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Abstract To assess the noninferiority or equivalence of a general drug to a standard
one, researchers generally use the odds ratio of patient response rates to evaluate
the relative treatment efficacy. In this paper, we use a logistic random effects model
to test noninferiority and equivalence based on the odds ratio of patient response
rates for crossover trials with binary data. We use Bayesian sampling algorithm, data
augmentation, and scaled mixture of normal representation to implement the approach
and improve efficiency. The performance of the proposed approach is assessed via
simulation and real data examples.
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1 Introduction

Inmedical studies, researchers are generally interested in testingwhether a new drug is
notworse than a standard drug.Generally, the efficacy is not the only factor considered.
The new drug is assumed beneficial if its efficacy is not inferior to the standard one by
some prespecified standards if the new drug is proved to have advantages such as less
toxicity, low cost, or easier administration. However, some drugs do not produce any
appreciable absorption into the systemic circulation, and thus, the pharmacokinetics
approaches are not appropriate in assessing noninferiority or bioequivalence [1–6].
Instead, the clinical endpoints are used directly to assess the equivalence.
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Although researchers often use the risk difference and risk ratio as measures of risk
for comparing different drugs or treatments in prospective clinical trials, they generally
can not be used to assess noninferiority or equivalence of risk or disease outcomes in
retrospective studies. On the other hand, odds ratio is widely used as a measure of risk
association in both prospective and retrospective studies.

In clinical trials, a crossover design is widely used to assess the drug effects. The
most commonly used crossover design is a design of two treatments A and B, in which
some subjects receive treatment A first and B second, while the others receive treat-
ment B first and A second. One of the main benefits of cross trials is that the inherent
variability is reduced, and hence the power is increased [7]. Medical researchers also
use crossover trials to assess bioequivalence of drugs [2,8]. It often involves compar-
isons of the response rates of binary outcomes to test for noninferiority or equivalence
between two drugs. For example, in comparing efficacy of two drugs, researchers
study the therapeutic response of relief of primary dysmenorrhea (yes=1, no=0)
in the crossover trial. In this article, we focus on studies where the patient response
outcome is dichotomous. That is, we want to assess whether the positive response
rate for the generic drug is not inferior to that of the standard drug by a prespecified
margin. The test is generally denoted as noninferiority trial [9].

In crossover design, it is generally assumed that the carryover effect, the effect of a
drug that persists after the end of the dosing period, does not exist with a sufficiently
long washout period. However, if the assumption is not valid, it is not appropriate to
use the crossover design since it causes the biased estimate of the treatment effect.
[10,11]. In practice, we may always be able to use the crossover trial with a sufficient
washout period in between administering drugs under comparison. There are many
papers on crossover trials in current literatures. Gart [12] used a logistic regression
model to test the equality of two treatment effects. Zimmermann and Rahlfs [13]
used the linear additive risk model to test equality in patient response rates for a
simple crossover trial. Schouten and Kester [14] used the similar approach to assess
treatment effects for crossover trials. Ezzet andWhitehead [15] used a logistic random
effect to assess equality of the treatment effects. Lui and Chang [16] proposed a
semiparametric approach to assess the equality test. Senn [17,18] provided a general
overview of the current progress in crossover design. On the other hand, there are
very limited Bayesian approaches in the literature. Osman and Ghosh [19] proposed a
Bayesian semiparametric approach to test noninferiority. Ghosh et al. [20] proposed a
Bayesian semiparametric approach to test noninferiority in three-arm trials. Although
these approaches generally work well, there are some obvious disadvantages. For
example, both approaches of Ghosh et al. [20], and Osman and Ghosh [19] are not
easily implemented and do not characterize heterogeneity among the subjects. The
approach of Lui and Chang [16] is subject to asymptotic theorem constraint and does
not work well with small data sets. In particular, the approach of Lui and Chang [16]
does not work when some cells have zero values. To the author’s best knowledge, there
is no Bayesian approach proposed to test noninferiority or equivalence based on the
odds ratio of patient response rates for a crossover design.

In this paper, we propose a Bayesian approach based on the odds ratio of patient
response rate to test noninferiority and equivalence for simple crossover designs.
Compared with the frequentist approaches, a fully Bayesian approach can incorporate
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useful prior information to account for varied uncertainties. Statistical inference can
be easily derived efficiently and accurately using Markov chain Monte Carlo algo-
rithms from the posterior distributions. Thus, the results of the hypotheses tests of
noninferiority (or equivalence) do not suffer from the asymptotic constraints. In addi-
tion, the Bayesian approach generally has advantage for hypothesis testing since it is
based on the posterior probability distribution instead of the p values that are often
misinterpreted.

The paper is organized as follows: Sect. 2 describes the model. Section 3 provides
a simulation study to demonstrate the performance of the proposed approach. Sec-
tion 4 illustrates the approach using a real data example, followed by conclusion and
discussion in Sect. 5.

2 The Model

2.1 General Description

We consider a simple crossover trial for the noninferiority (or equivalence) test of a
new drug B versus a standard drug A. Assume that n1 patients are assigned to the first
group (g = 1), for which the patients take drug A and B at period 1 and 2, respectively;
n2 patients assigned to the second group (g = 2) for which patients take drug B and
A at period 1 and 2, respectively. We assess the treatment efficacy by conducting
noninferiority (or equivalence) test based on the odds ratio of positive response rate of
the patients. Let ygi j denote the patient binary outcome from subject i(i = 1, . . . , ng)
at period j ( j = 1, 2) from treatment sequence g(g = 1, 2); the model is specified as
follows:

ygi j ∼ Bernoulli
(
H−1(χgi j )

)
, χgi j = ϑg j + τg(1,2) I ( j = 2) + μgi , (1)

whereϑg j= u0+ηg+ψ j +tl(g, j) and u0 is the overall mean; ηg is the fixed effect of the
gth group sequence, g = 1, 2;ψ j is the fixed effect of the j th period; tl(g, j) is the fixed
treatment effect, and l(g, j) is the treatment index; τg(1,2) is the first-order carryover
effect of treatment at period 1 from the immediately preceding period into the effect
of treatment at period 2 in the current period; μgi is the random effect of i th subject
from the gth sequence, i = 1, . . . , ng , specified as a normal distribution with μgi ∼
N (0, ρ2) and H(.) is the logistic link function with H(κ) = log(κ/(1 − κ)). We set
ygiz = 1 if the patient has the positive response outcomeof interest (with improvement)
, and 0 (without improvement) otherwise. We impose the following constraints for the
group effect, treatment effect, and period effect

∑
ηg = 0,

∑
ψ j = 0,

∑M
m=1 tm = 0

to resolve identifiability.
The carryover effect is the effect of a drug that persists after the end of the dosing

period. It poses an challenging issue in analyzing the crossover trials since it causes the
biased estimate of the treatment effect. If there is a sufficient washout between dosing
periods, then the carryover effect can be ignored. Obviously, it is impossible to get
all the parameters in the above formula given limited information. In this article, we
will focus mainly on the treatment effects and drop out the group sequence effect and
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the carryover effect, assuming sufficient long washout in between two dosing periods.
Thus, model specified in Eq. (1) is reduced to

ygi j ∼ Bernoulli
(
H−1(χgi j )

)
, χgi j = u0 + ψ j + tl(g, j) + μgi . (2)

Although the carryover effect is removed in the abovemodel, we should note that it can
be easily estimated following general procedures, e.g., [21,22]. Obviously, the logistic
model is nonlinear and we can not get conditional conjugacy even with simple nor-
mal priors, which ultimately causes inefficiency in computation. We will take several
approaches to improve efficiency by converting the nonlinear model to the standard
linear models. According to the current literature [23–25], the logistic distribution can
be approximated by the Student’s t distribution. The Student’s t distribution can be
expressed as a scale mixture of normals [26]. Thus, model specified in Eq. (2) can be
expressed equivalently as follows with auxiliary variables:

ygi j = 1 : y∗
gi j > 0,

ygi j = 0 : y∗
gi j ≤ 0,

where y∗
i j is an underlying value with the logistic distribution with location parameter

u0 + ψ j + tl(g, j) + μgi and density function as follows:

f
(
y∗
gi j |.

) = exp
{ − (

y∗
gi j − (u0 + ψ j + tl(g, j) + μgi )

)}

{
1 + exp

[ − (
y∗
gi j − (u0 + ψ j + tl(g, j) + μgi )

)]}2 . (3)

Thus, y∗
gi j is approximated as a noncentral t distribution with location parameter

u0 + ηg + ψ j + tl(g, j) + μgi , degree of freedom v, and scale parameter σ 2. We can
further express it as a scale mixture of normals and get the following model:

y∗
gi j = u0 + ηg + ψ j + tl(g, j) + μgi + εgi j , εgi j ∼ N (0, σ 2/φgi j ), (4)

where φgi j has a Gamma priorG(v/2, v/2). We take v = 7.3 and σ 2 = π2(v−2)/3v
as suggested by O’Brien and Dunson [25] to make the approximation almost exact.

2.2 Prior and Posterior

A prior specification for unknown parameters is essential and important for Bayesian
approaches. It is recommended not to use excessively diffuse or flat priors since they
might cause improper posterior due to the intractable nature of the density. On the other
hand, it is preferred to choose conjugate priors to facilitate computation and improve
efficiency. We follow these rules and choose priors with caution in our Bayesian
approach.

We specify a normal distribution N (μ1, σ
2
1 ) for the overall mean u0 ∼ N (μ1, σ

2
1 ).

Similar priors are selected for the period effect and the treatment effect: ψ j ∼
N (μ3, σ

2
3 ), and tm ∼ N (μ4, σ

2
4 ). The random effect μgi is specified as μgi ∼
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N (0, ρ2); the hyperparameter ρ2 is placed an Inverse Gamma distribution ρ2 ∼
IG(a0, b0), and φgi j is placed a prior of Gamma distribution G(v/2, v/2). Based on
the model and prior specifications, we can easily derive the joint posterior distribution
for θ̃ = (u0,ψ, t,φ) as follows:

p(θ̃ |y) ∝ p(.)

⎡

⎣
∏

g

∏

i

N (μgi ; 0, ρ2)
∏

j

N (ygi j ; u0

+ψ j + tl(g, j) + μgi , σ
2/φgi j )wgi j

]
, (5)

where wgi j = {1(ygi j∗ > 0)ygi j + 1(y∗
gi j < 0)(1 − ygi j )}p(φgi j ), and p(.) =

p(ρ2)p(u0)p(t)p(ψ). Obviously, we get a very complicated posterior formula that we
can not sample directly. By introducing the latent variable y∗

gi j , we have applied a data
augmentation algorithm and can easily sample the parameters and hyperparameters
of interest using Gibbs sampler. The main idea of data augmentation algorithm is to
augment the observed data Y with another variable V, which is generally referred to as
latent data. Given Y and V, one can easily sample the parameters θ from the posterior
distribution P(θ |Y, V ). From the above model, the auxiliary variable can be easily
updated using the Gibbs sampler from a posterior normal distribution truncated below
or above 0 according to the value of ygi j . The conditional posterior of the auxiliary
variable is

p
(
y∗
gi j |θ, ygi j

)= N (ygi j ; qgi j , σ 2/φgi j ){1(ygi j∗ > 0)ygi j +1(y∗
gi j < 0)(1−ygi j )}

Φ(0; qgi j , σ 2/φgi j )
1−ygi j {1−Φ(0; qgi j , σ 2/φgi j )}ygi j ,

(6)

where qgi j = u0 + ψ j + tl(g, j) + μgi . The full conditional posterior distribution
is specified in (5). The detailed sampling steps are listed in the Appendix. We run
the Gibbs sampler by iteratively sampling all the parameters, and hyperparameters of
interest.

Given the full conditional posterior distributions in formula (5), one can easily
use the MCMC algorithms to derive the estimates of the parameters of interest. After
discarding the initial burn-in period, we can get the posterior summaries of parameters
of interest from the Gibbs sampler output. For example, if we want to evaluate the
relative treatment effect difference between drugBand drugA.The posterior estimated
parameter tBA is given

tBA =
K∑

k=ς+1

(t (k)B − t (k)A )/(K − ς), (7)

where the relative treatment effect difference is defined as tBA = tB− tA, t
(k)
B is the kth

draw of tB from the posterior sampling. We denote νBA = exp(tBA). Obviously νBA
represents the odds ratio of relative difference between treatment A and B. The relative
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treatment effect difference derived in this section is used to assess noninferiority and
equivalence of drug B (treatment B) to drug A (treatment A) in relation to treatment
efficacy, to be discussed in the next section.

2.3 Test Noninferiority and Equivalence

Generally, the noninferiority hypothesis of between two treatments is formulated

H0 : tB − tA ≤ ω vs H1 : tB − tA > ω, (8)

where ω < 0 denotes the predetermined real value quantity, and is called the amount
of noninferiority margin. Alternatively, we can also use the following formula based
on the odds ratio of the response rate:

H0 : νBA ≤ δ vs H1 : νBA > δ, (9)

where 0 < δ < 1.When thenull hypothesis is rejected, the conclusionof noninferiority
is reached for the experimental treatment (B) to the reference treatment (A).

The formula of noninferiority testing can be modified easily for hypothesis test of
equivalence between two treatments. The hypothesis test of equivalence between two
treatments B and A is formulated as

H0 : νBA ≤ δ1 or νBA ≥ δ2 vs Ha : δ1 < νBA < δ2 (10)

where δ1 and δ2 are the predetermined maximum clinical acceptable margins. When
the null hypothesis is rejected, one can arrive at the conclusion of equivalence between
two treatments.

Given the full conditional posterior distributions, we can easily get the posterior
probabilities of the hypothesis using the MCMC algorithm from the posterior draws
by following (7) in a similar manner.

3 Simulation

To evaluate the performance of our approach, we conduct a simulation study. The
specification of Bayesian model is completed by specifying the prior. Basu and Santra
[21] chose fairly flat but proper, conditionally conjugate priors to analyze crossover
trial studies. Following this line, we chose similar priors for our analysis. We assume
that there are no carry-over effects with an adequate washout period for the simulation.
The overall mean u0 is set equal to 0.10. We generate the random effects μgi indepen-
dently and identically from a normal distribution with mean 0 and standard deviation
s = 0.2, 0.5, and 0.8, respectively; we set the relative treatment effect difference t21
as 0.1, 0.3, and 0.5, respectively. The number of patients for each group is varied as
n1 = n2 = 15, 20, 50, and 150. For the priors, we specify μ1 = μ2 = μ3 = 0.5,
σ1 = σ2 = σ3 = 10.0, and a0 = b0 = 0.1.
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We generate 200 simulated data sets according to Eq. (2). The percentage of data
setswith zero count cells varieswith different scenarios. For example, for small sample
size n1 = n2 = 15, there are about 5% (s = 0.2) to 12 % (s = 0.8) data sets with
zero counts, whereas for n1 = n2 = 20, there are about 2% to 4% data sets with zero
counts. We take the Gibbs sampling algorithm as described in the previous section
and the Appendix. The Gelman–Rubin approach [27] is utilized to assess the mixing
and convergence. After an initial 2000 iterations, we take the next 5000 iterations to
estimate the parameters of interest. We also run the simulations with varying means
and variances of the priors for the parameters to evaluate the effects. For data sets of
small sample size, the length of the coverage is a little wider with flatter prior, but
negligible with bigger sample size. We generally do not see any significant deviation
in the parameter estimation.

We compare our proposed approach with that of Lui and Chang [16]. For easy
notation, we denote our approach as YB, Lui and Chang [16] as LC. The program
is compiled in Intel Visual Fortran Professional 16.0 and executed in a PC (Win7
Professional, Intel Xeon processor E5-1620 at 3.5 GHZ, 6 G RAM). We ran the Gibbs
sampler for above simulation. Although we make a few approximation, the program
runs very fast, e.g., the CPU time consumed is 642s for n = 50with 200 simulated data
sets. Table 1 provides the bias, mean square error (MSE), and the 95% coverage of the
relative treatment effect difference of varying scenarios. From the table, we can see
that our approach (YB) has fairly smaller bias andMSE than that of LC, though a little
smaller in coverage for small sample size. As the sample size increases, the coverage
and MSE of YB are still better than those of LC, and the bias of both approaches is
very close to each other. This might be due to the presence of zero count cells for
small sample size, which is difficult for the approach LC to estimate. As the sample
size increases, the results of LC get improved since there is less likely presence of
zero count cells. Overall, we can see the performance of our approach is very good.
Although there are some data sets that have cells with zero count value, a challenging
issue for the approach of Lui and Chang [16], our approach does not suffer from it
and can still provide very reliable and consistent results.

We also study the relationship between the posterior probability of H1 and the rela-
tive treatment effect difference in the above simulations. Figure 1 provides the results.
Within each panel of Fig. 1, the posterior probabilities of the alternative hypothesis
are in ascending order as the standard deviation of the residual errors increases at
the beginning, and in descending order at later time. The posterior probability of H1
increases as the relative treatment effect difference increases. When we check across
the panels, we see that the curve becomes steeper as the sample size increases. These
results are expected and are in accordance with intuition.

4 Applications

In this section, we use two real data examples to illustrate our approach. For the first
real data example in Table 2, we consider the data set given by Senn [17]. In this study,
24 children who suffered from exercise-induced asthma were randomly assigned to a
crossover trial of two treatment sequences: drug B, 12µg formoterol solution aerosol;

123



Stat Biosci (2018) 10:506–519 513

Table 1 The estimated bias, MSE, and 95% coverage of the relative treatment effect difference

n t21 σ YB LC

Bias MSE Coverage Bias MSE Coverage

15 0.5 0.8 3.76e−2 0.31 0.97 −3.27e−2 0.44 0.98

0.5 4.12e−2 0.25 0.960 −1.12e−2 0.34 0.99

0.2 6.24e−2 0.32 0.94 −8.91e−2 0.41 0.99

0.3 0.8 3.49e−2 0.24 0.96 −8.12e−2 0.34 0.97

0.5 3.85e−2 0.32 0.95 −6.45e−2 0.43 0.97

0.2 5.78e−2 0.34 0.94 −6.53e−2 0.41 0.97

0.1 0.8 1.74e−2 0.29 0.95 −3.57e−2 0.43 0.98

0.5 8.05e−4 0.33 0.94 −3.64e−3 0.41 0.96

0.2 8.45e−3 0.359 0.93 1.26 e−2 0.41 0.97

20 0.5 0.8 −2.43e−2 0.22 0.95 −6.96e−2 0.32 0.97

0.5 −2.79e−2 0.238 0.94 −1.32e−2 3.13e−1 0.96

0.2 −1.19e−2 0.231 0.94 −3.25e−2 2.89e−1 0.95

0.3 0.8 −1.06e−2 1.96e−1 0.96 −5.84e−2 3.12e−1 0.97

0.5 1.09e−2 2.13e−1 0.96 −5.61e−2 2.97e−1 0.96

0.2 1.56e−2 2.37e−1 0.94 −3.10e−2 2.91e−1 0.94

0.1 0.8 2.81e−3 1.98e−1 0.96 −3.19e−2 2.98e−1 0.97

0.5 1.45e−2 2.25e−1 0.95 −3.01e−2 2.94e−1 0.96

0.2 1.15e−2 2.19e−1 0.94 −7.45e−3 2.78e−1 0.96

50 0.5 0.8 −4.35e−2 8.27e−2 0.96 −3.09e−2 1.21e−1 0.95

0.5 −9.85e−3 8.41e−2 0.95 −2.78e−2 1.03e−1 0.96

0.2 1.30e−2 7.87e−2 0.95 −2.67e−2 7.96e−2 0.96

0.3 0.8 −3.80e−2 7.61e−2 0.97 −1.52e−2 1.01e−1 0.97

0.5 −1.11e−2 8.54e−2 0.95 −1.21e−2 1.02e−1 0.95

0.2 −6.34e−3 8.79e−2 0.95 −1.64e−2 9.67e−2 0.945

0.1 0.8 −1.04e−2 7.74e−2 0.96 −6.16e−3 1.05e−1 0.96

0.5 5.07e−3 7.76e−2 0.95 −1.32e−2 9.41e−2 0.95

0.2 −1.64e−2 8.63e−2 0.94 −1.60e−2 9.45e−2 0.94

150 0.5 0.8 −5.19e−2 2.86e−2 0.94 −9.16e−3 3.39e−2 0.95

0.5 −2.78e−2 2.44e−2 0.96 −9.79e−3 2.75e−2 0.95

0.2 −3.68e−3 2.60e−2 0.95 −9.007e−3 2.74e−2 0.945

0.3 0.8 −3.14e−2 2.47e−2 0.96 −9.55e−3 3.12e−2 0.955

0.5 −7.38e−3 2.40e−2 0.96 −8.52e−3 2.77e−2 0.95

0.2 −4.04e−3 2.58e−2 0.95 −4.38e−3 2.66e−2 0.95

0.1 0.8 −1.12e−2 2.40e−2 0.955 −4.54e−3 3.17e−2 0.94

0.5 −1.28e−2 2.57e−2 0.945 −2.27e−2 2.96e−2 0.94

0.2 −9.74e−3 2.44e−2 0.96 −8.65e−3 2.67e−2 0.96
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Table 2 Real data example 1: the frequency distribution of patients with a success (+) or a failure (− )
during treatment A (200µg salbutamol solution aerosol) or B (12µg formoterol solution aerosol

Sequence (+, + ) (+, −) (−, +) (−, −) Total

AB 5 1 6 0 12

BA 2 9 0 1 12

Table 3 Real data example 1: the comparison of results νBA by YB and LC under varying scenarios

Approach YB YB LC LC LC

Data modified (each cell added a number) 0 +1 +0.5 +0.001 +1

νBA 173.33 10.72 9.074 232.30 5.92

and drugA, 200µg salbutamol solution aerosol. The first group of 12 children received
treatment A first and B second; the second group of 12 children received treatment
B first and A second. The binary outcome was derived from a subjectively judged
four-point scale: a success represents a good response, and a failure represents a poor,
fair or moderate efficacy. Here, we want to test whether drug B is noninferior to drug
A based on the odds ratio of the patient success responses rate.

We specify the priors as in the simulation example. We run the Gibbs sampler for
5000 iterations after a 1000 burn-in period and conduct the Gelman–Rubin approach
to assess convergence as in the simulation section. Similar sensitivity tests as in the
simulation example are also conducted. The MCMC chains show good convergence
and the results are consistent.

Weobtain themean estimate νBA and the corresponding 95%CI as 173.33 and (7.21,
628.67), respectively. We should note that this is a very small data set. In particular,
there are two cells with zero counts, five cells with value no more than 2. Because
of the cells with zero counts, the approach of Lui and Chang [16] can not estimate it
directly. They obtain the estimate for the odds ratio as 9.074 by adding 0.5 to the cells.
Given the small sample size and distribution of small values, it might still change the
results significantly by adding a seemingly small value. However, what is a reasonably
small value to be used is not justified by Lui and Chang [16]. For example, whenwe try
different small values from 0.001 to 1.0, the estimated results of Lui and Chang [16]
can vary from 232.30 to 5.92. We run our approach by adding 1 to the corresponding
cells and obtain the estimate νBA and the corresponding 95% CI as 10.72 and (2.70,
30.22), respectively. The median value is drastically changed from 42.43 to 8.60, see
Table 3. When the maximum clinically acceptable noninferior margin δ is set 0.8, we
derive the posterior probability of the alternative hypothesis almost 0.0. Obviously,
we can easily derive the conclusion that the treatment of 12µg formoterol solution
aerosol is noninferior to the treatment of 200µg salbutamol solution aerosol.

For the second example, we consider a crossover trial study analyzed by Ezzet and
Whitehead [15]. In the study, 3M-Risker conducted a crossover trial to compare the
suitability of two new inhalation devices (A and B) in patients who were currently
using a standard inhaler device delivering Salbutamol. Patients in group 1 used device
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Table 4 Real data example 2: the frequency distribution of patients with a response “yes” (+) or a “no”
(− ) comparing two new inhalation devices delivering salbutamol

Sequence (+, +) (+, −) (−, +) (−, −) Total

AB 26 41 15 57 139

BA 38 16 32 54 140

Fig. 2 Application 2:traceplots of relative treatment effect difference, group difference, period difference,
and intercept

A for one week and then device B for another week. The other patients in group 2 used
the devices in reverse order. No washout was felt necessary. Patients were surveyed
whether there were particular features which they liked about each device, and their
responses were coded as “yes” or “no.” There were less than 3% patients with missing
outcomes. We assume that the missing outcomes occur completely at random and
summarize the frequencies of patients with known responses in Table 4 for purpose
of illustration. To assess the noninferiority of device A versus device B, we run our
approach and derive the νBA and the corresponding 95% CI as 2.42 and (1.58, 3.68).
When the maximum clinically acceptable noninferior margin δ is set 0.8, we derive
the posterior probability of the alternative hypothesis 0.00081. All the results indicate
that device A is noninferior to device B based on the odds ratio of the patient favor
response. The approach of Lui and Chang [16] provides results close to ours with
estimate ν 2.34 and p value less than 0.001. The traceplots of several parameters are
provided in Fig. 2 to assess convergence, we can see the results converge very fast.
Here, we should note that the second example has a fairly big sample size 279. For the
real data examples, we show that our approach provides results very close to those of
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Lui and Change [16] with fairly big data sets. However, for small data examples, our
approach can provide more consistent and reliable results.We also run the analyses for
the applications with varying means and variances of the priors for the parameters to
evaluate the effects. For the first application with small sample size, the length of the
coverage is a little wider with flatter prior, but negligible with the second application
with bigger sample size. We do not see any significant deviation in the parameter
estimation.

5 Conclusion and Discussion

In this paper, we have developed a Bayesian approach for hypothesis testing in non-
inferiority and equivalence based on odds ratio of patient response rate for simple
crossover trials. The approach can be easily implemented and improve efficiency
using data augmentation and scale mixture of normal representation. Compared to the
current frequentist approaches, our approach does not suffer from the asymptotic con-
straints and can easily handle cells with zero counts. Through simulation studies, we
have shown the strength and the good performance of our approach. The approach can
be easilymodified to accommodate themore complicated case, for example, three-arm
trials. We expect the approach can be of help for the clinical researchers conducting
research in noninferiority test for simple crossover trials.
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Appendix

1. Given u0 ∼ N (μ1, σ
2
1 ), the full conditional p(u0|else) is sampled from a normal

distribution N (μ∗
1, σ

∗2
1 )

σ ∗−2
1 = σ−2

1 +
∑

g

∑

i

∑

j

φgi j/σ
2 (11)

μ∗
1 = σ ∗2

1

⎧
⎨

⎩
μ1/σ

2
1 +

∑

g

∑

i

∑

j

φgi j/σ
2(y∗

gi j − (ψ j + tl(g, j)+μg,i )
)
⎫
⎬

⎭
(12)

2. Given μgi ∼ N (0, ρ2), the full conditional p(μgi |else) is sampled from a normal
distribution N (μ∗, σ ∗2)

σ ∗−2 = ρ−2 +
∑

j

φgi j/σ
2 (13)

μ∗ = σ ∗2
⎧
⎨

⎩

∑

j

φgi j/σ
2(y∗

gi j − (ψ j + tl(g, j) + u0)
)
⎫
⎬

⎭
(14)

123



518 Stat Biosci (2018) 10:506–519

3. Given ρ2 ∼ IG(a0, b0), the full conditional p(ρ2|else) is sampled from an inverse
Gamma distribution IG(a∗, b∗)

a∗ = a0 +
∑

g

∑

i

1/2 (15)

b∗ = b0 +
∑

g

∑

i

μ2
gi/2 (16)

4. Given ψ j ∼ N (μ3, σ
2
3 ), the full conditional p(ψ j |else) is sampled from a normal

distribution N (μ∗
3, σ

∗2
3 )

σ ∗−2
3 = σ−2

3 +
∑

g

∑

i

φgi j/σ
2 (17)

μ∗
3 = σ ∗2

3

{

μ3/σ
2
3 +

∑

g

∑

i

φgi j/σ
2(y∗

gi j − (μgi + tl(g, j) + u0)
)
}

(18)

5. Given tm ∼ N (μ4, σ
2
4 ), the full conditional p(tm |else) is sampled from a normal

distribution N (μ∗
4, σ

∗2
4 )

σ ∗−2
4 = σ−2

4 +
∑

g

∑

j

∑

i

I (l(g, j) = m)φgi j/σ
2 (19)

μ∗
4 = σ ∗2

4

{
μ4/σ

2
4 +

∑

g

∑

i

∑

j

I (l(g, j) = m)φgi j/σ
2

×(
y∗
gi j − (μgi + ψ j + u0)

)}
(20)

6. Given φgi j ∼ IG(v/2, v/2), the full conditional p(φgi j |else) is sampled from an
inverse Gamma distribution IG(a∗

1 , b
∗
1)

a∗
1 = (v + 1)/2 (21)

b∗
1 = v/2 + (

y∗
gi j − (ψ j + μgi + tl(g, j) + u0)

)
/
(
2σ 2) (22)
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