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Abstract Mediation analysis evaluates the significance of an intermediate variable on
the causal pathway between an exposure and an outcome. One commonly utilized test
for mediation involves evaluation of counterfactual effects, estimated from separate
regression models, corresponding to a composite null hypothesis. However, the “com-
positeness” of this null hypothesis is not commonly acknowledged and accounted for
in mediation analyses.We describe a generalized multivariate approach in which these
separate regressionmodels are fit simultaneously in a single parsimoniousmodel. This
multivariate modeling approach can reproduce standard mediation analysis and has
notable advantages over separate regression models, including the ability to combine
distributions in the exponential family with any link functions and perform likelihood-
based tests of some relevant hypotheses using existing software. We propose the use
of a novel visual representation of confidence intervals of the two estimates for the
indirect path with the use of a confidence ellipse. The calculation of the confidence
ellipse is facilitated by the multivariate approach, can test the components of the com-
posite null hypothesis under a single experiment-wise type I error rate, and does not
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require estimation of the standard error of the product of coefficients from two separate
regressions. This method is illustrated using three examples. The first compares results
between the multivariate method and separate regression models. The second example
illustrates the proposed methods in the presence of an exposure–mediator interaction,
missing data and confounding, and the third example utilizes these proposed methods
for an outcome and mediator with negative binomial distributions.

Keywords Composite null hypothesis · Counterfactual effects · Exponential family
of distributions · Exposure–mediator interaction · Likelihood ratio test for mediation ·
Scheffe’ simultaneous confidence limits

1 Introduction

Mediation analysis is an important and evolving method in both observational and
clinical research, where investigators are interested in not only describing the overall
association between an exposure variable and an outcome, but also the underlying
mechanism of this relationship. A mediator is a variable that is hypothesized to be on
the causal pathway relating an independent exposure variable to a dependent outcome.
Regression-based approaches for evaluatingmediationwere first popularized byBaron
and Kenny [2], and extensions are now widely used in psychology and epidemiologic
research [15,33]. A general framework for mediation influenced by causal inference
literature has been proposed [20,23], leading to counterfactual definitions of direct
and indirect effects [31,33,34]. These effects can be estimated from the regression
models of traditional mediation analysis for the case where the outcome and mediator
are normal [20,23] and when one or both are nonnormal [12,14,31].

Regression based mediation analysis traditionally requires the estimation of coef-
ficients from at least two separate models, often with mixed variable types (e.g.,
continuous mediator and a binary outcome). While many advances have been made
in the field, there remain concerns with the use of coefficients from separate mod-
els, and with aspects of the test of mediation [10,14,16,33]. The primary concern is
the estimation and testing of the product of regression coefficients from two separate
models when the joint distribution is unknown. A variety of methods are available for
estimating the standard errors and/or confidence intervals for the product of coeffi-
cients. The delta method approximation to the standard error can be used in a Wald
test or confidence intervals using bootstrap or bias corrected bootstrap, permutation,
or the true distribution of the product can be obtained [11,27,29]. These approaches,
however, are not without fault [10,13,16,33], and confidence limits based on these
approaches are often inaccurate [17].

Alternative methods exist to test for mediation in addition to the regression-based
approaches [1,12,21]. Briefly, path analysis in structural equation models (SEMs)
allow for the modeling of potentially complex relationships and provide a framework
for estimating the two regression equations simultaneously. SEMs are advantageous
because they allow for the estimation of latent variables. However, in cases where
latent variables are not utilized, SEMs and regression-based approaches will result in
the same estimates and inferences, and one disadvantage to the SEM framework is
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the required knowledge of specialized software [3]. Utilization of the SEM approach
for latent variables and adaptation to specialized software are outside of the scope of
this work. Rather, we propose improvements upon the widely used regression-based
approach.

Several important contributions tomediation analysis using regression-basedmeth-
ods for mixed variable types are expanded upon in this paper. A multivariate
generalized linear model was implicitly utilized by Vanderweele [32] to estimate
the 4-way decomposition of interaction in mediation and was only discernable from
the code provided in the supplement. Our first contribution is to describe in detail,
this multivariate approach to simultaneously model the outcome and mediator and to
estimate counterfactual effects in the presence of confounders and interaction. For this
approach, the joint density of the outcome and mediator, conditional on the exposure,
is expressed as the product of two univariate distributions, both from the exponen-
tial family with specified link functions. The use of the multivariate generalized linear
model approach allows for several extensions that have not previously been described:
(1) derivation of counterfactual effects for any combination of variable types (binary,
continuous, etc.) and estimation of regressions with mixed variables types using a
more parsimonious procedure; (2) the simultaneous estimation of the joint distribu-
tion of both outcome and mediator to provide a single −2log likelihood that can be
used to perform a likelihood ratio test for the coefficients of interest and (3) a novel
application of confidence ellipses and simultaneous confidence intervals to provide
simultaneous tests of the coefficients [25]. This multivariate approach to mediation
analysis facilitates the likelihood ratio test of the joint hypothesis and the confidence
ellipse. Three examples are provided to illustrate the concepts and address compli-
cations including missing data, confounding and exposure–mediator interaction. We
demonstrate how this general analysis can be executed with readily available existing
software (SAS PROC NLMIXED, SAS Institute Inc.: Cary, NC, 2011) and provide a
specialized SAS macro to produce the confidence ellipse.

2 The Multivariate Generalized Linear Model Approach to Mediation
Analysis

Consider the directed acyclic graph (DAG) where exposure A affects the mediatorM,
which in turn affects the outcome Y (Fig. 1). The traditional approach would be to
model each component of the DAG separately. However, we describe an alternative
to estimating parameters of interest from separate models, by modeling Y and M
bivariately (i.e. simultaneously).

The joint density of Y andM conditional on A and confounders C can be expressed
as the product of the distribution of M conditional on A and C and the distribution of
Y conditional on M, A and C, i.e., f (y,m | a, c) = f (m | a, c) f (y |m, a, c) where
f (m | a) is short for the probability f (m | a) = P (M = m | A = a) ifM is discrete,

and
d∫

b
f (m | a) = P (b ≤ M ≤ d | A = a) ifM is continuous.

Because f (y,m | a, c) is the product of f (m | a, c) and f (y |m, a, c), M and
Y can be modeled bivariately by treating them as two separate observations of a
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Fig. 1 Effect of exposure A on
outcome Y mediated by M. If
A*M interaction is present, θ2
may be replaced by ϕa to denote
that the path is now a function
of a

single dependent variablewith likelihoods f (m | a, c) and f (y |m, a, c), respectively.
Marshall et al. [18] and Vanderweele [32] similarly used this factorization to facilitate
the analysis ofM and Y simultaneously.

We assume that outcome Y obeys a generalized linear model with an exponential
family density f (y|m, a, c) and a link function, hY {E [Y |a,m, c]} = θ0 + θ1a +
θ2m+θ3am+θ ′

4cY conditional on mediatorM, exposure A and potential confounders
cY , andwhere the product allows for an interaction between themediator and exposure.
We further assume that the mediatorM obeys a generalized linear model with a second
exponential family density f (m | a, c) and a second link function, hm {E [M | a, c]} =
β0 + β1a + β ′

2cM conditional on exposure A and confounders cM , where cY and cM
are vectors of covariates, and θ ′

4 and β ′
2 are vectors of regression coefficients. Since the

estimate for β1 is a function of f (m | a, c) alone, and the estimate of θ2 is a function
of f (y |m, a, c) alone, the estimates of β1 and θ2 are independent conditionally (on
A).

Under the counterfactual approach to mediation analysis [20,23,31,32], the con-
trolled direct effect (CDE), the natural direct effect (NDE), the natural indirect effect
(NIE), and the total effect (TE) of exposure on the outcome can be estimated using
coefficients from the above models and are defined on the scale of the inverse link
function of the outcome. Similar derivations have beenmade for specific combinations
of variable distributions (e.g., binary outcome, continuous exposure and mediator) in
previous papers. Our contribution here is to provide derivations in the multivariate
generalized linear model framework which are valid for all combinations of mixed
variables. For a change in exposure from level a∗ to a (where a∗ denotes a counter-
factual value not equal to a), these effects are given as

CDE = h−1
Y

{
(θ1 + θ3m)

(
a − a∗)} ,

NDE = h−1
y

{[
θ1 + θ3h

−1
M

{
β0 + β1a

∗ + β ′
2c

}] (
a − a∗)} ,

NIE = h−1
y

{
(θ2 + θ3a)

[
h−1
M

{
β0 + β1a + β ′

2c
} − h−1

M

{
β0 + β1a

∗ + β ′
2c

}]}
and

TE = NDE + NIE,

where h−1
Y {} denotes the inverse function of hY {} and h−1

M {} denotes the inverse func-
tion of hM {}. Details of these derivations and the simplified versions of no interaction
or identity link functions, are included in Sect. 1 of Appendix.

If bothY andM have identity links, and there is no interaction, then hM {E [M |a, c]}
= E [M |a, c] = β0 + β1a + β ′

2c, hY {E [Y |a,m, c]} = E [Y |a,m, c] = θ0 + θ1a +
θ2m + θ ′

4c, CDE = NDE = θ1 (a − a∗) and NIE = θ2β1 (a − a∗). In this classic
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case, NIE depends on a∗ only through the difference (a − a∗), and the product, β1θ2,
is often used to evaluate whether mediation is present.

More generally, ifM has identity link, the Y link is arbitrary, and there is no interac-
tion, thenhM {E [M |a, c]} = E [M |a, c] = β0+β1a+β ′

2c,hY {E [Y |a,m, c]} = θ0+
θ1a+θ2m+θ ′

4c, CDE = NDE = h−1
Y {θ1 (a − a∗)} , andNIE = h−1

y {θ2β1 (a − a∗)}.
In this case, NIE still depends on a∗ only through the difference (a − a∗), and
the product θ2β1, is still often used to evaluate whether mediation is present since
θ2β1 (a − a∗) = hy {NIE} is a monotone function of NIE. Note that in this case h−1

y {}
maymap θ2β1 (a − a∗) = 0 onto something nonzero. For example, if h−1

y {} = exp {},
exp {0} = 1 would indicate no mediation.

IfM has identity link, the Y link is arbitrary, and there is an interaction, then

hY {E [Y |a,m, c]} = θ0 + θ1a + θ2m + θ3am + θ ′
4c = θ0 + θ1a + ϕam + θ ′

4c,

where ϕa = θ2 + θ3a denotes the effect of M when A = a, and NIE =
h−1
y {(θ2 + θ3a) β1 (a − a∗)} = h−1

y {ϕaβ1 (a − a∗)} with interaction is of the same
form as NIE = h−1

y {θ2β1 (a − a∗)} without interaction after replacing θ2 with ϕa .
This suggests that in the presence of interaction, the product, ϕaβ1, a monotone func-
tion of NIE, be used to evaluate whether mediation is present when A = a, just as
θ2β1 is used to evaluate mediation in the absence of interaction.

3 Approaches to Testing for Mediation

The multivariate approach offers more than a computational alternative to other
approaches, as there is added benefit to using a single program that can both fit
the models and then compute and test the significance of the nonlinear functions
of interest without exterior macros. When using separate regression models, some
statistical procedures utilize restricted maximum likelihood while others use maxi-
mum likelihood resulting in different degrees of freedom for variance estimates and
subsequent difficulty in combining estimates to obtain standard errors of products
(see Appendix 2). The multivariate approach avoids these issues, as all estimates
are obtained by maximum likelihood. Because the Y and M are conditionally inde-
pendent, their log likelihoods can simply be added to determine the multivariate
generalized linear model log likelihood and the multivariate generalized linear model
can be fit using software that can accommodate any user specified likelihoods and
corresponding link functions. Additional details are provided in the supplementary
material.

In standard multiple regression mediation analysis, one model estimates β1 and
its standard error, a second model estimates θ2 and its standard error. One approach
to testing for a mediated effect, commonly referred to in the literature as the joint
test for mediation, is to evaluate each regression coefficient individually, testing the
two hypotheses H01 : β1 = 0; H02 : θ2 = 0 and rejecting the null of no mediation
only if H01 and H02 are both rejected. A second approach is to combine the separate
model estimates for the null hypothesis, H0:β1θ2 = 0, which often is tested with
the classical Wald test using an approximate delta method standard error [26]. This
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method includes the Sobel test which is considered an inferior approach [11] thought
to perform poorly [1] that ultimately results in an inability to adequately address the
proper significance level of a composite hypothesis. Other approaches use numerical
integration to obtain the distribution of the product [17,29], or resampling methods
[27,29] such as bootstrap or permutation [15,27]. With the multivariate mediation
approach proposed here, one can still test mediation with theWald test of H0 : β1θ2 =
0, and in addition, a likelihood ratio test of the simultaneous hypothesis H0 : β1 =
θ2 = 0, since it is easy to set both β1 = 0 and θ2 = 0 and rerun the multivariate model;
then the difference in −2log likelihoods has an approximate chi-squared distribution
with 2 degrees of freedom (df). Using the method of two separate regressions, a single
−2log likelihood can also be obtained by summing the −2log likelihoods, but the
likelihood ratio test would require four regression models to be fit.

A weakness shared by procedures attempting to test H0 : β1θ2 = 0 is their
failure to account for the compositeness of the hypothesis. The composite null
hypothesis H0 : β1θ2 = 0 can be decomposed into individual null hypotheses,
H0 : β1 = 0 or H0 : θ2 = 0 or both H0 : β1 = θ2 = 0. The signif-
icance level should be the supremum (the largest) of the significance levels for
each of the individual null hypotheses [5] or an experiment-wise error rate based
on an appropriate multiple comparisons procedure. The general form of the null
hypothesis for mediation NIE = h−1

y {0} is also a composite since the argument

of NIE, � = (θ2 + θ3a)
[
h−1
M

{
β0 + β1a + β ′

2c
} − h−1

M

{
β0 + β1a∗ + β ′

2c
}] = 0 if

ϕa = θ2 + θ3a = 0 or if β1 = 0, or if both ϕa = β1 = 0 and because NIE = h−1
y {ψ}

is a monotone function of ψ . As mentioned earlier, ψ = 0 may map onto a nonzero
NIE, for example, NIE = exp {0} = 1.

In the next section, a more ‘honest’ (in the sense of Tukey [30]) significance level
is proposed based on a Scheffé -type confidence ellipse [25].

4 Confidence Ellipse

An advantage of the multivariate approach is the simplification in applying a con-
fidence ellipse for the components of the composite null hypothesis under a single
experiment-wise type-I error rate. Confidence ellipses and their projections have been
used to provide confidence limits for nonlinear functions of parameters (e.g., [19,36]).
Here their use in mediation analysis is a novel application that clarifies and visualizes
the components of mediation, without requiring an estimate of the standard error of the
product of regression coefficients from different models, or for the NIE which can get
complicated when nonidentity links are used. Here, we describe the use of the ellipse
using β1 and θ2, the components of the NIE that correspond to the test for media-
tion and the corresponding covariance matrix easily estimable from the multivariate
approach. In the presence of an interaction, ϕa is substituted for θ2.

According to Scheffé [25], assuming approximate bivariate normality of
(
β̂1, θ̂2

)
,

an approximate 100 (1 − α)% confidence ellipse for

(
β1
θ2

)

is provided by
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the set of points satisfying

(
β1 − β̂1

θ2 − θ̂2

)′ (
V11 V12
V12 V22

)−1 (
β1 − β̂1

θ2 − θ̂2

)

≤ 2F1−α,2,v

where the inverse of the variance-covariance matrix of

(
β̂1

θ̂2

)

is

(
V11 V12
V12 V22

)−1

=
(
1/V11 0
0 1/V22

)

, since β̂1 and θ̂2 are conditionally independent (on A) for the pro-

posed mediation analysis. F1−α,2,v is the 100(1 − α) percentage point of an F
distribution with 2 and v degrees of freedom.

The projections of the ellipse on the β1 and θ2 axes are β1 = β̂1±
√
2F1−α,2,v

√
V11,

and θ2 = θ̂2 ± √
2F1−α,2,v

√
V22, respectively (see supplementary material). These

two simultaneous projections are known as Scheffé’s simultaneous confidence limits
for β1 and θ2, and they define a rectangle that circumscribes the confidence ellipse
(Fig. 3a). For a given value of β1 between β̂1 ± √

2F1−α,2,v
√
V11, there are two

solutions for θ2, one each at the minimum and maximum values that make up the
border of the rectangle, defined as min [θ2 | β1] = θ̂2 − √

2F1−α,2,v − x2
√
V22 and

max [θ2 | β1] = θ̂2+
√
2F1−α,2,v − x2

√
V22 where x =

(
β1 − β̂1

)
/
√
V11. Plot points

for the ellipse are determined by evaluating the min [θ2 | β1] and max [θ2 | β1] for a
grid of β1’s.

The ellipse constrains β1 and θ2 to be within their simultaneous confidence limits. It
also constrains the NIE, a nonlinear function of β1 and θ2 to be within its simultaneous
confidence limits. To determine these confidence limits, we construct a fine grid of
(β1, θ2) points within the ellipse, evaluate NIE at each point, and from these evalua-
tions, determine the minimum and maximum values. See supplementary material for
additional detail.

Figure 2 demonstrates five possible scenarios (a–e) for the ellipse and the conclu-
sions that will ensue for four simultaneous hypothesis tests. The ellipse enables us to
state with a single experiment-wise type I error rate, the following simultaneous test
results:
(1) the bivariate hypothesis (β1, θ2) = (0, 0) is rejected if the ellipse fails to cover

the origin (0, 0), Fig. 2 scenarios a–d
(2) β1is declared significant if the simultaneous confidence interval for β1 (the pro-

jection of the ellipse on the β1 axis) fails to cover 0, scenarios a or c.
(3) θ2 is declared significant if the simultaneous confidence interval for θ2 (the pro-

jection of the ellipse on the θ2 axis) fails to cover 0, scenarios a or b and
(4) ψ and hence NIE is declared significant if the simultaneous confidence interval

for ψ fails to cover 0 or equivalently, NIE on the inverse link scale is declared
significant if the confidence interval for NIE fails to cover h−1

y {0} (the ellipse
fails to cover either axis, scenario a).

To infer that the effect of A on Y passes through the indirect (mediating) path M,
one would need to reject the null hypothesis for NIE or simultaneously reject both

hypotheses, β1 = 0 and θ2 = 0, by comparing β̂1/SE
(
β̂1

)
and θ̂2/SE

(
θ̂2

)
with

the Scheffé constant
√
2F1−α,2,v . In other words, the mediating path is a significant

contributor to the effect of A on Y if and only if neither of the confidence interval
overlaps zero (scenario a, Fig. 2).
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Fig. 2 Conclusions from the 5 possible confidence ellipse scenarios. Note that if β1 �= 0 and θ2 �= 0 is
concluded (Scenario a), then β1θ2 �= 0 will be concluded, i.e., significant mediation; otherwise (Scenarios
b through e), β1θ2 = 0 will be concluded, i.e., no significant mediation

The confidence ellipse avoids Wald tests based on delta method standard errors,
clarifies and properly accounts for the compositeness of the null hypothesis NIE =
h−1
y {ψ} = h−1

y {0} (in special cases β1θ2 = 0) by examination of its components, and
requires less computational time than a resampling approach. An interaction can be
easily incorporated using the aforementioned relationship between ϕa with interaction
and θ2 without interaction as demonstrated in the example 2 below.

5 Examples

We will consider three special cases motivated by our research. Supplementary mate-
rial provides the SAS code for these examples, as well as, an additional example not
described here where we fail to reject the null hypothesis of no mediation. Mediation
analysis should be utilized only after judicious consideration of the four assumptions
for determining causality [33]. Such consideration, particularly investigation of all
appropriate confounders has not been undertaken here, as our purpose is to use the
examples to demonstrate analytic techniques and not to justify causal relationships.
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Example 1 Normal Outcome with identity link, Normal Mediator with identity link

This example illustrates the equivalence of the univariate and the multivariate
approaches and shows the application of the proposed methods for the important spe-
cial case where both the mediator and the outcome have an identity link. Data come
from a prospective longitudinal cohort study of 35 children with Cystic Fibrosis (CF)
between the ages of 6 and 15 studied annually over 3 years [9,24]. This study includes
28 subjects with baseline biomarker measurements of neutrophilic inflammation (A),
visible airway counts from chest computed tomography (CT) scans after 1 year (M)
and percent predicted forced expiratory volume in 1 s (FEV1pp) after 2 years (Y ).

Assuming M and Y are normally distributed with identity link functions, the
exposure–mediator interaction was nonsignificant based on a likelihood ratio test
comparing models with and without the interaction

(
χ2 = 280.12 − 278.80 = 1.32,

df = 1, P = 0.25). Table 1 compares results from the multivariate model with the
separate regression models using the available SAS macro created by Valeri and
VanderWeele [31]. The standard errors differ slightly due to the use of maximum
likelihood versus restricted maximum likelihood for the computations (see Appendix
2 for details).

Tests for the individual components of the composite null hypothesis can be visu-
alized using the confidence ellipse and confidence region. The bivariate hypothesis
(β1, θ2) = (0, 0) is rejected since the ellipse excludes the origin (0, 0). The like-
lihood ratio test also rejects the simultaneous null hypothesis that β1 = θ2 =
0

(
χ2 = 300.06 − 280.12 = 19.94, df = 2, P < 0.01

)
. In addition, both β1 and θ2

are declared significant since their simultaneous confidence intervals exclude0 (Fig. 3).
Simultaneous confidence intervals based on the confidence ellipse are obtained using
estimates from the multivariate approach (Table 2). The delta method from both sep-
arate and multivariate regression models, likelihood ratio test, confidence ellipse, and
the bootstrap, indicate equivalent inferences: the significant product β1θ2 = NIE is
consistent with amediating effect of airway counts for the association between sputum
neutrophil elastase and FEV1pp. The bootstrap resulted in slightly more conservative
confidence intervals compared with the delta method, and the confidence limits from
the ellipse are more conservative than the bootstrap; however, only ellipse-based con-
fidence limits are adjusted for the multiple comparisons and are therefore the only
values protected from type-I errors (Table 2).

Example 2 Binary outcome with logit link, normal mediator with identity link,
exposure–mediator interaction and confounder

This example illustrates the application of the proposedmethodswhen an exposure–
mediator interaction is present. In a prospective cohort study of adults with type-1
diabetes and controls [8], participants had two follow-up visits over 6 years tomeasure
progression of coronary artery calcium (CAC), a subclinical marker of atherosclerosis
and cardiovascular disease. It was hypothesized that log albumin creatinine ratio (M),
a measure of kidney function, at least partially mediates the relationship between dia-
betes (A) and the presence of CAC progression upon follow-up (Y ). Age was included
as a confounder. The sample consisted of 1416 participants, 270 had missing values
for either the exposure or the confounder and were therefore not included in the anal-
ysis, resulting in 1146 subjects for inclusion. Of these subjects, 145 had missing CAC
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Fig. 3 Simultaneous 95% confidence limits for β1 and θ2 based on 95% confidence ellipse for the example
1 (normal outcome with identity link; normal mediator with identity link). The ellipse (gray hashed line)
does not cover the origin, and the confidence intervals (black solid lines) do not contain 0, indicating the
significance of the simultaneous test for β1 = θ2 = 0, and the individual tests for β1 and θ2

Table 2 Comparison of estimates and inferences across various methods for the example 1

Method Estimate SE 95% CI

β1 Delta method multivariate regression 5.72 1.6 2.52, 8.91

Simultaneous confidence limitsa 5.72 1.6 1.69, 9.74

Bootstrapb 5.60 1.9 1.92, 9.27

θ2 Delta method multivariate regression −1.52 0.5 −2.48, −0.56

Simultaneous confidence limitsa −1.52 0.5 −2.73, −0.31

Bootstrapb −1.51 0.5 −2.51, −0.51

NIE Delta method Separate regressionc −8.70 3.8 −16.06,−1.34

Delta method multivariate regression −8.70 3.6 −16.03, −1.37

Simultaneous confidence limitsa −8.70 NA −20.4, −1.65

Bootstrapb −8.46 4.0 −16.3, −0.63

a Simultaneous 95% confidence limits for β1, θ2, and their product β1θ2 for the example 1 (normal outcome
with identity link; normal mediator with identity link) based on 95% confidence ellipse
b Estimates obtained using 5000 bootstrap samples
c Estimates from the SAS Macro provided by [31]

progression values, and the following analysis includes those with missing outcomes
and assumes they are missing at random.

The exposure–mediator interaction was significant based on a likelihood ratio test
comparing models with and without the interaction

(
χ2 = 2374.28 − 2367.73 =

6.55, df = 1, P = 0.01). The effect of the mediator is significant (P < 0.01) for dia-
betics, and not significant (P = 0.70) for controls (Table 3). Tests for the individual
components of the composite null hypothesis at a specified exposure level can be
visualized using the confidence ellipse and the confidence region (Fig. 4). For dia-
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Table 3 Estimates and 95% confidence intervals (CI) for the example 2 (binary outcome, logit link; normal
mediator, identity link) from multivariate model

Parameter estimates Multivariate model

Estimate (SE) CIs P value

β0 1.93 (0.2) 1.60, 2.26 <0.01

β1 −0.85 (0.1) −0.98, −0.72 <0.01

β2 0.008 (0.004) 0.001, 0.015 0.03

σ2m 1.18 (0.05) 1.08, 1.28 <0.01

θ0 −5.73 (0.5) −6.71, −4.74 <0.01

θ1 −0.11 (0.3) −0.77, 0.54 0.73

θ2 0.50 (0.1) 0.33, 0.68 <0.01

θ3 −0.45 (0.2) −0.79, −0.10 0.01

θ4 0.10 (0.01) 0.08, 0.12 <0.01

Additional estimatesa

CDEb 0.28 0.22, 0.35 <0.01

NDE 0.20 0.12, 0.30 <0.01

NIE (diabetics) 0.39 0.36, 0.43 <0.01

NIE (controls) 0.49 0.43, 0.55 0.70

TE 0.59 0.48, 0.70 <0.01

a Comparison of the estimates from the SAS Macro provided by [31] http://www.hsph.harvard.edu/linda-
valeri/computational-tools/ is in the supplement
b Estimates calculated at the mean value forM (m = 1.8823)&C (c = 42), assuming

(
a − a∗) = 1

betics (a = 0), the bivariate hypothesis (β1, ϕ0) = (0, 0) is rejected, the hypothesis
β1 = 0 is rejected, the hypothesis ϕ0 = 0 is rejected, and the hypothesis β1ϕ0 = 0
is rejected since the ellipse excludes the origin (0, 0) and crosses neither axis (sce-
nario a in Fig. 2). All results have a single experiment-wise 0.05 significance level.
For controls (a = 1), hypothesis (β1, ϕ1) = (0, 0) is rejected, the hypothesis β1 = 0
is not rejected, the hypothesis ϕ1 = 0 is rejected, and the hypothesis β1, ϕ1 = 0 is
not rejected since the ellipse for (β1, ϕ1) excludes the origin but crosses the β1 axis
(scenario c in Fig. 2). Again, all these results have a single experiment-wise 0.05 sig-
nificance level. The simultaneous confidence intervals based on the confidence ellipse
are obtained using estimates from the multivariate approach (Table 4). This suggests
the effect of type-1 diabetes on subclinical cardiovascular disease is partially mediated
through loss of kidney function. Furthermore, this loss of kidney function path does
not appear important in people without type-1 diabetes. Likelihood ratio tests reject
the simultaneous null hypothesis that β1 = φ0 = 0

(
χ2 = 193.2, df = 2, P < 0.01

)

for diabetics and also reject the null hypothesis β1 = φ1 = 0 for non-diabetics(
χ2 = 153.4, df = 2, P < 0.01

)
.

Example 3 Negative binomial Outcome and Mediator both with log links

We use this example to illustrate (1) the calculation of the counterfactuals using the
general equations for a combination of distributions and link functions that have not
previously been reported and (2) that the confidence ellipse, which applies a simul-
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Table 4 Simultaneous 95%
confidence limits for β1, ϕ(a),
and their product β1ϕ(a) from
the binary-normal example 2
based on 95% confidence ellipse

Parameter 95% confidence 95% confidence
Limits for diabetics Limits for controls

β1 −1.02, −0.69

ϕ(a) 0.29, 0.72 −0.31, 0.42

� = β1ϕ(a) −0.65, −0.24 −0.37, 0.27

taneous significance level for a composite hypothesis results in different inferences
compared to other methods that ignore the compositeness of the mediation hypothesis.
Conduct disorder is the most common disorder associated with substance dependence
in adolescents [4,7] and evidence suggests that having both attention-deficit hyper-
activity disorder (ADHD) and conduct disorder increases the risk and severity of
substance dependence in adolescence [7,28]. In adolescent patients with ADHD and
substance-use disorders who completed a 16-week multisite pharmacotherapy trial
[22], we evaluated whether the relationship between having a past year conduct disor-
der diagnosis at baseline (A) and number of days cannabis was used during treatment
(Y ) is mediated by pretreatment drug use (i.e., proportion of days nontobacco sub-
stances were used in the month prior to treatment (M)). Of these 227 patients, 73
(32%) had a conduct disorder diagnosis at baseline. Y and M are both assumed to
have negative binomial distributions, and an offset is included to adjust for variations
in the observation times for Y.

The exposure–mediator interaction was nonsignificant based on a likelihood ratio
test

(
χ2 = 4595.38 − 4593.68 = 1.70, df = 1, P = 0.19

)
. Table 5 reports parame-

ter estimates and their standard errors. The NIE and TE depend on a* which is set
equal to 0. Using the delta method approach, the mediator is significantly associated

Table 5 Estimates and 95% confidence intervals (CI) for example 3 (negative binomial outcome and
mediator, log link)

Parameter estimates Multivariate model

Estimate (SE) CIs P value

β0 2.60 (0.05) 2.49, 2.70 <0.01

β1 0.21 (0.09) 0.02, 0.39 0.03

j 0.51 (0.05) 0.42, 0.61 <0.01

θ0 −2.43 (0.13) −2.69, −2.18 <0.01

θ1 0.43 (0.14) 0.15, 0.70 <0.01

θ2 0.06 (0.01) 0.05, 0.08 <0.01

k 1.22 (0.11) 1.01, 1.43 <0.01

CDE 1.53 1.16, 2.02 <0.01

NIE 1.21 1.01, 1.46 0.04

TE 2.74 2.27, 3.22 <0.01

Parameters j and k are the overdispersion parameters for the negative binomial distributions for the mediator
and outcome, respectively
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with exposure (β1 = 0.21, P = 0.03). The outcome remains significantly associated
with exposure (θ1 = 0.43, P < 0.01) and is significantly associated with the mediator
(θ2 = 0.06, P < 0.01). The likelihood ratio test comparing the (β1, θ2) = (0, 0) is
rejected

(
χ2 = 4667.6 − 4595.4 = 72.2, df = 2, P < 0.01

)
. The NIE is significant(

NIE = h−1
y {ψ} = 1.20, ψ = 0.18

)
using the bootstrap (Table 6). This suggests that

the relationship between having a conduct disorder diagnosis andmarijuana use during
treatment is partially mediated by pretreatment drug use. Results based on the confi-
dence ellipse of β1 and θ2 disagree, however, as the test for β1 = 0 was not rejected
(Fig. 5) and the confidence interval for NIE includes 1 (Table 6). With this example,
different inferences would have been made using the different testing approaches, the
likelihood ratio test is only testing the bivariate hypothesis and therefore agrees with

Table 6 Comparison of estimates and inferences across various methods for the example 3

Method Estimate SE 95% CI

β1 Delta method multivariate regression 0.21 0.09 0.02, 0.39

Bootstrapa 0.20 0.08 0.05, 0.35

Simultaneous confidence limits 0.21 – −0.04, 0.45

θ2 Delta method multivariate regression 0.06 0.01 0.05, 0.08

Bootstrapa 0.06 0.01 0.05, 0.08

Simultaneous confidence limits 0.06 – 0.04, 0.08

NIE Delta method multivariate regression 1.20 0.11 1.00, 1.43

Bootstrapa 1.20 0.09 1.03, 1.40

Simultaneous confidence limits 1.21 – 0.98, 1.62

a Estimates obtained using 5000 bootstrap samples

Fig. 5 Simultaneous 95% confidence limits for β1 and θ2 based on 95% confidence ellipse from the
example 3. The ellipse (grey hashed line) and the confidence intervals (black solid lines) cross the θ2 axis
indicating the lack of significance for the joint test for β1 and θ2, and the individual test for β1
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the confidence ellipse (scenario b Fig. 2). The bootstrap test for the NIE, however,
does not result in the same inference as the confidence ellipse yet the confidence
ellipse is the only method that is properly accounting for the compositeness of the null
hypothesis for testing mediation and incorporates all components.

6 Discussion

The multivariate method outlined in this paper describes a unifying framework for the
regression approach to mediation analysis. This allows for the estimation of counter-
factual effects in the presence of an exposure–mediator interaction for any combination
of outcome and mediator variables having the same or different distributions from the
exponential family and the same or different link functions. In the absence of interac-
tion, there are a variety of methods available for estimating the standard errors and/or
confidence intervals for the NIE, including the deltamethod approximation to the stan-
dard error of the product β1θ2. Alternatively, confidence intervals may be obtained
using bootstrap or bias-corrected bootstrap, permutation, or the true distribution of the
product [11,27,29]. To the best of our knowledge, only the deltamethod approximation
or bootstrap has been applied to mediation analyses in the presence of an interaction
[31]. These approaches, however, are not without fault [10,13,16,33], and confidence
limits based on them are often inaccurate [17]. In lieu of the questionableWald test, or
the computationally intensive bootstrap approach, the multivariate approach estimates
all relevant parameters in a single model and can simultaneously test the regression
coefficients of interest with a likelihood ratio test that avoids estimation of the standard
error of the product.

In the absence of interaction, it is seldom mentioned that the mediation hypothesis
of interest H0 : β1θ2 = 0 is really a composite null hypothesis with individual com-
ponents, H01 : β1 = 0 or H02 : θ2 = 0 or both H03 : β1 = θ2 = 0. The significance
level should then be the supremum of the significance levels for each of the individual
null hypotheses or an experiment-wise error rate based on an appropriate multiple
comparisons procedure. In this work, we chose the latter approach and propose a
novel confidence ellipse approach to visualize and to clarify the components of medi-
ation analysis while simultaneously testing the four null hypotheses, H01 : β1 = 0,
H02 : θ2 = 0, both H03 : β1 = θ2 = 0, and the product H04 : β1θ2 = 0 (or more
generally, the NIE) with a single experiment-wise type I error rate. Proper control
of the experiment-wise error rate makes this confidence ellipse approach necessarily
more conservative than approaches that naively ignore the compositeness of the null
hypothesis [5]. For the case where there is an interaction, we substitute ϕa for θ2 to
examine mediation when A = a.

Here, we provide derivations for the estimation of the counterfactual effects for
any combination of generalized linear regression models. In the particular case where
f (y |m, a, c) is binarywith a logit link, hY {E [Y | a,m, c]}, and f (m | a, c) is normal
with an identity link,we have the logisticmediation scenario described previously [34].
Then on the logit, or equivalently, log(odds ratio) scale, CDE, PIE, and TE are easily
derived using the more general equations provided here. Alternate formulas for CDE
and TE have been provided for case–control studies where the binary outcome is rare
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such that the odds ratio is an approximation to the relative risk [31]. The suggested use
of a binomial distribution with a log link function to obtain the correct interpretation
[31] is also encompassed under the generalized framework proposed here.

The likelihood ratio test is currently available under the SEM framework using
specialized packages (Mplus and PROCCALIS) or inMarginal StructuralModels [6].
The SEM approach to mediation can be more difficult to implement for nonnormal
outcomes, in part due to the use of specialized software. In addition, despite the
advantages of the likelihood ratio test, confidence limits may be preferred as they
provide a range ofmagnitudes for each parameter in addition to statistical significance.
The confidence ellipse represents a novel application to mediation, addressing the
compositeness of the null hypothesis.
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Appendix 1: Derivation of Counterfactual effects for theGeneralized Lin-
ear Model

Note that many of these effects depend on the chosen values A = a∗, or M = m∗, or
both.

Recall that

hM {E [M |a, c]} = β0 + β1a + β ′
2c and

hY {E [Y |a,m, c]} = θ0 + θ1a + θ2m + θ3am + θ ′
4c

= θ0 + θ1a + (θ2 + θ3a)m + θ ′
4c

= θ0 + θ1a + ϕam + θ ′
4c,

where ϕa = θ2 + θ3a denotes the effect ofM when A = a, c is a vector of covariates,
and β ′

2 and θ ′
4 are vectors of regression coefficients.

Note: If the two c’s fromM and Y are not the same, we would have to condition on
their union.

Controlled Direct Effect defined on the scale of the outcome (inverse link)

CDE = h−1
Y

[
hY {E [Y | a,m, c]} − hY

{
E

[
Y | a∗,m, c

]}]

= h−1
Y

[(
θ0+θ1a+θ2m+θ3am+θ ′

4c
) − (

θ0+θ1a
∗+θ2m + θ3a

∗m + θ ′
4c

)]

= h−1
Y

[
(θ1 + θ3m)

(
a − a∗)] ,

where h−1
Y {} denotes the inverse function of hY {} and m is set to a specified value.
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Natural direct effect evaluated at M = m∗
a

NDE = h−1
Y

[
hY {E [Y | a,ma∗ , c]} − hY

{
E

[
Y | a∗,ma∗ , c

]}]

= h−1
Y

[(
θ0 + θ1a + θ2ma∗ + θ3ama∗ + θ ′

4c
)

− (
θ0 + θ1a

∗ + θ2ma∗ + θ3a
∗ma∗ + θ ′

4c
)]

= h−1
y

[
θ1

(
a − a∗) + θ3ma∗

(
a − a∗)]

= h−1
y

[
(θ1 + θ3ma∗)

(
a − a∗)]

= h−1
y

[[
θ1 + θ3h

−1
M

{
β0 + β1a

∗ + β ′
2c

}] (
a − a∗)] ,

where ma∗ = E
[
M | a∗, c

] = h−1
M

{
β0 + β1a∗ + β ′

2c
}
.

Natural indirect effect

NIE = h−1
y [hY {E [Y | a,ma, c]} − hY {E [Y | a,ma∗ , c]}]

= h−1
y

[(
θ0 + θ1a + θ2ma + θ3ama + θ ′

4c
)

− (
θ0 + θ1a + θ2ma∗ + θ3ama∗ + θ ′

4c
)]

= h−1
y [(θ2 + θ3a) (ma − ma∗)]

= h−1
y

[
(θ2 + θ3a)

(
h−1
M

{
β0 + β1a + β ′

2c
} − h−1

M

{
β0 + β1a

∗ + β ′
2c

})]

= h−1
y

[
ϕa

(
h−1
M

{
β0 + β1a + β ′

2c
} − h−1

M

{
β0 + β1a

∗ + β ′
2c

})]
,

where ma = h−1
M

{
β0 + β1a + β ′

2c
}
,ma∗ = h−1

M

{
β0 + β1a∗ + β ′

2c
}
and a is set to a

specified value when θ3 �= 0.
Total effect

TE = NIE + NDE

We propose that NIE be used to evaluate whether mediation is present. If there is an
interaction, a in ϕa = θ2 + θ3a must be specified. If A is dichotomous (say A = 1 for
males and A = 0 for females), then NIE (1) could estimate mediation for males and
NIE (0) for females. If A is continuous, a might be chosen as the mean value of A.

If there is no interaction between the mediator and the exposure (i.e., θ3 = 0) and
ϕa = θ2, then the counterfactuals simplify as follows

CDE = NDE = h−1
Y

{
θ1

(
a − a∗)} and

NIE = h−1
y

{
θ2

[
h−1
M

{
β0 + β1a + β ′

2c
} − h−1

M

{
β0 + β1a

∗ + β ′
2c

}]}
.

If the outcome and the mediator have identity links, such that E [Y |a,m, c] = θ0 +
θ1a + θ2m + θ3am + θ ′

4c and E [M |a, c] = β0 + β1a + β ′
2c, then
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CDE = (θ1 + θ3m)
(
a − a∗)

NDE = (θ1 + θ3)
(
β0 + β1a

∗ + β ′
2c

) (
a − a∗)

NIE = (θ2 + θ3a) β1(a − a∗)
= ϕaβ1(a − a∗)

as reported byValeri andVanderWeele [31]. In this case, we propose that in the absence
of an interaction, β1θ2, and in the presence of an interaction, β1ϕa , be used to evaluate
whether mediation is present when A = a.

For the case where the outcome is binary and fit using a logistic regression, Valeri
and VanderWeele [31] calculate the direct and indirect effect odds ratios. These can
be derived from the estimates provided above as follows:

ORCDE = exp
{
(θ1 + θ3m)

(
a − a∗)} ,

ORNDE = exp
{[

(θ1 + θ3) h
−1
M

{
β0 + β1a

∗ + β ′
2c

}] (
a − a∗)} and

ORNIE = exp
{
(θ2 + θ3a)

[
h−1
M

{
β0 + β1a + β ′

2c
} − h−1

M

{
β0 + β1a

∗ + β ′
2c

}]}
.

Appendix 2: Comparison of the Standard Errors Computed from the
Multivariate Approach Implemented in NLMIXED and the Classical
Separate Univariate RegressionMethod Used in the SASMacro Provided
by Valeri and VanderWeele [31]

Most regression programs, including REG and GENMOD used in SAS Macro pro-
vided by Valeri and VanderWeele [31], compute restricted maximum likelihood
(REML) estimates of the residual variances of the regressions of M on A and Y
on A and M, MSE1 and MSE2, respectively. Instead, NLMIXED computes max-
imum likelihood (ML) estimates S11 and S22 such that MSE1 = nS11/(n − 2),
and MSE2 = nS22/(n − 3), where n is the number of subjects. The same pro-
portionality will hold for variances of the regression coefficients. For example,

SEREML

(
θ̂2

)
= SEML

(
θ̂2

) √
n

n−3 , and SEREML

(
β̂1

)
= SEML

(
β̂1

) √
n

n−2 .
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