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Abstract
Early diagnosis plays a crucial role in controlling Alzheimer’s disease (AD) progression and delaying cognitive decline. 
Traditional diagnostic tools present great challenges to clinical practice due to their invasiveness, high cost, and time-con-
suming administration. This study was designed to construct a non-invasive and cost-effective classification model based 
on eye movement parameters to distinguish dementia due to AD (ADD), mild cognitive impairment (MCI), and normal 
cognition. Eye movement data were collected from 258 subjects, comprising 111 patients with ADD, 81 patients with MCI, 
and 66 individuals with normal cognition. The fixation, smooth pursuit, prosaccade, and anti-saccade tasks were performed. 
Machine learning methods were used to screen eye movement parameters and build diagnostic models. Pearson’s correlation 
analysis was used to assess the correlations between the five most important eye movement indicators in the optimal model 
and neuropsychological scales. The gradient boosting classifier model demonstrated the best classification performance, 
achieving 68.2% of accuracy and 66.32% of F1-score in multiclass classification of AD. Moreover, the correlation analysis 
indicated that the eye movement parameters were associated with various cognitive functions, including general cognitive 
status, attention, visuospatial ability, episodic memory, short-term memory, and language and instrumental activities of daily 
life. Eye movement parameters in conjunction with machine learning methods achieve satisfactory overall accuracy, making 
it an effective and less time-consuming method to assist clinical diagnosis of AD.

Keywords Alzheimer’s disease · Mild cognitive impairment · Eye movement · Machine learning model · Multiclass 
diagnosis

Introduction

Approximately 57.4 million people were living with demen-
tia worldwide in 2019. What is more, population aging has 
been having an enormous impact on the increasing preva-
lence of dementia. By the year 2050, the worldwide preva-
lence of dementia will grow to more than double, to 152.8 
million, according to the forecast [1]. Dementia is generally 
understood as an acquired loss of cognitive ability caused by 
brain disease or injury that is sufficiently serious to interfere 
with functional activities of daily living [2]. Dementia due 
to Alzheimer’s disease (ADD) is the most common form of 
dementia, accounting for about 60% of all dementia cases 
[3]. Between ADD and normal cognition, there can be a pro-
dromal, intermediate stage called mild cognitive impairment 
(MCI). MCI is marked by lower performance in one or more 
cognitive domains than the person’s previous level, although 
this does not fully interfere with independence of function 
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in daily life [4]. Based on statistical data, the prevalence of 
MCI is two times higher than dementia, with an estimated 
annual conversion rate of 10–15% towards dementia [5]. The 
rising prevalence of MCI and ADD results in a substantial 
economic burden on both individuals and society [6].

Early detection and diagnosis of ADD could motivate 
patients and caregivers to participate in early and effective 
therapeutic intervention, potentially improving quality of 
life and reducing the death rate of ADD [7]. However, the 
diagnosis of ADD and MCI has always been challenging in 
the clinic. At present, positron emission tomography (PET) 
targeting amyloid plaque deposition and tau tangle is the 
only approved test for Alzheimer’s disease (AD) diagnosis 
by FDA [8, 9]. Nevertheless, these scans are costly. Neu-
ropsychological assessment is most widely used to obtain 
the overall level of cognitive functioning and screen for cog-
nitive impairment [10, 11]. However, the use of compre-
hensive neuropsychological assessment in clinical practice 
still faces many obstacles, including time-consuming and 
requiring a trained and qualified professional, which limits 
its application in clinical practice [12]. Furthermore, most 
screening tools based on language are affected by educa-
tional level and age [13]. Thus, the discovery of a reliable, 
noninvasive, and affordable marker would be an urgent need 
for subsidiary diagnosis of cognitive impairment in routine 
clinical work.

Eye movement, a sensitive, low-cost, non-invasive, and 
portable marker, has emerged as a potential tool for detecting 
cognitive change or deterioration [14, 15]. Eye movements 
are triggered and regulated by an intricate neural network 
involving numerous cortical and subcortical regions, which 
develop specific pathological changes beginning decades 
before clinical symptoms appear in patients with AD. Hence, 
eye movement has the potential for the timely identification 
of subtle cognitive deterioration [16]. Abnormalities in eye 
movements have been repeatedly observed in patients with 
AD. For example, patients with ADD have longer prosac-
cade and anti-saccade latencies and more anti-saccade errors 
than cognitively normal older adults [17, 18]. A critical issue 
then is whether eye movement has the potential to diagnose 
AD.

Several studies aim to distinguish patients with MCI and 
AD from normal cognition or distinguish AD from MCI 
using eye movements [19–21]. These studies achieve diag-
nostic results with the area under the receiver operating 
characteristic curve (AUC) reaching 0.752. Nonetheless, 
for effective clinical application, eye movement must be 
able to simultaneously distinguish ADD, MCI, and normal 
cognition, which needs further exploration. Moreover, the 
relationship between eye movements and specific cognitive 
subdomains is still unclear even prosaccade latency, anti-
saccade errors, and saccadic intrusions have been found to 
correlate with Mini-mental State Examination (MMSE) 

[22]. Therefore, the critical issue of how eye movements 
can diagnose AD remains inadequately addressed.

In this study, we collected demographic information, cog-
nitive scores, and eye movement metrics from participants 
who completed the fixation, smooth pursuit, prosaccade, and 
anti-saccade tasks and screened the key eye movement mark-
ers that are capable of distinguishing ADD, MCI, and nor-
mal cognition. In addition, machine learning models were 
constructed to explore the diagnostic potential of eye move-
ments. As a secondary objective, we aimed to determine 
the correlation of eye movement parameters with various 
specific cognitive subdomains through neuropsychological 
scales.

The main findings of our study are as follows: Firstly, 
16 key eye movement features were identified for diag-
nosing cognitive impairment, including saccadic latency, 
error rate, and number of forward saccades. Secondly, 17 
three-classification diagnostic models for ADD, MCI, and 
normal cognition were established, with the GBC model 
demonstrating superior performance, achieving an accuracy 
of 68.2% and an F1-score of 66.32%. Finally, the novel asso-
ciation between eye movement parameters in prosaccade and 
anti-saccade tasks and Free and Cued Selective Reminding 
Test (FCSRT)-immediate total recall, instrumental activities 
of daily life (IADL), and Boston Naming Test (BNT)-total 
score was observed.

Related Work

Jessica et al. summarized the researches that used eye-track-
ing technology and computational analysis to measure and 
compare eye movements in participants with different cog-
nitive statuses. The authors introduced three tasks that are 
more complex than saccadic eye movement tasks, encom-
passing reading task, visual exploration task, and free view-
ing video task. At the same time, it is proposed that currently 
eye trackers have only been used in controlled laboratory 
environments, while by using computational technology to 
analyze recorded videos, eye tracking can be applied to a 
wider range of scenarios [23].

Opwonya et al. utilized eye movement parameters to gen-
erate logistic regression, random forest classifier, support 
vector machines, and extreme gradient boosting classifica-
tion models to predict cognitive status, and logistic regres-
sion algorithm exhibited the highest AUC of 0.715 in nor-
mal cognition vs MCI classification [19]. Logistic regression 
algorithm was also implemented by Jiang et al. for selecting 
discriminatory features and classifying different models, 
achieving discrimination with an AUC of 0.807 in normal 
cognition vs MCI classification [20].

Liu et al. proposed a novel deep learning-based approach 
called Depth-induce Integrated Comparison serial attention 
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Network (DISCN). The multi-image integration module was 
used to integrate visual stimuli and eye movement heatmap 
into visual saliency map, which were then sent to serial 
attention module for diagnosis. The DISCN achieved an 
AUC difference of 0.81 in normal cognition vs AD clas-
sification [24].

The aforementioned studies achieved a high rate of 
accuracy in the binary classification due to clear distinc-
tions between the two groups. However, tackling the three 
classifications of AD diagnosis proves to be more practical 
but formidable compared to binary classification [25, 26]. 
Currently, only a few diagnostic models have achieved an 
accuracy of over 60% in the three classifications of AD [27]. 
Tong et al. utilized a nonlinear graph fusion approach in the 
three-classification diagnosis of AD, achieving an accuracy 
of 60.2% [28]. Lin et al. achieved a three-classification diag-
nosis accuracy of 66.7% by using decision tree algorithm 
with multimodal data of magnetic resonance imaging (MRI), 
PET, cerebrospinal fluid markers, and genetic features [29]. 
In another study, the multiclass diagnosis of AD was per-
formed using electroencephalography (achieved accura-
cies of 65.52%) and functional near-infrared spectroscopy 
(achieved accuracies of 58.62%) [30].

Methods

Participants and Diagnosis Procedures

In this study, 258 subjects were recruited from Memory 
Clinic, Department of Geriatrics, The First Affiliated Hos-
pital of Chongqing Medical University and the surround-
ing community, including 111 patients with ADD, 81 
patients with MCI, and 66 people with normal cognition. 
The detailed demographic information of subjects was pro-
vided in Table 1, and the flowchart is shown in Fig. 1, Step 
I. The diagnosis was performed by experienced geriatric 
psychiatrists according to the results of clinical evaluation 
and cognitive assessment. AD diagnosis was determined 
using the National Institute of Aging and the Alzheimer’s 

Disease Society for clinically probable AD in 2011[31]. 
MCI diagnosis was made according to MCI International 
Working Group consensus criteria [4]. Inclusion crite-
ria included being 60 years or older, participating in the 
study voluntarily, and having sufficient hearing and vision 
to complete the neuropsychological test and eye-movement 
calibration. Patients with a history of alcohol or drug abuse, 
severe psychiatric illness, intracranial tumor, or stroke were 
excluded. The protocol was approved by the Medical Ethics 
Committee of The First Affiliated Hospital of Chongqing 
Medical University (approval number: 20212901; time of 
ethics approval: 10 May 2021). All participants or their 
legal guardians signed the informed consent after receiving 
a detailed explanation of the study.

Neuropsychological Evaluation

Neuropsychological batteries were used to assess general 
cognitive status, attention, executive function, language, 
visuospatial skills, and memory. General cognitive status 
was evaluated by MMSE and Alzheimer’s Disease Assess-
ment Scale-Cognitive subscale (ADAS-Cog) [32, 33], atten-
tion was assessed by Trail Making Test-A (TMT-A) and 
Digit Span Test (DST) [34], executive function was assessed 
by TMT-B [35], language was assessed by BNT [36], visu-
ospatial skills were assessed by Clock Drawing Test (CDT) 
[37], memory was assessed by FCSRT and Auditory Verbal 
Learning Test (AVLT) [38, 39], the abilities of daily life 
were assessed by physical self-maintenance scale (PSMS) 
and IADL scale [40].

Assessment of Eye Movement

Eye movement parameters were recorded during four vis-
ual tasks, including direct gaze toward the target (fixation 
task), smooth pursuit tasks, looking toward a jumping target 
(prosaccade task), and looking away from a jumping tar-
get (the anti-saccade task). A desktop-mounted eye-tracker 
(Tobii4L model, Ji Zhi Medical Technology Co. Ltd, China) 
monitored eye movements using the 250 Hz pupil-corneal 

Table 1  Participants’ 
demographic characteristics

Data are presented as median (interquartile range); Pa, Kruskal–Wallis test; Pb, the chi-square test. Abbre-
viation: NC normal cognition, MCI mild cognitive impairment, ADD dementia due to Alzheimer’s disease, 
MMSE Mini-mental State Examination, ADAS-Cog Alzheimer’s Disease Assessment Scale-Cognitive sec-
tion

Variable Total NC MCI ADD P-value
N = 258 N = 66 N = 81 N = 111

Age 73.22(8.64) 69.50(15.00) 72.00(11.00) 76.00(9.00) 0.001a*
Female, N (%) 164(63.60) 49(74.20) 49(60.50) 66(59.50) 0.064b

Education, (y) 9.28(4.25) 10.50(4.00) 9.00(5.00) 9.00(7.00) 0.076a*
MMSE 21.00(9.00) 29.00(3.00) 25.00(6.00) 17.00(8.00)  < 0.001a*
ADAS-Cog 16.33(15.49) 6.69(2.22) 13.40(9.37) 22.85(14.69)  < 0.001a*
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reflex mode. Tasks were displayed on a 15.6-inch LED 
monitor and a screen resolution of 1920 by 1080 pixels. All 
subjects were seated approximately 60 cm from the screen; 
their heads were properly fixed on the support frame and 
their eye position was horizontally aligned with the center 
of the screen. The sign of proper head fixation was that two 
bright circles, around 0.5–1 cm in size, appeared in the 
center of the screen. The instrument tracked eye movements 
in horizontal (± 30°) and vertical (± 30°) positions. The test-
ing was performed in a separate, quiet room without strong 
light stimulation. The built-in software, Tobii Studio, was 
used to collect and analyze the eye-movement data.

Candidate Feature Selection

Univariate analysis was carried out for eye movement param-
eters and general information. Specifically, Kruskal–Wal-
lis tests were used to compare continuous variables, and 
two-sided chi-squared test was used to compare categorical 
variables. Next, the meaningful variables detected by uni-
variate analysis were subjected to further screening. Light 
gradient boosting machine-based recursive feature elimina-
tion (LightGBM-RFE) and lasso-multinomial algorithms in 
conjunction with a five-fold cross-validation approach were 
employed to obtain the two optimum feature sets. Finally, 
the intersection of two optimum feature sets was used to 
build the machine learning model. The flowchart is shown 
in Fig. 1, Step II.

Establishment and Validation of Machine Learning 
Models

The diagnostic model for classifying ADD, MCI and normal 
cognition was constructed based on the filtered feature set 
using machine learning algorithms including gradient boost-
ing classifier (GBC) [41], light GBM [42], random forest 
classifier [43], extra trees classifier [44], naïve Bayes [45], 
logistic regression [46], ridge classifier [47], linear discri-
minant analysis [48], decision tree classifier [49], quadratic 
discriminant analysis [50], ada boost classifier [51], sup-
port vector machines-linear kernel-linear kernel [52], K 
neighbors classifier [53], and dummy classifier [54]. These 
algorithms were implemented by using PyCaret package 
(version 2.3.3). The leave-one-out method was used for ten-
fold cross-validation of the model and the evaluation metric 
included accuracy, macro_Sensitivity, macro_Specificity, 
the AUC and macro_f1. The calculation formula is as fol-
lows: Accuracy = (TP + TN)/N; macro_Sensitivity = (Sen-
sitivity_class1 + Sensitivity_class2 + Sensitivity_class3)/N; 
macro_Specificity = (Specificity_class1 + Specificity_
class2 + Specificity_class3)/N; macro_F1 = (F1_class1 + F1_
class2 + F1_class3)/N. The optimal model with the highest 
macro_f1 value was used as the final model. The hyperpa-
rameters of the model and the tuning range for hyperparam-
eters can be found in Supplementary Table 1. The flowchart 
is shown in Fig. 1, Step III.

Fully Connected Neural Network (FCNN) is a fundamen-
tal deep learning model that utilizes a hierarchical structure 

Step Ⅰ Data collection and preprocessing

NC=66

ADD=111

MCI=81

Step Ⅱ Prepare candidate clinical variables for the model

Step Ⅲ Establish and evaluate classification model

Excluding research 
subjects with poor 
vision (MCI=1, AAD=2)

Subjects(n=258)

intersect 5-fold cross-validation

All Data Data1 Data2 ...... Data10

Data1 Data2 Data9
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......
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Data10
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Data2 Data3 Data10 Data1

result1
result2
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......
result10

average results

17 Machine Learning Models

4 optimal models and LRhyperparameter optimization 

optimal model

Step Ⅳ The correlation between important indicators of the 
model and neuropsychological scales

Enroll subjects(n=258)

optimal model The most important 5 features

NC=28

ADD=111

MCI=81

Cognitive scale 

correlation analysis 

Enrolled research 
subjects (n=261)

   Collect eye 
movement data
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feature set
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......

    Single factor
screening method

Feature set after
   using single 
 factor method

Kruskal-Wallis test 
 or Chi-square test
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LightGBM

     Lasso-
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    Final
feature set

Fig. 1  The flowchart of the proposed model, which was composed of four steps: data collection and preprocessing; feature selection; establish-
ment and evaluation of classification model; the correlation between important indicators of the model and neuropsychological scales
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to map input data to output results [55]. FCNN consists of 
multiple layers, including an input layer, hidden layers, and 
an output layer. Input layer accepts an input feature vector 
with a dimension of input_dim. First hidden layer contains 
64 neurons. The activation function is ReLU (rectified lin-
ear unit), which introduces non-linearity. Second hidden 
layer contains 32 neurons. The activation function is ReLU. 
Output layer contains 3 neurons corresponding to 3 catego-
ries. The activation function is Softmax, used to output the 
probability for each category. For model compilation, the 
optimizer is adaptive moment estimation (Adam). The loss 
function is categorical cross-entropy, suitable for multi-class 
problems.

Feature Transformation-Transformer (FT-Transformer) 
is the latest advancement in deep learning, building on the 
success of other well-established architectures such as con-
volutional neural networks and recurrent neural networks 
[56]. FT-Transformer includes a linear embedding layer, two 
transformer encoder layers, a fully connected layer, and a 
dropout layer. The parameters for the transformer encoder 
layers are as follows: the input feature dimension is 16, the 
embedding dimension is 32, each layer employs 4 parallel 
attention mechanisms, and the dropout rate is 0.1, mean-
ing that 10% of neurons are randomly “dropped out” during 
each forward pass. The activation function is ReLU, and the 
training is conducted over 100 epochs. The Adam optimizer 
is used for model optimization. Finally, the model’s perfor-
mance is evaluated using tenfold cross-validation.

Self-attention model [57] consists of an embedding 
layer, self-attention layer, average pooling, dropout layer, 
and fully connected layer. The embedding layer elevates the 
dimensionality, transforming the input feature dimension 
from 16 to an embedding dimension of 32, thereby enhanc-
ing the model’s capacity to capture information. The self-
attention layer encompasses the computation of attention 
scores, application of softmax, and weighted summation. 
Specifically, attention scores are calculated by determin-
ing the similarity between queries and keys through a dot 
product, normalized by dividing by the square root of the 
vector dimension. The softmax function is utilized to con-
vert attention scores into attention weights, and the weighted 
summation involves multiplying these attention weights by 
the corresponding values to produce the final output. The 
dropout rate is set to 0.1, and the model is trained for 100 
epochs. The Adam optimizer is used for model optimization.

Analysis of Key Features

The top five important features were extracted in the best-
performing machine learning model. Pearson’s correlation 
analysis was adopted to calculate the correlation between 
the top five important features and cognitive scales. Group 
comparisons as well as correlations have been performed 

for the three most relevant scales. The flowchart is shown 
in Fig. 1, Step IV.

Statistical Analysis Environment

All statistical analysis and computations were done using 
R version 4.2.2 and Python Version 3.6.2. Categorical vari-
ables were expressed as frequency (percentage). The con-
tinuous variables conforming to the normal distribution were 
expressed as the mean ± standard deviation and the other not 
conforming to normal distribution were presented as median 
(interquartile range). All differences with p < 0.05 were con-
sidered statistically significant. Plots were generated with the 
packages Matplotlib and ggplot2.

Results

Eye Movement Characteristics in Different Severities 
of Cognitive Impairment

A total of 38 eye movement features were acquired using the 
built-in software of an eye tracker. Subsequently, 25 were 
statistically significant among ADD, MCI, and normal cog-
nition by the univariate analysis. Detailed data is shown in 
Table 2.

Selection of Diagnostic Markers via Lasso 
and LightGBM‑RFE

Two distinct algorithms (Lasso and LightGBM-RFE) were 
used for selecting feature sets screened from the meaning-
ful variables identified through univariate analysis. For 
the Lasso algorithm, feature set was selected based on the 
minimum mean cross-validated error of the lambda value 
and a set of 21 parameters was selected (Fig. 2A, B). For 
LightGBM-RFE algorithm, the feature set was selected 
based on the highest macro_f1 value, and the classifier pro-
duced the minimum error when the feature number was 20 
(Fig. 2C). Overall, 16 features shared between the Lasso 
and LightGBM-RFE algorithms as diagnostic markers for 
cognitive impairment were finally selected for further analy-
sis (Fig. 2D). The optimal feature set encompassed features 
from four tasks, especially the prosaccade and anti-saccade 
tasks. The detailed features information is found in Table 3.

Establishing Machine Learning Model 
for Diagnosing ADD, MCI and Normal Cognition

After feature selection, the machine models were trained 
using Pycaret, and Supplementary Table 2 describes the 
performance of these models. The models’ performance 
was evaluated using AUC, precision, recall, accuracy and 



 Cognitive Computation

Table 2  Comparison of multiple models of eye movement in different individuals with cognitive impairment

Data are presented as median (interquartile range); Kruskal–Wallis test for comparisons between three groups. Abbreviations: NC normal cogni-
tion, MCI mild cognitive impairment, ADD dementia due to Alzheimer’s disease

Total NC MCI ADD P-value Stats

Prosaccade task
  Gaze duration, (ms) 2230.56(185.53) 2248.78(209.37) 2231.31(147.69) 2226.39(212.51) 0.303 2.390
  Number of gaze point 200.75(16.70) 202.30(18.84) 200.82(13.29) 200.38(19.04) 0.302 2.394
  Saccadic latency, (ms) 280.82(88.60) 243.82(54.61) 274.20(74.64) 322.65(105.75)  < 0.001* 70.9
  Saccadic distance, (pixels) 1816.71(1148.48) 1633.79(680.85) 1747.13(838.94) 2225.80(1626.93)  < 0.001* 29.3
  Saccadic average speed, (ms/pixels) 5.70(8.66) 2.36(6.87) 6.98(9.05) 5.33(10.62) 0.009* 9.353
  Fixation duration, (ms) 331.47(218.36) 300.06(261.38) 317.08(187.20) 361.51(238.26) 0.007* 9.974
  First fixation duration, (ms) 69.45(38.11) 68.44(39.62) 74.43(34.68) 67.39(44.69) 0.104 4.519
  Number of fixation point 3.28(3.83) 3.25(4.75) 3.08(1.72) 4.00(4.88) 0.011* 9.008
  Fixation latency, (ms) 674.46(570.43) 620.64(532.95) 807.80(578.87) 582.60(568.05)  < 0.001* 15.7
  Gaze duration in left area/total area, 

%
44.71(7.50) 45.65(3.60) 45.40(6.46) 43.16(10.90)  < 0.001* 18.4

  Gaze duration in middle area/total 
area, %

10.35(7.37) 8.13(4.11) 10.06(6.68) 13.15(8.88)  < 0.001* 36.7

  Gaze duration in right area/total area, 
%

44.63(8.15) 45.93(3.73) 44.25(7.53) 43.10(11.23) 0.007* 9.939

  Number of forward saccades 158.43(41.18) 169.40(26.19) 161.88(29.00) 140.86(69.54)  < 0.001* 35
  Number of backward saccades 76.37(157.94) 7.29(163.70) 146.78(160.85) 18.63(136.20) 0.018* 7.986

Anti-saccade task
  Gaze duration, (ms) 2238.83(200.79) 2233.84 (192.36) 2205.56(136.07) 2262.50(241.94) 0.081 5.012
  Number of gaze point 201.49(18.07) 201.05(17.31) 198.50(12.25) 203.63(21.78) 0.081 5.021
  Saccadic latency, (ms) 672.70(366.00) 466.71(135.37) 675.67(225.62) 866.05(642.85)  < 0.001* 119
  Saccadic distance, (pixels) 2949.80(1218.66) 2616.88(1017.08) 2958.81(1336.21) 3146.16(1431.18)  < 0.001* 17.835
  Saccadic average speed, (ms/pixels) 9.63(14.50) 7.72(12.50) 12.49(14.78) 3.03(15.74) 0.007* 9.912
  Fixation duration, (ms) 382.05(210.29) 350.89(210.91) 359.85(186.04) 419.09(225.51) 0.003* 11.506
  First fixation duration, (ms) 68.58(38.43) 76.87(35.27) 66.73(37.50) 63.47(39.79) 0.023* 7.535
  Number of fixation point 3.63(3.57) 3.44(3.46) 3.13(2.72) 4.17(4.50) 0.106 4.492
  Fixation latency, (ms) 798.61(847.86) 713.88(646.71) 1050.88(918.06) 625.42(924.35) 0.016* 8.256
  Gaze duration in left area/total area, 

%
43.15(7.21) 43.16(4.04) 44.34(8.33) 42.14(9.95) 0.071 5.292

  Gaze duration in middle area/total 
area, %

11.27(5,17) 10.53(3.45) 11.76(5.35) 11.46(5.68) 0.242 2.835

  Gaze duration in right/total area, % 45.15(6.94) 45.41(5.68) 44.47(7.31) 45.64(9.56) 0.196 3.257
  Number of forward saccades 28.50(33.42) 15.56(17.07) 27.50(17.38) 45.00(48.75)  < 0.001* 93.4
  Number of backward saccades 37.50(100.09) 69.60(150.49) 31.88(60.18) 44.25(67.00) 0.459 1.558
  Error rate, % 0.00(0.34) 0.00(0.00) 0.00(0.04) 0.375(0.875)  < 0.001* 109

Fixation task
  Gaze duration, (ms) 22,683.33(1572.22) 22,855.56(1172.22) 22,588.89(1455.56) 22,500(2133.33) 0.272 2.603
  Number of gaze point 2043.00(143.00) 2057.00(106.00) 2036.00(133.00) 2025.00(192.00) 0.260 2.697
  Number of fixation point 30.00(38.00) 25.50(50) 27.00(27) 37.00(53) 0.029* 7.087
  Fixation jump-offs number 7.00(10.00) 4.00(6.00) 8.00(12.00) 7.00(10.00) 0.003* 11.423

Smooth pursuit tasks
  Gaze duration, (ms) 2223.61(192.01) 2248.61(198.96) 2206.48(152.08) 2217.59(224.07) 0.010* 9.153
  Number of gaze point 200.13(17.28) 202.38(17.91) 198.58(13.69) 199.58(20.17) 0.010* 9.158
  Number of fixation point 6.00(3.13) 6.00(22.25) 5.88(2.50) 6.25(4.46) 0.242 2.834
  Pursuit number 3.58(1.17) 3.75(1.03) 3.63(1.08) 3.38(1.42) 0.017* 8.209
  Average pursuit number 34.00(14.00) 36.00(16.00) 38.00(16.00) 31.00(14.00) 0.002* 12.566
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F1-score metrics. Results showed that GBC, LightGBM, 
random forest classifier, and extra trees classifier were the 
four best-performing models according to the F1-score. 

Logistic regression was allowed to proceed to subsequent 
parameter optimization since it is widely used to deal with 
classification problems. After parameter optimization, the 
GBC model showed the optimal balanced prediction perfor-
mance after parameter optimization and the accuracy, recall, 
precision, and F1-score were 0.6820, 0.6681, 0.6761, and 
0.6632. Table 4 and Fig. 3 show the specific performance of 
the five machine learning models.

To further validate the performance of the GBC model, 
comparative experiments were conducted using the FCNN, 
FT-Transformer, and self-attention models. The accuracy, 
recall, precision, and F1-score of the FCNN model were 
0.6508, 0.6508, 0.6870, and 0.6553, respectively (Fig. 4A). 
The corresponding metrics for the FT-Transformer model 
were 0.6091, 0.5970, 0.5969, and 0.5802 (Fig. 4B). For the 
self-attention model, these metrics were 0.5818, 0.5576, 
0.6053, and 0.5404 (Fig. 4C). The results indicate that 

Fig. 2  A Lasso coefficient profiles of the twenty-five eye movement 
parameters. B Selection of the optimal lambda value through the 
tenfold cross-validation. C Line graph shows the f1 value based on 

different numbers of eye movement parameters in LightGBM-RFE 
model. D Screening of sixteen eye movement parameters using Lasso 
and LightGBM-RFE algorithms

Table 3  The 16 eye movement parameters screened by Lasso and 
LightGBM-RFE algorithms

Task Variables

Prosaccade task Saccadic latency; gaze duration in right area/
total area; number of backward saccades; 
fixation point; number of forward saccades; 
saccadic average speed

Anti-saccade task Saccadic latency; error rate; number of forward 
saccades; fixation latency; first fixation dura-
tion; saccadic distance; fixation duration

Fixation task Fixation point; fixation jump-off number
Smooth pursuit task Gaze duration
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the performance of these three models is inferior to that 
of the GBC model. This discrepancy may be due to the 
one-dimensional vector nature of the eye-movement data 
in this study, which may not be well-suited for end-to-
end machine learning model development. Additionally, 
the three models require a substantial volume of data for 
robust training to achieve effective feature representations 
and generalization. In contrast, the GBC model may per-
form better on small-scale structured datasets.

The Correlations of Top Five Eye Movement 
Parameters Ranked by Importance Based on GBC 
Model and Neuropsychological Scales

To determine the contribution of individual features to 
the GBC model’s performance, we computed the Gini 
importance and identified the five most important features. 
The five most important features were saccadic latency in 
anti-saccade task, error rate in anti-saccade task, saccadic 
latency in prosaccade task, number of forward saccades in 
anti-saccade task, and gaze duration in the right area/total 
area (%) in prosaccade task. Detailed results are presented 
in Fig. 5.

Thereafter, correlation analyses were conducted 
between these features and the neuropsychological test 
scores (Fig. 6A). Saccadic latency in prosaccade task was 
positively correlated with IADL (r = 0.41; p < 0.001), neg-
atively correlated with CDT (r =  − 0.49; p < 0.001) and 
TMT-A (r =  − 0.38; p < 0.001). Saccadic latency in anti-
saccade task was negatively correlated with FCSRT-imme-
diate total recall (r =  − 0.34; p < 0.001), BNT-total score 
(r =  − 0.37; p < 0.001) and TMT-A (r =  − 0.46; p < 0.001). 
Error rate in anti-saccade task was negatively correlated 
with CDT (r =  − 0.48; p < 0.001), TMT-A (r = 0.57; 
p < 0.001), and TMT-B (r = 0.49; p < 0.001). Number of 
forward saccades in anti-saccade task was negatively cor-
related with reverse-DST (r =  − 0.44; p < 0.001), TMT-A 
(r =  − 0.55; p < 0.001), and TMT-B (r =  − 0.46; p < 0.001). 
The detailed presentation of the subgroup analysis can be 
observed in Fig. 6B.

Discussion

The present study establishes a three-classification diagnos-
tic model for ADD, MCI, and normal cognition with 68.2% 
of accuracy and 66.32% of F1-score. Moreover, the new 
link of eye movements with episodic memory, language, 
and IADL has been detected. Together, our results indicate 
that eye movement biomarkers are of great significance for 
the diagnosis of AD in clinical practice. To the best of our 
knowledge, this is the first study to evaluate the potential of 
eye movement biomarkers in differentiating ADD, MCI and 
normal cognition, and to elucidate the association between 
eye movement features and individual cognitive functions.

The Three‑Classification Model for Diagnosing AD 
Based on Eye Movements

In this study, the proposed three-classification diagnostic 
model could accurately and directly distinguish between 
ADD, MCI, and normal cognition. In contrast, the binary-
classification models established in previous studies are only 
able to differentiate between AD or MCI and normal cogni-
tive function—examples include Opwonya et al. [19], Jiang 
et al. [20] and Liu et al. [24]. Other studies that included nor-
mal cognition, MCI and AD did not construct the diagnostic 
models, instead simply comparing the eye movement param-
eters among the three groups, lacking the practical interest 
in clinical work [58, 59]. Therefore, our study addresses this 
gap and establishes a foundation for future eye-movement 
applications in the clinical aiding diagnosis of AD.

Non‑invasive, Easy‑to‑Implement, and Cost‑Effective 
Eye Movement Technology

In a recent study, a combination of multimodal data, encom-
passing MRI, PET, cerebrospinal fluid biomarkers, and 
genetic features, has been employed to conduct a multiclass 
diagnosis of AD. The study achieves accuracies of 66.7% 
and F1 scores of 64.9% [25]. However, these multimodal 
methods are complicated, invasive, and high-cost. Although 
the features adopted in the study are the central pathological 
hallmarks of AD, it is noteworthy that the clinical symptoms 
of AD patients do not always align with the evidence of 
pathological changes [58]. Hence, using pathological cri-
teria to identify the early stage of AD, especially MCI, is 
problematic.

Eye movement involves a complex oculomotor control 
system formed by a wide range of cerebral regions, and 
there is evidence that the pathology associated with AD can 
affect the oculomotor brain areas [23, 60–62]. Therefore, 
by analyzing eye movement data, specific patterns in the 

Table 4  The specific performance of the five machine learning mod-
els

Model Accuracy Recall Precision F1

Gradient boosting classifier 0.6820 0.6681 0.6761 0.6632
Light gradient boosting 

machine
0.6503 0.6399 0.6567 0.6383

Random forest classifier 0.6196 0.6036 0.6243 0.6010
Extra trees classifier 0.6629 0.6717 0.6617 0.6452
Logistic regression 0.6120 0.6057 0.5905 0.5879
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Fig. 3  The confusion matrix 
and receiver operating char-
acteristic of the five machine 
learning models
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processing of visual stimuli in patients with AD can be iden-
tified, which may be associated with the cognitive and neu-
rological features of early AD. Furthermore, eye movement 
is a non-invasive, timely, easy to perform and cost-effective 
technique, and is easily accepted by patients [63]. The com-
bination between eye movement parameters and GBC model 
is beneficial to identifying patients with AD in a timely man-
ner and prompt necessary treatment interventions.

Proposed Model Outperforms Current Studies 
in Accuracy

The accuracy of our proposed model based on eye movement 
parameters in the three classifications of ADD, MCI, and 
normal cognition is 68.20%, which is higher than major-
ity of current studies [29]. In the study by Cicalese et al. 
[30], the multiclass diagnosis of AD was performed using 
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Fig. 4  The confusion matrix and receiver operating characteristic of FCNN, FT-transformer, and self-attention model

Fig. 5  The plot shows the ranking of the relative importance of fea-
tures in GBC models. Abbreviation: AST_SL, saccadic latency in 
anti-saccade task; AST_ER, error rate in anti-saccade task; PT_SL, 
saccadic latency in prosaccade task; AST_NFS, number of forward 
saccades in anti-saccade task; PT_GDRA/TA, gaze duration in right 
area/total area; AST_FL, fixation latency in anti-saccade task; PT_
NBS, number of backward saccades in prosaccade task; PT_FP, fixa-

tion point in prosaccade task; FT_FP, fixation point in fixation task; 
PT_NFS, number of forward saccades in prosaccade task; AST_FFD, 
first fixation duration in anti-saccade task; PT_SAS, saccadic average 
speed in prosaccade task; AST_SD, saccadic distance in anti-saccade 
task; SPT_GD, gaze duration in smooth pursuit task; FT_FJON, fixa-
tion jump-offs number in fixation task; AST_FD, fixation duration in 
anti-saccade task
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Fig. 6  A Heatmap of correla-
tion between eye movement 
parameters and neuropsy-
chological scales. B Scatter 
plot of correlation between 
eye movement parameters in 
subgroups and neuropsycho-
logical scales. Abbreviation: 
AST_SL, saccadic latency in 
anti-saccade task; AST_ER, 
error rate in anti-saccade task; 
PT_SL, saccadic latency in 
prosaccade task; AST_NFS, 
number of forward saccades in 
anti-saccade task; PT_GDRA/
TA, gaze duration in right area/
total area; MMSE, Mini-mental 
State Examination; FCSRT_
ITR, immediate total recall in 
the Free and Cued Selective 
Reminding Test; FCSRT_ISC, 
index of sensitivity of cueing 
in the Free and Cue Selective 
Reminding Test; ADAS_CTS, 
total scores in the Alzheimer’s 
Disease Assessment Scale-
Cognitive section; TMT_A_NC, 
number of correct in Trail 
Making Test-A; TMT_B_NC, 
number of correct in Trail 
Making Test-B; FDST, Forward 
Digit Span Testing; RDST, 
Reverse Digit Span Testing; 
AVLT_IR, immediate recall 
in Auditory Verbal Learning 
Test; AVLT_SR, short-term free 
delayed recall in Auditory Ver-
bal Learning Test; AVLT_LR, 
long-term free delayed recall 
in Auditory Verbal Learning 
Test; AVLT_REC, recognition 
in Auditory Verbal Learning 
Test; BNT_TS, total scores in 
Boston Naming Test; BNT_CS, 
phonemic cue scores in Boston 
Naming Test; CDT, Clock 
Drawing Test; PSMS, physical 
self-maintenance scale; IADL, 
instrumental activity of daily 
life
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electroencephalography (achieved accuracies of 65.52%) 
and fNIRS (achieved accuracies of 58.62%), both accura-
cies were lower than our model. In fact, the model in this 
study also exhibits superior diagnostic accuracy compared 
to current binary classification models. The DISCN model, 
developed by Liu et al. [24], achieved an AUC of 0.81 in 
differentiating between AD and normal cognition, while our 
model attained an AUC of 0.87.

The high accuracy of our model can be attributed to sev-
eral factors: First, unlike the image data used by Liu et al. 
and Cicalese et al., which is easily affected by noise and vari-
ations leading to model interference and reduced accuracy, 
the structured data utilized in this study is less susceptible 
to such factors. Additionally, structured data features are 
highly intuitive, with clear relevance and certain advantages. 
Second, out of 17 machine models tested in this study, the 
GBC model demonstrates the best performance. The GBC 
operates as an ensemble method, integrating multiple weak 
learning models to form a powerful model, enabling it to 
achieve high accuracy in prediction and classification tasks 
[64]. Lastly, participants for this study were strictly selected 
according to inclusion and exclusion criteria, ensuring the 
quality and reliability of the data.

Anti‑saccade Tasks Are More Valuable 
for the Diagnosis of AD than the Other Three Tasks

Through ranking the importance of the features, the five 
most important parameters are all derived from the prosac-
cade tasks and the anti-saccade tasks. This observation sug-
gests that the saccadic tasks may possess greater diagnostic 
value for AD compared to the fixation and smooth pursuit 
task. What is more, the anti-saccade task may be more sensi-
tive to cognitive changes than the prosaccade task.

Prosaccade latency, anti-saccade latency, and anti-sac-
cade error rate are the three most significant biomarkers to 
discriminate between patients with and without cognitive 
impairment, which is in good agreement with previous find-
ings [15, 22, 65]. Besides these, the number of forward sac-
cades and gaze duration in the right area to the total area also 
show a good performance in class diagnosis of AD, which 
has not been reported in previous studies. If the saccade is 
in the same direction as the target’s movement, the saccade 
is classified as a forward saccade. ADD and MCI have a 
greater number of forward saccades in the anti-saccade task 
compared with normal cognition. This indicates that ADD 
and MCI have an increased number of error saccades in the 
opposite direction of the instructions, similar to the error 
rate of anti-saccade task. Meanwhile, the proportion of gaze 
duration in both the left and right area to the total area is 
reduced in patients with ADD and MCI. This reduction may 
be attributed to the slowing of reaction speed in AD patients, 
resulting in prolonged gaze duration in the middle area.

The Novel Association Between Eye Movements 
and Episodic Memory, Language, and IADL Has Been 
Detected

While progressive memory loss is the primary cognitive 
deficit in all patients with AD, other non-memory domains 
are also affected at the early stage including attention, visu-
ospatial abilities, and language functions [31]. Attention 
and executive functions, in particular, are often the first 
and common non-memory domains affected by AD [66]. In 
this study, saccadic latency in the prosaccade task, saccadic 
latency, error rate, and number of forward saccades of the 
anti-saccade task were negatively correlated with TMT-A 
and DST tests. This suggests a potential association between 
attention deficits and increased saccadic latency and error 
rate in patients with AD, aligning with prior research out-
comes [17, 67]. Indeed, there exists an extensive literature 
demonstrating the close relationship between saccadic eye 
movements and attention. However, the relationship between 
deficit of eye movement and episodic memory impairment 
has received less attention [68].

Episodic memory impairment is widely recognized as 
a prominent cognitive characteristic in the early stages of 
AD [69]. It is reported that FCSRT-immediate total recall 
score demonstrates the best value for predicting the dementia 
progression in 2-year follow-up [70]. Our results discover a 
negative association between parameters in anti-saccade task 
and FCSRT-immediate total recall, indicating that eye move-
ments might potentially serve as an indicator of episodic 
memory in patients with AD. Therefore, we hypothesize that 
eye movement parameters, particularly in the context of the 
anti-saccade task, may also have the potential to predict the 
progression of dementia. Subsequent investigations will be 
undertaken to address this issue.

IADL is considered to be important for maintaining an 
independent lifestyle in the community [67]. This study has 
identified a correlation between the increased error rate of 
anti-saccade and the prolonged latency of prosaccade per-
formance with the decline in IADL. Another study shows 
a strong positive correlation between anti-saccade perfor-
mance and the driving performance. Older participants at 
risk of driving impairment exhibit abnormal anti-saccade 
error rates, similar to patients with dementia [71]. Overall, 
the saccadic latency in the prosaccade task and the anti-sac-
cade error rates have the potential to serve as useful screen-
ing tools for the IADL in individuals with AD.

Eye movement abnormalities can impact the language 
processing abilities of patients with AD [72]. Our study 
revealed that eye movement parameters in prosaccade and 
anti-saccade tasks are significantly associated with the total 
scores of spontaneous naming and semantic cueing naming 
in the BNT, while showing no correlation with phonemic 
cueing scores. It is established that spontaneous naming 
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errors and semantic cueing errors are early indicators of AD, 
in contrast to phonemic cueing [73]. Our study indirectly 
supported this conclusion and proposed that eye movement 
abnormalities have the potential to be a crucial indicator 
in the evaluation of language functional impairment in AD 
patients.

Future Work

Despite this study has made some progress, much work still 
needs to be done. For instance, the other types of dementia 
including frontotemporal dementia, Lewy body dementia, 
and dementia in Parkinsonism are not included in the study. 
Future research should encompass these types of dementia to 
determine the specificity of eye movement in the diagnosis 
of AD.

There are some similarities between MCI and AD or 
between MCI and NC, so including MCI will reduce the 
diagnostic accuracy. The ROC curves depicted in Fig. 3A 
reveal that the diagnostic accuracy of MCI (AUC = 0.736) 
is comparatively lower than that of NC (AUC = 0.895) and 
ADD (AUC = 0.870). As previously indicated by Weiming 
Lin et al., the classification of progressive MCI and stable 
MCI is crucial for enhancing the accuracy of three-classifi-
cation diagnosis of AD [29]. Our future work will undertake 
the classification of MCI subtypes to attain improved levels 
of accuracy.

The collection of eye movement data can be conducted 
flexibly, allowing for completion in various comfortable 
environments beyond the confines of hospitals (Neuroimag-
ing techniques are not capable of doing so.). With the advent 
of digital healthcare, the mobile phone camera combined 
with machine learning algorithms could afford mobile phone 
eye tracking [74]. Our results proposed a scientific basis for 
remote evaluation of cognitive function and efficacy detec-
tion of remote cognitive rehabilitation. Furthermore, Jessica 
et al. proposed that computer vision techniques can be used 
to analyze the eye movements of AD patients in naturalistic 
scenarios, with areas of interest utilized for early detection 
[23]. This points the way for future research on eye move-
ment diagnosis of AD.

In a nutshell, future research could incorporate more 
diverse datasets and subtype the MCI patients. Moreover, 
there is potential in exploring the use of mobile phone eye 
tracking for remote assessment of cognitive function.

Conclusion

In this study, a three-classification model for distinguish-
ing ADD, MCI, and normal cognition is established based 
on machine learning and eye movement features. The 

classification accuracy of the model is 68.20%, which 
is higher than the majority of previous models. Further-
more, this study also reveals the correlations between 
the eye movement parameters and various subdomains of 
cognition, including attention, episodic memory, immedi-
ate memory, and language and visuospatial skills.
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