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Abstract Massively parallel sequencing (MPS), since its debut in 2005, has trans-
formed the field of genomic studies. These new sequencing technologies have re-
sulted in the successful identification of causal variants for several rare Mendelian
disorders. They have also begun to deliver on their promise to explain some of
the missing heritability from genome-wide association studies (GWAS) of complex
traits. We anticipate a rapidly growing number of MPS-based studies for a diverse
range of applications in the near future. One crucial and nearly inevitable step is to
detect SNPs and call genotypes at the detected polymorphic sites from the sequenc-
ing data. Here, we review statistical methods that have been proposed in the past five
years for this purpose. In addition, we discuss emerging issues and future directions
related to SNP detection and genotype calling from MPS data.
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Table 1 Abbreviations

Abbreviation Description (section)

BAM Binary SAM, Sequence Alignment/Map format (Sect. 2.1)

GLF Genotype Likelihood Format (Sects. 2, 3.2.1)

GWAS Genome-wide Association Studies (abstract, Sect. 1)

HTS High Throughput Sequencing (Sect. 1)

Kb Kilobase (Sect. 1)

LD Linkage Disequilibrium (Sects. 1, 3.3.2)

MPS Massively Parallel Sequencing

MS-LD* Multi-Sample Linkage Disequilibrium genotype calling method (Sect. 3.3.2)

MS-SS* Multi-Sample Single-Site genotype calling method (Sect. 3.3.1)

NGS Next Generation Sequencing (Sect. 1)

SAM Sequence Alignment/Map format (Sect. 2.1)

SNP Single Nucleotide Polymorphism

SS* Single-Sample genotype calling method (Sect. 3.2)

VCF Variant Call Format (Sect. 2)

1 Introduction

Since 1977, Sanger capillary sequencing [1] had predominated the field of DNA se-
quence generation. It was essentially the single viable DNA sequencing technology
for almost three decades. After more than two decades of gradual improvement, the
costs of Sanger sequencing in the early 2000s were on the order of US $0.5 per kilo-
base (Kb) [2], taking ∼100 minutes [3] to sequence a Kb. This cost and throughput
prohibited its application to large-scale sequencing-based studies. Massively paral-
lel sequencing (MPS; see Table 1 for a list of abbreviation), also known as next-
generation sequencing (NGS), and high-throughput sequencing (HTS), marked this
debut in 2005 [4]. These new sequencing technologies are able to generate 1 Kb se-
quence data at the cost of US $0.00005 in ∼0.002 minute. The growth pattern has
been more remarkable than that in Moore’s Law [5].

Besides ultra-low costs and ultra-high throughput as compared to Sanger sequenc-
ing technology, these new technologies have two other hallmarks highly pertinent to
our topic of SNP detection and genotype calling: first, relatively short read and sec-
ond, high per-base sequencing error rate. Compared to Sanger sequencing, which
can generate reads up to ∼1 Kb with a per-base error rate <0.001 % [2], MPS tech-
nologies generate short reads (typically 30–400 base pairs [bp] in length) with much
higher error rate (0.5–1.0 % error per raw base is typical) [4, 6]. Such high error rates
entail redundant sequencing of each base to distinguish sequencing errors from true
polymorphisms when SNP detection and genotype calling are performed at the level
of a single individual.

Commonly used MPS technologies in the market include the Illumina Solexa
sequencing-by-synthesis [6], Roche 454 pyrosequencing [4], Applied Biosystem
SOLiD [7], Helicos Biosciences [8], Pacific Biosciences [9]. Excellent review pa-
pers [2, 3, 10–14] exist covering various aspects of these new sequencing technolo-
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gies and it is clear that MPS technologies have transformed the field of genomic stud-
ies [10–12]. In particular, in the field of gene mapping for human disease or traits,
these technologies have led to successful identification of causal variants for several
rare Mendelian disorders [15–21]. They also begin to explain some of the missing
heritability from Genome-wide association studies (GWAS) [22–24]. For example,
whole genome sequencing of ∼1000 individuals from an isolated population has
allowed the rediscovery of a coding variant which is known to affect plasma low-
density lipoprotein levels through direct sequencing but was missed using standard
GWAS and imputation [25]. We anticipate MPS to play an increasingly important
role in genomic studies.

One crucial step for the successful application of MPS is variant detection and
genotype calling at detected variant loci. In this review, we will focus on SNP de-
tection and genotype calling at detected SNPs. The remainder of the review will be
organized as follows: we will first introduce a typical workflow of SNP detection and
genotype calling from sequence data. We will then provide a detailed discussion of
methods to detect SNPs and/or perform genotype calling at detected SNPs. In par-
ticular, we categorize the methods into two general groups: those that detect SNPs
or estimate allele frequencies without individual-level genotype calls, and those that
generate individual-level genotype calls. Our focus will be on the latter group, which
we further break down into three types: single-sample (SS), multi-sample single-site
(MS-SS), and multi-sample linkage disequilibrium (LD) based (MS-LD). We will
present representative methods from each category and demonstrate their relative
performance using real data from the 1000 Genomes Project. We will then discuss
the implication of the newly developed SNP detection and genotype calling methods
for the design of sequencing-based association studies, particularly for the study of
complex traits. Finally, we will discuss emerging issues and future directions.

2 A Typical Workflow

Figure 1 depicts a typical pipeline for SNP detection and genotype calling from MPS
data. In this diagram, we start with sequence read data in fastq format files (details
below in Sect. 2.1). The fastq files are generated by base-calling methods from a
series of images directly from sequencing machines. An excellent review paper [26]
and several methods papers [27–30] have been published on base-calling from image
data. Our starting data, the fastq format files, contain the sequence of nucleotides
and their corresponding per-base quality scores, which are typically not very well
calibrated (see Sect. 2.3 for more). At this stage, we have millions or even billions of
short reads from unknown genomic positions. We determine their genomic positions
through read alignment (or, interchangeably, called read mapping) where we map the
short read against the entire reference genome or reference transcriptome (depending
on the application) to find the genomic location of each short read. Short reads are
mapped to their most likely genomic positions with varying levels of uncertainty by
alignment algorithms (details in Sect. 2.2). These algorithms provide the most likely
mapped position along with a mapping quality score for each mapped read, which are
together stored in Sequence Alignment/Map (SAM) or BAM (binary SAM) format
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Fig. 1 A typical workflow for SNP detection and genotype calling. We show a typical workflow for SNP
detection and genotype calling from massively parallel sequencing data, starting from unmapped reads (in
fastq format)

files [31]. Along with or after read alignment, per-base quality score recalibration is
performed (details in Sect. 2.3).

Given data consisting of mapped reads, per-base quality scores, and read-level
mapping quality scores, we can calculate the probabilities of the data conditional on
any of the possible true genotypes for each diploid individual at each base. These
probabilities are stored in Genotype Likelihood Format (GLF) files.1 Together with
a prior on the distribution for the possible true genotypes, one can obtain genotype
calls by applying Bayes’ rule, which forms the basis of most non-LD-based genotyp-
ing methods. LD-based methods take an additional step to refine genotype calls by
borrowing information from other individuals who carry similar haplotypes, where a
haplotype is a specific allele combination across SNPs. The final calls typically con-
sist of the most likely genotype call for each individual at each polymorphic locus,
along with measures of uncertainty, typically stored in Variant Call Format (VCF)
files (for format details, refer to http://www.1000genomes.org/node/101).

We will now provide detailed explanations for every aforementioned step in the
text to follow.

2.1 Sequence Data: fastq Format Files

Before introducing methods to analyze sequence data, we view it helpful to show
what MPS data look like. As mentioned above, the raw sequence data are actually a
series of images, from which base-calling methods infer the sequence of nucleotides
and their corresponding per-base quality scores for each short read. The sequence

1For format details, refer to ftp://share.sph.umich.edu/1000genomes/pilot1/GLF1.pdf, an excerpt from an
early version of http://samtools.sourceforge.net/SAM1.pdf.

http://www.1000genomes.org/node/101
ftp://share.sph.umich.edu/1000genomes/pilot1/GLF1.pdf
http://samtools.sourceforge.net/SAM1.pdf
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Fig. 2 Example fastq file. We show records from a standard format for unmapped reads: fastq format file

of nucleotides and per-base quality scores are typically stored in fastq files (for for-
mat details, see http://en.wikipedia.org/wiki/FASTQ_format). Figure 2 shows a few
records from a fastq file for a CEU (Utah residents [CEPH] with Northern and West-
ern European ancestry) individual (ID for this individual is NA12878) sequenced by
the 1000 Genomes Project [32]. The fastq files are available at ftp://ftp-trace.ncbi.nih.
gov/1000genomes/ftp/data/NA12878/sequence_read/ERR009169.filt.fastq.gz.

Information in Fig. 2 is for five short reads, with four lines constituting one read.
We will take the first read as an example. The first line contains read identifier infor-
mation. The unique ID for this particular read is ERR009169.17725968. The ID line
always starts with the @ character and may contain additional information. The next
line contains the actual sequence of nucleotides called and is a string made up of four
possible characters, A, C, G, and T, for the four possible nucleotides, Adenine, Cy-
tosine, Guanine, and Thymine, respectively. Sometimes, a fifth character, N, is also
included for “no call.” We can also see from this nucleotide line that this particular
short read is of length 76 base pairs. The next line has a single character “+” and
sometimes copies the read ID after the “+” character. The last line contains the per-
base quality score in ASCII characters. From these ASCII characters, we can obtain
per-base phred quality scores [33, 34], denoted by Q:

Q = −10 × log10(e), where e is the per-base sequencing error. (1)

Given the above definition, a phred score of 10 corresponds to one error every 10
bases (or sequencing error rate of 0.1); 20 every 100 bases (or sequencing error rate
of 0.01); and 30 every 1000 bases (or sequencing error rate of 0.001). In the example
fastq, the formula to calculate phred score from the ASCII characters is:

Q = ASCII − 33. (2)

Note: The conversion formula may vary with the source of the fastq file. For example,
some newer versions use Q = ASCII − 64.

Here, the first base in the first read has an ASCII character ‘@’ corresponding to
a numeric value of 64. Using the above formula, we get the phred score of 31, which

http://en.wikipedia.org/wiki/FASTQ_format
ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/data/NA12878/sequence_read/ERR009169.filt.fastq.gz
ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/data/NA12878/sequence_read/ERR009169.filt.fastq.gz
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indicates an estimated sequencing error of 0.00079. Similarly we can calculate the
phred scores for the remaining 75 bases in the read.

2.2 Read Alignment/Mapping

The next crucial step in the analysis of MPS data is read alignment. A large number of
methods have been developed in the past five years for efficiently mapping short reads
to a reference sequence. An incomplete list of commonly used methods includes
MAQ [35], BWA [36, 37], stampy [38], SOAP2 [39], novalign (www.novocraft.com),
BFAST [40], SSAHA [41] most commonly used for DNA sequencing data; and
BOWTIE [42], TOPHAT [43], MapSplice [44], GSNAP [45], and RUM [46] most
commonly used for RNA/transcriptome sequencing data. For a more complete list of
methods and software available, see earlier review articles [47–49] and the following
wiki page: http://en.wikipedia.org/wiki/List_of_sequence_alignment_software.

2.3 Quality Score Recalibration

As previously mentioned, the per-base quality scores estimated by base-calling meth-
ods are typically not well calibrated. For example, when the called nucleotides are
compared with experimental genotypes with comparison restricted at homozygous
genotypes (so that any nucleotide other than the allele underlying the homozygous
genotype can be viewed as a sequencing error), the discordance/error rates typically
do not agree with what is implicated by the per-base quality scores. Since these per-
base quality scores play an important role in SNP detection and genotype calling (see,
for example, Sect. 3.2.1), it is essential to perform quality score recalibration analysis.
One typical procedure as implemented in GATK [50] flows as follows: first we bin
the data according to factors that affect calibration precision. The factors include read
cycle (or position along the read), raw per-base quality score, genomic context (nu-
cleotides before and after the investigated base). Other factors, particularly those that
are specific to a certain MPS technology, have been reported previously [51–53] and
can also be useful for quality score recalibration [54]. After binning, we calculate
the mismatch rate within each bin, at homozygous genotypes when external geno-
types are available (for example, all individuals sequenced by the 1000 Genomes Pi-
lot Project [32] had been genotyped previously by the International HapMap Projects
[55, 56]), or at non-dbSNP [57] sites under the rationale that almost all individuals
are homozygous for the reference allele at these sites. Finally, we reset the per-base
quality scores accordingly to Eqs. (1) and (2) in Sect. 2.1, where e in Eq. (1) is set
to be the mismatch rate calculated. The three above steps are iterated until the final
per-base quality scores stabilize.

Theoretically, the recalibration procedure should be iterated with read alignment
because per-base quality scores and aligned positions affect each other. For exam-
ple, if several bases in a read have much lower recalibrated per-base quality scores,
the read may match better to other genomic positions. Conversely, when reads are
mapped to different places in the genome, the configuration of each bin changes ac-
cordingly, which in turn leads to differently calibrated per-base quality scores. In
practice, read alignment is typically not repeated. This is partly because reads most

http://www.novocraft.com
http://en.wikipedia.org/wiki/List_of_sequence_alignment_software


Stat Biosci (2013) 5:3–25 9

susceptible to changes in per-base quality scores tend to be poorly mapped in the first
place, thus the information from these reads will be downweighted in subsequent
analysis. The time and resources required for read alignment also pose a challenge to
iteration of recalibration and alignment.

3 Methods for SNP Detection and Genotype Calling

We use “SNP detection” to refer to the inference regarding which base has a variant
allele, that is, an allele other than the reference. We use “genotype calling” to refer
to the estimation of genotypes for each individual at detected SNP loci. In this sec-
tion, we will first briefly discuss selected methods that detect SNPs or estimate allele
frequencies but do not estimate individual genotypes (Sect. 3.1). We will then fo-
cus on methods that detect SNPs as well as generate individual-level genotype calls,
breaking the methods into three types: single-sample genotype calling (Sect. 3.2),
multi-sample single-site genotype calling (Sect. 3.3.1) and multi-sample LD-based
genotype calling (Sect. 3.3.2). Note that we use sample to refer to a diploid individ-
ual throughout the review. Hereafter, we will use sample, individual, diploid indi-
vidual interchangeably. This review, ignoring the literature for SNP detection from
Sanger capillary sequencing data, for example, methods underlying PolyBayes [58],
PolyPhred [59, 60], and PolyScan [61], focuses on methods developed for MPS data.

3.1 SNP Detection or Allele Frequency Estimation Methods

Brockman et al. [51] and VarScan [62] detect SNPs using largely heuristic ap-
proaches. VarScan, for example, takes specific features of different sequencing plat-
forms (Roche 454 and Illumina Solexa considered) and different read alignment
methods (compatible with five methods: BLAT [63], Newbler (Roche), cross_match,
BOWTIE [42], and novalign) into consideration. SNP detection is achieved by ap-
plying a series of filters according to thresholds on total read depth (total number
of reads covering the base investigated), strand-specific depths (number of reads in
forward and reverse strand separately), per-base quality scores, and number of reads
carrying the minor allele.

ProbHD proposed by Hoberman and colleagues [64] used a machine learning ap-
proach that considers multiple features to generate a heterozygosity score for each
base. Their method, designed specifically for Roche 454 data, considers a large num-
ber of features including total read depth, strand-specific depths, read cycle (within-
read relative position), per-base quality scores, read alignment quality, and homopoly-
mer length. They used the random forest method [65] which builds multiple decision
trees using these features to classify whether a base is heterozygous. The proportion
of trees that classify a base as heterozygous is used to construct a heterozygosity
score for each diploid individual. Evidence can be accumulated across individuals to
improve detection sensitivity at controlled false call rate.

Atlas-SNP2 [54] detects SNPs in two steps. In the first step, it recalibrates per-base
quality scores for every base carrying the non-reference allele using a logistic regres-
sion on a training data set. In its real data example, the training data set is an inde-
pendent pre-existing data set generated by the same Roche 454 Titanium technology
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and by the same base-calling method as in the data set under study. Predictors consid-
ered in the logic regression include raw per-base quality score, neighboring quality
standard [66], GC content, read cycle, genomic context (flanking nucleotides), and
features specific to the Roche 454 platform (e.g., homopolymer length mentioned
above). In the second step, Atlas-SNP2 accumulates information across all reads
carrying the non-reference allele using the recalibrated per-base quality scores, and
adopts a Bayesian approach to include read depth and prior knowledge of the overall
sequencing error rates into the modeling framework.

Allele frequency estimation has many important applications for disease map-
ping [67, 68] and in the field of population genetics [69, 70]. Although the SNP de-
tection methods discussed above can either estimate allele frequencies or can easily
extend to do so, there are methods that were developed more specifically to fulfill
this important task [71–76]. For example, Kim et al. used likelihood-based methods
to estimate allele frequencies under three different scenarios: when genotypes are al-
ready called from MPS data; when genotypes are not called but the minor allele is
obvious; and when genotypes are not called and the minor allele is not obvious. The
distinction between the second and third scenarios lies mostly between common and
rare variants. For common SNPs, the minor allele frequency (MAF) is high enough,
such that the second most frequently occurring allele can be easily identified from
the three non-reference alleles. However, for rare SNPs, all three non-reference al-
leles may appear similar number of times due to the confounding from sequencing
errors.

3.2 Single-Sample (SS) Genotype Calling

3.2.1 Genotype Likelihood Calculation

As introduced in Sect. 2, the typical step after read alignment and quality score recal-
ibration is to calculate likelihood of the observed sequence data given possible true
genotypes at each base and for every diploid individual. Although, one could deter-
mine the alternative allele (assuming SNPs are bi-allelic and thus there is only one
alternative allele) first and calculate likelihood given three possible true genotypes,
namely homozygote for the reference allele; heterozygote, or homozygote for the al-
ternative allele. Most methods calculate all ten possible true genotypes at every base
pair, as implemented in SAMtools [31]. The calculation involves three pieces of in-
formation: the called nucleotides at each base for each read, per-base quality scores
(better if calibrated), and read-level mapping quality scores.

We will start with a simple scenario where we observe only two alleles at a par-
ticular base from the sequencing data of a particular diploid individual. Denote the
two alleles by A and B where each takes one of the four possible values {A, C, G,
T} corresponding to the four possible nucleotides. The three possible true genotypes
therefore are A/A,A/B , and B/B . Further denote NA the random variable for the
number of reads carrying allele A, and nA and nB the observed number of reads
carrying alleles A and B , respectively. If we assume a uniform per-base sequencing
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error rate of δ and further assume that the probability of misreading allele A as allele
B is the same as the probability of misreading allele B as allele A, we have:

NA ∼

⎧
⎪⎨

⎪⎩

Binomial(nA + nB,1 − δ) G = A/A

Binomial(nA + nB,0.5) G = A/B

Binomial(nA + nB, δ) G = B/B

(3)

In practice, such simple binomial distribution approximations do not perform well
for several reasons. First, the per-base sequencing error rates are not uniform (we
have per-base quality scores which are estimates for the base-specific sequencing
error rate). Second, they do not take into account mapping quality information at the
read level. A base called with high confidence still should not be trusted if the read it
belongs to is mapped to the current position with low confidence. Third, sequencing
errors tend to be correlated instead of independent. To solve the second issue, Li and
Durbin [35] proposed capping the per-base quality scores by the mapping score of
their residing read. To model the base-specific error rates and dependency among
sequencing errors, Li et al. borrow ideas from Huang and Madan [77]. In particular,
the overall error probability of observing nA reads carrying allele A and nB reads
carrying allele B given the true genotype being B/B , denoted by ERRORnA,(nA+nB)

will change from Eq. (4) [according to Eq. (3) above] to Eq. (5):

ERRORnA,(nA+nB) =
(

nA + nB

nB

)

× δnA × (1 − δ)nB (4)

ERRORnA,(nA+nB) = CnA,(nA+nB)

nA−1∏

i=0

δθi

(i+1) (5)

where δ(i+1) indicates the (i + 1)th lowest base error rate and CnA,(nA+nB) is a func-
tion of the per-base error rate estimates δi ’s but varies little with these δi ’s (details
in Li and Durbin [35] Supplementaries 3.1 and 3.2). θ by default is set at 0.85,
which the authors found a reasonable value for Illumina Solexa data. The partic-
ular form in Eq. (5) effectively downweights information from bases with lower
quality scores in a gradually more aggressive fashion. Suppose nA = 3 and that
the sorted corresponding per-base error rates are 0.0001, 0.001, and 0.01, respec-
tively. In particular, the product term in (5) will be (0.0001)θ

0 × (0.001)θ
1 × (0.01)θ

2
.

With the default value θ = 0.85, it becomes (0.0001)1 × (0.001)0.85 × (0.01)(0.85)2 =
(0.0001) × (0.002818) × (0.03589).

Although the presentation above assumed only two alleles, the formulae directly
apply to all four nucleotides because the formulae only depend on the count and qual-
ity scores (again, including per-base and the mapping quality scores) of “error” bases.
Once conditional on the true genotype, it is obvious which bases are sequencing er-
rors. For example, if the true genotype is A/C at a locus for a diploid individual, any
read carrying G or T allele at that locus manifests a sequencing error.

3.2.2 Genotype Prior and Calling via Bayes’ Rule

Once the ten genotype likelihoods are calculated, that is, once we have Pr(Data | G)

where G is the true genotype, inferring genotype becomes trivial. We will only need
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a prior on the true genotypes Pr(G). With these two, namely likelihood Pr(Data | G)

and prior Pr(G), we can easily call genotypes via Bayes’ rule. In particular, the pos-
terior probability of the true genotype Pr(G | Data) can be expressed as follows:

Pr(G | Data) ∝ Pr(G) × Pr(Data | G)

The genotype with the highest posterior probability is then the most likely geno-
type call and measures of calling uncertainty can be easily derived. Such a Bayesian
framework underlies common single-sample genotyping methods though many of the
different methods use different priors. For example, MAQ [35] uses priors in which
the two possible homozygous genotypes (with only the two alleles with largest num-
ber of read support retained) have equal prior probability and the heterozygote has
a prior probability r . The MAQ authors set r = 0.001 to discover new SNPs, and
r = 0.2 for known SNPs. At known SNP loci, more informative priors leveraging the
allele frequency information can help genotype calling when coverage is low (<5X)
or medium (<10–15X). Priors can also be made more informative by distinguishing
homozygous genotype for the reference allele from homozygous genotype for the al-
ternative, and distinguishing transition (A ↔ G, C ↔ T) mutations from transversion
(A/G ↔ C/T) mutations as considered in SOAP-SNP [78].

3.3 Multi-Sample (MS) Genotype Calling

In the previous section, we have laid out the common statistical framework for in-
ferring genotypes for one diploid individual: calculate genotype likelihood, impose
a prior on true genotypes, and then estimate posterior probabilities via Bayes’ rule.
These single-sample methods rely on redundant sequencing of each base to distin-
guish sequencing errors from true polymorphisms [6, 79]. For example, 30X read
depth (where each base is covered by an average of 30 reads) typically results in
>99 % genotyping accuracy [6]. These methods perform well with high depth data
but have unacceptable performance when applied to single individuals with low depth
data. For example, Li et al. [78] reported a per-base false positive rate (FPR) of
0.04 % for a single individual sequenced at 4X, implying a cumulative per-base FPR
of 1− (1−0.04 %)100 = 4 % when applied to 100 independent individuals. This cor-
responds to one false positive per 25 bases, and implies that ∼90 % of the SNPs called
are false positives assuming one true SNP per 200–300 bases. In addition, at depth
4X, the probability that both alleles at a locus are covered at least once is ∼75 % (as-
suming the number of times each allele is covered follows a Poisson distribution with
mean 2), implying that >25 % of heterozygotes cannot possibly be inferred properly.

In an attempt to mitigate these issues and to improve the per-depth information
obtainable, a number of multi-sample methods have been proposed in the last two
years that generate high quality genotypes for medium coverage data (10–20X per
individual), and even for low coverage data (down to 2–4X per individual). We clas-
sify these methods into two categories: multi-sample single-site where information is
integrated across individuals but at each site separately; and multi-sample LD-based
where information is borrowed both across individuals and from flanking sites.
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3.3.1 Single-Site Inference

There are at least two places where information across individuals can facilitate in-
ference. First, at the per-base quality score recalibration step, information from other
individuals, particularly when sequenced together, can be used to form the bins intro-
duced previously in Sect. 2.3. This leads to bins with a larger number of observations,
thus better at avoiding sparse bins and eventually leading to more reliable recalibra-
tion. SNIP-Seq [80], for example, using information across individuals, was able to
partition their sequencing reads into as many as 36 × 2 × 3 bins, according to read
cycle (their read length is 36 bases), strand (forward and reverse), and raw per-base
quality (0–9, 10–19, and 20–30). These very fine bins allowed more accurate cali-
bration of the per-base quality scores, which improves SNPs detection and genotype
calling accuracy.

Secondly, information across individuals can be used to form more informative
prior on true genotypes. We mentioned in Sect. 3.2.2 that allele frequency of known
SNPs can be used to form informative prior. The allele frequency can either come
from previous data, or be estimated using multiple samples sequenced under the cur-
rent study. These allele frequency estimates together with Hardy–Weinberg equilib-
rium [81, 82] can be used to specify a prior on the probabilities of the true genotypes,
as in the SeqEM [83] framework. SeqEM adopts an empirical Bayesian approach.
It uses sequence data consisting of multiple samples to estimate prior parameters
including sequencing error rate and allele frequency.

3.3.2 LD-Based Inference

Integrating information across individuals at the single site level can improve SNP
detection and genotype calling accuracy such that inference on medium coverage
(10–20X) data is possible [80]. To further improve the per-coverage information
gains, multi-sample LD-based methods have been proposed. There are currently three
published methods that fall into this category: MARGARITA [84] + QCALL [85],
GATK [50] + BEAGLE [86], and glfMultiples + thunder [87].

The MARGARITA + QCALL method was developed by Le and Durbin at the
Wellcome Trust Sanger Institute. The method first performs non-LD-based analysis
to detect potential polymorphisms. The non-LD-based analysis integrates informa-
tion across individuals to estimate the probability of being polymorphic at each base.
Bases that are inferred with an SNP probability exceeding a prespecified threshold (in
this case, 90 %) are carried on to their LD-based analysis. In the LD-based analysis,
genealogy inference is first performed using existing genotype data for the individuals
currently sequenced. The inferred genealogy is in the form of ancestry recombination
graph, which is a coalescent tree describing how chromosomes or haplotypes from a
population-based sample are related to each other, through recombination, mutation,
and coalescence, back to a common ancestor. These coalescent trees, defining hap-
lotype sharing patterns among individuals sequenced, can be used to make accurate
genotype calls as long as the alleles defining a local haplotype or a section of a local
haplotype can be determined by one of the individuals carrying it. The accuracy of
the genealogy inference thus directly affects the final genotype calling accuracy. The
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authors recommend using phased haplotypes for more accurate genealogy inference
with MARGARITA.

The GATK + BEAGLE pipeline also starts with potential polymorphism genera-
tion. The candidate SNP generation is fulfilled using an E-M algorithm [50, 88] where
allele frequency at each base is estimated based on information across all sequenced
individuals. Again, bases with high probability of being polymorphic are carried on
to LD-based analysis, using an imputation method implemented in software BEA-
GLE. BEAGLE [86, 89] uses a variable length Markov model to describe local LD
structure and is able to generate genotype calls even at bases with low coverage for
a particularly individual, by borrowing information from other individuals carrying
similar haplotypes in local regions but having reasonable coverage at the investigated
bases.

Similarly, glfMultiples + thunder [87] first promote a set of candidate polymor-
phisms using Bayesian framework. Starting with genotype likelihood Pr(Data | G)

where G is again the true genotype and taking ten possible values, glfMultiples in-
fers the following posterior probability of being polymorphic at each base:

Pr(M = 1{A,B} | Data) ∝ Pr(M = 1{A,B}) × Pr(Data | M = 1{A,B})

where M = 1{A,B} if the base is polymorphic for alleles A and B . The posterior
probability is proportional to the product of the likelihood Pr(Data | M = 1{A,B}) and
the prior on M . The following prior on M is used, according to population genet-
ics principles [90] and knowledge on mutation type relative to the reference allele,
specifically that transitions are twice as likely as transversions [91, 92]:

Pr(M = 1) = θ ×
2n∑

i=1

1/i

Pr(M = 1{A,B}) = c × Pr(M = 1) × μ

where θ is the pairwise nucleotide difference, estimated to be 0.001 [93, 94], n is the
number of diploid individuals sequenced, c is a normalizing constant chosen such
that probabilities for all the configurations sum to one, and μ is a constant set to be
2/3 if A is the reference allele and B is the transition mutation; to be 1/6 if A is the
reference allele and B is the transition mutation; and to be 1/1000 otherwise.

To infer the desired posterior probability M = 1{A,B}, glfMultiples first maximizes
the following likelihood as a function of pA, the frequency for allele A:

L(PA) =
n∏

i=1

Pr(Datai | M = 1{A,B})

=
n∏

i=1

{∑

g

[
Pr(Gi = g|M = 1{A,B}) × Pr(Datai | Gi = g)

]
}

where Pr(g | M = 1{A,B}) = (pA)2 if g = A/A; (1 −pA)2 if g = B/B;2pA(1 −pA)

if g = A/B; and 0 otherwise.
Again, bases with posterior polymorphic probability exceeding a prespecified

threshold are carried into a hidden Markov model-based method that takes LD into
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account [95]. The LD-based calling method in both BEAGLE and thunder adopts
essentially the same statistical framework as used for genotype imputation, which
makes inference on missing genotypes by borrowing information from other individ-
uals carrying similar haplotypes. To read more about genotype imputation, see review
articles [96, 97].

All the three MS-LD methods discussed above share the same two major compo-
nents: candidate SNP generation using information across individuals, at each base
separately; and LD-based genotype calling at candidate sites. All were used to gener-
ate genotype calls with similar accuracy for the 1000 Genomes Pilot Project, where
individuals were sequenced at an average coverage of ∼4X. Combining results of
the three methods into a consensus call sets improved calling accuracy. For example,
average genotype concordance, when compared with experimental genotypes from
the International HapMap Projects, improved to 98.69 % from 97.56–98.01 % by a
single method [32]. This observation suggests that each individual method can be fur-
ther improved. For example, the analysis of sequencing data generated by the 1000
Genomes Main Project has suggested the merit of using BEAGLE-inferred haplo-
types as starting point for the hidden Markov model in thunder (personal commu-
nications with Drs. Gonçalo Abecasis and Hyunmin Kang). Please see the following
wiki page for more information: http://genome.sph.umich.edu/wiki/UMAKE. For an-
other example, Yu and colleagues at the Baylor College of Medicine developed meth-
ods that also show promising results in the analysis of data generated by the 1000
Genomes Project. Their methods are implemented in SNPTools, which is available at
http://www.hgsc.bcm.tmc.edu/cascade-tech-software_snp_tools-ti.hgsc.

A more complete list of available software is summarized in Table 2.

3.4 High Level Comparison of the Genotype Calling Methods

We compared the relative performance of the three classes of genotype calling meth-
ods on CEU individuals sequenced by the 1000 Genomes Project. There are two
individuals, NA12891 and NA12892, who were sequenced at high coverage (aver-
age depth ∼43X), and 70 other individuals sequenced at low depth (average depth
∼4X). We used samtools mpileup, GATK UnifiedGenotyper, and glfMultiples on
each of the 72 individuals separately (therefore SS methods), samtools mpileup,
GATK UnifiedGenotyper, and glfMultiples on all 72 individuals together (therefore
MS-SS methods), and glfMultiples + thunder on all 72 individuals together (there-
fore a MS-LD method). For the two high coverage individuals, we performed calling
on randomly selected 10,20, . . . ,90 % of the sequencing reads to compare relative
performance of the three methods at different read depths. For each of the 72 indi-
viduals, we counted the number of true heterozygote sites (defined based on HapMap
experimental genotypes) called by each of the seven methods and compared with
the corresponding HapMap experimental genotypes. We applied all seven methods
to chromosome4: 57–62 Mb, a region with moderate level of LD, as measured by
physical distance of half-life r2 [98, 99]. In this region, there are 690 and 772 true
heterozygous sites for NA12891, NA12892, and on average 647 (standard deviation:
88, range: 376–841) per person for the 70 low coverage individuals.

Figure 3 shows the results for the two high coverage individuals. All methods
achieve very low genotype discordance rate when the coverage is high. For example,

http://genome.sph.umich.edu/wiki/UMAKE
http://www.hgsc.bcm.tmc.edu/cascade-tech-software_snp_tools-ti.hgsc
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Fig. 3 Comparison of methods on high coverage data from the 1000 genomes pilot project. Three classes
of methods, namely SS, MS-SS, and MS-LD, are compared in terms of both number of heterozygotes
detected and genotype concordance with experimental genotypes (from the International HapMap project)
at detected sites, for NA12891 and NA12892 who were sequenced to a high coverage (average depth
∼40X) in the 1000 Genomes Pilot Project. The right Y -axis shows the number of sites where the method
generates a genotype call and where the experimental genotype is heterozygous. Warm color (red, yellow
and orange) dotted lines and points use this axis. The left Y -axis shows the genotype discordance rate at
the compared heterozygotes. Cool color (blue, green and black) solid lines and points use this axis. For
both SS and MS-SS, three methods are used: GATK (GATK UnifiedGenotyper), GM (glfMultiples), and
ST (samtools). For clarity, the right-Y axis legend is only shown in NA12891 (all sites) and the left-Y axis
legend only shown in NA12891 (overlapping sites). (Color figure online)

genotype discordance rate is <0.5 % for all seven methods attempted when 90 % of
the sequencing data are used for genotype calling. MS-LD method manifests its ad-
vantages when average read depth is moderate or low (<20X coverage when <50 %
of reads are used). For example, when 10 % of the reads for NA12892 are used for
calling, the discordance rate is 40.7–43.0 %, 35.4–52.5 % and 3.4 % respectively
for SS, MS-SS, and MS-LD methods (Fig. 3 top panel lines and dots in cool colors:
black, blue, and green). In general, MS-LD method generates higher quality calls
than SS and MS-SS. Both MS-LD and MS-SS are able to produce genotype calls at
more heterozygous sites than SS. Although MS-SS sometimes generate calls of lower
quality than SS (Fig. 3 top panel), it is largely because of the extra sites detected that
are generally harder to call. For example, when restricting concordance analysis to
sites that are detected by all seven methods, MS-SS always outperform SS (Fig. 3
bottom panel).

Overall, within each category, methods perform very similarly. For the three SS
methods, glfMultiples (GM, yellow) and GATK (orange) tend to call at slightly more
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Fig. 4 Comparison of methods on low coverage data from the 1000 genomes pilot project. Three classes
of methods, namely SS, MS-SS, and MS-LD, are compared in terms of both number of heterozygotes
detected and genotype concordance with experimental genotypes (from the International HapMap project)
at detected sites, for 70 individuals sequenced at low coverage (average depth ∼4X) in the 1000 Genomes
Pilot Project. The right Y -axis shows the number of sites where the method generates a genotype call and
where the experimental genotype is heterozygous. Warm color (red, yellow and orange) dotted lines and
points use this axis. The left Y -axis shows the genotype discordance rate at the compared heterozygotes.
Cool color (blue, green and black) solid lines and points use this axis. For both SS and MS-SS, three
methods are used: GATK (GATK UnifiedGenotyper), GM (glfMultiples), and ST (samtools). For clarity,
the right-Y axis legend is only shown in the top panel (low-coverage all sites) and the left-Y axis legend
only shown in the bottom panel (low-coverage overlapping sites). (Color figure online)

heterozygous sites than samtools (ST, red). GATK (blue) and samtools (ST, black)
generate slightly more accurate calls at heterozygous sites than glfMultiples (GM,
green) (Figs. 3 and 4 top panel, circle points). At the overlapping sites, glfMultiples
generates slightly more accurate calls than samtools and GATK (Figs. 3 and 4 bottom
panel, circle points). For the three MS-SS methods, GATK (orange) tends to call at
slightly fewer heterozygous sites than glfMultiples (GM, yellow) and samtools (ST,
red) and calls genotypes with slightly less accurate quality at both all-heterozygous
and overlapping sites compared (Figs. 3 and 4, triangle points). We only included one
MS-LD method since systematic comparisons have been reported elsewhere [32, 87]
as discussed at the end of Sect. 3.3.2.

Figure 4 shows the results for the 70 low coverage individuals. Consistent with ob-
servations from the two high coverage individuals when a small percentage of reads
are used for calling, MS-LD is the only viable method when dealing with low cover-
age MPS data. The multi-sample methods (MS-LD and MS-SS) have higher power
to detect SNPs. For example, the average discordance rate for the 70 individuals is
16.90–19.70 %, 21.26–29.44 %, and 2.26 % (Fig. 4 top panel lines and points in
cool colors) at an average of 314–343, 604–641, and 641 detected heterozygote sites
(Fig. 4 top panel lines and dots in red) using SS, MS-SS, and MS-LD, respectively.
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When restricting analysis to the overlapping sites (average 296 because all sites de-
tected by SS are detected by MS-SS and MS-LD), the average discordance rate is
17.77–18.24 %, 12.88–18.05 %, and 1.41 %, respectively (Fig. 4 bottom panel).

4 Implications for the Design of MPS-Based Genetic Association Studies

The availability of statistical methods to generate accurate genotype calls for low to
medium coverage data has important implications for the design of sequencing-based
studies. Le and Durbin [85] evaluated, in terms of SNP detection power, five different
designs with the same total sequencing investment of 1600X. The five designs—50
individuals at 32X, 100 individuals at 16X, 200 individuals at 8X, 266 individuals at
6X, and 400 individuals at 4X—allowed evaluations of the trade-off between sample
size and sequencing depth. While reducing the per-sample sequencing depth reduces
power to detect variants in the sample, increasing sample size is likely to include
more copies of the rare alleles in the sample. For example, Le and Durbin reported
on one hand a loss of 187 SNPs when the depth dropped from 32X to 16X among
the 50 sequenced individuals, while on the other hand a gain of 3628 detected SNPs
because of the extra 50 individuals sequenced. In general, their results showed that
sequencing a large number of individuals with low depth (4–6X) is more powerful
for rare SNP discovery than sequencing a small number of individuals at high depth.

Li et al. [87] also investigated the optimal design problem from an imputation
perspective. In particular, they quantified the trade-off between number of SNPs de-
tected and the quality of imputation for these detected SNPs when imputed into an
external sample without sequencing data. In particular, they compared two designs:
60 individuals sequenced at 16X and 400 individuals sequenced at 2X. Both were
used for imputation into an independent sample of 500 individuals with GWAS level
(in this case, roughly 300–600 K SNPs genome-wide) data. They found that the low
coverage design is advantageous in terms of both SNP detection power and imputa-
tion quality in the external sample for SNPs with MAF >0.5 %. For example, the
low coverage design resulted in ∼14 % more imputable SNPs and ∼7 % increase in
average information content, for SNPs with MAF 1–2 %.

The simulations discussed above by Le and Durbin, and Li et al., underpinning the
initial design of the low-coverage 1000 Genomes Project, focus mainly on the design
of MPS-based reference panels that can be utilized by multiple disease/trait-oriented
studies. There are also studies that gauge different design options more explicitly
according to statistical power to detect association with phenotypic trait(s).

For instance, Li et al. [87] evaluated 24 different designs for detecting a single
disease causing variant. The 24 designs investigated included genotyping tagging
SNPs only as in a typical GWAS study in a sample of 3000 individuals, sequencing
a subset of individuals of different sizes (400, 1000, 2000, and 3000 individuals) at
different depths (2X, 4X, 6X, 12X, and 30X), and imputation into individuals not
sequenced. They found the low coverage design (2–4X) a powerful alternative for
studying complex traits where a large sample is typically needed, particularly for the
detection of uncommon disease causing variants.

Sampson et al. [100] proposed likelihood ratio test statistics on sequencing data to
find efficient MPS-based study designs for association analysis with human disease,
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Fig. 5 Alignment and SNP detection are rivals. We illustrate using a toy example that alignment and SNP
detection are two competing goals in the sense that standard alignment methods favor mapping reads to
genomic positions that would lead to under-calling of SNPs

with a particular focus on discovering rare polymorphisms among the sequenced indi-
viduals in the first place and ultimately on detecting rare disease susceptible variants.
Their simulations have lead to similar conclusions. Specifically, they found that the
optimal depth per sample is 2–8X for detecting rare polymorphisms; and that se-
quencing as many individuals as possible at depths as shallow as 1X is preferable
for association analysis. Among studies considering the design of MPS-based stud-
ies [101–109], Kim et al. [104], Wang et al. [106], Ionita-Laza and Laird [109], and
Lee et al. [103] also evaluated the impact of sequencing depth. In particular, Kim et
al. explicitly assessed the trade-off between sequencing depth and sample size, also
finding that sequencing a larger number of individuals at shallower depth is more
powerful than sequencing a smaller number of individuals at higher depth.

5 Remaining Issues and Future Directions

Despite the numerous methods developed recently for SNP detection and genotype
calling from MPS data, there are still many remaining issues that can benefit from
more powerful statistical methods or more efficient computational algorithms.

One issue concerns read alignment. SNP calling methods discussed in this review
all assume that the short reads are correctly aligned. Some only collect count infor-
mation while the most sophisticated methods developed so far take mapping quality
into account. Theoretically, the presence of SNPs can affect read alignment. In par-
ticular, reads carrying the non-reference allele (i.e., reads that support the presence
of SNPs) tend to be biased against during read alignment. For example, Degner et
al. [110] reported a significant bias towards higher mapping rate of the reference al-
lele. Indeed, read alignment and SNP detection can be viewed as rivals as illustrated
by the toy example in Fig. 5.

The read in Fig. 5 can be mapped to two places in the genome, pos1 and pos2, each
with one mismatch. Specifically the read can map to pos1 with a mismatch at the last
base, or to pos2 with a mismatch at the first base. Further suppose that the phred score
at the first base (A) of the read is 50 and at the last base (T) is 10. Read alignment
would favor aligning the read to pos1 because the probability that the last base T is a
sequencing error is 10,000 times that of the first base A. But for the same reason that
the mismatched base has lower quality, SNP detection at this locus would be favored
against. Although being conservative is preferable to having outrageous false positive
rates (FPR), SNP detection power can likely be enhanced at a controlled FPR using
either SNP-tolerant alignment methods [45] or SNP detection methods that take into
account alternative mapping positions.

Further method development is also desired in LD-based genotype calling. First,
all the LD-based methods developed are computationally intensive. For example,
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genome-wide application of the three LD-based methods to 60 CEU individuals
group sequenced by the 1000 Genomes Pilot Project took one to two weeks. Compu-
tational burden, increasing at the maximum cubically with sample size, can become
prohibitive when sample size exceeds 1000. One potential solution is through cloud
computing, as adopted by Myrna for RNA-sequencing differential expression analy-
sis [111]. In addition, existing methods were developed largely for a sample of un-
related individuals; extending these methods to allow family data [112, 113] would
be valuable and could be advantageous for rare variant discovery and subsequent
association mapping. For example, Chen et al. proposed a method to consider both
LD patterns and the constraints imposed by family structure when assigning individ-
ual genotypes and haplotypes. Their method implemented in TrioCaller demonstrates
that trios provide both higher genotype calling and phasing accuracy across frequency
spectrum, both overall and at hard-to-call heterozygous sites.

Finally, the ultimate goal of genomic studies is almost never detecting SNPs or
obtaining SNP genotypes but rather to detect SNPs or genes that are associated with
phenotypic trait(s) of interest. Therefore, it is desirable to have statistical methods that
can incorporate uncertainty in genotype calls, for subsequent imputation and eventu-
ally for association mapping [114–116]. There is a rich recent literature for testing
rare variants detected in sequencing-based studies. See review articles [117, 118] but
there is no consensus on the most powerful method(s). In addition, population strat-
ification, a potential confounder for association analysis, warrants further research
in the new sequencing context [119]. It is unclear whether common genetic variants
alone suffice for population substructure inference, or whether rare variants detected
through sequencing can improve the precision of ancestry inference, which would
eventually lead to enhanced power in association analysis. All the aforementioned
tasks are directly pertinent to association mapping and can be greatly affected by
SNP detection and genotype calling. Although some genotype-free methods [120]
have been proposed for various association and population genetics analyses, the vast
majority of analyses rely heavily on accurate SNP detection and genotype calling
methods. We anticipate more research, both in statistical methodology and computa-
tional algorithms, in this important arena.
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