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Abstract
Sentence-level relation extraction is a technique for extracting factual information about relationships between entities from
a sentence. However, the customary method overlooks the semantic information conveyed by the label itself, thereby com-
promising the efficacy of rare types. Furthermore, there is a growing interest in exploring the use of textual information as a
crucial resource to enhance RE models for more effectiveness. To address these two issues, CLERE (Contrastive Learning
and Enriched Representation for Relation Extraction) based on contrastive learning and enriched representation of context is
proposed. Firstly, by contrastive learning to incorporate semantic information of labels, CLERE is able to effectively convey
and exploit the underlying semantics of various sample categories. Thereby enhancing its semantics understanding and classi-
fication capabilities, the issue of misclassification due to data imbalance is alleviated. Secondly, both semantics of context and
positional information of tagged entities are enhanced by employing weighted layer pooling on pre-trained language models,
which improves the representation of context and entity mentions. Experiments are conducted on three public dataset to
authenticate the effectiveness of CLERE. The results demonstrate that the proposed model outperforms existing mainstream
baseline methods significantly.

Keywords Sentence-level relation extraction · Contrastive learning · Semantic similarity · Pre-trained language models

Introduction

Relation extraction (RE) is a crucial component of natu-
ral language processing (NLP) and serves as a vital link
between downstream tasks, such as event extraction (EE)
[1] and knowledge graph construction, and upstream tasks,
such as named entity recognition (NER) [2, 3] and entity
linking (EL) [4]. Based on a predefined set of relationships,
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the objective of RE is to identify the relationships between
two entities within a given text. Three instances are depicted
in Fig. 1, where the subjects and objects are marked in the
sentence part, and the labels of the three instances belong to
three different categories.

With the development of pre-trained language models
(PLMs) based on the Transformers architecture [5–7]. Sup-
ported by a large training corpus, PLMs have shown remark-
able performance in representing long sentences across
a diverse array of NLP tasks. Particularly in supervised
sentence-level RE, researchers have proposed models that
incorporate PLMs, their performance far superior to those
based on recurrent neural networks (RNNs) and convo-
lutional neural networks (CNNs) [8–11]. Leveraging the
information available in the dataset is the key step of the RE
task. The focus of most primary works has been to develop
efficient ways to utilize the textual information of a sentence
[12]. To this end, entity masking [10] has been proposed
as a technique to leverage the entity information present in
the text, and its effectiveness has been remarkable. However,
researchers have overlooked the wealth of semantic informa-
tion conveyed by labels, which can differ significantly across
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Fig. 1 An example including
three types of relations of RE
task

different categories of labels [13]. The semantic information
conveyed by labels plays a crucial role if there is a data imbal-
ance. To investigate whether different labels carry significant
differences in their inherent textual semantics, which can be
used to strictly differentiate them from each other, the textual
semantics of the dataset’s label set is calculated by SBERT
[14]. The semantic similarity among the 11 relations in the
TACRED dataset is demonstrated in Fig. 2. Based on Fig. 2a,
it can be observed that both “per” and “org” type labels have
a low semantic similarity to the “no relation” category. Fur-
thermore, Fig. 2b illustrates the semantic similarity between
the “per” and “org” types, which is also relatively small. It
can be inferred from this experiment that there exist signifi-
cant dissimilarities in the textual semantics of the labels.

Noteworthy, both Nayak et al. [15] and Mondal et al. [16]
noticed that the context category is essential to embody the
sentences. Peng et al. [17] have noted that the model may
acquire certain surface information of the dataset through
entity mentions, thereby impeding the model’s contextual
comprehension. The researchers evaluated the efficacy of
incorporating contextual information with entity mentions in
their approach and contrasted it with approaches that solely
relied on either entity mentions or contextual information.
Empirical evidence [18] from the classification task demon-
strated that the amalgamation of context and entity mentions
outperformed the other twomethodologies. Therefore, in this
paper, a fusion of context and entitymention is adopted,while

simultaneously utilizing weighted layer pooling to augment
the contextual representation, thereby maximizing the use of
the information conveyed by the sequences themselves.

The works of SimCSE [19] show contrastive learning has
made a splash in unsupervised text classification, a method
that can accurately capture sample differences. Supervised
contrastive learning [20] proposes a loss that introduces
contrastive learning from the unsupervised domain into the
supervised field; the connection between supervised con-
trastive loss and the triplet loss is also explored.

Peng et al. [17] redesign the pre-training task of PLMs
with the aim of ensuring that sentences sharing similar rela-
tions exhibit analogous representations, while those with
different relations manifest distinct disparities. This inno-
vative approach combines contrastive pre-training task with
masked language modeling task in the overall model train-
ing objective. The clear advantage of this methodology is
its partial bridging of the gap between PLM pre-training
tasks and relation extraction tasks. However, it comes at the
cost of increased computational resources and suffers from
low reusability, necessitating the re-pre-training of the entire
model for different PLM types, rendering it unsuitable for
modular application across multiple domains.

CLERE (Contrastive Learning and Enriched represen-
tation for Relation Extraction) opts against full re-pre-
training, instead integrating comparative learning directly
into the training phase.Moreover, to address the gap between

Fig. 2 Text similarity between
the relationships from TACRED
dataset. a Including “no
relation” category. b Not
including “no relation” category
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pre-training and RE tasks, CLERE considers refined strate-
gies for selecting input sentences and labeling entity embed-
dings. Additionally, it delves into the structural intricacies of
PLMs at each layer, analyzing their compositions and scru-
tinizing the combination of embeddings obtained at various
layers to yield a more nuanced and semantically rich repre-
sentation. During inference, the closest one to the sequence
from the candidate labels is selected as the final result.
CLERE enhances the performance of existing RE models
and incorporates the valuable information provided by labels,
making it particularly effective in scenarios where there is
data imbalance.

To assess the efficacy of CLERE, experiments are con-
ducted on three supervised RE dataset, utilizing BERT-base
and Roberta-large as PLMs, respectively. The outcomes
demonstrated that the baseline models are surpassed by
CLERE. Additionally, the reasons behind the model’s suc-
cess are investigated. To summarize, our contributions can
be outlined as follows.

• The combination of semantic information of labels with
contextual information is explored, and considerable
differences in the semantic information between the dif-
ferent labels are found. Additionally, the role of pooling
strategies in generating contextual semantic embeddings
is explored.

• A relation extraction model that enhances PLMs embed-
ding ability and applies the concept of contrastive learn-
ing to leverage label semantic embeddings is proposed.
This brings the semantics of the text closer to the positive
labels and moves away from the negative ones.

• Experiments are done on three public dataset on which
CLERE achieved above-baseline results, and higher
recall and higher F1 scores are achieved when using the
same PLMs.

RelatedWork

Supervised RE

Supervised RE is a well-researched area within NLP, and
early methods used primarily feature-based and kernel-
based approaches. Feature-based approaches [21] involve
the design of features for entities and their corresponding
contexts, including lexicon, syntax, and semantics, which
are then fed into an entity-relation classifier. With the
advent of SVM, kernel-based approaches have also received
considerable attention, with kernel functions designed to
obtain similarities between relation representations and text
instances. However, feature-based methods heavily rely on
manually crafted features, which require researchers to

possess domain-specific background knowledge. Kernel-
basedmethods require the use of natural language processing
toolkits to transform input text into syntactic dependency
trees, which can result in a relatively high probability of error
propagation.

Deep learning-based methods have also been used for
supervised RE. Liu et al. [22] were one of the first to use
CNNs for this task, but this method still requires the use
of NLP toolkits. The idea of entity position embedding was
introduced by Zeng et al. [23], which later served as the foun-
dation for entity awareness. However, the use of fixed-size
convolution kernels in this method resulted in the loss of
global features. To address this issue, Nguyen et al. [24] uti-
lized convolution kernels of multiple sizes, which focused on
both local and global features. Zhang et al. [25] employedBi-
RNN for RE tasks. To mitigate the problem of RNN gradient
explosion, Xu et al. [26] proposed a model with an LSTM
structure, which proved effective in extracting sentence-level
features in RE tasks. However, the features extracted by this
model are still insufficient to achieve optimal performance.

With the advent of PLMs, the landscape of NLP has been
revolutionized. This progress has been propelled by the intro-
duction of the Transformer architecture, which features a
self-attention mechanism. Among these models, BERT [6],
trained on a large corpus, has demonstrated an unparalleled
ability to capture textual features. The majority of RE that
are based on PLMs utilize BERT or one of its variants as a
PLM [27]. These models can be broadly classified into two
main categories. One is to revamp the pre-training task by
enhancing the internal structure of BERT. Roberta [7] uses
a larger dataset and a novel dynamic masking technique to
provide a higher level of understanding of sentence context,
leading to better performance on multiple NLP tasks includ-
ing RE. KnowBERT [28] introduces an external knowledge
base and improves the training objectives of BERT by con-
structing the entities in the knowledge base as a triad, thus
achieving even more advanced performance in text under-
standing. LUKE [29] has made a significant breakthrough
in the field of PLMs by enhancing entity perception on top
of BERT. By incorporating entity types and attributes into
the representation process, LUKE has achieved performance
that outperforms BERT on tasks such as entity perception
and question-answering systems. In general, the advantage
of this approach lies in its ability to facilitate the learning
of task-specific language representations in a more directed
manner, thus circumventing overfitting during subsequent
fine-tuning and enhancing the generalization performance of
themodel.Nonetheless, the downside of thismethod is appar-
ent: the redesign of the pre-training task is computationally
expensive and poses greater demands on the model struc-
ture and training process design.Moreover, pre-training tasks
that are tailored to specific domains may only be suitable
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for a particular task and cannot be extrapolated to other
tasks. The second approach, fine-tuning, is widely employed
today. In this approach, task-specific components are added
to the PLMs, enabling the model to achieve advanced perfor-
mance without requiring further pre-training. R-BERT [11]
is an advanced model for relational extraction, based upon
the mighty BERT architecture. It enhances BERT’s ability
to model relationships by introducing token-level relational
representations.MTB [10] suggests that using partial embed-
dings of entities can achieve even better entity representation
for RE. REDN [30] argues that the relationship is deter-
mined by the relevance of the subject and object entities,
and the representation of the relationship should be a matrix
rather than a one-dimensional array. A corresponding loss
function is also proposed in REDN. The advantage of this
approach is that high performance can be achieved by only
designing fine-tuning modules for PLMs while consuming
fewer computational resources. The disadvantage is that a
large training dataset specific to the task is required, which
must have significantlymore domain-specific properties than
the pre-trained dataset. Additionally, the fine-tuning model
is prone to overfitting when the fine-tuning dataset differs
significantly from the pre-training dataset.

Contrastive Learning

Contrastive learning has become a mainstream unsupervised
learning method in recent years. It is assumed that there is
a semantic relationship between αi and α+

i ; let Ri and R+
i

serve as representations of αi and α+
i . With a mini-batch of

N-pairs (αi , α
+
i ), the training goal is

ConLoss = − log
esim
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+
i

)
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j=1 e
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)
/τ

, (1)

where τ is a temperature hyperparameter as well as sim (h1,

h2) represents the cosine similarity
R�
1 R2

‖R1‖·‖R2‖ ·
Hadsell et al. [31] proposed an algorithm for “learning

comparable distances,” which maps samples of the same
category to a tight space and samples of different cate-
gories to a more distant space. Contrastive learning methods
have evolved and introduced contrastive loss, which learns
discriminative feature representations byminimizing the dis-
tance of similar samples and maximizing the distance of
dissimilar samples. In the field of NLP, contrastive learn-
ing methods such as RankCSE [32], SimCSE [19], and
BERT-CL [33] have been used to address text similarity
matching problems and enhance the representation of BERT
through contrastive learning, respectively. In the RE field,
Peng et al. [17] propose a contrastive learning framework
with entity mention, where examples that are defined to

be adjacent are clustered together and those that are not
are pushed apart. This model’s training objective combines
the contrastive learning objective with the masked language
modeling objective. Finally, Chen et al. [34] apply the
contrastive learning idea to remotely supervised relational
extraction, further demonstrating the versatility and poten-
tial of contrastive learning in NLP.

Furthermore, Khosla et al. [20] have noted that triplet loss
represents a particular instance of contrastive loss, specif-
ically when only one positive and one negative sample are
utilized.Unlike the standard contrastive loss, triplet loss oper-
ates on triplets, consisting of an anchor, a positive, and a
negative sample. Its objective is to minimize the distance
between the anchor and the positive sample, while simulta-
neously maximizing the distance between the anchor and the
negative sample. Consequently, triplet loss aims to ensure
that the distance between the anchor and positive samples is
smaller than that between the anchor and negative samples by
at least a specifiedmargin, failingwhich incurs a loss penalty.
In contrast, N-Pair Loss emerges as a more suitable solution
for addressing scenarios involving 1 positive and N negative,
N positive and N negative. As an extension of triplet loss,
N-Pair Loss harnesses the advantages of leveraging informa-
tion frommultiple negative samples in each update iteration,
aiming to guarantee that the embedding of the current sample
is distinctly distant from all types of negative samples. How-
ever, when the quantity of negative samples is substantial,
themodelmay encounter challenges in convergence ormight
become susceptible to local optima. Moreover, the compu-
tational complexity of N-Pair Loss escalates exponentially
compared to triplet loss since it necessitates computing the
similarity score between the anchor sample and all negative
samples.

CLERE

Overview

The model framework is illustrated in Fig. 3. The training
and inference process of CLERE can be divided into two
steps; in step 1: Training process, the input of the model will
be divided into three parts: sentences, positive labels, and
negative labels. The position of entities in sentences will be
marked using entity mention, which will be added by placing
specialmarkers(“#” and “$”) around the entities. The positive
instance label refers to the original label of the instance,while
the negative instance label is randomly selected from a set
of labels, both of which are text-based. PLMs are employed
to encode these three parts. The instance that is encoded will
serve as the anchor, the positive label will be treated as the
“pos” term, and the negative label will be treated as the “neg”
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Step1: Training. Let the embedding of "Positive Label" as the "Pos", let input samples as "Anchor", 
and "Negative Label" as the "Neg", fix the model parameters while training is done.

Step2: Inference. The embedding of test data are encoded, the semantic distance is calculated with the labels in the test label 
set respectively, and the label withthe shortest semantic distance is used as the prediction result of the model.

Step 1 Step 2

Fig. 3 The framework of CLERE consists of an input layer, an embedding layer, a loss learning layer, and an inference layer

term. The objective of the training is tominimize the distance
between the anchor and the “pos” termwhile maximizing the
distance between the anchor and the “neg” term. During the
step 2: Inference process, the model selects the label with the
shortest distance to the anchor as the prediction.

Problem Descriptions

Supervised RE at the sentence level is focused. Specifically,
given an instance that contains the sentence X, the location
and the entity type of Subject andObject, the task is to deter-
mine which predefined relation the entity pair belongs to. In
other words, this is a classification task that aims to select the
most appropriate label from a set of predefined relationship
types.

Input Embedding

Sentence Embedding

In contrast to other NLP tasks, sentence embedding for RE is
focused onmaximizing the amount of information pertaining
to the entities within the sentence. Building on previous work
[10], the Typed Entity Markers (punct) [8] is utilized to rep-
resent the entities. Specifically, the “#” marker denotes the

subject entity, and the “$” marker denotes the object entity.
Additionally, the entity type information in textual form uses
“∗” and “∧” to mark the position of the entity type. To cap-
ture the sequence semantics of the sentence, the “[CLS]” and
“[SEP]” are also added. The final input sentence to the PLMs
takes the following form: [CLS]... # ∗ subj_type ∗ SUBJ #...
$ ∧ obj_type ∧ OBJ $.... [SEP] (Fig. 4).

After pre-processing the input sentences, they are fed into
PLMs to obtain embeddings. It is suggested by Peng et al.
[17] that sufficient embedding information for RE can be
provided by combining sentence contextual embedding with
entity mention, while using only entity mention may lead
to shortcuts in the model. Therefore, combining contextual
embeddingwith the entitymention in this study. It is common
practice to use the embedding of “[CLS]” when obtaining
the sentence context. However, the contextual embedding
obtained using this method is flawed, as it cannot capture
the complete semantics of the sentence; the advantages and
disadvantages of this approach will be discussed in Section
“ExperimentsAnalysis.” In this paper, the preprocessed parts
of the sentence are initially input into the PLM to generate a
set of hidden states X for layers of the PLM as

X = PLM(sentence). (2)

Fig. 4 An example of an input
sentence using typed entity
markers (punct)
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Then, the weighted layer pooling [35] method is utilized
to obtain contextual embeddings as

Seq =
∑N

i=1 ωi xi
∑N

i=1 ωi
, (3)

where xi ∈ X , i ∈ (1, N ), and N refers to the number of
layers selected from thePLM; in this paper, N =4.Theweight
parameter ωi is a learnable parameter that is initialized as a
random matrix drawn from a uniform distribution.

After obtaining the contextual embeddings of the sequence
through weighted layer pooling, next further extract embed-
dings H1 and H2 from the two entities mentioned in the
sentence and then concatenated them with the contextual
embedding sequence. The concatenated embeddings are
input into a fully connected layer, followed by an activation
function. Then, the anchor can be obtained An as

An = LeakyReLU (W f (concat(Seq, H1, H2))), (4)

where W f ∈ Rd×3d (d is the hidden state size of PLMs).

Label Embedding

During the training step, to obtain the embeddings of the
labelled text, the label is treated as normal text, i.e., remove
the special characters(“/” and “_”) from the labels. Regarding
the selection of positive and negative label pairs, the label of
the sample itself is selected as the positive label y ∈ Y and
randomly select a label ỹ ∈ Y/y as the negative label. The
label pair [y, ỹ] is then fed into PLMs to obtain the label
embedding as

Pos, Neg = PLMs(y, ỹ). (5)

Training Objective

After the An, Pos, andNeg embeddingmatrices are obtained,
the triplet loss function is utilized to minimize the seman-
tic distance between the input and its positive label, while
increasing the distance between the input and the negative
label in the embedding space. It is achieved by applying the
triplet loss function, thus enhancing the semantic correlation
between the An and the Pos during the inference step, as
illustrated in Fig. 5a. The distance between the An and the
Pos is referred to as pos_dist, while the distance between the
An and the Neg is referred to as neg_dist. Figure 5b depicts
the variation of loss with respect to pos_dist and neg_dist,
and it is evident that when pos_dist is at its minimum and
neg_dist is at its maximum, the loss will decrease.

In the case of an anchor accompanied by its corresponding
positive and negative instances, the function is mathemati-
cally formulated as exemplified in (7). The computation of
the cosine similarity between the An and Pos and the cosine
similarity between the An and Neg is performed as (6):

C(An, Pos) = An · Pos
‖An‖‖Pos‖ ,C(An, Neg) = An · Neg

‖An‖‖Neg‖ .

(6)

The incorporation of a margin parameter to regulate the
degree to which the distance between the An and Pos is
smaller than that between the An and its Neg, thus preventing
themodel from taking shortcuts. During the training process,
the objective of the model is to minimize the triplet loss and
acquire the optimal embedding approach for the given data.

La,p,n = max(C(An, Pos)−C(An, Neg)+margin, 0). (7)

Fig. 5 a Triplet loss. It seeks to push Neg outside the circle defined by the margin and pull Pos inside. b Loss function display
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The comprehensive training objective of the model is
demonstrated in (8):

Lall = 1

Nt

∑

a∈A

∑

p∈Pt

La,p,n, (8)

where A refers to the assemblage of training dataset, Pt
denotes the set of positive labels, and Nt represents the total
count of unique pairs comprising the training sentences and
their corresponding affirmative labels.

In the inference phase, as the number of relationships in
the dataset is fixed, no relations in the validation and test sets
ever appeared in the training set. By utilizing the semantic
similarity calculation of the model, the closest one to anchor
from the set of labels in the test set is employed as the predic-
tion result. To better illustrate the steps of the CLERE task,
Algorithm 1 shows the peculiarities of training and inference
for the CLERE.

Experiments

This section introduces the dataset being implemented,
alongside the experimental parameter configurations, met-
rics, and baseline model against which comparisons are
made. Subsequently, the experimental of the proposed
approach is presented. Finally, the analysis of the observed
outcomes is summarized.

Algorithm 1 The training and inference process of CLERE.
1: Input: Sentence s ∈ S, label y ∈ Y , ỹ ∈ Y/y;
2: Output: A set of relationships Result = {r1, r2, r3, ..., rn};
3: Initialize: Sequence embedding seq,
4: Initialize: Entity embedding train.embed1, train.embed2;
5: Result ← �;
6: An, Pos, Neg ← �;
7: dist ← �;
8: for s in S
9: seq = WLP(BERT(s)); // based on (3)
10: embed1, embed2 = PLMs(s)); // based on (5)
11: An = concat(seq, embed1, embed2);// // based on (4)
12: Pos, Neg = PLMs(y, ỹ); // based on (5)
13: Tripletloss(An, Pos, Neg); // based on (7)
14: end for
15: for y in Y // Inference step
16: test = concat(seqtest , test .embed1, test .embed2);
17: in f _embed, y_embed = PLMs(test), PLMs(y);
18: dist = 1 - CosSim(in f _embed, y_embed);
19: r = Min(dist);
20: Result = Result + r ;
21: end for
22: return Result ;

Table 1 Statistics of different dataset

Dataset #train #dev #test #rel #no_relation1

TACRED 68,124 22,631 15,509 42 79.5%

TACREV 68,124 22,631 15,509 42 79.8%

RE-TACRED 58,465 19,584 13,418 40 63.2%

1 Percentage of whole dataset occupied by no_relation

Dataset

Three versions of the TACRED [36] dataset will be used to
evaluate CLERE: the original TACRED dataset, the TACREV
[37] dataset, and the RE-TACRED [38] dataset. The particu-
lars regarding those dataset can be observed within Table 1.

With 42 relations (including “no_relation”), the TACRED1

dataset is one of the most extensive dataset to be used for
supervised RE, and it is worth noting that the absolute major-
ity of relationships in the dataset are “no_relation.”

TACREV2 is a modified version of the TACRED, where
some of the errors in the validation and test sets of the
TACRED dataset have been corrected, while the training
set remains unchanged. Forty-two relations are retained in
TACREV.

RE-TACRED3 is another version of the TACRED dataset
that complements some of the shortcomings of the original
version by reconstructing the training, validation, and test
blocks of the original version. RE-TACRED is even more so
with only 40 relations.

Baselines

Toassess the effectiveness ofCLERE, adiverse set of existing
approaches is compared with CLERE, including CNN-based
[22, 23], RNN-based, GCN-based, and Transformers-based
methods. PA-LSTM [36] combines a bi-directional LSTM
sequencemodelwith entity location-aware attention.C-GCN
[39] utilizes GCNs [40] to encode sentences with depen-
dency structures and predicts relations based on them. The
C-GCN shows that dependency-based and sequence-based
models have a complementary role. SpanBERT [41] is a PLM
that builds on BERT [6] by enhancing the masking process
for contiguous entities, removing the next sentence predic-
tion (NSP) task, and introducing the span boundary objective
(SBO) training target. These improvements have resulted in
a significant enhancement over BERT for extractive tasks.
KnowBERT [28] improves upon BERT by integrating multi-

1 https://catalog.ldc.upenn.edu/LDC2018T03, Feb. 2023.
2 https://github.com/DFKI-NLP/tacrev, Feb. 2023.
3 arXiv:2104.08398, Feb. 2023.
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Table 2 Hyperparameters in experiments

Parameter Bert-base Roberta-large

Batch_size 32 16

lr 3e-5 5e-6

Adam_epsilon 1e-6 1e-6

Drop_rate 0.1 0.1

Epoch 100 100

Margin 0.1 0.1

Max_seq_length 384 512

Max_label_length 20 20

ple real-world knowledge bases into its pre-training process,
with the aim of enhancing its coverage of real-world knowl-
edge. As a result, KnowBERT exhibits superior performance
in downstream tasks such as entity extraction, RE, and
disambiguation. LUKE [29] is a specialized representation
designed for entity-related tasks that incorporate an entity-
aware self-attention mechanism. This attention mechanism
allows the model to focus more on the entities in the cor-
pus, resulting in superior performance on downstream tasks.
Both MTB [10] and RIB [8] demonstrate that the quality of
representations generated by PLMs can be further improved
by utilizing only the links between entities.

Model Configuration andMetrics

To ensure a fair comparison with other models, the offi-
cial publicly available code provided in the papers is uti-
lized, while adhering to the recommended hyperparameters.
CLERE is implemented using the Transformers package of
HuggingFace,4 and training is performed using the Adam
optimizer. All experimental results are reported as the aver-
age of 5 experiments using different random seeds. The
details of the experimental hyperparameters are shown in
Table 2.

To evaluate the performance of CLERE, Mirco F1 (11)
is adopted as a metric, which is a common metric used in
previous works. Mirco F1 takes into account the precision
(9) and recall (10) of the classifier and is used to evaluate the
overall performance of multi-classification problems. Mirco
F1 computes the F1 score for each class and then averages
them by weighting the number of samples in each class. This
ensures that each class has an equal impact on the overall
results.

Precision =
∑

i T Pi∑
i (T Pi + FPi )

, (9)

4 https://huggingface.co, Feb. 2023.

Recall =
∑

i T Pi∑
i (T Pi + FNi )

, (10)

F1 = 2 · Precision · Recall
Precision + Recall

. (11)

Main Results

Table 3 shows the results of CLERE on TACRED and
TACREV dataset. Table 4 shows the results of CLERE on
RE-TACRED dataset.

CLERE outperforms these baselines on two of the dataset,
achieving the same level of results as the current state-of-
the-art on the last dataset, including attaining an F1-score
of 74.9% on the TACRED dataset, 83.9% on the TACREV
dataset, and 91.1%on theRE-TACRED,which is comparable
with the current state-of-the-art. Superior performance is still
achieved byCLEREwithout any extended dataset and further
pre-training steps being used when contrasted with mod-
els such as SpanBERT, KnowBERT, and LUKE among the
many Transformers-based methods. To validate the robust-
ness of CLERE, even with a modest-sized PLM, BERT-base
is selected as the PLMand performs experiments on the iden-
tical dataset comparing those baselines using the same PLM
(including KnowBERT and SpanBERT); the comparison on
the TACRED and TACREV dataset is still outperformed by
CLERE and achieves the highest recall in RE-TACRED.

In addition, the results show that CLERE has a higher
recall compared to the fine-tuned models when using the
same PLM, which validates our conjecture of introducing
label information into the training process and using the idea
of contrastive learning to solve data imbalance. The models
that use retraining and the fine-tuned models have achieved
higher precision beyond CLERE, but lower recall and F1
score, again illustrating the advanced nature of CLERE.
Overall, the efficacy of CLERE has been well demonstrated
by the above experimental results.

Experiments Analysis

In this section, an analysis will be conducted to determine
why the model’s pooling strategy may have a positive impact
on the model’s performance. Furthermore, the performance
of CLERE on an unbalanced dataset and the selection of
the margin parameter in the triplet loss function will be dis-
cussed. Lastly, a case study will be presented to illustrate the
inference steps of CLERE.

Ablation Experiments

The structure of transformers is frequently fine-tuned by
incorporating an additional output layer for downstream
tasks or models. The final layer of representations of PLMs
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Table 3 Precision, recall, and
F1(in %) on TACRED and
TACREV dataset

TACRED TACREV
Models Precision Recall F1 Precision Recall F1

CNN − based

CNN� 50.0 32.6 39.4 51.8 35.9 42.4

CNN+BERT�
base 71.9 51.1 59.7 79.5 60.2 68.5

RNN − based

Bi-LSTM� 53.3 57.5 55.7 58.6 67.7 62.6

Bi-LSTM+BERT�
base 65.3 59.9 62.5 71.8 70.2 71.0

PA-LSTM† [36] 68.1 64.5 70.1 − − 73.3

GCN − based

GCN� 65.6 50.5 57.1 72.4 59.3 65.2

GCN+BERT�
base 66.3 58.8 62.4 73.1 69.1 71.0

C-GCN† [39] 68.5 64.4 66.3 − − 74.6

Trans f ormer − based

SpanBERT‡ [41] 70.8 70.9 70.8 − − 78.0

KnowBERT‡ [28] − − 70.5 − − 79.3

MTB [10] − − 70.1 − − −
LUKE [29] − − 72.7 − − 80.6

RIB∗
base 72.7 68.8 70.7 78.5 78.2 78.3

RIB∗
large [8] 77.9 71.2 74.4 81.8 84.7 83.2

CLEREbase 74.7 69.8 72.2 82.6 80.5 81.5

CLERElarge 75.3 74.4 74.9 81.6 86.4 83.9

� Marks re-implemented results from [37]
†Marks re-implemented results from [36]
‡Marks re-implemented results from [13]
∗ Marks our re-implemented results

is utilized as the default input for downstream tasks or
models by researchers.However, PLMs aremulti-layer struc-
tural models, and the representations of different levels are

Table 4 Precision, recall, and F1(in %) on RE-TACRED dataset

RE-TACRED
Models Precision Recall F1

RNN − based

PA-LSTM† [36] 79.2 79.5 79.4

GCN − based

C-GCN† [39] 80.9 79.7 80.3

Trans f ormer − based

SpanBERT‡ [41] 79.2 79.5 85.3

LUKE [29] − − 90.3

RIB∗
base 87.7 88.2 87.9

RIB∗
large [8] 91.2 91.1 91.1

CLEREbase 86.6 90.5 88.5

CLERElarge 88.2 94.3 91.1

†Marks re-implemented results from [36]
‡Marks re-implemented results from [13]
∗ Marks our re-implemented results

captured by different layers. Different granularities of fea-
ture information are exhibited at different levels. A pivotal
point in the fine-tuning task is to obtain the optimal feature
information from each level when the downstream tasks dif-
fer. Analysis as Fig. 6 in question depicts the self-attention
distribution within the partial self-attention layer of PLMs
(using BERT-base as an example). The illustration of atten-
tion distribution enables a refined scrutiny of the model’s
allocation of attention to various segments of the input text
within each self-attentive layer [42, 43], endowing an intri-
cate insight into the model’s underlying mechanisms.

The attention of individual tokens to each other is depicted
in the diagram, with the thickness of the lines indicat-
ing the corresponding attention values as shown in Fig. 6.
Notably, a relatively even attention distribution among tokens
is observed in the first layer. However, by the second layer,
attention becomes notably concentrated on the “[CLS]”
token,with subsequent attentional allocation shifting towards
the “[SEP]” token by the seventh layer. The most significant
attentional focus is observed on three tokens in the final layer,
indicating a continual shift in attentional allocation through-
out training. This observation highlights the inadequacy of
relying solely on the last layer’s hidden state as a contextual
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Layer 1 Layer 2 Layer 7 Layer 12

Fig. 6 Self-attention distribution of layers from BERT-base

embedding of the sequence. In our experiments, it is found
that considerable attention is placed on non-single tokens
in the last four layers of PLMs. This led us to weighted
layer pooling, where the contextual representation of the
sequence is obtained by combining multiple layers of hidden
states. The combination of multiple layers of hidden states
as the contextual representation of the sequence is found to
be experimentally validated, supporting the validity of our
conclusion. Table 5 shows that the weighted layer pooling
strategy on the last 4 layers consistently outperformed the
other three strategies across all three dataset, demonstrating
the effectiveness of this approach for contextual embedding.
The ablation experiments also highlighted the importance
of carefully selecting pooling strategies to achieve optimal
performance in NLP tasks.

Table 5 Ablation experiments on three dataset, using various pooling
strategies (F1 scores in %)

Model TACRED TACREV RE-TACRED

+[CLS] 74.2 82.6 90.0

+All layer 73.2 82.1 88.8

+Last 9 layer 74.5 83.1 90.6

+Last 4 layer 74.9 83.9 91.1

Performance on Imbalanced Dataset

Let us take a look at the recall performance of our proposed
NLP model on three dataset. Figure 7 provides a clear com-
parison; using Bert-base as the PLM part, CLERE has better
recall performance than most other models. When using
Roberta_large, CLEREhas the highest recall compared to the
control models. This indicates that CLERE can successfully
capture a significant portion of the target tokens or categories
in the dataset and can effectively identify the target samples in
the dataset. This suggests that CLERE is effective in handling
unbalanced dataset. The model’s robustness is also verified
by evaluating its F1 score performance in conjunction with
its recall performance.

Sensitivity of Margin

The margin’s sensitivity is explored as an essential param-
eter for triplet loss. It controls the model to differentiate
between anchor, positive, and negative examples to make
correct judgments during the inference step. From Fig. 8, it
can be observed that the effect of the margin on the model
is significant. As evidenced by the results obtained from
the TACRED (Fig. 8a) and TACREV(Fig. 8b), it can be
observed that the classification efficacy of the model dimin-
ishes considerably when themargin is increased to 0.35. This
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Fig. 7 Recall of the models on three dataset. a Shows the recall on the TACRED dataset. b Shows the recall results on the TACREV dataset. c
Shows the recall results on the Re-TACRED dataset

can be attributed to the inherent characteristics of the triplet
loss function. The larger margins impede the model’s ability
to differentiate between positive and negative instances. In
contrast, for the RE-TACRED (Fig. 8c), the issue of label
imbalance is less pronounced than in the first two dataset,
resulting in a diminished sensitivity of the model to vari-
ations in margin size. Even when the margin is increased
to 0.5, the model maintains a satisfactory level of perfor-
mance. Based on these observations, it can be concluded that
CLERE is well-suited for handling unbalanced dataset and
that employing a smaller margin facilitates the model’s abil-
ity to distinguish between positive and negative instances.
For dataset with a more balanced distribution of labels, the
model exhibits significantly reduced sensitivity to changes
in margin size.

Case Study
Several examples have been listed in Table 6 to provide a
clear idea of CLERE. As can be observed from the sec-
ond sentence, two identical inference results are given by
the model, but their inference distances differ, indicating that
shortcuts are not taken during the training process. It can also
be observed that the model’s inference for similar relation-

ships is much closer than that for dissimilar relationships.
For instance, in sentence 2, the inference of “no_relation”
is closer than that of labels of type “per” and type “org,”
which is determined by the text semantics of the labels. This
provides sufficient evidence for the feasibility of involving
semantic information of the labels in the training of the clas-
sification task. Moreover, it is found that even if the inferred
results are of the same type as the ground truth, such as both
“per” types in sentence 1 and “org” types in sentence 3,
the model’s distance calculation for them is distinguished
by more significant differences, illustrating the clarity of
CLERE’s recognition of label semantics. In summary, the
information provided by the data itself has been fully uti-
lized by CLERE.

Error Analysis

Error analysis plays a critical role in identifyingmodel weak-
nesses, enhancing dataset quality, refining model design, and
ultimately improving overall model performance. Table 7
presents a subset of CLERE’s inference results on the
TACRED dataset, along with predicted outcomes for MTB
and RIB. In the inference results for sentence #1, both
MTB and RIB yield incorrect predictions as the relationship

Fig. 8 The sensitivity of margin. Precision, recall, and F1-score on three dataset: a On the TACRED dataset. b On the TACREV dataset. c On the
RE-TACRED dataset

123



Cognitive Computation

Table 6 Case study Input sentence Inferenced Distance Final result

... Anna Mae Pictou per:alternate_names 0.184

as the origin of per:title 0.336 per:alternate_names

... to Kill Anna Mae. per:city_of_death 0.473

per:alternate_names per:other_family 0.379

...by the NTSO no_realtion 0.162

... with the no_relation 0.122 no_relation

Sun Moon Lake...Administration per:children 1.082

no_relation org:members 1.205

...Prachai org:parents 0.476

,the founder of org:member_of 0.509 org:founded_by

Thai Petrochemical Industry org:website 0.443

org:founded_by org:founded_by 0.145

All the examples are extracted from the test set of TACRED.Blue indicatesmarked entities,Magenta indicates
ground truth of the example, Red indicates label selected in the inference step

Table 7 Error analysis, Blue
indicates marked entities,
Magenta indicates ground truth
of the example, indicates that
the inference is consistent with
ground truth, indicates that
the inference is not consistent
with ground truth

Sentence #1

subject_type: PERSON

object_type: DURATION

sentence length: 18

Salaam, represented by Kunstler at sentencing and

in his unsuccessful appeals, got a seven-year term.

ground truth no_relation

ed_fo_etad:rep,ega:rep,noitaler_onnoitaleretadidnac ath

ega:repBTMfoecnerefni

ega:repBIRfoecnerefni

noitaler_onERELCfoecnerefni

Sentence #2

subject_type: ORGANIZATION

object_type: PERSON

sentence length: 61

Suspicions had already fallen on Sheila O’Grady, who

is close with David Axelrod and went straight from

being former Chicago mayor Richard M. Daley’s

chief of staff to president of the Illinois Restaurant

Association(IRA), as being the person who

dug up Herman Cain’s personnel records from the

National Restaurant Association(NRA).

ground truth no_relation

pme:rep,dednuof:gro,yb_dednuof:gronoitaleretadidnac loyee_of

yb_dednuof:groBTMfoecnerefni

yb_dednuof:groBIRfoecnerefni

yb_dednuof:groERELCfoecnerefni

Sentence #3

subject_type: ORGANIZATION

object_type: PERSON

sentence length: 34

And strangely enough, Cain’s short, three-year

tenure at the NRA is evidently the only period in his

decades-long career during which he’s alleged to

have been a sexual predator.

ground truth org:top_membersemployees

nuof:gro,seeyolpme/srebmem_pot:gronoitaleretadidnac ded_by

seeyolpme/srebmem_pot:groBTMfoecnerefni

seeyolpme/srebmem_pot:groBIRfoecnerefni

seeyolpme/srebmem_pot:groERELCfoecnerefni

123



Cognitive Computation

between the subject and object is not labeled as “no_relation”
by the dataset. Notably, the candidate relations predomi-
nantly involve “person” entities,withMTBandRIB inferring
the result as “per:age,” likely due to the prevalent association
between the entities involved. CLERE learns by discern-
ing discrepancies among samples. For instance, if in the
training data, the object’s type is “DURATION” and the
samples are labeled as “no_relation”. Consequently, when
CLERE encounters analogous situations in the test dataset,
the encoding outcome for the test sample will inherently
exhibit a diminished semantic distance from “no_relation.”
In sentence #2, all three methods give incorrect predic-
tions for two possible reasons. Firstly, the subject_type
and object_type are “ORGANISATION” and “PERSON,”
respectively, which have a high similarity within CLERE’s
candidate relation. Furthermore, from a human perspective,
there is a relationship between “Herman Cain” and “National
Restaurant Association,” which is marked as “no_relation”
in the TACRED dataset. Therefore, the imperfections of the
dataset could contribute to the model’s incorrect predictions.
Secondly, based on the statistics from Zhang et al. [36], the
proportion of samples with sentence lengths greater than 60
is 3.21%, and this particular sample has a length of 61. Con-
sequently, the ability of the three models to understand long
sentences on this dataset is limited, mainly due to the lack
of training data for long sentences. Addressing this limi-
tation is of significant practical importance for subsequent
improvements. In real-world application scenarios, models
often encounter a large number of long sentences, which
further emphasizes the need for improved training data cov-
erage in this regard. For sentence #3, themajority of sentence
lengths in the TACRED dataset are concentrated between 20
and 42. Consequently, the models achieved their best pre-
diction results when dealing with samples falling within this
sentence length range. Overall, based on the error analysis,
future efforts should prioritize improving the models’ abil-
ity to understand longer sentences. CLERE will continue to
improve following the work of Zhuang et al. [44] and Wang
et al. [45]

Conclusion

In this paper, the RE model is enhanced by improving the
pooling strategy and achieving advanced contextual repre-
sentations. Based on the idea of contrastive learning, the
embedding of label semantic information is introduced into
the model’s learning process, alleviating the distress caused
by label imbalance in the dataset. The reasons behind the
effect of pooling strategies on contextual embeddings are
scrutinized and conducted experiments to investigate their
influence on model learning outcomes. The semantic simi-
larity of the labels in the dataset is calculated and find that

different labels have significant semantic differences and can
be strictly distinguished. Then, the experimental results of the
model are analyzed, and the attention distribution of differ-
ent levels of PLMs is discussed; the ablation experiments
are done on kinds of pooling strategies. Furthermore, the
impact of the margin on the model’s performance is also ana-
lyzed. Finally, we demonstrated the proposed method clearly
through a case study.We hope that more researchers are will-
ing to explore the role of label semantics.
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