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Abstract
The NHANES study contains objectively measured physical activity data collected
using hip-worn accelerometers frommultiple cohorts. However, using the accelerome-
try data has proven daunting because (1) currently, there are no agreed-upon standard
protocols for data storage and analysis; (2) data exhibit heterogeneous patterns of
missingness due to varying degrees of adherence to wear-time protocols; (3) sampling
weights need to be carefully adjusted and accounted for in individual analyses; (4)
there is a lack of reproducible software that transforms the data from its published
format into analytic form; and (5) the high dimensional nature of accelerometry data
complicates analyses. Here, we provide a framework for processing, storing, and ana-
lyzing the NHANES accelerometry data for the 2003–2004 and 2005–2006 surveys.
We also provide an NHANES data package in R, to help disseminate high-quality,
processed activity data combined with mortality and demographic information. Thus,
we provide the tools to transition from “available data online” to “easily accessible and
usable data”, which substantially reduces the large upfront costs of initiating studies
of association between physical activity and human health outcomes using NHANES.
We apply these tools in an analysis showing that accelerometry features have the
potential to predict 5-year all-cause mortality better than known risk factors such as
age, cigarette smoking, and various comorbidities.
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1 Introduction

The National Health and Nutrition Examination Survey (NHANES) is a large, strat-
ified, multistage survey conducted by the Centers for Disease Control (CDC) which
collects health and nutrition data on the US population. According to the NHANES
website, these data are collectedwith the intent that it will be analyzed to “help develop
sound public health policy, direct and design health programs and services, and expand
the health knowledge for the Nation” [2]. NHANES is one of the largest and most
important studies in terms of size, scope, diversity, and accessibility of the data. More-
over, NHANES was the first study to make public a large dataset containing activity
information measured using accelerometers when they released accelerometry data
from the 2003–2004 and 2005–2006 samples. Recently, the UK Biobank has made
public accelerometry data on approximately 100,000 individuals from the UK, who
will be followed up for up to 20 years [27]. This is another extraordinary resource,
but our focus for this paper is the NHANES. As NHANES is representative for the
non-institutionalized US population, results are generalizable to well-defined sub-
populations of the US by using survey re-weighting techniques. Moreover, NHANES
over-samples underrepresented groups (racial minorities, elderly, etc.) and can be
linked to US national mortality data. This allows for the study of cross-sectional
associations between individual characteristics and health outcomes as well as their
association with future mortality. In this paper, we are especially interested in the
prediction of mortality, ranking of the most predictive covariates, the relative effects
of accelerometry-derived predictors of mortality, and building of parsimonious pre-
diction models based on the NHANES data.

The association between activity and health outcomes and mortality is an area of
active research in a wide range of scientific applications including sleep, mood dis-
orders, neurodegenerative diseases, diabetes, obesity, and aging [3,9–11,23,24,26]. In
addition to providing objective measures of overall physical activity (PA), the minute-
level resolution ofmost accelerometry data is sufficiently high to identify daily patterns
of PA and their potential association with health and mortality. NHANES collected
objectively measured PA data using hip-worn accelerometers in the 2003–2004 and
2005–2006waves.More recently,NHANEShas transitioned towrist-worn accelerom-
eters, but that data are not currently publicly available.

While theNHANES data are publicly available, actually analyzing the data requires
a non-trivial amount of background information, data processing and linking, as well
as knowledge of survey weighting and accelerometry data. Since there is currently no
comprehensive reference for how to begin working with this data, each working group
undergoes a lengthy learning process. This process is highly inefficient because it (1)
deters interested researchers from using the data; (2) requires considerable time and
resources to go through the learning process; and (3) increases the chances that errors
aremade by independently repeating the same complex process with different research
groups. We address these problems by providing reference datasets via the R [21] data
package rnhanesdata [13] and provide detailed information about the data processing
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steps. Our hope is that the package will be used by multiple research groups, which
could improve reproducibility and generalizability of results.

This document is organized as follows. In Sect. 2, we describe the NHANES study,
accelerometry data transformation procedure, and how to begin working quickly with
the NHANES data. In Sect. 3.1, we present two approaches for identifying inter-
pretable features of accelerometry data which can be used as predictors in regression
analyses. In Sect. 3.3, we identify key predictors of mortality in the NHANES study.
Finally, we conclude with a discussion in Sect. 4.

2 Data

The NHANES data are publicly available from the Center for Disease Control at
https://www.cdc.gov/nchs/nhanes/index.htm and are broadly categorized into six
areas: demographics, dietary, examination, laboratory, questionnaire, and limited
access. The accelerometry data for a particular NHANES cohort can be downloaded
from the “Physical Activity Monitor” subcategory under the “Examination Data” tab.
The NHANES uses an alphabetic naming convention to differentiate data for vari-
ous waves, starting with the 1999–2000 wave. For example, data file names from the
2003–2004 wave end in “_C.ext” where .ext is the file extension (.csv, .xpt, etc.). Sim-
ilarly, data file names for the 2005–2006 wave end in “_D.ext”. Currently, only the
2003–2004 (“PAXRAW_C.XPT”) and 2005–2006 (“PAXRAW_D.XPT”) waves of
accelerometry data have been released, but data for subsequent waves will be released
on a semi-regular schedule.

2.1 Accelerometry Data

The NHANES accelerometry data are initially provided as zipped .xpt files (SAS
XPORT), which, once unzipped, can be loaded into most statistical software pack-
ages. The unzipped files are large at approximately 2.5Gb per wave, which makes
them difficult to use. The size of the NHANES files is due to the long data stor-
age format, with one row per subject-minute. The columns of the long format data
correspond to (1) SEQN—a unique subject identifier; (2) PAXSTAT—data relia-
bility flag; (3) PAXCAL—device calibration flag; (4) PAXDAY—day of the week;
(5) PAXN—sequential observation number; (6) PAXHOUR—hour of the day; (7)
PAXMINUT—minute of the hour; (8) PAXINTEN—intensity value (activity count);
and (9) PAXSTEP—device step count (not available for the 2003–2004 wave). See
Table 1 for an illustration of the data format. Here, subject 31128 does not have data
quality issues and has observed activity counts of 166, 27, and 0 for the first 3 min on
the day the device was activated (00:00–00:01, 00:01–00:02, and 00:02–00:03). This
data storage structure results in a data matrix of dimension 72, 250, 027 × 9 for the
2005–2006 wave; we call this the long format of the data.

The long format makes even simple analyses challenging and computationally
expensive. For example, even calculating the average activity between 10:00AM and
11:00AM for all subjects is not straightforward since subjects have a varying num-
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Table 1 First 3 rows of the ‘PAXRAW_D.XPT’ file, the 2005–2006 accelerometry data file available for
download from the CDC website

SEQN PAXSTAT PAXCAL PAXDAY PAXN PAXHOUR PAXMINUT PAXINTEN PAXSTEP

31128 1 1 1 1 0 0 166 4

31128 1 1 1 2 0 1 27 0

31128 1 1 1 3 0 2 0 0

.
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ber of observed minutes due to missing patterns. Keeping track of missing minutes
would require careful coding (indexing) and even adding columns to the data which
would substantially increase the memory footprint of the data. Moreover, identifying
wear time is a prominent concern and a key methodologic challenge in analyzing the
NHANES accelerometry data. Using the long format of the data makes calculating the
amount of wear time within a day more complex and less intuitive than our proposed
alternative, which we call the 1440+ format.

To address the problems associatedwith the longdata format,wepropose to store the
data as one row per subject-day. That is, for each NHANESwave with Nw participants
with accelerometry data, the accelerometry data will be stored as an (7 ∗ Nw) × 1440
data matrix, where 7 refers to the number of days each subject was instructed to wear
the accelerometer device and 1440 corresponds to the number of minutes in a day. To
the accelerometry data, we add columns for subject identifier, day of the week, the
two data quality flags, and NHANES wave identifier. This results in a data matrix of
size (7 ∗ Nw) × 1445, with rows ordered first by subject, and then by chronological,
descending order within subjects. See Fig. 1 for an example of this data format.We call
this the 1440+ format andwe suggest it as the standard format for analyzing aggregated
accelerometry data at the minute level. Some studies have recorded the data at other
fractions of the minute level (e.g., half a minute or 2 min); the same format can easily
be used for such studies. Storing the data in the 1440+ format reduces the file size by
nearly 80% and streamlines the process of identifying non-wear time.

In NHANES, participants were asked to wear the device 7 consecutive days during
waking hours with the exception of swimming and bathing. Using established criteria
for identifying periods of non-wear, it can be seen that non-compliance is highly
prevalent among subjects. That is, many subjects either forgot to take off the device
when they slept, forgot to put the device on uponwaking, or generally forgot/refused to
wear thedevice for oneormoredays.As a result, there aremany subjectswith less/more
than the expected amount of wear time in a given day, as well as subjects with fewer
than 7 days of data. To account for the non-wear time, we create a data matrix of non-
wear flags separately for each wave. The processed non-wear flags in the rnhanesdata
package are derived using an algorithm implemented in the accelerometry package
[29], which is a slight modification of [28]. This algorithm requires the specification
of several parameters which control how aggressively the algorithm detects non-wear
flags. Users are able to create their own matrix of non-wear flags using different
algorithm parameters via the process_flags() function.
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Unique Identifier Quality Flags NHANES wave Activity Counts

SEQN PAXDAY PAXCAL PAXSTAT SDDSRVYR MIN1 MIN2 MIN3 · · · MIN1440

(a)

⎧
⎪⎪⎨

⎪⎪⎩

31128 1 1 1 4 166 27 0 · · · 0
31128 2 1 1 4 0 0 0 · · · 0

...
...

...
... 4

...
...

...
...

...
31128 7 1 1 4 0 0 0 · · · 0

...
...

...
... 4

...
...

...
...

...

(b)
⎧
⎨

⎩

31193 2 2 1 4 0 0 0 · · · 1921
31193 3 2 1 4 335 2598 2185 · · · 46
31193 4 2 1 4 0 0 0 · · · 0

...
...

...
... 4

...
...

...
...

...

(c) 31880 2 2 2 4 32767 32767 32767 · · · 32767
31880 3 2 2 4 32767 32767 32767 · · · 32767

...
...

...
... 4

...
...

...
...

...

(d) 32008 5 1 2 4 0 0 0 · · · 0
32008 6 1 2 4 NA NA NA · · · NA

Fig. 1 Several rows from the processed 2005–2006 wave accelerometry data with various combinations of
data quality indicators and missing data patterns. Specifically, a corresponds to a subject with 7 full days of
activity data, no data quality flag indicators, and no missing data; b shows a subject where the device was
marked as uncalibrated upon return to NHANES; c presents a subject with both an uncalibrated device and
data reliability issue; and d illustrates a subject with their last two days of data missing (other missing day
not shown)

Once the activity data have been transformed and non-wear flags have been cal-
culated, the data are ready to be merged with covariate and survey weight data. In
NHANES, demographic data are generally straightforward to use (e.g., race, gender);
however, several covariates need additional processing to be expressed in the expected
format (e.g., alcohol consumption, smoking).

NHANES does not have a simple random sample from the US population, instead it
has a complex survey design. Features of the sampling strategy include oversampling,
adjustment for non-response, and post-stratification. Taking all these design aspects
into consideration, NHANES assigns a sample weight to each participant. That sample
weight indicates the number of people in the population who are “represented” by that
particular individual. Survey weights need to be addressed in order to obtain results
that are generalizable to the US population. Even simple plots such as histograms
can be misleading without incorporating survey weight information. The survey [16]
package in the statistical software R [21] has many tools to perform survey-weighted
analyses and create survey-weighted exploratory plots. However, an issue arises in the
context of missing data. More specifically, if an analysis requires subsetting NHANES
participants based on missing data, unless the data are missing completely at random,
the analysis sample is potentially no longer representative of the non-institutionalized
US population, even accounting for survey weights. This can result in biased estimates
for model parameters, the degree of which can grow substantially as rates of missing-
ness increase. Fundamentally, addressing the problem of missing data while retaining
generalizability involves either (1) re-weighting individuals in the data; or (2) imputing
the missing data. While a full discussion of approaches for handling missing data is
beyond the scope of this paper, one approach that is implemented in the rnhanesdata
package is to assume that within certain age, sex, and ethnicity categories, individuals
for whom data are completely observed are representative of those for whom data
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Table 2 Data package structure and contents

(1) Processed data

processed physical activity data “PAXINTEN_C.rda” and “PAXINTEN_D.rda”

wear/non-wear flags data “Flags_C.rda” and “Flags_D.rda”

covariates data “Covariate_C.rda” and “Covariate_D.rda”

mortality data “Mortality_2011_C.rda” and “Mortality_2011_D.rda”

(2) Data processing functions

NHANES activity processing code “process_accel()”

NHANES wear/non-wear flag code “process_flags()”

NHANES mortality “process_mort()”

NHANES data merging “process_covar()”

(3) Helper functions

Calculate survey weights on subsets “reweight_accel()”

Identify “good” days of accelerometry data “exclude_accel()”

(4) Raw data

NHANES covariate data “ALQ_C.XPT”,“ALQ_D.XPT”,

“BMX_C.XPT”,“BMX_D.XPT”, …

NHANES linked mortality data “NHANES_2005_2006_MORT_2011_PUBLIC.dat”

“NHANES_2003_2004_MORT_2011_PUBLIC.dat”

Note that all “.rda” files referenced in the Processed data section are in matrix format and can be readily
written to .csv or other standard formats. Although the long format accelerometry data are not available in
the data package due to file sizes, the original data can be downloaded directly from the CDC and processed
using the process_accel() function

are missing. Although this re-weighting procedure is used in other applications and
packages [18,30], we believe the issue of re-weighting will need to be revisited in the
future. We discuss our approach to this issue further in Sect. 2.4.

We aim to provide a template for processing and analyzing accelerometry data in
the context of the NHANES study, though the standards and methods apply more gen-
erally. In addition to the processed data, the supplemental material contains all code
necessary to replicate our results. Our hope is to enhance reproducibility of future
analyses using the NHANES accelerometry data, reduce substantially the learning
time for new users, and reduce the number of potential errors associated with multi-
ple research group-specific pre-processing pipelines. The data package (rnhanesdata)
can be downloaded from GitHub at https://github.com/andrew-leroux/rnhanesdata.
Table 2 describes the contents and structure of the data package. With this data pack-
age, getting started with NHANES is simple. Even though we have been working with
accelerometry data for years, the time investment required to understand theNHANES
accelerometry data structure, derive non-wear flags, understand the survey structure
of NHANES, design a processing pipeline, and create a data package was substantial.
With this data package and tutorial paper, we would have saved an immense amount
of productive time across multiple individuals in our working group.
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2.2 Covariate Data

Demographic and personal information collected by NHANES is reported in ques-
tionnaire format. Some questions are fairly straightforward, such as those inquiring
about individuals’ age and education. However, producing other variables of interest
requires merging information frommultiple questions. For example, creating the vari-
able indicator of whether or not an individual smokes cigarettes requires information
from two separate questions. Similarly, creating a variable associated with alcohol
consumption which categorizes individuals into ‘non-drinker’, ‘moderate drinker’, or
‘heavy drinker’, requires information from 4 different questions. Thus, the creation
of both variables contains a set of decisions and choices regarding the definition of
said variables that would be hard to reproduce and communicate without associated
software. The code in the rnhanesdata package provides these details to ensure repro-
ducibility of the covariate building process. In particular, we provide a vignette that
walks through the creation of each of the processed demographic and lifestyle variables
included in the package. An additional complexity is that NHANES covariate data are
stored across multiple .xpt files. The rnhanesdata package contains several of these
files which include demographic information (including survey weights). In addition,
the function process_covar() will search all .xpt files in a directory (locally, or in the
package datasets) for variables either by name or return all variables in a data matrix
format. This can be used to easily access and merge variables across many different
NHANES data files and waves, including those waves without accelerometry data.

2.3 Mortality Data

The National Center for Health Statistics provides a mechanism for linking NHANES
waves with death certificate records from the National Death Index (NDI) [19]. The
particular records used are publicly available and can be downloaded directly from
ftp://ftp.cdc.gov/pub/Health_Statistics/NCHS/datalinkage/linked_mortality/ and are
updated semi-regularly. The raw mortality data are not in an analysis ready format. To
facilitate use of this mortality data, the rnhanesdata package provides both processed
and raw versions of these data, as well as the code used to process it via the function
process_mort(). The current mortality data in the package were released in 2011;
however, we intend to update the package with future data releases.We use the naming
convention “Mortality_**_*” where ∗∗ indicates the mortality data release year and
∗ denotes NHANES wave. In the interest of reproducibility, moving forward we will
retain mortality data from previous releases in the data package.

2.4 SurveyWeights

The survey weight in NHANES for one individual corresponds to the number of indi-
viduals in the US population that “are represented by” that particular individual. Each
individual may have several survey weights depending on whether they participated
in sub-studies within NHANES. As a general rule, an analysis should use the sur-
vey weight associated with the “innermost” sub-study among variables included in
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the analysis. For example, if one is interested in modeling mortality as a function of
household income (collected at the household interview) and the accelerometry data,
the analysis should use the “examination weights” (WTMEC2YR) as the accelerom-
etry data are collected on a sub-sample of the interview portion of the study. An
additional step is required when combining data from multiple waves. In the case of
the 2003–2004 and 2005–2006 waves, this adjustment corresponds to dividing the
survey weights by a factor of 2.

In addition to adjustments required for combining data across waves, it may be
desirable to adjust survey weights when there are missing data in order to retain the
generalizability of results. There are many ways this re-weighting can be done and
each analysis should involve careful consideration of whether and how to re-weight.
In the rnhanesdata package, we take a very general approach that uses three variables
which are recorded for all participants and are similar to the procedure implemented
in the SAS routine reweight.pam [18,31]. More specifically, we stratify individuals by
age, gender, and ethnicity, then re-weight each individual with complete data within
each strata to be representative of the “total” strata size.

The stratification approach described above implicitly assumes that within these
age, gender, and ethnicity strata, individuals with complete data are representative
of the corresponding strata in the general population. Care needs to be taken when
using this approach such that the age strata used for re-weighting are appropriate
given any exclusion criteria. For example, it would not make sense to set one of
the age strata to be [50, 60) but exclude any subjects under 59. This would result in
those aged [59, 60) being highly up-weighted in order to make them representative of
everyone age [50, 60) in the larger population. In addition, any subsetting based on
age should be done using the age that corresponds to the survey weight of interest.
That is, individuals’ age at the interview (RIDAGEMN) is generally not the same as
their age at the exam (RIDAGEEX).

Finally, normalizing the survey weights helps with numerical stability for the esti-
mation procedures employed by statistical software packages and is in fact necessary
for obtaining accurate point estimates and standard errors outside of specialized sur-
vey software. The rnhanesdata package contains the function reweight_accel()which
will automatically re-calculate a suite of the survey weights and normalized survey
weights for a subset of the 2003–2004 and 2005–2006 waves, either separately or
combined using the re-weighting procedure described above. The default age strata
used in the re-weighting procedure correspond to the age categories targeted in the
NHANES 2003–2004 and 2005–2006 waves for white Americans [4], though this can
be specified by a user.

3 Data Application—Mortality in NHANES

We apply our data package to identify features of activity associated with mortality
in the NHANES study, and assess their predictive value in combination with major
demographic and health predictors. Specifically, we are interested in predicting 5-year
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mortality. If Yi denotes the outcomeDead/Alive after 5 years andWi denotes a column
vector of covariates then we fit logistic regressions of the form

{
Yi ∼ Bernoulli(pi );
log

(
pi

1−pi

)
= Wt

iβ
(1)

Throughout this paper, we use bold font to indicate data vectors and matrices and
regular font to indicate data scalars. To conduct the analysis, we exclude individuals
based on age, missing data, and number of days of accelerometry data. In total, the
NHANES 2003–2004 and 2005–2006 waves have 14, 631 participants with some
accelerometry data. We excluded individuals who were (1) younger than 50 or 85
and older at the time they wore the accelerometer ; (2) missing any demographic
predictor variables we adjust for; (3) had fewer than 3 days of data with at least 10
h of estimated wear time; (4) missing mortality information; (5) alive with follow-
up less than 5 years. This set of exclusion criteria yielded a sample size of 3198
participants. The vast majority of individuals were excluded based on the age criteria
(10, 859 participants). Of the 3772 individualswhomet our age criteria, themajority of
individuals excluded were removed for accelerometer calibration/data quality issues
(239) or too fewdays of “good” accelerometer data (278). The remaining57 individuals
excluded were removed for missing mortality or predictor data. As a final note, there
were an additional 335 individuals who participated in the examination portion of the
study who meet our age criteria but who have no accelerometry data.

Table 3 presents summary statistics comparing participants who had accelerometry
data stratified by exclusion fromour study.Both unadjusted and surveyweight adjusted
results are reported. Survey weighting was performed using the tableone package
[35] in R which interfaces with the survey package [16]. The survey-weighted results
indicate that individuals who were excluded tend to be less educated (p = 0.002),
more likely to havemissing alcohol data (p < 0.001), be current smokers (p = 0.002),
have a body mass index that qualifies as obese (p = 0.002), higher rates of Diabetes
(p = 0.013), Stroke (p = 0.046), and self-reportedmobility problems (p = 0.001). In
addition, although not statistically significant for a type-I error rate of 0.05,mortality is
higher in the excluded group (15.2% vs. 11.4%). Taken together, these results suggests
that individuals who were excluded from our study were in general less healthy than
those who were included, which does not support a missing completely at random
hypothesis.However, it is not clear towhat extent the re-weighting procedure described
in Sect. 2.4 will address any differential missingness as the two groups appear to
be fairly similar in terms of racial, gender, and age composition. We acknowledge
this potential limitation of our analyses and proceed forward using the adjusted (re-
weighted) survey weights.

An additional observation from Table 3 is that while unadjusted and survey-
weighted summary statistics are frequently similar, they can also be quite different for
specific characteristics. For example, because NHANES over-samples black andMex-
icanAmericans, the ethnicity estimates vary dramatically between the unweighted and
survey-weighted results. This highlights the important risk of obtaining biased results
when analyses do not adjust for survey weights [14,15].
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After applying our exclusion criteria, there is one individual who has 501 min of
missing activity count data on a day which qualifies as “good” using the 10-h wear-
time criteria. We impute these minutes as 0 activity counts. We do not attempt to
impute activity counts for periods identified as non-wear. However, there are some
minutes which are identified as non-wear which have non-zero activity counts, though
none with activity counts greater than 99. Any periods identified as non-wear are
replaced with 0 activity counts. This highlights an important point of working with
the 2003–2006 NHANES accelerometry data: we are unable to disentangle non-wear,
sleep, and sedentary behaviors. However, the hope is that by applying a 10-hminimum
wear-time criteria for days of accelerometry data, we are able to capture the majority
of waking activities. Thus, we hope that the majority of non-wear time corresponds to
either sleep or sedentary behaviors, though this assumption is untestable in practice.

3.1 Accelerometry Feature Extraction

One challenging aspect of working with accelerometry data is addressing the dimen-
sionality of the data. Indeed, there are 1440 observations per subject, per day, which
makes both visualization and analyses difficult. To reduce complexity and improve
translation of results, many analyses use simple summary statistics, including but not
limited to (1) mean or total activity count (TAC); (2) mean or total log-transformed
activity count (TLAC); (3) total sedentary time; and (4) total minutes of moder-
ate/vigorous physical activity (MVPA). This is an effective strategy, but could result
in loss of information due to the extreme reduction in dimensionality.

It is our experience that often, additional features of the data are associated with
an outcome of interest. One method for identifying these features is to apply dimen-
sionality reduction tools from functional data analysis (FDA) [22]. Here, we focus on
Functional Principal Component Analysis (FPCA) and functional regression to select
features that are strongly associatedwith 5-yearmortality. After the accelerometry data
features are identified,we construct accelerometrymeasures that are interpretable from
a scientific/public health perspective. The feature extraction procedures described sub-
sequently do not directly account for the NHANES survey weights. Accounting for
survey weights in dimensionality reduction is an entirely new topic, which is beyond
the scope of the current paper. However, we account for survey weights in identifying
variables that are predictive of 5-year mortality in Sect. 3.3. In addition to not account-
ing for survey weights, the feature extraction methods discussed below do not account
for non-wear time in the sense that we cannot differentiate between sleep, non-wear
time, or sedentary behaviors. However, the hope is that by having excluded all days
of data with fewer than 10 h of wear time, we only use those days where individuals
were largely compliant with study protocol andwe capture themajority of individuals’
waking activity patterns, though this is an untestable assumption on our part.

3.1.1 Functional Principal Component Analysis

To reduce the high degree of skewness in the activity count data, we first transform
the data at each minute using the transformation x = log(1+ a), where a denotes the
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activity count. This transformation has the added benefit that it transforms 0 counts
to 0 [24]. We conduct Functional principal component analysis (FPCA) on the trans-
formed matrix. FPCA is a technique analogous to principal component analysis, but
with additional steps for smoothing the data [22]. Let Ji be the number of days of
accelerometry data for subject i = 1, . . . , N and J = ∑N

i=1 Ji be the total number of
days of data. The log-transformed “activity count” data matrix,X, is J ×1440 dimen-
sional. To perform FPCA, we use the fast covariance estimation (FACE) approach
[34], which can be used in this high dimensional context. FACE is implemented in the
fpca.face() function of the refund [8] package inR [21]. Even for this high dimensional
data fpca.face() ran in under 10 s on a standard laptop.

The FPCA approach presented here does not account for the within-person correla-
tion when calculating the principal components (PCs). Two alternatives for recovering
this variability are to either (1) use average activity profiles across days within an indi-
vidual and perform FPCA on average activity profiles; or (2) use multilevel FPCA
[5,25,36]. The first option calculates the PCs and recovers the day-to-day variability
by projecting day-specific data on the resulting PCs. This can be problematic when
the within-person patterns of variability are different from between-persons patterns
of variability. The second approach is a viable option for analyzing day-to-day vari-
ability but beyond the scope of this tutorial paper. For simplicity of presentation, we
also ignore issues associated with non-wear time in terms of estimating the principal
components.

Although we are not aware of any software which can estimate survey-weighted
FPCA, we compared our results to survey-weighted non-functional PCA estimated
via the svyprcomp() function from the survey package and obtained nearly identical
shapes (up to a sign) for the first 16 principal components, though the proportion of
variability explained by each component varied. While we do not present these results
here, the supplemental material contains code which performs both PCAmethods and
plots the results.

The first 6 PCs estimated using FPCA explain approximately 57% of the observed
variability in the log-transformed activity counts and are presented in Fig. 2. Given
how noisy the data are, 57% variability explained is substantial. For each subject and
day, we obtain a score on each PC and calculate the mean and standard deviation of
these subject-specific scores. More specifically, let zi jk be the score for subject i , on
day j and PC k. Then we construct the additional 2K variables (2 for each of the first
K = 6 PCs)

mik = z̄ik = 1

Ji

Ji∑
j=1

zik j , sik = sd(zik)

=
√∑Ji

j=1(zi jk − z̄ik)2

Ji − 1
i = 1, . . . , N k = 1, . . . , K = 6

The subject- and component-specific mean and standard deviations, mik and sik , are
then used as predictors in regression models. We denote by mi = (mi1, . . . ,miK )t

and si = (si1, . . . , siK )t the K × 1 dimensional vectors of score means and standard
deviations. We fit a logistic regression of the form

123



Statistics in Biosciences (2019) 11:262–287 275

Fig. 2 First 6 principal components calculated on the population, minute-level NHANES accelerometry
data using functional principal component analysis. Solid lines represent the population average curve,
+, − lines denote the effect of being 2 standard deviations from a score of 0 on the particular principal
component

logit(pi |Wi ,mi , si ) = α + Wt
iβ + mt

iγ + siδ , (2)

where p denotes the probability of death in 5 years, Wi contains the standard demo-
graphics, and behavioral and comorbidity covariates used in the published NHANES
mortality papers. The demographic covariates include age, gender, body mass index
(BMI), race, and education level. The behavioral covariates include smoking status
and alcohol consumption. The comorbidity covariates include self-reported presence
of a mobility problem, diabetes, coronary heart disease (CHD), congestive heart fail-
ure (CHF), cancer, and stroke. The precise definitions for each of these variables can
be found in the data documentation for the rnhanesdata package. We used backward
selection to identify the mik and sik covariates that are associated with survival time
while always keeping the covariates Wi in the model. The backward selection was
performed using complex survey Akaike’s Information Criteria (AIC) [17]. Using this
procedure, we find that the average scores for the first PC (mi1) as well as the stan-
dard deviation of the first PC (si1), fifth PC (si5), and the sixth PC (si6) are retained
at the end of the backward selection procedure. To interpret these results, we refer
back to the shapes of principal components in Fig. 2. Potential interpretations and
possible surrogate measures calculated on the raw count data are proposed in Table 4
below.

With the interpretations presented in Table 4, we explored a number of potential
surrogate measures that are interpretable on the original scale of the data and can
easily be derived directly from the count data at the minute level without conducting
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Table 4 Interpretation of the results of FPCA plus suggestions for possible surrogate measures which can
be calculated directly on the activity count data

Result Possible interpretation Possible surrogate measure(s)

(−) association: mi1 Higher overall levels of low/light
activity during the day, and
increased early afternoon activity
relative to early AM is associated
with lower risk of 5-year mortality

– Average total log activity counts
(TLAC)

– Average difference of early AM
versus early PM activity

(+) association: si1 Increased variability in overall levels
of low/light activity is associated
with higher risk of 5-year mortality

– Standard deviation of total log
activity counts (TLAC)

(−) association: si5 Increased variability in the timing of
peak activity is associated with
lower risk of 5-year mortality

– Standard deviation of “wake up”
time

– Standard deviation of “winding
down” time

(−) association: si6 Increased variability in the start time
of daily activity is associated with
lower risk of 5-year mortality. This
could be an employment effect

– Standard deviation of the difference
in average activity during the
peaks/troughs highlighted by PC6

The “Result” column (−)/(+) indicates a negative/positive association of the predictor with 5-yearmortality
in a model adjusting for demographics, lifestyle factors, and the other predictors in this table

FPCA.Although ratios comparing relative activity during key periods seem appealing,
they are challenging to use in practice due to the large number of 0 activity counts
present in the data. To avoid this problem, we propose using differences in average log-
transformed activity counts between said key periods of time. The precise measures
considered are presented in Table 5.

To justify a particular surrogate measure, we considered the correlation between
our surrogate measure and the results of FPCA. In general, correlations of at least
0.75 were considered sufficiently high to warrant inclusion in subsequent prediction
models. For example, the correlation of our proposed surrogate measure for mi1,
total log activity counts (TLAC), has an observed correlation of 0.88 with mi1. This
procedure involved substantial amount of “guess and check”, and, correspondingly,
the results of Sect. 3.3 should be interpreted as exploratory and not confirmatory.

3.2 Scalar on Function Regression

An alternative to signal extraction via FPCA followed by regression is to conduct func-
tional regression directly on the patterns of activity. While some papers on functional
regression in the context of survival data exist [7,12,33], this is a relatively new area
of research. In order to keep results comparable with those in other sections and for
simplicity of presentation, we continue to focus on the binary outcome Dead/Alive at
5 years.
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Table 5 Actual surrogate measures identified for use in prediction models

Result Quantity measured Calculation

(−) association: mi1 Average total log activity
count (TLAC)

1
Ji

∑Ji
j=1

∑1440
t=1 Xi j (t)

(+) association: si1 Standard deviation of total
log activity counts

sd
(∑1440

t=1 Xi j (t)
)

(−) association: si5 Standard deviation of
difference in average
log-transformed activity
counts comparing
10AM–3PM to 4PM–7PM

sd

(∑900
t=661 Xi j (t)

240 −
∑1140

t=961 Xi j (t)
180

)

(−) association: si6 Standard deviation of
difference in average
log-transformed activity
counts comparing
{8AM–10AM, 3PM–5PM,
10PM–12AM} to
{5AM–7AM, 11AM–1PM,
6PM–8PM }

sd

(∑
t∈ta Xi j (t)

|ta | −
∑

t∈tb Xi j (t)

|tb |
)
ta =

{481, . . . , 600, 901, . . . , 1020, 1321, . . . , 1440}
tb =
{301, . . . , 420, 661, . . . , 780, 1081, . . . , 1200}

All standard deviations are day-to-day standard deviations calculated for each participant

3.2.1 Functional Regression Model

Denote the smoothed log transformed activity count data obtained from the FPCA
performed in Sect. 3.1.1 as X̃i j (s) for subject i on day j at time s. Our logistic
functional regression model is then a slight modification of Model (2)

logit(pi |Wi , X̃i ) = α + Wt
iβ +

∫ 1

0

⎧⎨
⎩ 1

Ji

Ji∑
j=1

X̃i, j (s) − X̄(s)

⎫⎬
⎭ γ (s)ds , (3)

where Wi contains the same predictors as the logistic regression in Sect. 3.1.1 and
X̄(s) denotes the population average activity count at time s. That is, our functional
predictor is the average of the smoothed activity profiles at each time point across
days, centered at each time point. The centering is done to prevent confounding of the
functional coefficient with the intercept term α and aid in interpretation. This model
ignores potential effects of day-of-the-week, week-end, or day-to-day variability on
5-year survival. The functional parameter, γ (s), can be thought of as a weight function
that expresses the relative contribution of an individual’s average daily activity profile
as compared to the population average, 1

Ji

∑Ji
j=1 X̃i (s) − X̄(s), at each minute s

towards the log odds ratio of 5-year mortality. The functional regression parameter
can be approximated as

γ (s) =
kb∑
k=1

bkφk(s),
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where φ(s) = {φ1(s), . . . , φkb (s)}t is a spline basis over s. Our primary interest in
this section is to estimate and interpret the functional coefficient γ (s). We estimate
γ (s) using cyclic penalized B-splines of dimension 30 to account for the natural
periodicity in the data. Indeed, we expect the effect to be smooth around 12:00AM
with very similar values at 11:59PM and 00:01AM across days. Because we do not
account for differential non-wear, either within or across individuals, our model, and
the resulting functional coefficient γ (s), may be combining the effect of 0 activity
counts with periods of non-wear if non-wear time is associated with 5-year mortality.
The additional predictors in the model, Wi , are the same demographic, lifestyle, and
comorbidity variables described in Sect. 3.1.1.

The model fitting is performed using the refund [8] package in R which contains
wrapper functions for the gam() function in the mgcv package to perform functional
regression. Estimation is performed using the normalized surveyweights. Even though
we account for survey weights, the estimated standard errors may be inaccurate due
to the multistage survey nature of NHANES. That is, because we only account for
survey weights, and not survey design, our standard errors are likely underestimated.
A re-sampling procedure could be used to estimate standard errors, but is beyond the
scope of this paper as we use functional regression in an exploratory capacity. To the
best of our knowledge, no software currently exists which will fit penalized functional
regressionmodels for complex survey designs. Note that using non-normalized survey
weights with standard functional regression software may substantially affect both
point estimates and estimated standard errors.

3.2.2 Results

Figure 3a depicts γ̂ (s), the estimated functional coefficient, as a solid line. The dashed
lines are pointwise 95% confidence intervals. Because γ̂ (s) is a weight on activity
levels, larger magnitudes indicate that being above the population average activity at
a particular time is associated with increased contribution to the log odds of 5-year
mortality for that time of day. The coefficient function is estimated to be positive
only during the late evening and early hours of the morning (approximately 11AM to
3AM), indicating that increased activity relative to the population average during this
time period is associated with higher risk of mortality, after accounting for the other
covariates, though the magnitude of the coefficient during this period is close to 0.
The coefficient function is estimated to bemost negative around 1PM–3PM, indicating
that increased activity relative to the population during this period is associated with
lower risk of mortality given a particular level of overall activity during any other
part of the day. The pointwise confidence intervals contain zero for all times except
roughly between 8AM and 6PM. This suggests that the effects of activity outside of
the interval 8AM–6PM is not particularly strong if we condition on the activity in this
interval. This may, at least in part, be due to the fact that NHANES participants were
instructed to remove the device while sleeping.

To interpret the functional coefficient, we compare the implied contribution to log
odds of 5-year mortality for two individuals with markedly different daily activity
patterns. Figure 3b/c displays their smoothed minute-level activity for all days (gray
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Fig. 3 a Estimated functional coefficient for daily activity patterns γ (s) with 95% pointwise confidence
intervals presented as thin dashed lines. b/c Smoothed activity counts for one day of data for two different
NHANES participants. The gray lines denote individual daily smoothed profiles. The black line denotes the

average profile, 1
Ji

∑Ji
j=1 X̃i j (s). The dashed red line is the population average profile X̄(s). The difference

between the solid black line and the red dashed line is the functional predictor in model 3. d/e Contribution
to the log odds for these example days of accelerometry data (Color figure online)

lines), the average across days (the black line), and the population average, X̃i j (s),
1
Ji

∑Ji
j=1 X̃i j (s), and X̄(s), respectively.Thefirst person (labeled21009) is, on average,

active in the morning, has a dip in activity around 12PM, is active again in the early
afternoon, and then has decreasing activity after 2PM. The second person (labeled
21068) wakes up late, and then has below average activity throughout most of the day.
Figure 3d/e depicts { 1

Ji

∑Ji
j=1 X̃i (s)− X̄}γ̂ (s), which is the pointwise product of each

individual’s activity data and the estimated functional coefficient. The shaded area is
the contribution to the log odds of the average activity profile, where more shaded area
above 0 indicates an increased risk of 5-year mortality. This shaded area is equal to
− 0.59 for subject 21009 and 0.54 for subject 21068, indicating that subject 21009’s
average activity profile is associatedwith an odds of 5-yearmortality that, adjusting for
the other covariates in themodel, is exp(- 0.59) = 0.55 times that of an individual with
the population average activity profile. In contrast, subject 21068’s average profile is
associated with an odds of 5-year mortality that is exp(0.54) = 1.72 times that of a
comparable subject with average activity profile equal to the population average. For
reference, in this model, each year of age is associated with 0.069 higher log odds of
5-year mortality, which suggests the difference in these two activity profiles is roughly
comparable to the expected change in log odds for individuals who are 16.4 years apart
in age.

These results suggest that activity during the day-time reduces the risk of 5-year
mortality and that given an overall budget of activity, allocating more activity to early
afternoon may be most associated with reduced risk of 5-year mortality. A closer
inspection of results suggests that theymay be driven by the afternoon average activity,
which is highly correlated with the total or average activity count. Thus, it is likely that
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functional regression is picking up on a similar signal to that captured bymi1 described
in Sect. 3.1.1. In fact, the correlation between the linear predictor associated with the
functional coefficient and mi1 is 0.95. As a result, we consider our surrogate for mi1
(TLAC) as sufficiently capturing the signal associated with the functional coefficient
and do not add an additional candidate for predicting 5-year mortality based on the
results of functional regression.

3.3 Prediction of Mortality in NHANES

In this section, we aim to identify the best predictors of 5-year mortality among demo-
graphics, comorbidities, and lifestyle factors commonly used as confounding variables
in NHANES survival analyses as well as features of activity identified as being predic-
tive of mortality from Sect. 3.1.1 (surrogate measures for mi1, si1, si5, si6 described
in Table 5). In these models, 5-year mortality is the outcome and we consider a set
of non-activity predictors: age, gender, ethnicity, education, body mass index (BMI),
smoking status, drinking status, diabetes, congestive heart failure, coronary heart dis-
ease, cancer, andmobility limitation.With respect to accelerometry-derived predictors,
we consider the features of activity identified as being predictive of mortality from
Sect. 3.1.1. We also include average daily wear time and time spent in moderate-
to-vigorous activity (MVPA), which are standard predictors in the accelerometry
literature. The activity count threshold used to determine moderate-to-vigorous activ-
ity was ≥ 2020 [28]. In addition, we considered total activity counts (TAC) which
measure volume of activity. In contrast to total log activity counts (TLAC) which
is associated with low/light activities, TAC is more highly associated with moder-
ate/vigorous activities [32].

Finally, we consider three measures which involve the estimation of sedentary
behaviors: total time spent in engaging in sedentary behaviors, as well as twomeasures
of sedentary-active fragmentation: active to sedentary transition probability (ASTP)
and sedentary to active transition probability (SATP)[6]. The standard practice is to
consider sedentary behaviors during wake time as distinct from inactivity associated
with sleep. However, as mentioned in Sect. 3, in NHANES we cannot differentiate
between non-wear, sedentary behaviors, and sleep. Therefore, in calculating these
three measures typically derived from sedentary behaviors, we use “sedentary, sleep,
or non-wear” in place of “sedentary”, which we assume to consist mostly of non-wear
and sleep time due to our exclusion of dayswith fewer than 10 h ofwear time.Although
our non-standard construction complicates the interpretation of models which include
these variables as predictors, it allows us to bypass the complexities associated with
constructing transition probabilities in the context of intermittent non-wear and adjust-
ing sedentary time for non-wear time. In order to differentiate our measures from those
discussed in [6], we denote our transition probabilities as ASTPsl/nw and SATPsl/nw.
We use an activity count threshold of < 100 counts to identify sedentary behaviors.

In our prediction models, we do not consider interactions between predictors or
alternative functional forms of continuous predictors (i.e., non-linear effects). This
was done to simplify the forward selection procedure, but will not necessarily produce
the “best” prediction model possible using the variables considered here.
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3.3.1 Model Selection

Our intent is to rank each predictor in terms of their individual predictive value, and
identify a set of “most” predictive variables using forward selection. Our procedure
for ranking single predictors of 5-year mortality is to quantify the relative importance
of variables for mortality prediction using univariate logistic regression models. Each
variable was ranked according to 10-fold cross-validated area under receiver oper-
ating characteristic curve (AUC) and complex survey Akaike’s information criterion
(AIC) [17]. Forward selection is performed using the cross-validated AUC criterion.
In order to assess the sensitivity of forward selection to the survey re-weighting pro-
cedure described in Sect. 2.4, we performed the forward selection separately using (1)
our re-weighted (“adjusted”) survey weights; (2) unadjusted survey weights; and (3)
no survey weights. Cases (deceased) and controls (alive) were split and partitioned
separately to ensure approximately equal numbers of events in each of the 10-folds.
The same partition of the data was used for the entire forward selection procedure.

3.4 Results

Table 6 shows individual predictors ranked using univariate logistic regression models
based on AUC for each of the three sets of survey weights discussed in Sect. 3.3.1.
These models are univariate in that all models have just one covariate. Regardless of
which set of survey weights is used, eight of the top ten predictors are accelerometry-
based measures, which may explain the explosive interest in objective measures of
activity using wearable devices. TAC, MVPA, and Age provide best discrimination
(AUC of 0.783, 0.756, and 0.747, respectively, using the adjusted survey weights)
among the 24 predictors. However, due to the relatively high correlation between
some of these variables (TAC andMVPA or ASTPsl/nw and SATPsl/nw, for example),
it is not terribly surprising that they would perform similarly. Still, the predictive per-
formance of measures of vigorous activity (TAC, MVPA), overall low/light activity
(TLAC), inactivity (Sedentary, sleep, or non-wear time), and the fragmentation mea-
sures (ASTPsl/nw, SATPsl/nw) as stand-alone variables is exceptional given that so
many other well-known strong predictors of mortality have a much lower AUC.

Moving from univariate logistic regressions to multiple logistic regression, Table 7
presents the results from forward selection. The variables are presented in order of
selection. Cells with a gray background indicate the AIC stopping criteria were met
(i.e., AIC increases with the next variable included), while a black text box surround-
ing a variable communicates that the cross-validated AUC criteria were met (AUC
decreases when another variable is added). AUC tended to be more optimistic than
AIC in forward selection. Both the adjusted survey weights and unweighted procedure
identified 11 and 14 variables using the AIC and AUC criteria, respectively, though the
exact variables selected and their ordering differed slightly. The unadjusted weights
identified 10 variables using both the AIC and AUC criteria. Overall, there was per-
fect overlap between the weighting methods for the first 7 variables, and a high degree
of overlap for the next several variables when comparing the two survey weighting
methods.
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Table 6 Ranking of individual mortality predictors importance based on AUC criteria in from univariate
logistic regressions

Rank Adjusted weights Unadjusted weights Unweighted

Variable AUC Variable AUC Variable AUC

1 TAC 0.783 TAC 0.784 TAC 0.753

2 MVPA 0.756 MVPA 0.757 Age 0.735

3 Age 0.747 Age 0.746 MVPA 0.729

4 ASTPsl/nw 0.745 Sedentary, sleep,
or non-wear

0.745 ASTPsl/nw 0.727

5 Sedentary, sleep,
or non-wear

0.744 ASTPsl/nw 0.745 Sedentary, sleep,
or non-wear

0.724

6 TLAC 0.736 TLAC 0.738 TLAC 0.714

7 Mobility problem 0.679 Mobility problem 0.679 SATPsl/nw 0.654

8 SATPsl/nw 0.673 SATPsl/nw 0.675 Surrogate for si6 0.654

9 Surrogate for si6 0.662 Surrogate for si6 0.661 Mobility problem 0.651

10 Alcohol
consumption

0.612 Alcohol
consumption

0.609 Gender 0.582

11 Education 0.596 Education 0.597 Alcohol
consumption

0.578

12 Cigarette smoking 0.594 Cigarette smoking 0.596 Surrogate for si1 0.573

13 Cancer 0.585 Cancer 0.585 Cigarette smoking 0.570

14 Surrogate for si1 0.580 Surrogate for si1 0.582 Cancer 0.568

15 Congestive heart
failure

0.566 Congestive heart
failure

0.567 Education 0.566

16 Gender 0.561 Gender 0.565 Congestive heart
failure

0.558

17 Body mass index 0.559 Body mass index 0.560 Race 0.551

18 Diabetes 0.555 Diabetes 0.555 Body mass index 0.549

19 Coronary heart
disease

0.548 Coronary heart
disease

0.550 Diabetes 0.540

20 Stroke 0.540 Stroke 0.539 Coronary heart
disease

0.540

21 Race 0.518 Race 0.518 Stroke 0.540

22 Wear time 0.444 Wear time 0.440 Wear time 0.493

Even though AIC was more conservative than 10-fold cross-validated AUC in
selecting variables, any observed increases in AUC associated with adding additional
variables beyond the first 7 are marginal, suggesting that even the AIC criteria may
be overly optimistic. Recognizing this issue, we present the point estimates and 95%
Wald confidence intervals obtained from the “Adjusted Weights” model using the first
7, 11, and 14 predictors obtained from forward selection in Table 8. In Table 8, all
continuous predictors except age have been standardizes such that the odds ratios
presented represent the expected change in odds of 5-year mortality for a one standard
deviation increase in the predictor. Estimates and confidence intervals are obtained
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Table 8 Estimated odds ratios and 95% confidence intervals from three different logistic regression models
fit using adjusted survey weights

Variable 7 Variable Model AIC Model AUC Model

TAC 0.562 (0.324, 0.977) 0.845 (0.439, 1.627) 0.656 (0.303, 1.420)

Age 1.071 (1.052, 1.090) 1.066 (1.046, 1.087) 1.066 (1.045, 1.087)

Female 0.475 (0.341, 0.661) 0.467 (0.329, 0.663) 0.449 (0.318, 0.636)

Mobility problem 2.112 (1.375, 3.244) 2.040 (1.349, 3.086) 1.979 (1.299, 3.013)

Alcohol consumption

Non-drinker 1.992 (1.454, 2.730) 1.978 (1.425, 2.745) 1.929 (1.377, 2.701)

Heavy drinker 2.122 (1.002, 4.496) 2.088 (0.985, 4.429) 2.142 (0.998, 4.597)

Missing alcohol 2.493 (1.286, 4.832) 2.389 (1.169, 4.883) 2.382 (1.153, 4.923)

Cigarette smoking

Former 1.615 (1.045, 2.495) 1.577 (1.014, 2.451) 1.570 (0.995, 2.475)

Current 2.611 (1.900, 3.590) 2.217 (1.656, 2.969) 2.238 (1.670, 2.999)

Surrogate for si6 0.735 (0.626, 0.862) 0.792 (0.669, 0.937) 0.791 (0.674, 0.929)

Congestive heart failure 2.137 (1.416, 3.223) 2.058 (1.348, 3.142)

Body mass index

Underweight 2.029 (0.738, 5.576) 2.091 (0.714, 6.122)

Overweight 0.539 (0.374, 0.777) 0.532 (0.366, 0.773)

Obese 0.614 (0.431, 0.875) 0.593 (0.415, 0.845)

Cancer 1.578 (1.122, 2.219) 1.614 (1.161, 2.245)

ASTPsl/nw 1.458 (1.090, 1.949) 1.979 (1.308, 2.995)

Sedentary, sleep, or non-wear 0.401 (0.193, 0.832)

SATPsl/nw 0.611 (0.436, 0.858)

Diabetes 1.270 (0.853, 1.889)

In eachmodel, 5-year mortality is the outcome. The order of variables is presented in order of their inclusion
based on the forward selection AUC criteria, andmodels are nested in order from left to right. The 7 variable
model corresponds to the first 7 variables identified by the forward selection procedure. Similarly, the AIC
model and AUCmodel contain the variables selected using the AIC andAUC stopping criteria, respectively.
Variables which are derived from accelerometry are highlighted in bold. The intercept for each model is
not presented here as variables are not centered and the resulting value is not particularly interpretable

using the svyglm() function, accounting for both the survey weights and complex
survey design of NHANES.

Interpreting the results shown in Table 8, we see the odds of experiencing 5-year
mortality increase with age, presence of a mobility problem, and self-reported comor-
bidities. Interestingly, adjusting for the other variables in the model, individuals with
an BMI considered overweight or obese have a lower risk compared to those with
normal BMI. Although this seems counterintuitive, this “obesity paradox” has been
seen many times in the epidemiologic literature, including in analyses of NHANES
data. Other studies have found that conditioning on health status eliminates the pro-
tective effect of being overweight on survival among healthy individuals [1]. For
example, [20] found that conditioning smoking status eliminates the protective effect
of being overweight among never-smokers, and indeed, we see this same phenom-
ena in our data (results not shown). As investigating any potential underlying causal
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mechanisms and addressing the issues of reverse-causality are beyond the scope of
this paper, we simply acknowledge this emergent phenomena. Regarding lifestyle fac-
tors, former/current smokers have significantly higher mortality risk relative to non
smokers. Individuals who consume alcohol moderately have lower risk of mortality
compared to non-drinkers, a well-known result that may be confounded by socioeco-
nomic status and by individuals who do not drink alcohol as a result of a pre-existing
health condition.

Interpreting the observed associations of activity summarymeasures with mortality
is complicated by the dependencies among them. Consider the association of total vol-
ume of activity (TAC) with 5-year mortality. Although the direction of the association
consistently indicates that increased volume of activity is associated with lower risk
of 5-year mortality, adding the transition probabilities (ASTPsl/nw/SATPsl/nw) and
sedentary, sleep, or non-wear time to the model markedly influences both the point
estimate and variability associated with the coefficient for TAC. Despite the presence
of dependencies among these predictors, the direction of effects is generally consistent
with our expectations. That is, increased activity (TAC) or probability of transitioning
to activity from sedentary, sleep, or non-wear (SATPsl/nw) is associated with lower
risk. In contrast, increased probability of transitioning from active to sedentary, sleep,
or non-wear is associated with higher risk. Additionally, the observed protective asso-
ciation of our surrogate measure for si6 is consistent with the results from Sect. 3.1.
The one association that does not seem to fit our expectations is the protective effect
of increased sleep, sedentary time, or non-wear time. However, we need to remember
that the protective effect is “adjusting for” total volume of activity as well as transi-
tion probabilities of sedentary to active and vice versa. We caution against looking
too much into this particular result as forward selection does not necessarily produce
models which “make sense” from an interpretation perspective.

4 Discussion

Here, we have provided a data package that is intended to considerably reduce the
upfront time investment needed to begin working with NHANES accelerometry data.
Assuming no changes to the format of futureNHANESdata releases, all code provided
for the pipeline naturally extends to future NHANES data, including accelerometry
and mortality data. In addition, we provide a framework for structuring accelerometry
data that is in line with current best practices and is compatible with existingR code for
accelerometry data. Moreover, through the use of three analytic examples, we provide
users with a step-by-step guide for working with the NHANES accelerometry data,
including adjusting for survey weights. All code, figures, and results in this manuscript
are fully reproducible using code available in the supplemental material. This analysis
will be added to the rnhanesdata package as a vignette in the near future.

Our results should be considered exploratory and not confirmatory given the exten-
sive exploratory analysis performed to identify accelerometry-derived predictors of
mortality. However, we think that providing a list of highly predictive accelerometry
metrics will be extremely useful in future confirmatory studies. A limitation of our
approach is that we do not consider non-linear associations between continuous pre-
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dictors and survival, nor do we consider interactions between predictors. Such models
should be considered in future studies using the variables identified here as being
predictive of 5-year mortality.

Ultimately, our package contains the content, the tools, and the context needed to
empower users to begin workingwith NHANES data quickly (accelerometry, or other-
wise). Most importantly, we integrate these features in a concise and well documented
fashion that is accessible to users with varying degrees of statistical sophistication and
is fully reproducible. Our hope is that this paper will result in increased utilization of
this extremely rich, public resource.
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