA(u)
]

= 0, 0 ≤ t ≤ τ,
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where τ is a constant such that P{Ti ≥ τ } > 0. Denote this estimator by
Â0(t;α, β, θ,�D

0 ). Let α̂, β̂, θ̂ , �̂R
0 (t), ψ̂i (t), and B̂i (t) be the estimates of α, β, θ,

�R
0 (t), ψi (t), and Bi (t), respectively, which will be discussed later. In view of (7),

applying the generalized estimating equation approach [4] and replacing A0(t) with
the above estimator, we specify the following estimating function for γ and η :

n∑

i=1

∫ τ

0

(
Xi (t)−X̄(t,β̂)

B̂i (t)− ¯̂B(t)

)[
Yi (t)ψ̂i (t)dN

R
i (t)

− {
γ T Xi (t) + η B̂i (t)

}
exp{β̂T Xi (t)}d�̂R

0 (t)
]

= 0, (8)

where

X̄(t;β) =
∑n

j=1 � j (t)X j (t) exp{βT X j (t)}
∑n

j=1 � j (t) exp{βT X j (t)} ,

and

¯̂B(t) =
∑n

j=1 � j (t)B̂ j (t) exp{β̂T X j (t)}
∑n

j=1 � j (t) exp{β̂T X j (t)}
.

Denote the solution to (8) as (γ̂ T , η̂T )T , which has an explicit form:

⎛

⎝
γ̂

η̂

⎞

⎠ =
[

n∑

i=1

∫ τ

0

(
Xi (t)−X̄(t,β̂)

B̂i (t)− ¯̂B(t)

)⊗2

�i (t) exp{β̂T Xi (t)}d�̂R
0 (t)

]−1

×
[

n∑

i=1

∫ τ

0

(
Xi (t)−X̄(t,β̂)

B̂i (t)− ¯̂B(t)

)
Yi (t)ψ̂i (t)dN

R
i (t)

]

, (9)

where a⊗2 = aaT for any vector a.

Now we consider the estimators α̂, β̂, θ̂ , �̂R
0 (t), and �̂D

0 (t). Under models (2) and
(3), α, β, θ, �R

0 (t), and �D
0 (t) can be consistently estimated using a similar method

to Kalbfleisch et al. [3]. Specifically, define

dMR
i (t) = ψi (t)dN

R
i (t) − �i (t) exp{βT Xi (t)}d�R

0 (t),

and

dMD
i (t) = ψi (t)dN

D
i (t) − �i (t) exp{αT Wi (t)}d�D

0 (t).

It then follows from (4) and (5) that MR
i (t) and MD

i (t) are zero-mean stochastic
processes. Thus, for given ψi (t), we can use the following estimating equations to
estimate α, β, �R

0 (t) and �D
0 (t):
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n∑

i=1

∫ τ

0

{
Xi (t) − X̄(t;α)

}
ψi (t)dN

D
i (t) = 0,

n∑

i=1

∫ τ

0

{
Xi (t) − X̄(t;β)

}
ψi (t)dN

R
i (t) = 0,

n∑

i=1

[
ψi (t)dN

D
i (t) − �i (t) exp{αT Xi (t)}d�D

0 (t)
]

= 0, 0 ≤ t ≤ τ,

n∑

i=1

[
ψi (t)dN

R
i (t) − �i (t) exp{βT Xi (t)}d�R

0 (t)
]

= 0, 0 ≤ t ≤ τ.

However, the weight functionψi (t), also includes unknown parameters θ,whichmust
be estimated. For this, define

ω1i (t) = E[Ñ R
i (t)|Xi (t), Di = t],

ω2i (t) = E[Ñ R
i (t)|Xi (t), Di > t].

Under the assumed models, we have

ω1i (t) = (θ + 1)ψi (t)
−1

∫ t

0
exp{βT Xi (u)}d�R

0 (u),

ω2i (t) = ψi (t)
−1

∫ t

0
exp{βT Xi (u)}d�R

0 (u).

Thus,

θ + 1 = ω1i (t)

ω2i (t)
. (10)

In view of (10), as discussed in Kalbfleisch et al. [3], we specify the following esti-
mating equation for θ :

n∑

i=1

∫ τ

0

{
N R
i (t) − (θ + 1)ω2i (t)Q(t)

}
dND

i (t) = 0,

where

Q(t) =
∑n

j=1 ω2 j (t)−1�∗
j (t)N

R
j (t)

∑n
j=1 �∗

j (t)
,

with �∗
j (t) = � j (t){1 − ND

j (t)} being an indicator that subject j is at risk at t and
dies after t .
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Let ρ = (αT , βT , θ,�D
0 ,�R

0 )T . We can estimate ρ using the solutions to the
equations U (ρ) = (UT

1 ,UT
2 ,U3,U4,U5)

T = 0, where

U1 =
n∑

i=1

∫ τ

0

{
Xi (t) − X̄(t;α)

}
ψi (t)dN

D
i (t),

U2 =
n∑

i=1

∫ τ

0

{
Xi (t) − X̄(t;β)

}
ψi (t)dN

R
i (t),

U3 =
n∑

i=1

∫ τ

0

{
N R
i (t) − (θ + 1)Q(t)ω2i (t)

}
dND

i (t) = 0,

U4 =
n∑

i=1

[
ψi (t)dN

D
i (t) − �i (t) exp{αT Xi (t)}d�D

0 (t)
]
, 0 ≤ t ≤ τ,

U5 =
n∑

i=1

[
ψi (t)dN

R
i (t) − �i (t) exp{βT Xi (t)}d�R

0 (t)
]
, 0 ≤ t ≤ τ.

Let ρ̂ denote the solutions to U (ρ) = 0. Note that the first terms of the estimating
functionsU4 andU5 represent two pure jump processes with jumps at observed event
times. Thus, the solutions toU4 = 0 andU5 = 0 must be piecewise constant functions
with jumps only at the observed terminal event times and the observation times (across
all subjects), respectively, which yield the Aalen-Breslow-type estimators �̂D

0 (t) and
�̂R

0 (t) [6]. Since estimation of each parameter depends on a subset of the other parame-
ters, the solutions to the above estimating equations can be obtained through a recursive
procedure (e.g., [3]). Thus, the estimators ψ̂i (t) and B̂i (t) can be obtained by replacing
α, θ and�D

0 (t)with α̂, θ̂ , �̂D
0 (t) inψi (t;α, θ,�D

0 ) and Bi (t;α, θ,�D
0 ), respectively.

To summarize, we propose the following two-step estimation procedure:
Step 1 First obtain estimator ρ̂ by solving the equationsU (ρ) = 0. Then calculate the
estimators ψ̂i (t) and B̂i (t) for 1 ≤ i ≤ n.

Step 2 Plug η̂, ψ̂i (t) and B̂i (t) into Eq. (9) to obtain the estimators γ̂ and η̂.

We use the criterion that the absolute differences of the consecutive iterations of
parameter estimates is less than 10−3 to check convergence. The algorithm in Step 1
converges most times in general, but nonconvergence occurs occasionally depending
on the setups. In the simulation studies, the percentage of nonconvergence is about
2% under different setups with sample size n = 600.

As discussed in Ye et al. [19] and Kalbfleisch et al. [3], under the regularity con-
ditions (C1)-(C4) stated in the Appendix, ρ̂ exists and is unique and consistent. Then
using the uniform strong law of large numbers, one can show that γ̂ and η̂ are con-
sistent. Let ξ̂ = (α̂T , β̂T , θ̂ , γ̂ T , η̂T )T . Thus, ξ̂ is consistent to ξ0. The asymptotic
distribution of ξ̂ is stated in the following theorem with the proof given in Appendix.

Theorem 1 Under the regularity conditions (C1)-(C4) stated in Appendix, n1/2(ξ̂−ξ0)

converges in distribution to a normal random vector with mean zero, and covariance
matrix �−1�(�T )−1, where � and � are given in Appendix.
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The asymptotic covariance matrix can be consistently estimated by the usual plug-
in method. However, � has a complicated analytic form, and it may be unstable to
estimate � when the plug-in method is used with a moderate sample size. Here, we
propose to use the bootstrap method to estimate the covariance matrix of ξ̂ . In the
following simulation studies with sample size n = 600, we find that the covariance
estimation is fairly accurate when 100 bootstrap samples are used.

Remark 4 Note that the estimator θ̂ may not always be nonnegative. For this case,
we propose to estimate θ by using θ̂∗ = θ̂ I (θ̂ ≥ 0) with a nonnegative constraint.
Based on the arguments that are similar to those in Lin and Ying [7] and Zeng, Chen,
and Ibrahim [21], we can show that θ̂∗ possesses the same asymptotic normality as θ̂

does if θ0 > 0 and that n1/2θ̂∗ converges in distribution to � 2GI (G ≥ 0) if θ0 = 0,
where G denotes the standard normal distribution, and � 2 is the asymptotic variance
of n1/2θ̂ .

Finally, for comparison purposes, we summarize the differences between our proposed
model and the model of Liu et al. [10] (denoted by LHO) as follows:

(1) For the longitudinal process, the LHO’s method assumed a random effects model,
which neither included an unspecified baseline function of time nor considered the
case where some covariates have random effects. Instead, we propose a semipara-
metric mixed effects model, which includes an unspecified baseline function of
time (intercept) and allows for inference about the random effects of time-varying
covariates.

(2) For the observation process, the LHO’smethod considered a proportional intensity
frailty model and assumed that conditional on the random effects, the observation
process is independent of the terminal event time. We instead consider a propor-
tional rate frailty model that specifies the marginal rate of the observation process
given survival and assume that the observation process is not independent of the
terminal event even conditional on the random effects.

(3) For the terminal event, both methods propose the proportional hazards frailty
model. The LHO’s method assumed that the terminal event depends on the lon-
gitudinal and the observation processes through two independent random effects,
respectively. The proposed method, however, formulates the associations among
the three related processes through two dependent random effects, and the depen-
dence structure is assumed to have a linear or polynomial form.

(4) For the estimation procedures, the LHO’s method conducted maximum likelihood
estimation on the basis of the assumption that the two random effects are inde-
pendently normally distributed. Thus, their estimation results are expected to be
sensitive to departures from this assumption. Unlike their procedure, we use an
estimating equation approach for parameter estimation while assuming that the
frailty υi follows a gamma distribution. As demonstrated by the simulation stud-
ies in Sect. 4, the proposed method is robust to misspecification of the frailty
distribution.
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4 Simulation

We conducted simulation studies to examine the finite sample properties of the pro-
posed estimators. In the study, two covariates Xi = (Xi1, Xi2)

T were considered,
where Xi1 follows a Bernoulli distribution with success probability 0.5, and Xi2 fol-
lows a uniform distribution on (0, 1). Set Zi = Xi1. The frailty υi was generated from
a gamma distribution with unit mean and variance θ0 = 0, 0.5 or 1. The censoring
time was generated from a uniform distribution on (c, 5), where c is chosen to yield
about 30% censoring for the terminal event. Given the frailty υi and the covariates
Xi , the terminal event time Di was generated from model (3) with �D

0 (t) = 0.5t
and α0 = (0.3, 0.5)T . The observation times were generated from a Poisson process
with the intensity function λR = 1.5υi exp{−0.3Xi1 + 0.7Xi2}. The average number
of observations per subject was about 2 under the preceding settings. For given υi ,

ui = η0(υi − 1) + ei , where ei is a normal distribution with mean zero and vari-
ance 0.5, and η0 = −1, 0, or 1. The longitudinal response Yi (t) was generated from
model (1) with μ0(t) = 2t + 1 and γ0 = (1,−0.5)T , where the measurement errors
εi (t) are generated independently from a standard normal distribution for all t . The
results presented below are based on 500 replications with sample size n = 600. The
asymptotic covariance was estimated using the bootstrap method with 100 bootstrap
samples, which were found to be adequate.

The simulation results for estimation of γ0, θ0, and η0 are summarized in Table 1,
which includes the bias (Bias) given by the sample means of the estimates minus
the true values, the sample standard errors (SE), the sample mean of the standard
error estimate (SEE), and the 95% empirical coverage probabilities (CP) based on the
normal approximation. Table 1 shows that our proposed method performed well for
the situations considered here. Specifically, the proposed estimators were practically
unbiased, and the standard error estimators were very accurate based on the bootstrap
method. The 95% empirical coverage probabilities were reasonable. Note that when
θ0 = 0, η0 is unidentifiable. However, based on our simulation results, the estimators
of γ0 and θ0 are still performed well. In addition, the estimates of �D

0 (t) and �R
0 (t)

are provided in Fig. 1, which indicates that the estimators are accurate.
For comparison,we also considered themethod of Liang et al. [5] (denoted byLLY),

who studied models (1) and (2) without the terminal event. Under the same setup as
above, the comparison results are also reported in Table 1. The results indicate that
the LLY’s method may lead to biased estimates when the corresponding independent
conditions are violated (i.e., θ0 �= 0). Figure 2 illustrates how the biases of the LLY’s
method may arise. Notably, the SE’s of the proposed method are greater than those of
LLY’s method. A major reason is that the proposed method involves the estimators of
the parameters α0 and �D

0 (t) in model (3), and these estimators introduce additional
uncertainty to the proposed estimation procedure.

We also conducted simulation studies to examine the performance of the proposed
estimators when the gamma distribution was misspecified. We considered two sce-
narios for the frailty υi : (i) υi followed a log-normal distribution with unit mean and
variance 0.5; (ii) υi was generated as one-tenth of a Poisson variable with mean 10.
The other setups were the same as in Table 1 with γ0 = (1,−0.5)T , η0 = −1, 0, or
1. The results are given in Table 2. The proposed estimators still performed reason-
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Table 1 Simulation results for estimation of γ0, θ0, and η0 when covariates are time-independent

θ η Our method LLY’s method

Bias SE SEE CP Bias SE

0.5 −1 γ1 0.0038 0.3609 0.3474 0.950 0.0583 0.1961

γ2 − 0.0236 0.4339 0.4012 0.942 0.0922 0.2856

η − 0.0448 1.9235 1.8994 0.964 0.8274 0.2301

θ − 0.0014 0.0728 0.0750 0.956 – –

0 γ1 0.0093 0.3473 0.3361 0.950 0.1216 0.1968

γ2 − 0.0271 0.4133 0.3936 0.936 0.0650 0.2613

η − 0.0465 1.9469 1.8996 0.948 − 0.1035 0.2217

θ 0.0056 0.0747 0.0750 0.944 – –

1 γ1 0.0197 0.3369 0.3372 0.950 0.1694 0.2025

γ2 0.0241 0.4013 0.4018 0.942 0.0282 0.2946

η − 0.0510 1.9603 1.9376 0.958 − 1.0386 0.2347

θ 0.0032 0.0719 0.0751 0.948 – –

1 −1 γ1 − 0.0162 0.4436 0.4345 0.944 − 0.0367 0.2219

γ2 − 0.0108 0.5158 0.5187 0.952 0.1035 0.3293

η 0.0301 1.2861 1.2529 0.952 0.8327 0.1718

θ 0.0032 0.1096 0.1154 0.930 – –

0 γ1 − 0.0227 0.4120 0.4163 0.960 0.1233 0.2106

γ2 0.0010 0.5172 0.4947 0.938 0.0802 0.2937

η 0.0367 1.2649 1.2912 0.956 − 0.0843 0.1711

θ 0.0013 0.1142 0.1157 0.956 – –

1 γ1 − 0.0056 0.4252 0.4170 0.946 0.2689 0.2547

γ2 − 0.0134 0.5077 0.5107 0.936 0.0173 0.3183

η − 0.0080 1.3113 1.3404 0.952 − 0.9830 0.2147

θ − 0.0026 0.1178 0.1153 0.932 – –

0 * γ1 − 0.0202 0.2653 0.2652 0.948 − 0.0013 0.1651

γ2 0.0154 0.2887 0.2818 0.950 − 0.0026 0.2667

θ 0.0067 0.0389 0.0358 0.952 – –

*When θ = 0, η is not identifiable

ably well for the two scenarios considered, and the proposed method was robust to
misspecification of the frailty distribution.

Furthermore, we conducted simulation studies for the setting with time-varying
covariates. In the study, we took two time-dependent covariates as Xi1(t) = X̃i1t and
Xi2(t) = X̃i2t, where X̃i1 and X̃i2 were independently generated from a uniform
distribution on (0, 1). Set Xi (t) = (Xi1(t), Xi2(t))T and Zi (t) = Xi1(t). The cen-
soring time was generated from a uniform distribution on (c, 2), where c is chosen
to yield about 30% censoring for the terminal event. The other setups were the same
as in Table 1, except that �D

0 (t) = t and �R
0 (t) = 5t . The results are summarized

in Table 3 with n = 600. It can be seen that the proposed method still performed
satisfactorily in this case.
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Fig. 1 The first row is for the estimates of �D
0 (t) and the second row is for the estimates of �R

0 (t). The
dashed lines are the proposed estimators, and the solid lines are the true functions

Fig. 2 Bias curves of LLY’s method for the estimates of γ1 and γ2. The dashed lines are for γ1, and the
solid lines are for γ2

5 An Application

In this section, we applied the proposed methods to the medical cost data of chronic
heart failure patients that have been analyzed by Liu et al. [10], Sun et al. [17] and
among others. These data were from the clinical data repository at the University of
Virginia Health System, which included a total of 1475 patients aged 60–89 years who
were first diagnosed with heart failure and treated in 2004. The follow-up ended with
each patient’s last hospital admission up to July 31, 2006, or death date, which was
obtained from the Death Certificate Data at the Virginia Department of Vital Statistics.
During follow-up, 297 patients (20%) died and others were censored. For each patient,
three baseline covariates were measured: race, age, and gender. Preliminary studies
implied that patients visiting the hospital more often tended to pay more for each
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Table 2 Sensitivity analysis for
the misspecification of the frailty

η Log-normal Poisson

γ1 γ2 γ1 γ2

−1 Bias 0.0296 0.0233 − 0.0065 − 0.0270

SE 0.3462 0.3865 0.2256 0.3203

SEE 0.3252 0.3695 0.2621 0.3017

CP 0.928 0.928 0.946 0.936

0 Bias 0.0065 0.0187 − 0.0028 − 0.0093

SE 0.3272 0.3680 0.2626 0.3094

SEE 0.3146 0.3539 0.2597 0.2993

CP 0.942 0.936 0.946 0.934

1 Bias 0.0156 0.0074 − 0.0012 − 0.0099

SE 0.3193 0.3858 0.2651 0.3108

SEE 0.3151 0.3655 0.2619 0.3029

CP 0.948 0.924 0.946 0.946

Table 3 Simulation results for
estimation of γ0, θ0, and η0
when covariates are
time-dependent

θ η Bias SE SEE CP

0.5 −1 γ1 0.0079 0.5101 0.5084 0.940

γ2 − 0.0208 0.4665 0.4623 0.944

η 0.0415 3.6579 3.6125 0.932

θ − 0.0191 0.0704 0.0663 0.940

0 γ1 0.0086 0.5088 0.5022 0.952

γ2 − 0.0222 0.4443 0.4434 0.956

η − 0.0465 3.6516 3.5756 0.928

θ 0.0056 0.0747 0.0750 0.940

1 γ1 − 0.0207 0.4709 0.5033 0.962

γ2 − 0.0371 0.4407 0.4459 0.940

η − 0.0510 3.4737 3.5493 0.960

θ 0.0032 0.0706 0.6990 0.950

0 * γ1 0.0135 0.3967 0.3881 0.940

γ2 − 0.0103 0.3552 0.3777 0.956

θ 0.0105 0.0278 0.0296 0.944

*When θ = 0, η is not identifiable

visit, and these patients also had a higher mortality rate. That is, the medical cost
(longitudinal process) may be strongly correlated with the hospital visits (observation
times) and the death (terminal event). To show further how the longitudinal profiles
and observational times profiles are associated with terminal events, we plotted the
scatter diagrams of the frequency of hospital visits and the log sum of medical cost
(until the observed survival time Ti ) versus the observed survival time in Figs. 3 and 4,
respectively. These plots show that the medical costs and hospital visits are positively
correlated with the death. Given that gender had been shown to have no effect on the
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Fig. 3 Scatter plot of the frequency of hospital visits versus the observed survival time
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Fig. 4 Scatter plot of the log sum of medical cost versus the observed survival time

medical cost and the hospital visits [10,17], here we focused on the effects of race and
age on the actual monetary expense of the hospital with informative observation times
and a dependent terminal event.

As in Liu et al. [10] and Sun et al. [17], we defined Yi (t) as the log-transformed
cost. For covariates, let Xi1 be a binary indicator of race (white = 1, nonwhite = 0),
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Table 4 Analysis results for the medical cost data of heart failure patients

γ β Correlation

White Age White Age η1 η2 θ

Our method

Est 0.7489 − 0.8565 − 0.1005 0.1168 − 4.2311 2.3297 0.3634

SEE 0.7515 0.2829 0.0370 0.0215 2.1014 1.1065 0.0480

p-value 0.3190 0.0025 0.0066 0.0000 0.0441 0.0353 0.0000

LLY’s method

Est − 0.4287 − 0.2234 − 0.0834 0.0798 0.0112 0.0011 –

SEE 0.1205 0.0855 0.0349 0.0203 0.0091 0.0075 –

p-value 0.0003 0.0090 0.0132 0.0000 0.2174 0.8813 –

Est is the estimate of the parameter, SEE is the standard error estimate

and Xi2 denote the age group, taking values 0, 1, and 2 for 60–69, 70–79, and 80–
89 years, respectively. Let τ be the longest follow-up time. The asymptotic variance
was estimated by the bootstrap method with 100 bootstrap samples. We chose Zi =
(Xi1, Xi2)

T in model (1), because the race and age are significantly related to the
hospital visits. The analysis results are summarized in Table 4. For the hospital process,
both age and race are significantly related to the hospital visiting, which is in line with
the result obtained by Liu et al. [10] (denoted by LHO). In particular, older patients
were more likely to visit the hospital and had lower medical cost. White patients
visited hospital at less risk and tended to have less medical costs at each visit. For the
cost process, we found that age had a significant effect on the medical cost for each
visit, but race did not seem to be directly related to the medical cost. Although the
results of the LHO’s method implied that age was only marginally significant at 2%
level, their estimator for the race effect was significantly different from ours, and the
direction of the race effect is reversed. One possible reason is the misspecification of
the assumption that the two random effects are independently normally in the LHO’s
method. The estimate θ̂ = 0.3634 (p value < 0.0001) indicates that there was a
significantly positive association between the hospital visits and the death. That is,
patients who tended to visit hospital more frequently had a higher mortality rate. In
addition, in view of (10), this estimate suggests that a patient who is known to die at
time t is expected to have more than 1.3 times as many hospital visits as a patient with
identical covariates who has not died by the time t . Moreover, based on the estimate
η̂, older patients who visited the hospital more often tended to pay more for each visit,
but white patients visiting the hospital more often tended to pay less for each visit.
These results are basically consistent with those obtained by the LHO’s method.

For comparison, we also analyzed the data with the LLY’s method, regarding the
terminal event as an independent censoring time. The comparison results are provided
in the second half of Table 4. For the cost process, the effects of race and age estimated
based on the LLY’smethod are substantially smaller, and the direction of the race effect
is even reversed. For the hospital process, LLY’s method also produced the smaller
effects of race and age. Moreover, the association parameters estimated using LLY’s
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method are significantly different from ours. This is because the LLY’smethod ignores
the dependent terminal event, and thus yields biased estimates.

6 Discussion

In this article, we proposed a joint modeling for analyzing longitudinal data with
informative observation times and a dependent terminal event via two latent variables.
The joint model is more comprehensive and flexible in that it does not assume that
the observation process is a nonhomogeneous Poisson process and allows that some
covariates have random effects. An estimating equation approach was developed for
parameter estimation, which yielded consistent and asymptotically normal estima-
tors. The simulation results showed that the proposed estimation approach performs
well, and the method was robust to misspecification of the frailty distribution for the
situations considered.

Here we have assumed that the covariate histories {Xi (t) : 0 ≤ t ≤ Ti } are
observed, and hence X̄(t;β) is well defined. In practice, however, the covariate histo-
ries are typically measured discretely, and are often available at the observation times.
Thus, some smoothing procedure is needed to interpolate and approximate X̄(t;β).
For this, as discussed in Lin and Ying [8], by using the singleton nearest-neighbor
method, we may approximate X̄(t;β) by

X̄∗(t;β) =
∑n

j=1 � j (t)X∗
j (t) exp{βT X∗

j (t)}∑n
j=1 � j (t) exp{βT X∗

j (t)}
,

where X∗
j (t) is the measurement of X j (·) at the time point nearest to t . Other choices

of X̄∗(t;β) would be the nearest two-neighbor or two-left-right-neighbor average
[8]. Also, we may approximate X̄(t;β) by other smoothing methods such as a linear
smoother or a nonparametric smoother [18]. A similar approximate method can be

used for ¯̂B(t). It would be worthwhile to further address this issue both theoretically
and numerically.

In the joint models, we have assumed that the relationship between the latent vari-
ables has a linear form. In fact, as long as E(ui |υi , Xi (t)) is a polynomial in υi , the
estimation procedure can be directly extended to this case. This extension is useful
because any continuous function can be approximated by polynomials. However, a
high order of polynomial may lead to unstable approximation. Thus, a simple linear
form may be a good choice for small or moderate sample sizes. It would be desirable
to develop a method for the case that E

{
ui |υi , Xi (t)

}
is an unspecified function of υi ,

that is, the dependence structure between the random effects ui and the frailty υi is
left unspecified [17]. Nevertheless, this extension is highly nontrivial and it requires
further investigation.

Note that models (2) and (3) allow a positive association between the observation
process and the terminal event. Although these models fit the example discussed in
Sect. 5 well, the negative associationmay exist. Based on the discussion of Kalbfleisch
et al. [3], the proposed model can be generalized to allow for a negative association
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between the observation process and the terminal event. For this case, we specify υ−1
i

as the frailty in model (2) and retain υi as the frailty in models (1) and (3), where the
frailty υi is assumed to follow a gamma distribution with mean 1 and variance θ < 1.
It can be checked that

ψ∗
i (t) = E{υ−1

i |Xi (t), Di ≥ t} = ψi (t)

1 − θ
.

By replacing ψi (t) and 1 + θ with ψ∗
i (t)−1 and 1 − θ , respectively, in U2, U3, and

U5, the same estimating equations can be constructed as in the previous sections. A
more general approach is to generalize model (2) to

d�R(t |υi ) = υσ
i exp{βT

0 Xi (t)}d�R
0 (t),

where σ is an unknown parameter. Estimation of σ in this model is a challenging
problem and requires substantial efforts in the future. Finally, the proposed estimation
procedurewas developed on the basis of the generalized estimating equation approach.
The efficiency of the resulting estimators is worthy of further investigation.
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Appendix : Proof of Asymptotic Results

In order to study the asymptotic properties of the proposed estimators, we need the
following regularity conditions:

(C1) {Yi (·), N R
i (·), ND

i (·), Ti , Xi (·), i = 1, . . . , n} are independent and identically
distributed.

(C2) E{N R
i (τ )} is bounded, and Pr(Ti ≥ τ) > 0.

(C3) Xi (t) is almost surely of bounded variation on [0, τ ].
(C4) There exist a compact set B of ξ0 such that for ξ ∈ B, �(ξ) is nonsingular,

where �(ξ) is the limit of −∂Ũ (ξ)/∂ξ T with Ũ (ξ) defined in (A.3).

For notational simplicity, henceforth we omit superscript t in the covariate Xi (t).
Let �̃D

0 (t) and �̃R
0 (t) denote the solutions to the following estimating equations

1

n

n∑

i=1

[
ψi (t;α0, θ0,�

D
0 )dND

i (t) − �i (t) exp{αT
0 Xi }d�D

0 (t)
]

= 0,
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and

1

n

n∑

i=1

[
ψi (t;α0, θ0,�

D
0 )dN R

i (t) − �i (t) exp{βT
0 Xi }d�R

0 (t)
]

= 0.

Proof of Theorem 1

Define

�̃1(t) = θ0

n

n∑

i=1

∫ t

0
exp{αT

0 Xi } dND
i (u)

S0(u;α0)
,

where S0(t;α) = 1
n

∑n
i=1 �i (t) exp{αT Xi }. By the definition of �̃D

0 (t), it can be
checked that

�̃D
0 (t) − �D

0 (t) =
n∑

i=1

∫ t

0
[�̃D

0 (u) − �D
0 (u)]d�̃1(u) + 1

n

n∑

i=1

∫ t

0

dMD
i (u)

S0(u;α0)
,

which is a linear Volterra integral equation, and the solution is

�̃D
0 (t) − �D

0 (t) = 1

P̃(t)

∫ t

0
P̃(u−)

∑n
i=1 dM

D
i (u)

nS0(u;α0)
,

where P̃(t) = ∏
s≤t {1 − d�̃1(s)} is the product-integral of �̃1(s) over [0, t]. Using

the uniform convergence of �̃D
0 (t), the uniform strong law of large numbers [12] and

Lemma A.1 of Lin and Ying [8], we get that uniformly in t ∈ [0, τ ],

�̃D
0 (t) − �D

0 (t) = 1

n

n∑

i=1

φ1i (t) + op
(
n−1/2

)
, (A.1)

where

φ1i (t) = 1

P(t)

∫ t

0
P(u−)

dMD
i (u)

s0(u;α0)
,

and P(t) and s0(t;α) are the limits of P̃(t) and S0(t;α), respectively. Let

�̃2(t) = θ0

n

n∑

i=1

∫ t

0
exp{βT

0 Xi } dN R
i (u)

S0(u;β0)
,
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and �2(t) be the limit of �̃2(t). Note that

�̃R
0 (t) = 1

n

n∑

i=1

∫ t

0

ψi (u; �̃D
0 )dN R

i (u)

S0(u;β0)
,

where ψi (t;�D
0 ) = ψi (t;α0, θ0,�

D
0 ). It then follows from (A.1) that

�̃R
0 (t) − �R

0 (t) =
∫ t

0
[�̃D

0 (u) − �D
0 (u)]d�̃2(u) + 1

n

n∑

i=1

∫ t

0

dMR
i (u)

S0(u;β0)

= 1

n

n∑

i=1

φ2i (t) + op(n
−1/2), (A.2)

where

φ2i (t) =
∫ t

0
φ1i (u)d�2(u) +

∫ t

0

dMR
i (u)

s0(u)
.

Let ω2i (t; ξ) be defined as ω2i (t) with ψi (t) replaced by ψi (t;α, θ, �̃D
0 ), and

Ũ (ξ) = (
Ũ1(ξ)T , Ũ2(ξ)T , Ũ3(ξ), Ũ4(ξ)T

)T
, (A.3)

where

Ũ1(ξ) =
n∑

i=1

∫ τ

0

{
Xi − X̄(t;α)

}
ψi (t;α, θ, �̃D

0 )dND
i (t),

Ũ2(ξ) =
n∑

i=1

∫ τ

0

{
Xi − X̄(t;β)

}
ψi (t;α, θ, �̃D

0 )dN R
i (t),

Ũ3(ξ) =
n∑

i=1

∫ τ

0

{
N R
i (t) − (θ + 1)Q(t)ω2i (t; ξ)

}
dND

i (t)

and

Ũ4(ξ) =
n∑

i=1

∫ τ

0

(
Xi−X̄(t;β)

Bi (t;�̃D
0 )−B̃(t;ξ)

) [
Yi (t)ψi (t;α, θ, �̃D

0 )dN R
i (t)

− {
γ T Xi + ηT Bi (t; �̃D

0 )
}
exp{βT Xi }d�̃R

0 (t)
]
,

with Bi (t; �̃D
0 ) = Bi (t;α, θ, �̃D

0 ), and

B̃(t; ξ) =
∑n

j=1 � j (t)Bj (t; �̃D
0 ) exp{βT X j }

∑n
j=1 � j (t) exp{βT X j } .
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Note that

Ũ1(ξ0) =
n∑

i=1

∫ τ

0

{
Xi − X̄(t;α0)

}
ψi (t; �̃D

0 )dN R
i (t)

= θ0

n∑

i=1

∫ τ

0
�i (t) exp{αT

0 Xi }
{
Xi − X̄(t;α0)

}{
�̃D

0 (t) − �D
0 (t)

}
dND

i (t)

+
n∑

i=1

∫ τ

0

{
Xi − X̄(t;α0)

}
dMD

i (t),

where ψi (t; �̃D
0 ) = ψi (t;α0, θ0, �̃

D
0 ). Let

H̃1(t) = 1

n

n∑

i=1

∫ t

0
θ0�i (u) exp{αT

0 Xi }
{
Xi − X̄(u;α0)

}
dND

i (u),

and x̄(t;α0) and H1(t) are the limits of X̄(t;α0) and H̃1(t), respectively. Similarly to
(A.2), we have

Ũ1(ξ0) =
n∑

i=1

ϑ1i + op
(
n1/2

)
, (A.4)

where

ϑ1i =
∫ τ

0
{Xi − x̄(t;α0)} dMD

i (t) +
∫ τ

0
φ1i (t)dH1(t).

Likewise,

Ũ2(ξ0) =
n∑

i=1

ϑ2i + op(n
1/2), (A.5)

where

ϑ2i =
∫ τ

0
{Xi − x̄(t;β0)} dMR

i (t) +
∫ τ

0
φ1i (t)dH2(t),

and x̄(t;β0) and H2(t) are the limits of X̄(t;β0) and H̃2(t) with

H̃2(t) = 1

n

n∑

i=1

∫ t

0
θ0�i (u) exp{αT

0 Xi }
{
Xi − X̄(u;β0)

}
dN R

i (u).

123



Statistics in Biosciences (2018) 10:609–633 629

Let

ω∗
2i (t) = ψ−1

i (t;�D
0 )

∫ t

0
exp{βT

0 Xi }d�R
0 (u),

ω̃2i (t) = ψ−1
i (t; �̃D

0 )

∫ t

0
exp{βT

0 Xi }d�̃R
0 (u),

Q̃(t) =
∑n

i=1 ω̃−1
2i (t)�∗

i (t)N
R
i (t)

∑n
i=1 �∗

i (t)
,

and q(t) be the limit of Q̃(t). Note that

Ũ3(ξ0) =
n∑

i=1

∫ τ

0

{
N R
i (t) − (θ0 + 1)ω∗

2i (t)q(t)
}
dND

i (t)

− (θ0 + 1)
n∑

i=1

∫ τ

0
Q̃(t)

{
ω̃2i (t) − ω∗

2i (t)
}
dND

i (t)

− (θ0 + 1)
n∑

i=1

∫ τ

0

{
Q̃(t) − q(t)

}
ω∗
2i (t)dN

D
i (t). (A.6)

As in the proof of (A.4), the second term on the right-hand side of (A.6) equals

− (θ0 + 1)
n∑

i=1

∫ τ

0

[
Q̃(t)

{
ψ−1
i (t; �̃D

0 ) − ψ−1
i (t; �D

0 )
} ∫ t

0
exp{βT

0 Xi }d�R
0 (u)

]
dND

i (t)

− (θ0 + 1)
n∑

i=1

∫ τ

0
Q̃(t)ψ−1

i (t; �̃D
0 ) exp{βT

0 Xi }
[
�̃R

0 (t) − �R
0 (t)

]
dND

i (t)

= (θ0 + 1)
n∑

i=1

∫ τ

0

[
φ1i (t)dH3(t) − φ2i (t)dH4(t)

] + op(n
1/2), (A.7)

where H3(t) and H4(t) are the limits of H̃3(t) and H̃4(t) with

H̃3(t) = 1

n

n∑

i=1

∫ t

0
θ0

[
Q̃(u)ψ−1

i (u; �̃D
0 )ω∗

2i (u)
]
dND

i (u)

and

H̃4(t) = 1

n

n∑

i=1

∫ t

0
Q̃(u)ψ−1

i (u; �̃D
0 )dND

i (u).
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Let d�(t) = E
{
ω∗
2i (t)dN

D
i (t)

}
,

H̃5(t) = θ0
∑n

i=1 ψ−1
i (t; �̃D

0 )ω̃−1
2i (t)�∗

i (t)N
R
i (t)

∑n
i=1 �∗

i (t)
,

H̃6(t) =
∑n

i=1 ψ−1
i (t; �̃D

0 )ω̃−1
2i (t)ω∗−1

2i (t)�∗
i (t)N

R
i (t)

∑n
i=1 �∗

i (t)
,

and H5(t) and H6(t) be the limits of H̃5(t) and H̃6(t), respectively. In a similarmanner,
the third term on the right-hand side of (A.6) is

(θ0 + 1)
n∑

i=1

∫ τ

0

[
φ1i (t)H5(t) + φ2i (t)H6(t)

]
d�(t)

− (θ0 + 1)
n∑

i=1

∫ τ

0

[ω∗−1
2i (t)�∗

i (t)N
R
i (t)

E{�∗
i (t)}

− q(t)

E{�∗
i (t)}

�∗
i (t)

]
d�(t) + op(n

1/2).

(A.8)

Thus, it follows from (A.6)–(A.8) that

Ũ3(ξ0) =
n∑

i=1

ϑ3i + op(n
1/2), (A.9)

where

ϑ3i =
∫ τ

0

{
N R
i (t) − (θ0 + 1)ω∗

2i (t)q(t)
}
dND

i (t)

− (θ0 + 1)
∫ τ

0

[
φ1i (t)dH3(t) + φ2i (t)dH4(t)

]

+ (θ0 + 1)
∫ τ

0

[
φ1i (t)H5(t) + φ2i (t)H6(t)

]
d�(t)

− (θ0 + 1)
∫ τ

0

[ω∗−1
2i (t)�∗

i (t)N
R
i (t)

E{�∗
i (t)}

− q(t)�∗
i (t)

E{�∗
i (t)}

]
d�(t).

Let Bi (t) = Bi (t;α0, θ0,�
D
0 ), and

B̄(t) =
∑n

j=1 � j (t)Bj (t) exp{βT
0 X j }

∑n
j=1 � j (t) exp{βT

0 X j }
.

Note that

Ũ4(ξ0) = R1 + R2 + R3, (A.10)
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where

R1 =
n∑

i=1

∫ τ

0

(
Xi−X̄(t;β0)
Bi (t)−B̄(t)

)
dMi (t),

R2 =
n∑

i=1

∫ τ

0

(
Xi−X̄(t;β0)

Bi (t;�̃D
0 )−B̃(t)

)
{dM̃i (t) − dMi (t)}

R3 =
n∑

i=1

∫ τ

0

[ (
Xi−X̄(t;β0)

Bi (t;�̃D
0 )−B̃(t)

)
−

(
Xi−X̄(t;β0)
Bi (t)−B̄(t)

) ]
dMi (t),

and

dM̃i (t) = Yi (t)ψi (t; �̃D
0 )dN R

i (t)−�i (t)
{
γ T
0 Xi +ηT0 Bi (t; �̃D

0 )
}
exp{βT

0 Xi }d�̃R
0 (t)

− �i (t) exp{βT
0 Xi }dA0(t).

For R1 of (A.10), using the Lemma A.1 of Lin and Ying [8], we have

R1 =
n∑

i=1

∫ τ

0

(
Xi−x̄(t;β0)
Bi (t)−b̄(t)

)
dMi (t) + op(n

1/2),

where b̄(t) is the limit of B̄(t). For R2, we get

R2 =
n∑

i=1

∫ τ

0

(
Xi−X̄(t;β0)

Bi (t;�̃D
0 )−B̃(t)

) {
Yi (t)

[
ψi (t; �̃D

0 ) − ψi (t;�D
0 )

]
dN R

i (t)

− �i (t)γ
T
0 Xi exp{βT

0 Xi }d{�̃R
0 (t) − �R

0 (t)}
− �i (t)η

T
0 Xi exp{βT

0 Xi }
[
Bi (t; �̃D

0 )d�̃R
0 (t) − Bi (t)d�

R
0 (t)

]}
.

It then follows from (A.1) and (A.2) that

R2 =
n∑

i=1

∫ τ

0

{
φ1i (t)dG1(t) − G2(t)dφ2i (t)

}
+ op(n

1/2),

where G1(t) and G2(t) are the limits of G̃1(t) and G̃2(t), respectively, with

G̃1(t) = 1

n

n∑

i=1

∫ t

0

(
Xi−X̄(u;β0)

Bi (u;�̃D
0 )− ¯̃B(u)

)
θ0Yi (u) exp{αT

0 Xi }dN R
i (u)

+ 1

n

n∑

i=1

∫ t

0

(
Xi−X̄(u;β0)

Bi (u;�̃D
0 )− ¯̃B(u)

)
(θ20 + θ0)�i (u)ηT0 Zi exp{αT Xi }

ψi (u; �̃D
0 )ψi (u)

d�̃R
0 (u),

G̃2(t) = 1

n

n∑

i=1

(
Xi−X̄(t;β0)

Bi (t;�̃D
0 )− ¯̃B(t)

)
�i (t)γ

T
0 Xi exp{βT

0 Xi }
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+ 1

n

n∑

i=1

(
Xi−X̄(t;β0)

Bi (t;�̃D
0 )− ¯̃B(t)

)
�i (t)η

T
0 Bi (t) exp{βT

0 Xi }.

By the Lemma A.1 of Lin and Ying [8], it can be shown that R3 = op(n1/2). Thus,
we have

Ũ4(ξ0) =
n∑

i=1

ϑ4i + op(n
1/2), (A.11)

where

ϑ4i =
∫ τ

0

(
Xi−x̄(t;β0)
Bi (t)−b̄(t)

)
dMi (t) +

∫ τ

0

{
φ1i (t)dG1(t) − G3(t)dφ2i (t)

}
.

Let ϑi = (ϑT
1i , ϑ

T
2i , ϑ3i , ϑ

T
4i )

T , and � = �(ξ0) defined in condition (C4). Then it
follows from (A.4), (A.5), (A.9), (A.11), and the Taylor expansion that

n1/2(ξ̂ − ξ0) = n−1/2�−1
n∑

i=1

ϑi + op(1).

By the multivariate central limit theorem, n1/2(ξ̂ − ξ0) is asymptotically normal with
mean zero and covariance matrix �−1�(�T )−1, where � = E{ϑiϑ

T
i }.
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