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Abstract In this paper, we introduce NPBayes-fMRI, a user-friendly MATLAB GUI
that implements a unified, probabilistically coherent non-parametric Bayesian frame-
work for the analysis of task-related fMRI data from multi-subject experiments.
The modeling approach is based on a spatio-temporal linear regression model that
specifically accounts for the between-subjects heterogeneity in neuronal activity via
a spatially informed multi-subject non-parametric variable selection prior. A charac-
teristic feature of the approach is that it results in a clustering of the subjects into
subgroups characterized by similar brain responses, while simultaneously producing
group-level as well as subject-level activation maps. This is distinct from two-stage
“group analysis” approaches traditionally considered in the fMRI literature, which
separate the inference on the individual fMRI time courses from the inference at the
population level. Here, we first describe the models and a Variational Bayes algorithm
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for posterior inference. Next, we introduce the toolbox and illustrate its features via
an example.

Keywords General linear model · MATLAB · Multi-subject fMRI data ·
Non-parametric variable selection priors · Spatio-temporal modeling ·
Variational Bayes

1 Introduction

Functional magnetic resonance imaging (fMRI) is a non-invasive neuroimaging tech-
nique which measures the blood-oxygenation-level dependent (BOLD) contrast, i.e.,
the difference in magnetization between oxygenated and deoxygenated blood arising
from changes in regional cerebral blood flow. In a typical task-related fMRI experi-
ment, a subject is presented a set of stimuli while the whole brain is scanned at multiple
time points. Each scan is arranged as a 3D array of volume elements (or “voxels”),
and the experiment produces time series of BOLD responses acquired at each voxel.

Common modeling approaches for the analysis of task-related fMRI data rely on
the general linear model formulation that was first proposed by Friston et al. [10]
and subsequently investigated by many other authors, particularly for single-subject
data, see for example [11,12,17,19,25,33,36,38], among many others. Many of these
models incorporate the complex spatial and temporal correlation structure of the fMRI
data. Bayesian approaches, in particular, allow flexible modeling of spatial and tem-
poral correlations via suitable prior models and can achieve increased signal detection
and fewer false-positive counts with respect to simpler approaches that do not appro-
priately account for the spatio-temporal variability of the data. See for example [39]
for a review of recent Bayesian models.

For multi-subject studies, two-stage “group analysis” approaches are often adopted
as computationally attractive methods where summary estimates of model parameters
are obtained at the individual level and then used in a second-stage model at the
group/population level, see for example [2,15,18,27,29]. Also, newer data-driven
methods for analyzing fMRI, for example, those that use model-free methods such as
independent component analysis (ICA) and tensor-product ICA (T-PICA), have been
developed to detect the presence of subgroups of participants within a population as
in Cerliani et al. [4], but these approaches still involve multiple estimation steps, and
therefore do not properly take into account variability and heterogeneity in the data.

In this paper, we review and extend a unified, single-stageBayesian approach for the
analysis of task-related brain activity proposed by Zhang et al. [40]. Thismodel formu-
lation considers a spatio-temporal linear regression model that specifically accounts
for between-subject heterogeneity in neuronal activity via a spatially informed multi-
subject non-parametric variable selection prior. This effectively captures correlation
among time-series voxels within and across subjects, by inducing clustering among
voxels within a subject at one level of the hierarchy and between subjects at the second
level. In the fMRI literature, capturing statistical dependence among possibly remote
neurophysiological events is often viewed as an aspect of “functional” connectivity
[9,13]. The approach of Zhang et al. [40] further takes into account the spatial prox-
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imity of potential activations within a subject by employing a Markov random field
(MRF) prior on the selection indicators of the spike-and-slab distribution. Posterior
inference is performed via fast Variational Bayes (VB) algorithms.We extend themod-
eling approach of Zhang et al. [40] to allow for multiple stimuli and different choices
of the hemodynamic response function. Furthermore, we consider formulations of the
model that can be used to analyze either voxel-based 2D slices or 3D data in the form
of brain parcellations. We also discuss the non-parametric prior formulation in the
case of a single-subject analysis. Finally, we show how to derive contrast maps based
on the VB output.

Awell-recognized challenge in the use ofBayesianmodelswith complexmethods is
the lack of user-friendly software that can be used by practitioners to apply themethods
to their experimental data. In an attempt to narrow the gap, we introduce NPBayes-
fMRI, a MATLAB GUI that implements the non-parametric spatio-temporal models
described in the paper. The GUI comprises two components, one for model fitting
and another one for visualization of the results. Within the model fitting interface,
the user can define the type of analysis (voxel-based or whole-brain parcellation into
regions of interest, i.e., ROIs) and the model parameters. Users have the option of
a pre-defined default setting for all parameters that also allows customized choices.
The GUI also accommodates single-subject analyses. The VB algorithm can be run
within the GUI. After running the algorithm, the output file can be uploaded via the
visualization interface and used to plot subject-level activation maps, contrasts maps,
and cluster-defined averaged β-maps. No additional MATLAB toolboxes are required
to run NPBayes-fMRI.

The rest of the paper is organized as follows: Section 2 introduces the spatio-
temporal model, the non-parametric variable selection prior, and the methods for
posterior inference, for both multiple and single-subject data. Section 3 describes the
NPBayes-fMRIMATLAB GUI. Section 4 provides illustrations of the methods using
the MATLAB GUI. Section 5 concludes the paper.

2 Methods

In this section, we review the general framework of the model as proposed by Zhang
et al. [40]. We first consider multiple subjects and then describe the simplified model
for single-subject analysis. In both cases, we provide the formulation of the model for
the general case of multiple tasks.

2.1 Multi-Subject Spatio-Temporal Model

For subject i = 1, . . . , N , let Yiν = (Yiν1, . . . ,YiνT )T be the vector of the BOLD
response data at voxel ν, with ν = 1, . . . , V . We model the data as

Yiν = Xiνβiν + εiν, εiν ∼ NT (0, �iν), (1)

where Xiν is a known T × p covariate matrix and βiν = (βiν1, . . . , βiνp)
T is a p × 1

vector of regression coefficients. Without loss of generality, we center the data and
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thus do not include the intercept term in the model. Additionally, as typical with
multiple subjects data, to make the BOLD signal levels consistent across subjects,
we consider transformed the data by percent signal change normalization, i.e., y∗

ivt =
yivt/ȳiv × 100, where yivt denotes the BOLD signal of subject i in voxel v at time
point t , and ȳiv the mean signal level across the T time points. Let Xiν j be the j th
column of Xiν . Then Xiν j is modeled as the convolution of the j-th stimulus pattern
with a hemodynamic response function (HRF) [3], that is,

Xiν j (t) =
∫ t

0
x j (s)hλiν j (t − s)ds, (2)

where x j (s) represents the stimulus pattern. One common choice is a Poisson HRF,
that is hλiν j = exp(−λiν j )λ

t
iν j/t . The parameter λiν j can be interpreted as the delay of

the response with respect to the stimulus onset and it is often modeled as an unknown
voxel-dependent parameter.Other popular choices are a canonicalHRF, that is, hAiν j =
Aiν j

( tα1−1β
α1
1

�(α1)
− c

tα2−1β
α2
2

�(α2)

)
, where α1 = 6, α2 = 16, β1 = β2 = 1, c = 1/6, and a

gamma HRF, that is, haiν j ,biν j = b
−aiν j
iν j

�(aiν j )
taiν j−1exp(−x/biν j ) [19].

The error term in equation (1) is modeled as a long memory process. Specifically,
the covariance matrix is written as

∑
iν(t, s) = [γ (|t − s|)], with the auto-covariance

function γ (h) defined as
γ (h) ∼ Ch−α, (3)

with C > 0, 0 < α < 1, and h large. This choice accounts for low-frequency noise
which induces slow changes in voxel intensity over time, such as scanner drift, and for
physiological noise, due to patient motion, respiration, and heartbeat causing fluctua-
tions in signal across both space and time. In an analysis of single-subject fMRI data,
[38] show that such modeling strategy improves the deconvolution of the signal and
the noise, leading to the detection of more localized, fewer false-positive, and sparser
activations with respect to using auto-regressive error structures.

Discrete wavelet transforms (DWT) are often employed in the fMRI literature as a
way to decorrelate the data [6,16,20,27,38]. After applying the DWT to equation (1)
the model in the wavelet domain can be written as

Y ∗
iν =

p∑
j=1

X∗
iν j ◦ βiν j + ε∗

iν, ε∗
iν ∼ NT (0, �∗

iν), (4)

with ◦ the element-by-element (Hadamard) product, and where W is a T × T matrix
corresponding to the wavelet transform, Y ∗

iν = WYiν, X∗
iν = WXiν , and ε∗

iν = Wεiν ,
and with the covariance matrix �∗

iν approximately diagonal with elements ψiνσ
2
imn

indicating the variance of the nth wavelet coefficient at the mth scale. We follow
the variance progression method of Wornell and Oppenheim [35] for the wavelet
coefficients,

ψiνσ
2
imn = ψiν(2

αiν )−m, (5)
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with ψiν the innovation variance and αiν ∈ (0, 1) the long memory parameter. This
structure encompasses the general fractal process given above, which includes long
memory.

2.2 Non-parametric Variable Selection Prior

Detecting voxels that activate in response to a stimulus is equivalent to identifying the
non-zero regression coefficient βiν j in model (4). Zhang et al. [40] embed the selec-
tion into a clustering framework, effectively defining a multi-subject non-parametric
variable selection prior with spatially informed selection within each subject. More
specifically, they employ a hierarchical Dirichlet Process (HDP) prior [31], which
implies that the non-zero β’s within subject i are drawn from a mixture model and
possibly shared between subjects. The HDP prior construction effectively captures
correlation among time-series voxels within and across subjects, by inducing cluster-
ing among voxels within a subject at one level of the hierarchy and between subjects
at the second level. This allows, in particular, to capture spatial correlation among
potential activations of distant voxels, within a subject, while simultaneously borrow-
ing strength in the estimation of the parameters from subjects with similar activation
patterns. For the multi-stimuli formulation of the model, let γiν j be a binary indicator
of whether a given voxel is activated or not under stimulus j , that is, γiν j = 0 if
βiν j = 0 and γiν j = 1 otherwise. A spiked non-parametric prior is imposed on the
coefficients βiν j , i.e., a spike-and-slab prior where the slab distribution is modeled as
a non-parametric prior, as

βiν j |γiν j ,Gi ∼ γiν j Gi j + (1 − γiν j )δ0, (6)

where δ0 is a point mass at zero and G denotes a known distribution. With multiple
subjects, a hierarchical Dirichlet process (HDP) prior can be specified as the non-
parametric slab,

Gi j |η1,G0 ∼ DP(η1,G0)

G0|η2, P0 ∼ DP(η2, P0)

P0 = N (0, τ ), (7)

where τ, η1, η2 are fixed parameters and P0 is the base distribution. Parameters η1, η2
control the variability of the coefficients at the subject and population level, respec-
tively. The HDP prior consists of two levels of hierarchy, which induce clustering
among voxels within a subject on one level and between subjects on the second level.
This construction enables the model to borrow information from subjects exhibiting
similar activation patterns in estimating parameters of interest and also capture spa-
tial correlation among distant voxels. Using both simulated and real data, [40] show
increased detection power and lower numbers of false-positive calls with respect to
common two-stage estimation approaches which separate the inference on the indi-
vidual fMRI time courses from the inference at the population level.
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In addition to the prior construction above, spatial correlation among neighboring
voxels within a subject is modeled via a Markov random field (MRF) prior imposed
on γiν j ,

P(γiν j |d, e, γik j , k ∈ Niν) ∼ exp

⎛
⎝γiν j

⎛
⎝d + e

∑
k∈Niν

γik j

⎞
⎠

⎞
⎠ , (8)

with Niν the set of neighboring voxels of voxel ν for subject i , and p(γiν) =∏p
j=1 p(γiν j ). This prior reduces to an independent Bernoulli with parameter

exp(d)/[1 + exp(d)] if a voxel does not have any neighbors. The sparsity param-
eter d ∈ (−∞,∞) in (8) represents the expected prior number of activated voxels,
while the smoothness parameter e > 0 controls the probability of identifying a voxel
as active based on the activation of the neighboring voxels. The use of MRF priors
has become quite popular in recent years in the Bayesian modeling of fMRI data
[17,28,37,38].

The prior model is completed by considering a uniform prior distribution on the
delay parameter, λiν j ∼ U(u1, u2), for a Poisson HRF, or the amplitude param-
eter, Aiν j ∼ U(u1, u2), for a Canonical HRF, or the shape and scale parameters,
aiν j ∼ U(u1, u2), biν j ∼ U(u3, u4), for a gamma HRF. Also, an Inverse Gamma (IG)
prior is imposed on the innovation variance parameter, ψiν ∼ IG(a0, b0), and a Beta
distribution on the long memory parameter, αiν ∼ Beta(a1, b1).

2.3 Single-Subject Modeling

For a single subject, the non-parametric prior reduces to a Dirichlet process (DP) prior
of the type

G0|η, P0 ∼ DP(η, P0)

P0 = N (0, τ ), (9)

where τ ,η are fixed and P0 is the base distribution. The mass parameter η is used to
regulate the variability of the coefficients at the subject level. This prior allows, in par-
ticular, to capture spatial correlation among activations of distant voxels. In the fMRI
literature, capturing statistical dependence among possibly remote neurophysiological
events is often viewed as an aspect of “functional” connectivity [9,13].

2.4 Prior Specification

We provide here some general guidelines on the choice of the prior hyperparameters.
Zhang et al. [40] comment on the sensitivity of their results to different choices of the
priors when using simulated data. The authors notice that, in general, modest changes
of the values of the variance parameter τ in the base measure of the HDP prior and of
the hyperparameters a0, b0, a1, b1, of the priors on the variance parameters ψ’s and
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the long memory parameters α’s, did not affect the accuracy of the estimation results.
Consequently, these parameters can be set to default values that correspond to vague
or uninformative priors. Employing non-informative or vague priors is a common
choice in Bayesian statistics in the absence of prior knowledge about the unknown
parameters. Here, in particular, the hyperparameter τ can be set to a large value (e.g.,
> 50), non-informative priors can be specified on the long memory parameters by
setting a1 = b1 = 1 and vague priors on the innovation variance parameters by setting
a0 = 3, b0 = 2. As for the concentration parameters η1 and η2 of the HDP prior, larger
values of these parameters tend to generate larger numbers of components across and
within-subjectswhenfitting themodel.We recommendusing a non-informative setting
by setting η1 = η2 = 1. Also, vague specifications can be adopted on the parameters
of the HRF, for example, by specifying a uniform prior with, say, u1 = 0, u2 = 8, in
the case of a Poisson HRF, and similarly for the other HRFs.

Some sensitivity should be expected in regards to theMRFparameters. In particular,
as noted by [40], larger values of d or e lead to lower FNRs, at the expense of higher
FPRs and lower precisions. We suggest fixing d to reflect a prior belief in a sparse
model. For example, d = − 2.5 implies that the prior probability of activation is less
than 10% when a voxel has no neighbors. Also, a value of e in the range (0.3–0.5)
generally results in values below the phase transition point, which can be estimated
using the algorithm proposed by Propp and Wilson [24].

2.5 Model Fitting by Variational Bayes

Variational Bayes (VB) algorithms are an alternative method for posterior inference
that, unlikeMCMCmethods, does not rely on numerical integration. Variational Bayes
methods have been employed successfully inBayesianmodels for single-subject fMRI
data [8,14,22,23,34]. These methods find an optimal approximation to the posterior
that minimizes the Kullback–Leibler (KL) divergence. Typically, VB approaches pro-
vide good estimates of means, although they tend to underestimate posterior variances
and also to poorly estimate the correlation structure of the data [1,26]. This can still
be an acceptable trade-off for our inferential purposes, as we are only interested in the
identification of broad areas of activations. Indeed, [40] perform a thorough compari-
son betweenMCMCandVBon simulated data, showing very good performance of the
VB algorithm in the estimation of themodel parameters. They also notice a remarkable
improvement in computing time, with 1000 MCMC iterations taking approximately
7h, on a double core ®Intel ®Xeon processor with 16GB of memory, 2.2GHz., while
a VB with 50 inner loop iterations and 100 outer loop iteration took approximately 34
min.

When using VB methods within HDP frameworks, such as the spiked HDP prior
distribution (7) on the β’s parameters, it is beneficial to employ the truncated stick-
breaking construction, to exploit conjugacy and allow for analytically tractable updates
of the parameters [32]. In our model formulation, the parameters of the HRF appear
through convolution (2) and the α’s via the variance progression formula (3). This
makes it impossible to derive analytically tractable updates for these parameters. Zhang
et al. [40] address the problem by combining the VB algorithm with an importance
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Table 1 VB Algorithm (with Poisson HRF)

for l = 1 : L

Update αliv and λliv j i = 1, . . . , N , v = 1, . . . , V, j = 1, . . . , P , via importance sampling.

for m = 1 : M

Using the VB method,

Update ψm
iv as the mean of its variational distribution q(ψiv).

Update γm
iv j from its variational distribution q(γiv j ).

This update takes the neighboring structure of voxels into account via the MRF prior.

Update βm
iv j when γm

iv j = 1. Otherwise, set βm
iv j = 0.

Store the last update at m = M as final update.

end for

end for

Compute the importance sampling weights wivl and normalize them to ŵivl .

Estimate the model parameters as weighted averages.

sampling procedure. The resulting algorithm has two major components. The first
component (inner loop) approximates the posterior distribution of the regression coef-
ficients, the selection parameters, and the innovation variance parameters via mean
field variational inference with a coordinate ascent algorithm. The second component
(outer loop) estimates the parameters of the HRF and the α’s via importance sampling,
with the importance sampling weights calculated based on the optimal solution from
the first component. A schematic representation of the algorithm is given in Table 1.

2.6 Posterior Inference

For posterior inference, primary interest is in the estimation of the selection param-
eters, γ , and the regression coefficients, β. These can be used to obtain activation
maps, by subject and by stimulus. Using the output from the VB algorithm, posterior
probabilities of inclusion (PPIs) for stimulus j, p(γiν j = 1), for j = 1, . . . P , are
approximated as weighted averages of the variational distribution values q(γiv j = 1)
estimated across the iterations of the outer loop of the algorithm (see Table 1). Acti-
vation maps can then be obtained by thresholding the PPIs using a threshold value to
ensure a pre-defined Bayesian false discovery rate (FDR) [5,21,30]. For subject i and
stimulus j , the Bayesian FDR is defined as

FDRi j (κi j) =
∑V

v=1(1 − PP Iiv j )I(PP Iiv j>κi j )∑V
v=1 I(PP Iiv>κi )

, (10)

where PP Iiv j is the PPI for subject i at voxel v and stimulus j , and I(PP Iiv j>κi j ) is the
indicator function such that I(PP Iiv j>κi j ) = 1 if PP Iiv j > κi j and 0 otherwise, with
κi a threshold value. In the data analyses, one can set the FDR to a pre-specified value,
typically 0.05 or 0.1, and then choose κi accordingly. This produces a spatial mapping
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of the activated brain regions, for each subject. Corresponding posterior β-maps can
be calculated by estimating the β coefficients via weighted averages of the variational
distribution values, on active voxels.

An additional feature of ourmodeling approach is that the use of the non-parametric
HDP prior construction (6) can be exploited to obtain a clustering of the subjects for
possible discovery of differential activations. For an individual stimulus, and given
a pre-specified threshold (or FDR) value on the PPIs, a dissimilarity matrix can be
calculated based on the squared Euclidean distances between each pair of subjects
as

dii ′ =
√

(B̂i − B̂i ′ )
T (B̂i − B̂i ′ ),

with B̂i denoting the posterior estimate of Bi = (βi1 j , . . . , βiv j )
T . The dissimilarity

matrix can then be transformed into a tree via hierarchical clustering and a dendrogram
can be obtained using the linkage method withWard’s minimum variance. An optimal
number of clusters can finally be selected by visual inspection of the dendrogram and
group-level β-maps can be calculated by averaging the posterior maps of the non-zero
β coefficients in each cluster.

Finally, when analyzing experimental data with multiple stimuli, contrast maps can
be produced to compare the effects of different treatments, by subject, by estimating
probability maps of the type p(β j − β j ′ > κ), with j and j ′ a pair of stimuli and κ

a pre-defined hypothesized value. Within the VB framework, a contrast map can be
obtained by thresholding the probabilities

pv =
L∑

l=1

ŵvl I((
∑J

j=1 π j ·βv jl )>κ)
, (11)

with π = π1, . . . , πJ a contrast weight vector summing to 0, L the number of outer
loopVB iterations, Bv jl the V × J×L matrix storing the updated β value for all voxels
and stimuli, across the L iterations, and ŵvl the normalized importance weights. For
each subject i and outer loop iterations l = 1, . . . L , the importanceweight is computed
as

wvl = q(α
(l)
iv , λ

(l)
iv )

p̃(α(l)
iv , λ

(l)
iv )

, (12)

with q(α
(l)
iv , λ

(l)
iv ) the variational distribution of (α

(l)
iv , λ

(l)
iv ) and p̃(α(l)

iv , λ
(l)
iv ) the impor-

tance sampling density of (α
(l)
iv , λ

(l)
iv ). Once all outer loop iterations terminate, the

importance weight is normalized to obtain ŵvl .

3 The NPBayes-fMRI GUI

We now provide a detailed description of the NPBayes-fMRI MATLAB GUI that
implements the spatio-temporal general linear regression models described in the
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Fig. 1 NPBayes-fMRI: Main
interface of theModel Fitting
GUI

previous Section. The GUI comprises two main interfaces, one for model fitting and
one for the visualization of the results.

3.1 Model Fitting

For model fitting, a set of parameters must be defined using theNPBayes-fMRI: Model
FittingGUI shown in Fig. 1, by first selecting the object in the listbox and then clicking
the Specify button:
Output: The user is asked to specify the directory where the output of the VB algo-
rithm will be saved. Once the model is run successfully, a result.mat file will be
generated in the output directory.
Number of Subjects: The user is asked to specify the number of subjects that are
being used for the analysis. When this variable is set to 1, a DP will be used for the
slab distribution in equation (6), while a HDP is used otherwise.
2D or 3D Analysis: This option allows to specify the type of analysis, that is, whether
it is performed on a single 2D slice or on a 3D whole-brain parcellation. If 2D is
selected, then the user is prompted to define the threshold for 2D image and
the dimension of the 2D slice. The threshold is a value used to define the
graymattermaskon the fMRIdata (seeDataFiles below). Theparameter dimension
of the 2D slice is defined by the number of rows and columns of the fMRI slice.
The number of rows and columns must be such that their product is equal to V . These
arguments will be used later for visualization of the results. If 3D is selected, the
following arguments must be defined:

Matrix of ROI names: This is a .mat file containing a variable named
ROI_names, which is a 1 × V cell, with each cell entry containing the brain
regions names as defined by the parcellation, with the .nii extension (e.g.,
Amygdala_L.nii).

Neighbor matrix: This is a .mat file containing a variable named nei_vec,
whose first row contains the indices of those regions that are neighbors to the
region whose index appears on the second row. For example, if region 5 has regions

6, 10, 15, 20 as its neighbors, then nei_vec will have entries

[
6 10 15 20
5 5 5 5

]
.
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This information is also used to specify the MRF prior (8) by calculating Euclidean
distances between the centroids of the ROIs.

ROI NIFITI Directory: This is the directory where all NIFTI files for the
ROIs are stored. The names of these files should be equal to the names provided by
the Matrix of ROI names. These files will be used to map back the inference
results into 3-Dimension for visualization.

Brain Template Image: For better visualization of the inference results, the
user has the option to upload a brain template NIFTI file. When available, the brain
template will be used as a background image, and the resulted image from running
the model will be overlayed on top. This will only work when the dimension of
the brain template file is equivalent to the dimensions of the ROI NIFTI images. If a
template image is not provided, the visualizationswill take placewithout a background
image.
Data Files: The user needs to load a .mat file that consists of two matrices: xtdat, a
T × P binary design matrix, with T the number of time points and P the number of
stimuli, and y_dat, a T × (N × V ) matrix of BOLD signals, with N the number of
subjects and V the number of voxels (for 2D analyses) or ROIs (for 3D analyses) . So
if we let yi be a N ×V BOLD signals for subject i , y_dat = (y1, y2, . . . , yN ). For 2D
analyses, a gray matter mask is applied to the fMRI data and inference is performed
based on those voxels where y_dat is greater than the threshold specified by the user.
For 3D analyses, y_dat should contain the voxel time-series data averaged by ROI,
listed in the same order provided by the Matrix of ROI names .mat file. For both 2D
and 3D analyses, the percent signal change normalization and the DWT are applied as
part of the model fitting stage. For DWT, Daubechies minimum phase wavelets with
4 vanishing moments are used.
Parameter Setting: The software includes a pre-defined default setting for all
hyperparameters and VB parameters. The user also has the option of setting some
of the model parameters manually, including selecting the type of HRF distri-
bution, the prior setting for the HRF parameters and the MRF parameters, and
the number of VB iterations. In the default parameter setting, the Poisson dis-
tribution is automatically selected as the HRF distribution, with its default prior
setting.

Once all the variables have been defined, the Run Model button in the GUI will
turn green from red, and pressing the button will start the algorithm. If one chooses to
run the model later, it is also possible to press the Save Batch button to store the
model specification. In this case all the parameter settings are saved in a .mat file,
which can later be loaded by clicking on the Load Batch button.

3.2 Visualization

TheNPBayes-fMRI: VisualizationGUI, shown in Fig. 2, is used to visualize the results
using the result.mat file obtained from running the algorithm using NPBayes-fMRI:
Model Fitting interface. The GUI comprises the three components described below.
For simplicity, we consider the case of 3D data only.
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Fig. 2 NPBayes-fMRI: Main
interface of the Visualization
GUI

Fig. 3 NPBayes-fMRI: Visualization. Interface for viewing activation maps by subject. The Viewing
Options tab allows the user to view all stimuli at once or one at a time. By clicking on the Map Type,
Range and Colormap pop-up menus, the user can define the type of maps to visualize, set the axes ranges
and the desired colormap setting. The bigger slider adjusts the PPI threshold and FDR value, the smaller
one controls the transparency of the activation map when a Brain Template Image has been uploaded for
3D Analysis. The Multi-Slice option can be used to view multiple slices of the brain in one particular
orientation for a given stimulus

Activation Maps by Subject (Fig. 3): This function allows the user to view the
activationmaps, the posterior β-maps, and theHRFmaps for a single subject. Clicking
on Map Type allows the user to select either Probability Map, which allows
to view PPI activation maps, or Activation Map, to view the posterior β-maps,
or HRF Map, to view posterior maps for the HRF parameters. Depending on the
HRF distribution, the HRF map will display values for the λiν j , Aiν j , or aiν j · biν j
(as the mean of a gamma distribution) parameters, for the Poisson, Canonical, and
Gamma HRFs, respectively. MATLAB’s built-in colormaps can be selected via the
Color Map pop-up menu. Range lets the user define the axes limits. When set to
Equal_Range, all figures will be defined on the same range. This may be useful
when one is comparing posterior β-maps across all stimuli. If, however, the β values
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Fig. 4 NPBayes-fMRI: Visualization. Interface for viewing activation maps by cluster, for a given stimulus.
The user selects the stimulus and the PPI (or FDR) threshold. The corresponding dendrogram will be
displayed, and theuser can then specify the number of clusters and click on theLoad Cluster Defined
from Dendrogram tab. When confirmed, the cluster indices will be displayed in the Cluster tab

Fig. 5 NPBayes-fMRI:
Visualization. Interface for
viewing contrast maps by
subject (for multiple stimuli).
The user must use the Define
Contrast tab to insert the
contrast vector and hypothesized
value. The slider bar can be used
to adjust the PPI (or FDR) value

are significantly smaller in one stimulus than another, then the Different_Range
option is preferable when inspecting the activation maps. Two sliders appear on the
right-hand side of the interface. The bigger slider can be used to adjust the PPI threshold
and the FDR value. These values can also be set manually by the user. The smaller
slider, circled in red in Fig. 3, appears only when a Brain Template Image has been
uploaded for 3DAnalysis. This slider allows the user to control the transparency of the
activation map that will be overlayed on top of the Reference Image. The X,Y , and
Z sliders are used to define the coordinates of the 3D NIFTI brain image in sagittal,
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Table 2 Instructions for running the example dataset

Once you run NPBayes_fMRI, select Model Fitting and follow these instructions:

1. Define the output directory by clicking on “OUTPUT”

2. Insert 30 for Number of Subjects

3. For 2D or 3D Analysis, select “3-Dimensional” and insert the following:

- Matrix of ROI names: Select ROI_names.mat from the Example_ROIs subfolder

- Neighbor Matrix: Select nei_vec.mat from the Example folder

- ROI NIFTI Directory: Select the Example_ROIs folder

- Brain Template Image: Select ’Load Nifti Brain Template Image’ and load the

ch2.nii file found in the Example folder

4. For “Data Files,” select:

a) data.mat file found on the Example folder

For long time points select:

a) multi_data.mat file found on the Example folder for the multiple stimulus case

b) single_data.mat file found on the Example folder for the single stimulus case

5. For Parameter Setting select the default setting by clicking “yes”

6. Initiate model fitting by pressing “Run Model”

To visualize the results, select Visualization and load the result.mat file located in the output directory
using Load Output.

coronal, and axial orientation. If the user desires to view multiple slices of the brain
in one particular orientation for a given stimulus, the Multi-Slice option can be
used instead. The Viewing Options tab can be used to view either all stimuli at
once or a single stimulus at a time.
ActivationMaps by Cluster (Fig. 4): This function is used to view cluster-level acti-
vation maps, for a given stimulus and PPI (or FDR) threshold. Clusters are defined
based on a dendrogram obtained by applying hierarchical clustering withWard’s link-
age method to a dissimilarity matrix defined based on the posterior mean estimates
of the non-zero β coefficients. By clicking on Load Cluster Defined From
Dendrogram, the user can insert the number of clusters by which the subjects will
be grouped.
Contrast Maps by Subject (Fig. 5): For multiple stimuli, this function lets the user
define a contrast by subject by defining a Contrast Vector and Hypothesis
Value using the Define Contrast option. The length of the Contrast
Vectormust not be greater than the number of stimuli and the entries must sum to 0.
Once a contrast has been defined, the user can use the slider to adjust the Threshold
Probability and view different subjects by entering the subject numbers.

4 Illustration with 3D Data

In order to better illustrate the features of the NPBayes-fMRI: Visualization GUI, we
show some selected output from an analysis of a dataset consisting of fMRI data on 30
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Fig. 6 3D Analysis: Example
of activation β-maps, with
Range set to Equal Range,
for stimulus 2 and PPI threshold
of 0.9. The middle subplot
displays a multi-slice sagittal
view, the bottom subplot
displays the activation map at
coordinates X = 92, Y = 115,
Z = 111

subjects performing an experimentwith three stimuli. The dataset is part of a pilot study
on variability in the cognitive and neural processes involved in reading, conducted at
Rice University [7]. A 3D parcellation of the data was performed using theMarsBaR
toolbox in SPM 12. The Automatic Anatomical Labeling (AAL) brain atlas was used
to obtain the parcellation, resulting in 90 ROIs, excluding the regions associated with
the cerebellum. Euclidean distances between pairs of ROIs were calculated using
the coordinates defined in the Montreal Neurological Institute (MNI) space, and a
neighboring matrix was calculated by thresholding the distances. The threshold was
chosen so that ROIs would have five neighbors on average. This matrix was then used
to define the neighboring structures among ROIs for the specification of theMRF prior
given in equation (8). Instructions on how to upload the data into the toolbox are given
in Table 2.

Results shown here were obtained by running the NPBayes-fMRI: Model Fitting
interface with the default hyperparameter setting. Fig. 6 shows the posterior β-maps
for one of the subjects, for stimulus 2, obtained at a PPI threshold of 0.9. The mid-
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Fig. 7 3D Analysis: Example
of dendrogram (middle), for
stimulus 2 and a PPI threshold
of 0.9, and cluster-level β-maps
(bottom), obtained with three
clusters. The subject cluster
memberships are displayed in
the Cluster tab of the
interface (top)

dle subplot displays a multi-slice sagittal view at X = [70, 80, 90, 100, 110]. The
smaller slider can be scrolled down if one wishes to see more of the brain structure
through the overlayed activation map. The bottom subplot displays the activation map
at coordinates X = 92,Y = 115, Z = 111. If View all Stimulus is selected
under Viewing Options, then a 3 × 3 plot of activation maps will be displayed.
Different locations of the brain can be examined by using the three sliders to control
the X,Y, Z coordinates.

For stimulus 2 and a PPI threshold of 0.9, Fig. 7 shows the dendrogram (middle)
obtained by clustering the posterior β estimates and the cluster-level β-maps (bottom)
when three clusters are selected. The subject numbers corresponding to each cluster
are displayed on the interface that controls the dendrogram and activation maps (top).
Finally, Fig. 8 displays the estimated contrast probability map p(β2 − β3 > 0) =
p(β2 > β3), for one of the subjects, for a threshold probability of 0.9, corresponding
to a FDR value of 0.0096107.
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Fig. 8 3D Analysis: Example
of contrast map, for subject 10
and a threshold probability of
0.9, corresponding to an FDR of
0.0096107

5 Conclusions

In this paper, we have described a unified, probabilistically coherent framework for the
analysis of task-related brain activity in multi-subject fMRI experiments. The model,
proposed by Zhang et al. [40], builds upon the large literature on spatio-temporal
linear regression models by specifically accounting for within- and between-subjects
heterogeneity via a non-parametric Bayesian variable selection prior. Furthermore,
posterior inference is carried out via a variational Bayes algorithm that allows scal-
ability. Zhang et al. [40] demonstrate that this probabilistically coherent modeling
approach can improve estimation performance with respect to two-stage approaches.
They also show, on real data, that a multi-subject modeling strategy leads to a more
accurate detection of the activated areas than single-subject models. This is an impor-
tant stepping stone in the development of reliable detectionmethods that can be applied
to full brain datasets and complex experimental designs.
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Here we have also introduced NPBayes-fMRI, a MATLAB GUI that implements
the non-parametric models proposed by Zhang et al. [40]. The GUI comprises two
components: one for model fitting and another for visualization of the results. Within
the model fitting interface, the user can define the type of analysis (voxel-based or
whole-brain parcellation into regions of interest, i.e., ROIs) and the model parameters.
Users have the option of a pre-defined default setting for all parameters that also allows
customized choices. The GUI also accommodates single-subject analyses. The VB
algorithm can be run within the GUI or in batchmode. After running the algorithm, the
output file can be uploaded via the visualization interface and used to plot subject-level
activation maps, contrasts maps, and cluster-defined averaged β-maps. The toolbox
is available for download at https://github.com/marinavannucci and at https://github.
com/rimehi. Detailed instructions on how to use the toolbox can be found in the
Instructions text file. No additional MATLAB toolboxes are required to run NPBayes-
fMRI.
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