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Abstract Count data often exhibit more zeros than predicted by common count
distributions like the Poisson or negative binomial. In recent years, there has been
considerable interest in methods for analyzing zero-inflated count data in longitudinal
or other correlated data settings. A common approach has been to extend zero-inflated
Poisson models to include random effects that account for correlation among obser-
vations. However, these models have been shown to have a few drawbacks, including
interpretability of regression coefficients and numerical instability of fitting algorithms
even when the data arise from the assumed model. To address these issues, we pro-
pose a model that parameterizes the marginal associations between the count outcome
and the covariates as easily interpretable log relative rates, while including random
effects to account for correlation among observations. One of the main advantages of
this marginal model is that it allows a basis upon which we can directly compare the
performance of standard methods that ignore zero inflation with that of a method that
explicitly takes zero inflation into account. We present simulations of these various
model formulations in terms of bias and variance estimation. Finally, we apply the
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proposed approach to analyze toxicological data of the effect of emissions on cardiac
arrhythmias.

Keywords Longitudinal data · Marginal regression · Negative binomial · Poisson ·
Zero inflation

1 Introduction

Count data often exhibit more zeros than that predicted by one of the common count
distributions, such as the Poisson or negative binomial. Such data are common inmany
applications and can be difficult to analyze whenmany subjects have zero observations
while others have much larger observations [16]. For example, in counting disease
lesions on plants, a plant may have no lesions either because it is resistant to the
disease, or simply because no disease spores have landed on it. This is often the
distinction between structural zeros (i.e., zeros are inevitable) and sampling zeros
(i.e., zeros occur by chance) [20]. There are a wide variety of application areas in
which zero inflation occurs, such as road safety and accident frequencies [24], the
manufacturing industry [12], and clinical trials [14].

A large literature now exists on longitudinal and other correlated data extensions
of methods for zero-inflated Poisson (ZIP) counts [4,6,25,27]. This work, almost
all of which builds on the standard ZIP models initially proposed [12], models the
data as arising from a mixture of a point mass at zero and a Poisson distribution.
In this framework, one typically relates the covariates to both the probability that an
observation arises from the zero point mass (via logistic regression), as well as to the
mean parameter associated with the Poisson component (via a log-linear model). In
the event that the Poisson assumption of equality between the mean and variance fails,
and zero inflation remains, zero-inflated negative binomial (ZINB) models have also
been developed. In fact, score tests for ZIP regression versus ZINB regression have
been proposed [5,21].

These ZIP and ZINB formulations have been the standard way to account for zero
inflation in counts for quite sometime and have proven useful in many applications.
On the other hand, these models have a few disadvantages as well. A drawback of zero
inflation regression is that it can be susceptible to instability or even non-existence of
the maximum likelihood estimates for the regression coefficients on the mixing prob-
ability. This problem is essentially one of complete separation [2,13] that occurs in
logistic regression when the linear predictor specifies covariate patterns for which the
responses are all either zero or non-zero. Second, the parameters are difficult to inter-
pret, as one must distinguish whether an effect relates to a change in the probability
of a zero count or to the mean count. Based on these considerations, two alterna-
tive approaches were proposed [16], a hurdle model and an ordinal regression model
applied to a categorized version of the count response, that yield more parsimonious
summaries of a given covariate effect. As noted in [16], there is a large literature on the
hurdle formulation for zero-inflated distributions. The model itself is framed in two
stages: (1) model the probability an outcome is equal to zero; (2) conditional that it is
not zero, model the distribution of the count using a conditional distribution derived
from a traditional distribution for count data.
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Even if one uses the hurdle model formulation to obtain a more parsimonious
description of covariate effects, interpretation issues still arise when one includes ran-
dom effects to account for correlation among clustered responses. In standard Poisson
or negative binomialmodels (i.e., no zero inflation)with a log link, inclusion of random
effects does not affect the marginal interpretation of the fixed effects [28]. However,
in zero-inflated extensions of the model, this is no longer true. The fixed effects now
represent conditional (i.e., within-cluster) effects. As pointed out in the literature, this
interpretation can be problematic for covariates that do not vary within a subject in
that the data do not directly reflect this within-subject change [9]. Thus, it is of interest
to formulate a version of the zero-inflated count models that estimates the marginal
effect of each covariate directly. Although recent work explored a marginalized hurdle
model and a marginalized zero-inflated model for correlated and overdispersed count
data with excess zero observations [10], this research does not present the operating
characteristics of their proposed model and how they compare to current modeling
frameworks.

The primary purpose of this research is to introduce a marginalized zero-altered
model [18] and compare its performance to existing regression models for count data.
Section 2 reviews existing methodology for zero-inflated count data. Section 3 out-
lines our proposedmodel andmaximum likelihood estimationof themodel parameters.
Section 4 presents the results of two simulation studies designed to compare the perfor-
mance of the proposed model to that of existing modeling approaches for longitudinal
count data, which includes Poisson and negative binomial mixed-effect models and
generalized estimating equations. In Sect. 5, we present a case study that applies the
proposed marginalized zero-altered model to toxicological data on the cardiovascu-
lar effects of exposure to coal-fired power plant emissions and compares the results
to simpler approaches. We conclude with a discussion and our recommendations in
Sect. 6.

2 Existing Methodology

Our proposed model combines the conditional zero-altered random effect model [16]
with a marginal regression approach [8,9,23]. That is, the model accounts for possible
zero inflation/deflation and correlation among counts while relating themarginal mean
of the outcome directly to covariates of interest.

In this section, we briefly outline the zero-altered model proposed by [16]. Let Yi j
and Xi j denote the count response and 1 × p vector of covariates, respectively, for
subject i(i = 1, . . . , n) at time j ( j = 1, . . . , ni ). The model is as follows:

log[μb
i j ] = Xi jβ + bi

log[−log[P(Yi j = 0|Xi j , bi )]] = γ1 + γ2
(
Xi jβ

) + bi

P(Yi j = yi j |Xi j , bi ) = I (yi j > 0)[1 − P(Yi j = 0|Xi j , bi )]
g(yi j ;μb

i j )

1 − g(0;μb
i j )

,
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where μb
i j is the mean of a random variable with un-truncated distribution defined

by density g, conditional on Xi j and bi ; bi
iid∼ N (0, σ 2) is a subject-specific random

intercept; γ2 ≥ 0, γ1, β are unrestricted; and g(·; ·) is assumed to be a count density,
such as the Poisson or negative binomial. The first equation relates the expectation of
the response variable to both measured covariates and random effects. The next two
equations model the probability of having a zero count and having a count greater
than zero, respectively, conditional on the covariates and the random effects. The
appeal of this model is that if g(·; ·) is assumed to be Poisson, the standard Poisson
model is a special case when γ1 = 0 and γ2 = 1, and it directly parameterizes zero
inflation/deflation via γ1 and γ2. However, as noted previously [16], one drawback
of this model is that there is no single parameter describing the association between
the covariates of interest, Xi j , and the unconditional mean count, E(Yi j |Xi j ). In the
next section, we propose a marginalized zero-altered model that specifies a simple
marginal relationship between the response variable and covariates of interest while
adjusting for possible zero inflation/deflation.

3 Marginalized Zero-Altered Count Model

Section 3.1 outlines the marginalized zero-altered formulation. Section 3.2 describes
maximum likelihood estimation and software implementation of the proposed model.

3.1 Statistical Model

Again let Yi j and Xi j be the response variable and vector of covariates, respectively,
for subject i(i = 1, . . . , n) at time j ( j = 1, . . . , ni ). We model the marginal mean,
μY
i j = E(Yi j |Xi j ), conditional on covariates using a log link function,

log[μY
i j ] = Xi jβ, (1)

where β is a p×1 vector of estimated coefficients and Xi j is a 1× p vector of covari-
ates. To capture the dependence among the longitudinal measurements, we model the
conditional mean response, μb

i j , of a random variable distributed according to count
density g(·; ·), using the conditional model,

log[μb
i j ] = �i j + bi , (2)

where the {bi } are subject-specific random effects. The random effects are assumed

to have an independent structure, such that bi
iid∼ N (0, σ 2). �i j is a function of the

model parameters, �i j = �i j (β, γ1, γ2, σ ), where σ is the standard deviation of the
subject-specific random effects. To account for zero inflation/deflation, we explicitly
model the probability of having a zero count and a count greater than zero:
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P(Yi j = 0|Xi j , bi ) = h
[
γ1 + γ2

(
�i j

) + bi
]

(3)

P(Yi j = yi j |Xi j , bi ) = [1 − P(Yi j = 0|Xi j , bi )]
g(yi j ;μb

i j )

1 − g(0;μb
i j )

, y = 1, 2, · · · (4)

where γ2 ≥ 0 and γ1, β are unrestricted. Collectively, γ1 and γ2 measure the zero
inflation/deflation, such that γ1 < 0 and γ2 < 1 introduce zero inflation in an
additive and multiplicative fashion, respectively (and zero deflation in a counter fash-
ion). The ratio in (4) is the conditional probability of a response greater than zero,
where g(·;μb

i j ) again represents the density for, say, a Poisson random variable with

mean μb
i j . This framework can also accommodate overdispersion in the non-zero

counts via the negative binomial assumption, in which case we use g(yi j ;μb
i j ) =

�(yi j+1/α)

�(yi j+1)�(1/α)

(
1/α

1/α+μb
i j

)1/α (
μb
i j

1/α+μb
i j

)yi j
, and α > 0 is the overdispersion parame-

ter.
The quantities �i j (θ) are indirectly defined and can be obtained as the solution to

the convolution equation, which links the marginal and conditional means,

μY
i j = exp(Xi jβ)

=
∫

[1 − P(Yi j = 0|Xi j , bi )]
μb
i j

[1 − g(0;μb
i j )]

φ(bi |σ)dbi , (5)

where the integral defined is one-dimensional (see Appendix 1 for details). Given a
fixed value of θ , we solve for �i j (θ) after approximating (5) using numerical quadra-
ture, such as Gauss-Hermite quadrature [15,23]. Equation (5) expresses the marginal
mean of the outcome as the conditional mean (given the random effects bi ) marginal-
ized over the assumed distribution of the random effects. Because these solutions are
analytically intractable, we use a simple Newton–Raphson algorithm to solve for them
numerically.

We propose the choice of the h function vary depending on the chosen count
distribution g. If we let h(x) = g(0; x), then the model given by (1–4) reduces to
the standard count distribution g in the special case of γ1 = 0 and γ2 = 1, which
has the advantage that the presence of zero inflation can be formally tested against a
standard count distribution via likelihood ratio testing. [16] used this strategy for the
Poisson distribution with

P(Yi j = 0|Xi j , bi ) = exp
{−exp

[
γ1 + γ2

(
�i j

) + bi
]}

,

the inverse of which yields the log-negative-log link function in their original model
formulation. In the negative binomial model, the link that results from this strategy
depends on the overdispersion parameter α. The zero-altered component of the model
becomes

P(Yi j = 0|Xi j , bi ) = (
1/[1 + α exp(γ1 + γ2(�i j ) + bi )]

)1/α
.
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We refer to the general formulation given by (1) - (4) as the marginalized zero-altered
count (MZAC) model, with model parameters θ = (β, γ1, γ2, σ ). Because the MZAC
model can assume either a Poisson or a negative binomial distribution, we will also
refer to either a MZAP or a MZANB model, respectively, throughout the remainder
of the paper.

The above formulation follows that proposed by [16] in that the parameter γ2 scales
the component, in this case �i j , that involves the covariates Xi j only. This structure
corresponds to a scaling factor of 1 for the random effects, which assumes that the
scales of the random effects in the zero-altered and non-zero components of the model
are equal.We also consider alternative scalings that relax this assumption. Specifically,
we also consider models in which the full predictor �i j + bi is scaled by γ2,

h−1[P(Yi j = 0|Xi j , bi )] = γ1 + γ2(�i j + bi ),

which assumes that the scaling of covariate component �i j and the random effects bi
are scaled equally for the zero-altered component of the model. We also consider the
more flexible formulation

h−1[P(Yi j = 0|Xi j , bi )] = γ1 + γ2(�i j ) + γ3(bi ),

whichmakes no assumptions about how the scalings of either the covariate component
�i j and bi are related. We use standard likelihood-based fit statistics, such as Akaike
information criterion (AIC) [1], to choose between these three scaling models.

A key feature of this model is the relationship given in (1), which specifies a
simple log-linear relationship between the response and corresponding covariates of
interest. Moreover, the mean model is separate from the association model. As noted
in previous research [9], this separation typically yields inferences for the regression
coefficient parameters that are less sensitive to misspecification of the association
model for the repeated measures. Another advantage of this model lies in (3), which
explicitly parameterizes zero inflation/deflation through γ1 and γ2. To provide an
interpretation of the γ1 and γ2 parameters governing the amount of zero inflation in
the model, Fig. 1 presents a simulated dataset from each of six values of (γ1, γ2), for
an intercept only model with β0 = 1.50 and σ 2 = 0.10. Data were generated from
a MZAP model with the following values of γ = (γ1, γ2): (0, 1), (−0.25, 1), and
(−0.50, 1) in column 1, and (0, 0.25), (−0.25, 0.25), and (−0.5, 0.25) in column 2.
Therefore, the first histogram in Fig. 1 represents data generated from the Poisson
distribution with μ = exp(1.50) = 4.48, and the other five plots show how this
distribution changes as one increases the amount of zero inflation either additively
(i.e., changing γ1), multiplicatively (i.e., changing γ2), or both. Moving down the first
column, which represents increasing amounts of zero inflation on the additive scale,
the frequency of zeros increases to approximately 15 and 30, respectively, while the
range of the distribution decreases slightly and the spike at zero becomes evident in
the γ = (γ1, γ2) = (-0.5, 1) case. The first plot in the second column represents
zero inflation on the multiplicative scale only, and the frequency of zeros is about 30.
When γ = (γ1, γ2) = (-0.25, 0.25), zero inflation is present on both the additive
and multiplicative scales, and, not only does the frequency of zeros increase, but the
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Fig. 1 Histograms of zero-inflated simulated data, where γ = (γ1, γ2) is (0, 1), (−0.25, 1), and (−0.5, 1)
in column 1 and (0, 0.25), (−0.25, 0.25), and (−0.5, 0.25) in column 2

distribution becomes more skewed to the right, with the maximum count close to
20. The last histogram, when γ = (γ1, γ2) = (-0.5, 0.25), shows an even larger
increase in the frequency of zeros with a much thicker right tail. Therefore, when
zero inflation is present on the additive scale only, the frequency of zeros increases,
whereas zero inflation on both the additive and multiplicative scales increases both
the amount of zero inflation and the skewness of the distribution, allowing for more
extreme observations. Sections 4 and 5 present some evidence that this property of
the MZAC distribution may result in regression estimates that are less sensitive to
outliers.

3.2 Maximum Likelihood Estimation

We estimate the parameters of the MZAC model via maximum likelihood estimation.
The likelihood contribution from subject i is constructed under the standard assump-
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tions that the response counts are independent given the random effects. The marginal
likelihood contribution for subject i is

Li =
∫ ni∏

j=1

P(Yi j |Xi j , β, γ1, γ2, bi )φ(bi |σ)dbi

=
∫ ni∏

j=1

[P(Yi j = 0|Xi j , bi )]I (Yi j=0)

×
[

[1 − P(Yi j = 0|Xi j , bi )]
g(yi j ;μb

i j )

1 − g(0;μb
i j )

]I (Yi j>0)

φ(bi |σ)dbi

where φ(bi |σ) is the probability density function for a normal random variable with
mean zero and standard deviation σ . The conditional (on the random effects) likeli-
hood P(Yi j |Xi j , β, γ1, γ2, bi ) is the product of two terms. The first term depends on
the probability that Yi j is equal to zero and the second term corresponds to the prob-
ability that Yi j is greater than zero. Because the integral in this marginal likelihood
can not be evaluated analytically, numerical methods are required for approximation.
Any number of software packages that allow fitting of nonlinear mixed models can
maximize this likelihood. We use SAS PROC NLMIXED (sample code provided in
Appendix 2), which uses fixed Gaussian quadrature to approximate log(Li ) and a
dual quasi-Newton algorithm to maximize this approximation summed over all sub-
jects, to obtain estimates for all model parameters. The standard errors associated
with these parameters are based on the Hessian matrix computed using the quadrature
approximation of the marginal likelihood.

Our primary interest is in estimating the exposure effect, along with other potential
confounders. Because the MZAC model allows separate marginal and conditional
mean structures, the interpretation of the β coefficients is straightforward. In general,
an element ofβ represents the log relative change in responsemean related to a one unit
difference in the corresponding predictor. For example, if we consider a single binary
covariate, such as exposure level, thenβ = log[E(Yi j |Expi = 1)]−log[E(Yi j |Expi =
0)] measures the average change in, say, frequency of our outcome between subjects
exposed as opposed to subjects unexposed.

4 Simulation Studies

There is no previous work on the impact of zero inflation on estimators that naively
ignore this feature of the count data. The primary reason for this gap in the literature
is the fact that the parameters in the most common models for zero-inflated count data
do not have a marginal interpretation, and so it is difficult to compare results from
one of these models to those from a marginal one. One advantage of our marginal-
ized parameterization of the zero-altered count model is that the resulting regression
coefficient estimators can be directly compared to those from other marginal mod-
els. We conducted two simulation studies to investigate how the estimators from the
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MZAPmodel perform as compared to those frommore traditional models, namely the
negative binomial mixed-effect (NBME) model, Poisson mixed-effect (PME) model
and generalized estimating equations (GEE). The NBME, PME, and GEE models are
commonly used to analyze longitudinal count data, but do not explicitly adjust and/or
estimate zero inflation. TheNBMEand PMEmodels are a special case of a generalized
linear mixed model, and takes the form

log[μb
i j ] = Xi jβ + bi .

In this model, the regression coefficients have a marginal interpretation, and so
coefficient estimates are directly comparable to their MZAC counterparts.

Because the likelihood function in NBME and PME models include integrals
that are analytically intractable, maximum likelihood estimation for this model also
depends on quadrature, and we implemented this approach in SAS PROCNLMIXED.
To provide consistent results in the presence of misspecification [3], we also utilized
the sandwich estimation option for the standard errors for these two approaches. The
GEE approach [28], on the other hand, solves the set of estimating equations,

s(β) =
n∑

i=1

D
′
i V

−1
i (Yi − μm

i ) = 0,

where Yi = (Yi1, . . . ,Yini )
′
, μm

i = (μm
i1, . . . , μ

m
ini

)
′
, Di = ∂μi/∂β, and Vi =

A
1
2
i RA

1
2
i , with Ai being the diagonal matrix of marginal variances for the i th cluster

and R = R(α) being the working correlation matrix. We fit the log-linear GEE

log[μm
i j ] = Xi jβ,

to each simulated dataset.
The first simulation study assessed the performance of each method, in terms of

bias, efficiency, and variance estimation, while increasing the amount of zero inflation
in the data. Motivated by an empirical observation that GEE approaches may be overly
sensitive to a single outlying count (see Sect. 5), we conducted a second simulation
study that assessed the sensitivity of the four methods to response outliers. In carrying
out these simulations, we note that although the GEE is the correct model, both the
PME and NBME are misspecified but with consistent score equations.

4.1 Simulation 1

We simulated datasets containing 100 clusters, each with a cluster size of 5, from
the proposed MZAP model. Each dataset contained 50 “exposed” subjects and 50
“unexposed” subjects. The marginal model wasμY

i j = exp(β0+β1Time j +β2Expi +
β3Expi ∗ Time j ). Taken to closely match the results from a similar data analysis
presented in Sect. 5, the true β values were (β0, β1, β2, β3) = (1.12,-0.87, 0.29, 1.10)
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and the covariates of interest are exposure (Expi : 1 = exposed, 0 = unexposed) and
time (Timei j = ( j−1)∗0.25). The subject-specific random effects, bi , were generated
from a normal distribution with mean 0 and variance 0.10. Equivalently, in a setting
where there are only two exposure groups and 5 observation points, there will be 10
different values of �i j for each time and exposure combination; therefore, the values
of �i j that correspond to the assumed β and σ 2 values, as well as assuming no zero
inflation, are �i j = (1.36, 1.42, 1.47, 1.53, 1.59, 1.07, 0.85, 0.63, 0.42, 0.20), where
the first five values are for the exposed subject and the last five are for the unexposed
subject. To introduce different amounts of zero inflation, we varied γ1 and γ2, resulting
in three different cases: (A) for γ2 = 1, γ1 = (0,−0.25,−0.50,−0.75), (B) for
γ2 = 0.50, γ1 = (0,−0.25,−0.50,−0.75), and (C) for γ2 = 0.25, γ1 = (0,−0.25).
Recall that γ1 and γ2 measure zero inflation/deflation in an additive and multiplicative
fashion, respectively; therefore, the smaller γ1 (i.e., γ1 < 0) and γ2 (i.e., γ2 < 1), the
more zero inflation is present. The amounts of zero inflation increase within each case
as γ1 gets smaller, and, overall, the amount of zero inflation increases from case A to
case B to case C, because γ2 is also getting smaller. Only two values for γ1 are reported
for case C due to the fact that, when γ2 = 0.25, larger negative values of γ1 yielded
a distribution with such an overwhelming proportion of zeros that none of the four
estimation methods considered were able to reliably estimate the model parameters.

Table 1 presents the results, which are based on 500 simulated datasets, for only
three specific zero inflation settings (no zero inflation, γ = (γ2, γ1 = (1, 0)),
moderate zero inflation, γ = (γ2, γ1 = (1,−0.75)), and severe zero inflation,
γ = (γ2, γ1 = (−0.25, 0.25))). A detailed table, with 10 different zero inflation
settings, is presented in Sect. 8 (Online Resource 1). To compare the four different
modeling approaches for the three different cases (A–C), we focus on the simulated
mean and variability (standard deviation) of the estimates, as well as the mean stan-
dard errors. We also present the 95% coverage rates for the β coefficients. Across all
four methods, the β coefficients display little to no bias, even as the amount of zero
inflation increases; similarly, the coverage is approximately the same across the four
methods. As the amount of zero inflation increases, though, the mean of the PME esti-
mator of σ 2 does not match the true value, but this is to be expected as it is estimating
cluster heterogeneity on the log-linear scale and not within the zero-altered Poisson
framework. As the zero inflation moderately increases, the variance component for
the NBME performs somewhat similar to the variance component for the PME in
Case A, in that the simulated variance is larger than the true value. However, as the
amount of zero inflation significantly increases, the mean of the NBME estimator of
σ 2 decreases, approaching 0.02 in the most extreme case. For all three simulation
settings, the MZAP estimators for γ1, γ2, and the between-subject variability, σ 2, dis-
play little bias, suggesting that the proposed software implementation yields adequate
inferences when the model is correctly specified.

4.2 Simulation 2

Tocompare the sensitivity of the four estimators to outlying observations,we simulated
30 clusters, with 5 observations each. The marginal mean model for each subject was
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Table 2 Simulation 2

Contamination of datasets.
Average estimates (standard
deviation, standard error;
β95% CI coverage) for
generalized estimating equations
(GEE), Poisson mixed-effect
(PME), negative binomial
mixed-effect (NBME), and
marginalized zero-altered
Poisson (MZAP) models. 500
replications

y∗ Model βexp = 0.29 σ 2 = 0.10

y+0 GEE 0.13 (0.15, 0.19; 0.92)

PME 0.14 (0.15, 0.19; 0.93) 0.18 (0.08, 0.07)

NBME 0.13 (0.15, 0.18; 0.93) 0.03 (0.05, 0.09)

MZAP 0.15 (0.13, 0.16; 0.98) 0.07 (0.04, 0.05)

y+20 GEE 0.22 (0.14, 0.21; 0.99)

PME 0.21 (0.15, 0.21; 0.99) 0.23 (0.08, 0.09)

NBME 0.24 (0.15, 0.21; 0.99) 0.07 (0.07, 0.08)

MZAP 0.24 (0.12, 0.18; 0.98) 0.13 (0.05, 0.06)

y+40 GEE 0.31 (0.14, 0.25; 1.00)

PME 0.25 (0.15, 0.22; 1.00) 0.29 (0.08, 0.12)

NBME 0.29 (0.15, 0.23; 1.00) 0.14 (0.07, 0.09)

MZAP 0.29 (0.12, 0.21; 0.98) 0.20 (0.06, 0.08)

y+60 GEE 0.40 (0.13, 0.29; 1.00)

PME 0.27 (0.15, 0.24; 1.00) 0.34 (0.08, 0.15)

NBME 0.32 (0.15, 0.25; 1.00) 0.20 (0.07, 0.11)

MZAP 0.30 (0.13, 0.23; 0.98) 0.26 (0.06, 0.09)

y+80 GEE 0.48 (0.13, 0.34; 1.00)

PME 0.29 (0.15, 0.25; 1.00) 0.39 (0.09, 0.18)

NBME 0.34 (0.15, 0.26; 1.00) 0.24 (0.07, 0.13)

MZAP 0.29 (0.13, 0.24; 0.99) 0.31 (0.07, 0.11)

y+100 GEE 0.55 (0.13, 0.38; 1.00)

PME 0.30 (0.15, 0.26; 1.00) 0.42 (0.09, 0.20)

NBME 0.35 (0.15, 0.27; 1.00) 0.28 (0.07, 0.15)

MZAP 0.26 (0.15, 0.25; 0.99) 0.35 (0.07, 0.11)

μm
i = exp(β0 + β1Timei + β2Expi ), where the true β values are (β0, β1, β2) =

(1.12,−0.87, 0.29). The random effects were normally distributed with zero mean
and variance equal to 0.10. The true γ values were γ1 = −0.25 and γ2 = 0.25,
corresponding to a significant amount of zero inflation. To induce contamination, we
increased the last response count of one exposed subject, such that, y∗

i j = yi j +
c, cε(0, 20, 40, 60, 80, 100), where i = 1 and j = 5. Table 2 presents the results of
this contamination simulation. Due to the small number of clusters, there is a small
amount of finite sample bias. Focusing on the coefficient estimates for the exposure
covariate, as the final observation in this exposed subject becomes more extreme, the
bias in the GEE estimator is approximately linear in the amount of contamination
present in the response, agreeing with established results on the form of the influence
function for GEE estimators [19]. MZAP, NBME, and PME estimators incurs less
bias as compared to its GEE counterpart, with the amount of this bias being relatively
small. These simulation results suggest that, in the presence of zero inflation, the
MZAP estimators can be more robust to extreme observations as compared to their
GEE counterparts.
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5 Analysis of Arrhythmia Data

We use the proposed MZANB and MZAP models to analyze data collected as part of
the toxicological evaluation of realistic emissions of source aerosols (TERESA) study
[26]. In this study, rats with an induced acute myocardial infarction were exposed to
either stack emissions (n = 15) or filtered air (n = 14) for up to five hours. The
exposed rats were assessed while in photochemical chambers filled with stack emis-
sions composed of SO2, NO, and primary particulate matter. The control group of
rats was exposed to room air filtered through a high-efficiency particulate air (HEPA)
filter. The outcome of interest was arrhythmia frequency per hour, with electrocardio-
gram output inspected manually by an investigator blinded to the exposure status of
each animal. Because each rat did not have a measured outcome for all five hours, we
assumed that the data aremissing completely at random,which is reasonable due to the
fact that shorter exposures were likely due to technical issues unrelated to the outcome.
Figure 2 shows the histogram of the frequency of arrhythmias per hour for the rats in
the study. This histogram shows that there are potentially more observed zeros than
expected from a standard distribution for count data, as indicated by the significant
spike at zero. It also shows that the distribution of the frequency of arrhythmias per
hour is extremely skewed to the right.

We compare the results from the MZANB and MZAP models to several traditional
count models and a hurdle model with random effects. Preliminary analyses showed
no evidence of an interaction between exposure and time, so to assess the association
between the frequency of arrhythmias with exposure level and time, we considered
the following marginal model:

Fig. 2 Histogram of frequency of arrhythmias for each rat in the TERESA study
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log[μY
i j ] = β0 + β1Expi + β2 I (Timei j = 1) + β3 I (Timei j = 2)

+β4 I (Timei j = 3) + β5 I (Timei j = 4),

for subject i(i = 1, . . . , 29) at hour j ( j = 1, 2, 3, 4, 5). To complete the MZANB
and MZAP model specification, we assume

log[μb
i j ] = �i j + bi ,

where bi ∼ N (0, σ 2), and considered all three possible scaling formulations outlined
in Sect. 3.

Table 3 presents the maximum likelihood estimates, the corresponding standard
errors, and p values from the MZANB, MZAP, NBME, PME, and GEE models, as
well as theAIC and likelihood ratio test statistics to comparemodel fit. Amore detailed
table alongwith results from the hurdle model with random effects as presented in [16]
is given in Sect. 9 (Online Resource 2) , even though the parameters in this mixture
model formulation do not directly compare to those from the other marginal models
considered. Here, we only present results from the most flexible scaling model,

h−1[P(Yi j = 0|Xi j , bi )] = γ1 + γ2(�i j ) + γ3(bi ),

because both the MZANB and the MZAP models had the lowest AIC values in com-
parison to the other two scaling models for these data. Both the MZANB and MZAP
results suggest that there is a significant (at the α = 0.05 level) effect of exposure
(βE ≈ 0.7),with theMZANBproducing the best fit as indicated by the lowestAIC. For
both of the MZANB and MZAP models, the estimated relative risk, exp(0.7) = 2.01,
of arrhythmias is doubled for those rats exposed to stack emissions as opposed to
those rats exposed to HEPA filtered air. Although the MZANB maximum likelihood
estimate for the heterogeneity parameter is σ 2 = 0.187, indicating a small amount
of subject-to-subject variation in the frequency of arrhythmias, the γ3 parameter that
measures the overall effect of the subject-specific random effects is large. It appears
that, in this case, because theNBMEandPMEmodels do not account for zero inflation,
they underestimate the effect of exposure and overestimate the corresponding standard
error. The GEE approach yields an estimated effect of exposure similar to those from
the MZANB and MZAP models, but as we see in the next table this estimate can be
sensitive to the inclusion or exclusion of a few extreme observations.

Due to the small sample size of the toxicity study, the zero-altered parameters, γ1,
γ2, and γ3, exhibit large standard errors. Although these quantities indicate evidence of
high uncertainty, these marginalized zero-altered models consistently perform better
than their standard counterpart models, NBME and PME, as denoted by the AIC
values aswell as a formal likelihood ratio test.More specifically, we have compared the
MZANBagainst theNBMEaswell as theMZAPagainst the PME.The likelihood ratio
test statistic for both tests are 15.3 and 39, respectively, highlighting significant zero
inflation as well. Both tests also indicate better model fit for our proposedmarginalized
models, as opposed to the models that ignore zero inflation.
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Table 4 Model estimates (standard errors) for exposure and % change for the marginalized zero-altered
negative binomial (MZANB), marginalized zero-altered Poisson (MZAP), negative binomial mixed effect
(NBME), Poisson mixed-effect (PME), and generalized estimating equations (GEE) models with and with-
out an outlier

βE βE
w/outlier w/o outlier % Change

MZANB 0.588 (0.283) 0.705 (0.266) 16.596

MZAP 0.658 (0.354) 0.667 (0.300) 1.349

NBME 0.233 (0.523) 0.327 (0.490) 28.746

PME 0.139 (0.546) 0.304 (0.503) 54.276

GEE 0.214 (0.446) 0.657 (0.326) 67.428

The original data also included an extreme observation, which was removed from
the dataset prior to analysis. The largest number of arrhythmias did not exceed 20
for any rat, with the exception of this one outlier, which was 59. In addition to the
primary analyses above, we analyzed the dataset with this extreme observation using
all marginal models presented as well as the hurdle model with random effects. Table 4
displays the results for the exposure coefficient only, and a detailed table including the
hurdle results is presented in Sect. 10 (Online Resource 3). The results show that the
MZANB and MZAP models are more robust in the presence of this extreme obser-
vation compared to the NBME, PME, GEE, and hurdle approaches (considering the
percent change across both portions of this mixture model). The MZANB and MZAP
have the smallest percent change, 16.596% and 1.349%, respectively, in analyzing
the toxicity dataset with and without the outlier, and the overall conclusions of these
analyses do not change. In contrast, the GEE has the largest percent change, 67.428%,
coupled with a large change in the strength of this association as well.

6 Discussion

We proposedmarginalized zero-altered count models for longitudinal data with exces-
sive zeros. This class of models allowed us to address the issue of zero inflation in a
simple, clear, and parsimoniousway. Currentmethods, such as zero-inflated regression
models, adjust for excessive zeros but often at the expense of interpretability.

Our statistical framework has a few advantages. First, because our model includes
a marginal mean structure, model parameters are easily interpretable. Unlike zero-
inflated regression models, the interpretation of our regression coefficients is of the
marginal form. Second, we are able to adjust for the zero inflation/deflation in the data
via the parameters γ1 and γ2. Estimates of these parameters reflect the degree of the
zero inflation/deflation. Third, the MZANB and MZAP models simplify to a negative
binomial and Poissonmodel, respectively, when γ1 = 0 and γ2 = 1,which allows us to
testwhetherγ1 is different fromzero andγ2 (andγ3 inmodels containing this additional
scale parameter) is different from one. We also carried out two simulation studies to
test the performance of our proposed MZAP model to that of standard approaches
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for longitudinal data, such as the negative binomial and Poisson mixed-effect models
and generalized estimating equations. Results suggested that, when compared to GEE,
the MZAP model was more robust in the presence of outlying response observations
and, compared to the NBME and PME models, more accurately reflected estimation
uncertainty in the presence of zero inflation.

We also presented the use of the marginalized zero-altered models in a toxicity
study where the study population exhibited a significant number of zero outcomes in
the arrhythmia response. Because our interestmoves beyond simplymodelingwhether
or not the arrhythmias exists as well as a more parsimonious environment for inter-
pretation, our marginalized zero-altered models proved more appropriate than either
traditional random effect models as well as the hurdle model with random effects. Our
proposed models displayed better model fit in the presence of significant zero inflation
when compared to the use of these other statistical models for longitudinal data.

Finally, [10] considers marginalized versions of the hurdle model that specify two
regression equations, one for the probability of a zero count and one for the truncated
non-zero distribution, with distinct model parameters. The zero-altered model that we
consider assumes that a single set of regression coefficients, β, appear in both regres-
sion equations but are additively andmultiplicatively scaled by γ1 and γ2, respectively.
Just as importantly, our zero-altered model uses a complimentary log–log function in
the model related to the probability of a zero count. The combination of these two
features (γ1 and γ2 scaling plus log–log link) yield the important feature of the model
that an ordinary Poisson mixed model is nested within this model, yielding tests of
zero-alteration. Moreover, we derive and provide the analogous novel link that leads
to this nesting property when the truncated count distribution is the negative bino-
mial model, thereby extending the methods to cases in which the non-zero counts
exhibit overdispersion. To our knowledge this link function has not been previously
considered in the literature.

As with any statistical framework, our proposed model has a few limitations.
Because each of our parameters of interest rely on the evaluation of the implicit
�i j function, computing time increases significantly as the number of clusters and
observations per cluster increases. Also, if the correlated data structure has multiple
nested levels, our marginal likelihood could be multi-dimensional, and model fitting
will be computational expensive. However, the simulations fitting the proposed mar-
ginalized zero-altered count models suggested the models were not prohibitively slow
for a reasonable number of clusters (i.e., N = 100). We estimate that for this sample
size the models took approximately 80 minutes per 100 datasets, suggesting the model
is feasible for larger problems.

Current research focuses on extending this framework to analyze spatially cor-
related zero-inflated count data. Although one could fit this model via maximum
likelihood estimation, we develop Bayesian methods of model fitting. One primary
reason for turning to a Bayesian framework is because spatial data often have a multi-
level structure. For instance, breast cancer incidence rates may be nested within census
tracts, which are then nestedwithin neighborhoods,which are then nestedwithin cities.
Because of this structure, there is a possible correlation at multiple levels, which then
implies the use of multiple sets of random effects in a conditional mean model. In a
similar fashion, the zero-altered models considered in [16] have the advantage that
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they are more parsimonious than alternative versions that use distinct parameters for
the two parts of the model, but this can also be a source of lack of fit. In some situa-
tions, it would be of interest to include distinct sets of random effects in which case
alternative estimation methods, such as Bayesian approaches, may be preferred.

Also, semi-continuous longitudinal data, whereby data are either continuous or zero
with observations that are correlated, presents similar statistical challenges when in
the presence of large zeros and strong skewness. Current methods include modeling
this type of data via two-part models [11,17]. Although different, there are close paral-
lels; therefore, extending our proposed marginalized approach to this semi-continuous
longitudinal data is of interest.

Finally, it is well known that due to the linearity of the influence functions [7,22]
associated with a GEE that is non-robust to outliers, that mixed models have the
potential to be more robust because the influence functions have nonlinear form.
Although we do not have any specific analytic results in this regard for the proposed
class of models considered in this paper, we now acknowledge this as one possible
reason for the difference in performance between the two methods and note that this
is a possible future research direction.
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Appendix 1: Calculation of �i j

In solving for �i j , we need to solve the convolution equation that links the marginal
(i.e, μY

i j = E(Yi j |Xi j ) = exp(βXi j )) and conditional means, where, assuming the
MZAP setting,

μY
i j = exp(Xi jβ)

=
∫

[1 − P(Yi j = 0|Xi j , bi )]
μb
i j

[1 − exp(−μb
i j )]

φ(bi |σ)dbi

=
∫ [1 − exp[−exp(γ1 + γ2(�i j + bi ))]]

[1 − exp[−exp(�i j + bi )]] exp(�i j + bi )φ(bi |σ)dbi .

Estimates of �i j can be obtained using a Newton–Raphson algorithm, such that

�
(t+1)
i j = �

(t)
i j −

(
∂ f (�i j )

∂�i j

)−1

× f (�i j ),
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where �i j = �i j (β, γ1, γ2, σ ) and f (�i j ) refers to the convolution equation above.
The derivative needed for the Newton–Raphson algorithm is as follows

∂

∂�i j
μY
i j = ∂

∂�i j

∫ [1 − exp[−exp(γ1 + γ2(�i j + bi ))]]
[1 − exp[−exp(�i j + bi )]] exp(�i j + bi )φ(bi |σ)dbi

=
∫ {

∂

∂�i j

[1 − exp[−exp(γ1 + γ2(�i j + bi ))]]
[1 − exp[−exp(�i j + bi )]] exp(�i j + bi )

}
φ(bi |σ)dbi .

After using the chain rule, � =
{

∂
∂�i j

[1−exp[−exp(γ1+γ2(�i j+bi ))]]
[1−exp[−exp(�i j+bi )]] exp(�i j + bi )

}
results

in

� = {1 − e−eγ1+γ2(�i j+bi )} ∗
{

[1 − e−e�i j+bi ]e�i j+bi − e�i j+bi [−e−e�i j+bi ][−e�i j+bi ]
[1 − e−e�i j+bi ]2

}

+
{

e�i j+bi

1 − e−e�i j+bi

}
∗ {e−eγ1+γ2(�i j+bi ) [eγ1+γ2(�i j+bi )]γ2}

= e�i j+bi

1 − e−e�i j+bi
∗ [{1 − e−eγ1+γ2(�i j+bi )} ∗

{

1 − [e−e�i j+bi ][e�i j+bi ]
1 − e−e�i j+bi

}

+{e−eγ1+γ2(�i j+bi ) [eγ1+γ2(�i j+bi )]γ2}].

Gauss–Hermite quadrature can be used to evaluate this one-dimensional integral.

Appendix 2: SAS Execution via PROC NLMIXED

Marginalized zero-altered Poisson (MZAP) and marginalized zero-altered negative bino-
mial (MZANB) models

/*MZAP: gamma2 only scaling delta*/
/*dataset must be in long format (i.e., each row contains

one observation) as opposed to wide*/
proc nlmixed data = toxicity itdetails;

parms psi0=-2.71148 psi1=0.884423 psi2=0 psi3=0
psi4=0 psi5=0 sigma=1.578935 gamma1=-1.34175

gamma2=0.574837;
mu=exp(psi0 + psi1*exp + psi2*hour1 + psi3*hour2 +
psi4*hour3 + psi5*hour4);
bounds gamma2>0;
array absc aa1-aa10; /*fixed quadrature nodes

obtained prior to analysis*/
array weight ww1-ww10; /*fixed quadrature weights\\

obtained prior to analysis*/

delta=log(mu);
do s=1 to 10;

denum0=0;
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denum1=0;
denum2=0;
num=-mu;
do t=1 to 10; /*looping over quadrature points*/

num=num+weight[t]*(2*3.14)**(-.5)*exp
(absc[t]**2)

*exp(-absc[t]**2/(2))
*exp(delta+absc[t]*sigma**.5)*(1-exp
(-(exp(gamma1+gamma2*(delta)+absc[t]
*sigma**.5))))
/(1-exp(-(exp(delta+absc[t]*sigma**
.5))));

denum0=denum0+weight[t]*(2*3.14)**(-.5)*exp
(absc[t]**2)

*exp(-absc[t]**2/(2))*gamma2*exp
(gamma1\\+gamma2*(delta)+absc[t]*sigma**
.5)
*exp(-(exp(gamma1+gamma2*(delta)+absc[t]
*sigma**.5)))*exp(delta+absc[t]*sigma**
.5)/(1-exp(-(exp(delta+absc[t]*sigma**

.5))));

denum1=denum1-weight[t]*(2*3.14)**(-.5)*exp
(absc[t]**2)

*exp(-absc[t]**2/(2))*(exp(delta+absc
[t]))**2*exp(-(exp(delta+absc[t]*sigma**
.5)))
*(1-exp(-(exp(gamma1+gamma2*(delta)+absc
[t]*sigma**.5))))
/(1-exp(-(exp(delta+absc[t]*sigma**
.5))))**2;

denum2=denum2+weight[t]*(2*3.14)**(-.5)*exp
(absc[t]**2)

*exp(-absc[t]**2/(2))
*(1-exp(-(exp(gamma1+gamma2*(delta)+absc
[t]*sigma**.5))))*exp(delta+absc[t]
*sigma**.5)/(1-exp(-(exp(delta+absc[t]
*sigma**.5))));

end;
delta=delta-num/(denum0+denum1+denum2);

end;
prob_0=exp(-(exp(gamma1+gamma2*(delta)+u)));
mu_c=exp(delta+u);
ll=r*log(prob_0)+(1-r)*(log(1-prob_0)+y*log(mu_c)
-mu_c-lgamma(y+1)-log(1-exp(-mu_c)));
model y˜general(ll);
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random u˜normal(0,sigma) subject=rat;
ods output ParameterEstimates=Parms_cond3;

predict u OUT=predu1;
title ’MZAP: gamma2 only scaling delta’;
run;

/*MZANB: gamma2 only scaling delta*/
/*dataset must be in long format (i.e., each row contains
one observation) as opposed to wide*/
proc nlmixed data = toxicity itdetails;

parms gamma1=0 gamma2=1 psi0=-0.3988 psi1=0.6565
psi2=-.0477 psi3=0 psi4=0 psi5=0
sigma=1.11 a=1;
mu = exp(psi0 + psi1*exp + psi2*hour1 + psi3*hour2
+ psi4*hour3 + psi5*hour4);
bounds a>0;
bounds gamma2>0;
bounds sigma>0;
array absc aa1-aa10; /*fixed quadrature nodes
obtained prior to analysis*/
array weight ww1-ww10; /*fixed quadrature weights
obtained prior to analysis*/
delta=log(mu);
do s=1 to 10;

denum=0;
num=-mu;
do t=1 to 10; /*looping over quadrature points*/

num=num+weight[t]*(2*3.14)**(-.5)*exp
(absc[t]**2)

*exp(-absc[t]**2/(2))
*exp(delta+absc[t]*sigma**.5)*(1-(1/(1

+ a*exp(gamma1+gamma2*(delta)
+absc[t]*sigma**.5)))**(1/a))
/ (1 - (1 / (1 + a * exp(delta+absc[t]
*sigma**.5)))**(1/a));

denum=denum+weight[t]*(2*3.14)**(-.5)*exp
(absc[t]**2)

*exp(-absc[t]**2/(2))
*((1-(1/(1 + a*exp(gamma1+gamma2*(delta)
+absc[t]*sigma**.5)))**(1/a))
*(((1 - (1/(1 + a * exp(delta+absc[t]
*sigma**.5)))**(1/a))
* exp(delta+absc[t]*sigma**.5)
- exp(delta+absc[t]*sigma**.5) * (1/a)
* (1/(1 + a * exp(delta+absc[t]*sigma**

.5)))**((1/a) + 1)
* a * exp(delta+absc[t]*sigma**.5))
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/(1 - (1/(1 + a * exp(delta+absc[t]
*sigma**.5)))**(1/a))**2)
+((exp(delta+absc[t]*sigma**.5)
/ (1 - (1/(1 + a * exp(delta+absc[t]
*sigma**.5)))**(1/a)))
*((1/a) * ((1/(1 + a * exp(gamma1
+gamma2*(delta)+absc[t]*sigma**.5)))
**((1/a) + 1)) * a
* exp(gamma1+gamma2*(delta)+absc[t]
*sigma**.5) * gamma2)));

end;
delta=delta-num/(denum);

end;
prob_0 = (1/(1+a*exp(gamma1+gamma2*(delta)+u)))
**(1/a);
mu_c = exp(delta+u);
p = a*mu_c/(1+a*mu_c);
ll=r*log(prob_0)+(1-r)*(log(1-prob_0) + lgamma(y +

(1/a)) - lgamma(y+1) - lgamma(1/a)
+ (1/a)*log(1-p) + y*log(p) - log(1 - (1-p)**

(1/a)) );
model y˜general(ll);

random u˜normal(0, sigma) subject=rat;
ods output ParameterEstimates=Parms_cond1;

predict u OUT=predu3;
title ’MZANB: gamma2 only scaling delta’;
run;
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