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Abstract Next-generation sequencing technology has propelled the development of
statisticalmethods to identify rare polygenetic variation associatedwith complex traits.
The majority of these statistical methods are designed for case–control or population-
based studies, with fewmethods that are applicable to family-based studies.Moreover,
existing methods for family-based studies mainly focus on trios or nuclear families;
there are far fewer existingmethods available for analyzing larger pedigrees of arbitrary
size and structure. Tofill this gap,we propose amethod for rare-variant analysis in large
pedigree studies that can utilize information from all available relatives. Our approach
is based on a kernel machine regression (KMR) framework, which has the advantages
of high power, as well as fast and easy calculation of p-values using the asymptotic
distribution. Our method is also robust to population stratification due to integration of
a QTDT framework (Abecasis et al., Eur J Hum Genet 8(7):545–551, 2000b) with the
KMR framework. In our method, we first calculate the expected genotype (between-
family component) of a non-founder using all founders’ information and then calculate
the deviates (within-family component) of observed genotype from the expectation,
where the deviates are robust to population stratification by design. The test statistic,
which is constructed using within-family component, is thus robust to population
stratification.We illustrate and evaluate ourmethod using simulated data and sequence
data from Genetic Analysis Workshop 18.
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1 Introduction

Next-generation sequencing (NGS) studies of complex human traits and diseases are
becoming commonplace for investigating the role of rare polymorphic variation in
such phenotypes. Many analytic methods have been developed for the analysis of such
rare variants with a particular emphasis on techniques that first aggregate information
on rare variants within a gene of interest and then contrast this aggregated genetic
information with the phenotypic outcome. The majority of such aggregation-based
methods [16,18,22,24,37,38] focus on population-based designs or case–control
designs. However, family-based study designs are gaining traction in NGS projects
since they provide inherent benefits over the traditional population-based designs. In
particular, families ascertained based on multiple relatives with a particular phenotype
tend to enrich the sample for rare causal variants compared to a general population,
thereby making such variants easier to detect [39].

The appeal of family-basedNGS studies has led to the development of a few analytic
methods tailored for rare-variant analysis in such designs. Such methods [6,13,15,29]
generally apply a modeling framework that accounts for the relatedness of familial
samples through appropriate modeling of kinship. However, such methods do not take
into account the potential bias of findings due to population stratification. Population
stratification is the presence of systematic differences between subpopulations both
in the allele frequencies of the rare variants under study as well as in the distribution
of phenotype. Failure to model these differences will lead to inflated false positive
rate and decreased power to detect real associations. For rare variants, the issue of
population stratification is more severe than for common variants, as rare variants are
more likely to be young mutations which are more population-specific [11]. It has
been shown that inclusion of self-reported ethnicity as a covariate is not sufficient
to adjust for population stratification [31]. Similarly, standard methods to adjust for
population stratification for common variants may not be as effective an adjustment for
rare variants. In particular, genomic control can lead to very conservative results for
rare variants [14]. Although principal components works well for spatially distinctive
populations, the procedure fails for spatially non-distinctive populations [23].

With these concerns in mind, Jiang et al. [15] developed a rare-variant association
test for quantitative traits in parent–child trios and nuclear families that, by design, was
robust to population stratification. Themethodwasmotivated by theQTDT framework
[1], which showed that the observed genotype of a familial subject could be partitioned
into orthogonal between-family and within-family components. The between-family
component can be defined as the expected value of the subject’s genotype within
the family and can be constructed as the average of the parents’ genotype or the
average of the siblings’ genotype. The within-family component is the deviation of the
observed genotype from the between-family component. While the between-family
component is sensitive to population stratification, the within-family component is
robust to stratification since it is based on a family-specific deviation. Utilizing a
kernel machine regression (KMR) framework for multi-marker analysis of familial
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quantitative phenotypes [6,15,30], Jiang et al. [15] created a robust rare-variant test
by replacing observed sample genotypes in the standardKMRwith their corresponding
within-family genotypic components. Simulation results demonstrated the approach
yielded appropriate type I error even when strong confounding existed within the
sample. As with other KMR approaches, Jiang et al. [15] approach derived p-values
analytically usingDavies’ [9] method, thereby allowing easy application to large-scale
sequencing studies.

While the work of Jiang et al. [15] provides a powerful approach that is robust in the
presence of population stratification, the method’s design limited its application only
to nuclear families and parent–child trios. However, many sequencing studies have
emerged that utilize phenotype and genotype data collected on multiplex pedigrees
that are larger and contain more distant relationships than those in nuclear families.
Examples of such studies include the Epi4K study of epilepsy Epi4K Consortium
[10]. and the Genetic Analysis Workshop (GAW18) study of blood pressure. Large
pedigrees have unique features that make them ideal for mapping traits associated with
rare variants. Compared to nuclear families or trios, rare variants are further enriched
in large pedigrees [34]. It has been shown that large pedigree studies have increased
power compared to smaller families with the same total number of samples, especially
for rare-variant sequencing data [32,35,36]. In addition to improved power, analysis
of large pedigrees can provide evidence for both co-segregation and association, while
population-based studies can only provide evidence for association [17,26,34]. Fur-
ther, the study of large pedigrees provides a cost-effective strategy for rare-variant anal-
ysis as it enables in silico imputation of rare-variant genotypes in non-sequenced sub-
jects using information from sequenced relatives coupled to knowledge of inheritance
flow [7,34]. With a large pedigree-based study design, researchers can also combine
sequencing-based association studies with linkage analyses [26]. Recent research has
identified rare variants associated with several diseases or traits such as hyperkalemic
hypertension [21], spinocerebellar ataxias [33], hypolipidemia [25], and lithium
responsive bipolar disorder [8] by combining association and linkage approaches.

Given the obvious value of extended pedigrees, it would be useful to develop a
robust family-based association test of rare variants for such designs that are also
computationally efficient. While the method of Jiang et al. [15] is both robust and fast,
it is also only limited to trios and nuclear families and therefore cannot be applied
to studies such as GAW18 that possesses sequence data for 20 Mexican American
families with an average pedigree size of 70 (see sample pedigree in Supplementary
Fig. S1). Therefore, in this paper, we propose an expansion of Jiang et al. [15] frame-
work to allow robust and efficient analysis of multiplex families of arbitrary size and
structure. To do so, we employ a non-trivial modification of the QTDT framework
for use in extended pedigrees developed by Abecasis et al. [2] that uses information
from all genotyped family members to construct a more informative between-family
genotypic component. We then derive the within-family component for each genotype
and integrate this information within the KMR framework of Schifano et al. [30] to
obtain a rare-variant test that is robust to population stratification. In the following
sections, we will first introduce our study setting, followed by how we use the QTDT
framework to decompose genotype information to obtain a robust within-family com-
ponent. We then show how to integrate this information within a KMR framework
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Fig. 1 Example of pedigree structure

to yield our robust test. We will also describe how we can improve the power of
our robust test by pre-screening potential trait-influencing genes using genotype and
phenotypic information from founders across families. Such founder information is
orthogonal to the within-family information used in our proposed test. We then eval-
uate our method using both simulation studies and sequencing data from a study of
systolic and diastolic blood pressure (SBP and DBP) provided by the GAW18.

2 Materials and Methods

2.1 Study Design and Notation

We assume a family-based study consisting of N families, where each family consists
of a large pedigree.While we use Fig. 1 as an example here to show the structure of the
large pedigree, ourmethod canbe applied to any family structure and can accommodate
any family size unlike the original framework of Jiang et al. [15]. Suppose there are s
rare variants in a gene of interest, and let Gi j , a s×1 vector, represent the genotypes of
the s rare variants for the j th ( j = 1, 2, . . . , ni ) individual in the i th (i = 1, 2, . . . , N )

family.We assume an additive model, and let components in Gi j take the value of 0, 1,
2, indicating the number of copies of minor alleles at each site. If an individual is not
genotyped, then we leave Gi j undefined. Let X i j , a c×1 vector, denote the covariates,
and denote Yi j as the value of the quantitative outcome for the j th individual in the
i th family. For non-founders (defined as individuals with ancestors included in the
pedigree, e.g., individuals 5–10 in Fig. 1), let Mi j and Fi j be the index of mother
and father of j individual in the i th family, respectively. For founders (defined as
individuals with no ancestors in the pedigree, e.g., individuals 1–4 in Fig. 1), we leave
Mi j and Fi j undefined.

2.2 KMR Framework for Pedigree Data

We create our robust rare-variant association test for a quantitative trait based on the
KMR test of Schifano et al. [30] and Chen et al. [6] for association testing of a group
of genetic variants with a continuous phenotype allowing for related individuals. As
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shown by these authors, the KMR test can be implemented in a linear mixed modeling
framework with mean and variance defined through the model:

Yi j = XT
i jα + h

(
Gi j

) + fi j + εi j , (1)

where α is a c × 1 vector of coefficients for X i j , fi j is the random effect to account
for within-family correlation, and εi j is the random error term. We further assume
that the random effects within a family, f i = ( fi1, fi2, fi3, . . . , fini )

T, follow a
multivariate normal distribution f i ∼ MVN(0, 2Φiσ

2
pg).HereΦi is the kinshipmatrix

for the i th family (elements in Φi represent the pairwise kinship coefficients between
relatives in the i th family) and σ 2

pg represents the variance due to the shared polygenic
effect. We also assume that the random environmental effect εi j is independent among
subjects within and between families and follows a normal distribution with mean 0
and variance σ 2

e .

WithinEq. (1) above, h(Gi j ) is a function ofGi j defined through a positive semidef-
inite kernel function k(·, ·). Following Liu et al. [20] and Kwee et al. [16], h(Gi j ) can
be represented as

∑
i ′

∑
j ′ ϑi ′ j ′k(Gi j , Gi ′ j ′), where ϑi ′ j ′ are unknown parameters. It

is worth noting that the kernel function, k(Gi j , Gi ′ j ′),measures the genetic similarity
between subject j in family i and subject j ′ in family i ′ and contrasts this similarity
to phenotypic similarity between the two subjects. It has been shown that appropriate
choice of the kernel can increase the power [37]. Frequently used kernels include the
identity by state (IBS) kernel or the linear kernel. The IBS kernel, which takes the
form k(Gi j , Gi ′ j ′) = ∑s

l=1(2 − |Gi jl − Gi ′ j ′l |), measures the genetic similarity as
the number of alleles that share by state. It assumes a nonlinear effect of each rare
variant and can thus enable the study of epistatic effects. The linear kernel, on the
other hand, assumes a linear relationship between the trait and the variants. The kernel
takes the form k(Gi j , Gi ′ j ′) = ∑s

l=1(Gi jlGi ′ j ′l). Additionally, we can include prior
knowledge of variants that are possibly causal in the gene by assigning each variant a
weight. If prior knowledge is not available, weights can also be calculated as a function
ofminor allele frequency (MAF; under the logic that the rarer the allele, themore likely
it is selected against and therefore the more likely it is to be pathogenic). Wu et al. [37]
suggest calculating the weights based on a beta distribution, which assigns greater
weight to less frequent variants. For a given weight, we can create weighted kernels
such as the weighted linear kernel k(Gi j , Gi ′ j ′) = ∑s

l=1wl(Gi jlGi ′ j ′l), where wl

denotes a normalized weight for variant l in the gene.
It can be easily shown that the estimator of h takes the same form as in the linear

mixed model with h as a random effect [20,30]:

y = Xα + h + f + e, (2)

where α is a c × 1 vector of coefficients for fixed effect X, h is an
∑N

i=1 ni × 1
vector of random effects that follow an arbitrary distribution with mean 0 and vari-
ance τ K , where K is the genetic similarity matrix with element 〈i j, i ′ j ′〉 equal to
k(Gi j , Gi ′ j ′); f = ( f T1 , f T2 , . . . , f TN )T ∼ N (0, 2σ 2

pg�), where � is a block diag-

onal matrix with Φi on the diagonal. Finally, e = (eT1 , eT2 , . . . , eTN )T ∼ N (0, σ 2
e I).

Thus, the test of whether genotype is associated with the outcome is equivalent to
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testing whether the random component h equals 0 or not. We adopted the variance
component score test, which is the locally most powerful test [19]. As h has the vari-
ance of τ K , the test of whether h = 0 is equivalent to testing whether τ = 0. The
null hypothesis is H0: τ = 0, and the test statistic takes the form:

Q = 1

2

(
Y − X α̂0

)
V̂−1
0 K V̂−1

0

(
Y − X α̂0

)
, (3)

where all parameters are estimated under the null hypothesis. V̂0 = 2σ̂ 2
pg� +

σ̂ 2
e I denotes the sample variance/covariance matrix estimated under the null. To

obtain the null distribution of Q, we define a projection matrix P = V̂−1
0 −

V̂−1
0 X (XTV̂−1

0 X)−1XTV̂−1
0 such that PV̂0P = P. Thus, under the null, we have

Q = 1

2
Y TPK PY =

N∑

i=1

λiχ
2
1i , (4)

whereλi are eigenvalues of 12DV̂−1/2
0 K V̂−1/2

0 D,hereD = I−V̂−1/2
0 X (XTV̂−1/2

0 X)−1

XTV̂−1/2
0 . As χ2

1i are independently and identically distributed random variables, Q
is distributed as an asymptotic mixture of χ2 distributions, and the p-values can be
calculated using the Davies method [9].

2.3 QTDT Framework for General Pedigrees

In the presence of population stratification, association testing of Gi j with Yi j in
models (1) and (2)may lead to spurious association due to the underlying differences in
allele frequencies of the subpopulations. However, for family studies, family members
can be used as internal controls, where an expected genotype can be constructed
using the family members’ information. Tests based on the within-family component
(deviation of observed genotype from expected within family) will not be influenced
by population structure, even in the most extreme case, where each of the N pedigrees
is drawn from a different population. Here, we leverage the work of Abecasis et al.
[1] and present the method to calculate transmission scores for individuals in general
pedigrees.

The QTDT framework [1] for general pedigrees decomposes a genotype into a
between-family component (which is sensitive to population stratification) and a
within-family component (which is robust to population stratification). For relative
j in family i, let Bi j and Wi j denote vectors of between-family and within-family
genotype components for the s rare-variant genotypes in Gi j . Assuming all parents
in the pedigree are genotyped, the between-family component for founders (with
no ancestors included in the pedigree) will be equal to their observed genotypes,
while the between-family component for non-founders at each rare-variant genotype
is equal to the average genotype of the between-family components of that individ-

ual’s parents: such that Bi j = BMi j +BFi j
2 . Using the pedigree in Fig. 1 as an example,
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suppose all the individuals in the pedigree are genotyped. Suppressing the family
index for ease of presentation, the between-family components for founders 1, 2, 3,
and 4 are B1 = G1, B2 = G2, B3 = G3, B4 = G4, respectively. For the non-
founders in the second generation, the between-family component for individual 5 is
B5 = B1+B2

2 , and between-family component for 6 is B6 = B3+B4
2 . For the non-

founders in the third generation, the between-family components for individuals 7–10
are B5+B6

2 = B1+B2+B3+B4
4 . It can be seen that, in the situation where all founders

are genotyped, the between-family component of any non-founder is calculated as
follows:

Bi j =
∑

f ∈F
2ϕi j f Gi f , (5)

where in the i th family, f is the index of founders, Gi f is the rare-variant genotype
vector of the founder, ϕi j f is the kinship coefficient between individual j and founder
f, and F is the set of all the genotyped founders.
In the situation where the parents’ genotypes are missing, the between-family com-

ponent Bi j is equal to the average of the genotypes for all sibling of relative j. For
example in Fig. 1, if individuals 5 and 6 are not genotyped, then the between-family
component for individuals 7–10 is G7+G8+G9+G10

4 . The average of genotypes of sib-
lings in the family is the sufficient statistic for the between-family component [1]. We
note that, when applied to parent–child trios and nuclear families, the proposedmethod
for calculating the between-family component we describe here is then equivalent to
the forms of the between-family component outlined in the work of Jiang et al. [15].

The within-family genotype vector for the s rare-variant genotypes W i j is then
calculated as the difference between the observed genotype vector and the between-
family genotype vector:

W i j = Gi j − Bi j . (6)

Positive values within W i j indicate excess transmission of the minor (reference)
allele, while negative values of W i j indicate excess transmission of the major allele.
As discussed above, the within-family component is not influenced by population
substructure; thus, the test on the within-family component is robust to population
stratification.

As discussed before, directly testing based on the observed rare-variant genotypes
in models (1) and (2) will lead to spurious association in the presence of population
stratification. For our robust test, we follow the same approach as in our earlier work
[15] and simply calculate W i j as described above, replace Gi j with W i j in Eqs. (1)
and (2), and construct our score statistic Q in (3) using W i j .

2.4 Screening Methods

Although the within-family component has the advantage of robustness to population
stratification, constructing tests based only on the within-family genotypic component
while ignoring the between-family component reduces power. However, if founders’
phenotype and genotype data are available, we can borrow the idea of Purcell et al.
[27] to implement a screening procedure to potentially increase power. Specifically,
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we use the founders’ phenotype and genotype information in the first stage to identify
those regions showing strongest signals of association. We can perform such testing
using standard burden or variance component tests for unrelated subjects. We then
implement a second stage where we test only the top regions from the first stage using
our proposed test in (3) based on the within-family genotypic component; the number
of top regions in the second stage can take a value between 1 and the total number of
regions. In this project, we assume 10–50% of the regions enter the second stage. By
pre-screening in this manner, we reduce the multiple testing burden for our robust test,
thereby increasing power. As the within-family component and the between-family
component are orthogonal to each other by design [1], population stratification that can
invalidate the first-stage analysis using founders will not invalidate the within-family
component test.

2.5 Simulation Studies

We evaluate type I error rate and power of our method using simulated sequencing data
generated by cosi [28], which has high resemblance with empirical data. To simulate
large pedigrees, we first use cosi to simulate 5000 haplotypes of European ancestry
and 5000 haplotypes of African ancestry. We then randomly draw and pair haplotypes
within each population and randomly select one haplotype from each parent to pass
down to offspring. Our simulated pedigree has the same structure as Fig. 1.We assume
that there are 10 non-overlapping genes or regions of interest, each 30 kb long.We show
the empirical distribution of rare variants in these regions across simulated datasets in
Supplementary Fig. S2.

For each family, we simulate phenotype data from a multivariate normal distri-
bution, whose mean and variance vary according to different scenarios. For type I
error rate simulations, all 10 regions are null, while for power simulations we ran-
domly select 1 region of the 10 to harbor causal variation. Rare variants are defined as
variants with MAF smaller than 3%. To simulate population substructure, we sim-
ulate the outcome for the null model as follows: Yi j = γ IAfrican,ij + fi j + ei j ,
where γ is the mean trait difference between European and African, and IAfrican,ij
is the indicator variable, which is 1 for African individuals and 0 for European indi-
viduals. For the power simulations, we let either 5 or 15% of the rare variants in
the causal region influence phenotype. Within each family, we simulate the random
effects f i j through fi ∼ MVN(0, 0.56 × 2Φi ). ei j is the random error and follows
a standard normal distribution. For each causal variant, we define the effect size as
β = c × | log10 MAF|, where c is a pre-defined constant. Thus, the outcome is sim-
ulated as Yi j − γ IAfrican,i j + βi j × Gi j + fi j + ei j . We perform 5000 simulations
to evaluate type I error rate. For power simulation, we also perform 5000 simula-
tions and calculate power as the proportion of simulations with the causal region
correctly identified. Unless otherwise noted, we applied a linear genotype kernel for
analysis.
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2.6 GAW18 Data

TheGAW18 provideswhole genome sequence data for extended pedigrees and pheno-
types such as SBP andDBP. The dataset was drawn from the T2D-GENESConsortium
Project 2; a family-based study that aims to identify low-frequency variants that
increase the risk of type-2 diabetes. The original dataset contains whole genome
sequences for the odd-numbered chromosomes only (chromosomes 1, 3, 5,…,21)
for 464 individuals from 20 Mexican American families. The dataset we used in this
project contains 959 individuals of which 464 of them were directly sequenced by
Complete Genomics, Inc., while the remaining 495 had sequence data imputed from
array-based genotype data by the T2D-GENES Consortium. In addition to SBP and
DBP, the dataset also includes information on age, gender, current use of antihyperten-
sive medicine, and current smoking status. We include these phenotypes as covariates
in our model. Detailed information about the dataset can be found at Almasy et al.
[4].

After standard data cleaning procedure removed subjects with missing SBP or
DBPmeasurements, our final dataset contained 855 individuals. Geneswere annotated
using information from the1000GenomeProject (http://www.1000genomes.org/).We
tested all genes in the 11 odd-numbered chromosomes, where each gene was tested
individually. For each gene, we calculated the empirical frequency of the variants
within the gene and only performed tests on the rare variants, where a rare variant
was defined as having a MAF less than 3%. For perspective, we show the empirical
distribution of rare variants within genes in the GAW18 project in Supplementary
Fig. S3. We constructed the test statistics using within-family components as defined
above.

3 Results

3.1 Type I Error

We first performed null simulations to show that population stratification can lead to
inflated type I error rate for sequencing studies of large pedigrees. Figure 2 summarizes
the empirical type I error rates of a study with 25 European pedigrees and 75 African
pedigrees, each with the same size and family structure as shown in Fig. 1. We first
set the mean trait difference (γ ) between European and African to be 1 (Fig. 2, left)
and further increased it to 2 (Fig. 2, right). Both figures show that in the presence of
population stratification, test statistics constructed on observed genotype have inflated
type I error rates (leftmost bars in each panel of in Fig. 2). As population structure
becomes more extreme, the inflation becomes more severe (Fig. 2, right). We then
performed tests based on the robust test based on our two-stage screening procedure
using founders’ genotypes and phenotypes. Figure 2 shows that testing on the within-
family component combined with the screening method leads to appropriate control
of the type I error rate in the presence of population stratification.
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rate tested on observed genotype.Others type I error rate tested on within-family component, with different
number of genes at second stage. Black line y = 0.05

3.2 Power

Wenext examinedpower of the proposed robust test. For power simulations,we assume
themean trait different between European andAfrican is 0.25. For each simulation, we
randomly drew 25 European pedigrees and 75 African pedigrees from the haplotype
pools. We varied the percentage of rare causal variants in the causal region from
5% (Fig. 3a) to 15% (Fig. 3b). We also assumed different effect sizes (β = c ×
| log10 MAF|) for the causal variants by letting c take the values 0.4, 0.5, and 0.6. Figure
3 shows that power increases as the percentage of causal variants in a region increases
and as the effect size increases. We next investigated whether the two-stage screening
approach using founder information improves power over a within-family analysis
that ignores screening. As shown in Fig. 3, screening on the top 10–50% of hits can
yield noticeable improvements in power over the naïve strategy. In addition to applying
the linear genotype kernel, we also considered a weighted genotype linear kernel for
screening and analysis (with weights based onMAFs using the weight function of Wu
et al. [37]). Results, which we show in Supplementary Fig. S4, show similar results
to the linear genotype kernel. With screening, we observed slight improvement of
the weighted linear kernel over the unweighted linear kernel, particularly when larger
effect sizes were assumed.
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without screening. Others power with screening. Mean trait different between European and African is
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3.3 Application to GAW18 Dataset

We used GAW18 data to test for association between DBP/SBP and genes on odd
numbered chromosomes. Within each gene, we calculated empirical frequencies of
variants and only tested on variants with frequencies smaller than 3%. GAW18 pro-
vides longitudinal phenotype information, where SBP and DBP were measured in
up to four follow-ups for each subject. We used the baseline measurement to test
for association. We also controlled for age, gender, current usage of antihypertensive
medicine, and current smoking status in our model. The pedigrees are relatively large
in the dataset. The median number of individuals in a pedigree is 37 (min 22, max
74). Among the participants, 20.2% of them smoke, 9.4% took medicine, and 57.7%
of them are female.

We performed association tests using our robust test. The genome-wide signifi-
cance level with Bonferroni correction is αBonferroni = 0.05/7034 = 7.1 × 10−6. We
chose the linear-weighted kernel and used the Davies method to calculate p-values.
Following Wu et al. [37], the weight is calculated as w j ∼ Beta(MAF j , 1, 25). The
results of testing SBP and DBP are summarized in Fig. 4. As shown in Fig. 4, we
did not observe any genes passing the genome-wide significance level (7.1 × 10−6,

based on Bonferroni adjustment for 7034 genes). At the suggestive level (1 × 10−4),

one gene on chromosome 21 is associated with SBP, and one gene on chromosome
7 is associated with DBP. The gene associated with SBP is open reading frame 33
(C21orf33), which is a protein-coding gene and is over-expressed in Down syndrome
Yahya-Graison et al. [3]. LSM5 is associated with DBP at the suggestive level. It has
been found that human LSM1–7 genes were expressed in Hela cells within cytoplas-
mic foci Ingelfinger et al. [12], which contains important factors in the degeneration
of mRNA. In addition to the Manhattan plots shown in Fig. 4, we also constructed QQ
plots of results using both the observed genotypes and the within-family components
of the genotypes. We present these QQ plots in Supplementary Fig. S5, which show
inflation of SBP (but not DBP) when analyzing observed genotypes. We observed no
such inflation when analyzing the within-family component, although results for SBP
showed some deflation in p-values.

4 Discussion

In this paper, we presented a framework for rare-variant sequencing studies in large
pedigrees. Large pedigrees have several important features that make them ideal for
finding traits with associated rare variants. Our previous work for robust and efficient
family-based analysis [15] was only applicable to parent-case trios or nuclear families
and so, in this work, we expand the work to handle these large pedigrees of arbitrary
size and structure such as those in the GAW18 study of blood pressure. Our model,
which combines a kernel machine framework for rare-variant analysis with a QTDT
framework for general pedigrees, provides a powerful, efficient, and robust way to
identify such associations in large pedigree studies. As the test score statistics follows
an asymptotically mixed χ2 distribution, the calculation of p-values is much easier
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Fig. 4 Manhattan plots for GAW18 analyses. a Association analyses between SBP and within-family
component of genotypes within genes on odd number of chromosomes. b Association analyses between
DBP and within-family component of within genes on odd number of chromosomes. Red line genome-wide
significant level (p < 7.1 × 10−6), blue line suggestive significant level (p < 1 × 10−4)

compared to other methods. This feature also makes our model applicable to large-
scale genetic studies.

We also applied our method on GAW18 data to identify SBP/DBP-associated rare
variants. We tested all the genes on odd numbers of chromosomes. This application
gives an example that ourmethod can be easily applied to large-scale data. The analysis
of a gene takes 70 s on a 768 processors running Linux OS with 512 GB or RAM.

The data from GAW18 are based on 20 extended Mexican American families. For
studies that do not have records of participants’ geographic origin or studies whose
participants are from different origins, our method provides a robust way to perform
the test.

In this project, we assumed that rare variants only associated with a single phe-
notype. However, there is substantial interest in identifying genetic factors with
pleiotropic effects that influence multiple distinct phenotypes. Current methods for
family data are not well equipped to investigate the effect of pleiotropy. For exam-
ple, while analyzing GAW18 data, analyses seeking to identify genes simultaneously
associated with both SBP and DBP cannot be performed. However, Broadaway et
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al. [5] provide a framework that can test cross-phenotype effects of rare variants.
Their method is based on kernel distance-covariance, whose test statistics also asymp-
totically follow a mixed χ2 distribution. In contrast to our method presented here,
Broadaway et al. focused only on unrelated individuals. In the future, we would like
to combine our robust test with the method of Broadaway et al. (2016) to test cross-
phenotype effects of rare variants in related individuals.
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