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Abstract
The aim of this study is to present a new regularized extreme learning machine (ELM) algorithm that can perform variable
selection based on the simultaneous use of both ridge andLiu regressions in order to copewith some disadvantages of ELMand
its variants such as instability and poor generalization performance and lack of sparsity. The proposed algorithmwas compared
with the classical ELMaswell as the variants based on ridge, Liu, Lasso andElasticNet approaches by cross-validation process
and best tuning parameter over seven different real-world applications and their performances were presented comparatively.
The proposed algorithm outperformed ridge, Lasso and Elastic Net algorithms in training performance prediction (average
40%) and stability (average 80%) and in test performance prediction (average 20%) and stability (60%) in the majority of the
data. In addition, the proposed ELM was found to be more compact (better sparsity capability) with lower norm values. The
results confirmed that the proposed ELM presents more stable and sparse solutions with better generalization performance
than any other algorithm under favorable conditions. The findings based on experimental study via real-world applications
indicate that the proposed ELM provides effective solutions to the mentioned drawbacks and yields more stable and sparse
performance with better generalization capability than its competitors. Consequently, the proposed algorithm represents a
powerful alternative both regression and classification tasks in machine learning field due to its theoretical flexibility.

Keywords Extreme learning machine · Sparsity · Liu regression · Tikhonov regularization · Ill-posed problems

Introduction

Recent developments in information retrieving field (partic-
ularly machine learning) have heightened the need for faster,
reliable and generalizable algorithms. Obviously, artificial
neural networks is the leading field to achieve these purposes
due to the capabilities onmodelling complex problem, adapt-
ability, speed andflexibility.Although the training algorithms
like back-propagation (BP) are the core components on the
performance of any neural network, they have some short-
comings such as local optima. Additionally, these algorithms
may cause higher computation-cost because of the need of
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extensive parameter tuning like weights, biases, momentum,
and learning rate. As a solution to deal with these issues,
extreme learning machine (ELM) was proposed by Huang
et al. [1, 2].

ELM is a single layer feed-forward neural network
(SLFN) as an alternative to the conventional learning algo-
rithms (like BP) by considering a simple but elegant idea into
the training process of the network. This idea is based on
assigning some parameters including the input weights and
biases randomly and reducing the problem to a simple lin-
ear system which can be obtained via ordinary least squares
(OLS) method. ELM has obtained a large and growing atten-
tion due to some useful properties: (i) to have a closed-form
solutionwhich can be found via anOLS solution, (ii) to elimi-
nate parameter tuning like input weights, biases, momentum,
and learning rate. because of the random assignment proce-
dure, (iii) to provide successful results for both regression and
classification tasks, (iv) to present faster performance unlike
its competitors (i.e., BP), (v) to need less human interven-
tion during training process. Over the past decade, ELM has
received major scientific attention as a powerful instrument
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for modelling various types of problems in supervised, unsu-
pervised and semi-supervised learning.

ELM has some advantages not only from practical capa-
bilities but also theoretical properties including interpola-
tion, universal approximation capability, and generalizability
[1, 2]. In addition to these properties, ELM can be used both
for regression and classification tasks in real-world applica-
tions. Although ELM has been considered in many fields, it
has drawbacks like the instability, poor generalizability and
insufficient sparsity due to the structural risk minimization
which is the key concept of ELM’s learning process. The
structure of the hidden layer matrix of ELM seems to be the
main reason of these drawbacks. If the hidden layer matrix
suffers from the ill-conditioning problem, the performance
of ELM is dramatically affected with the non-optimal solu-
tion; that is, the ELM solution may have a large variance and
the distance from the ELM estimates to the true values may
be large. As a result of ill-conditioning, as opposed to Huang
et al. [3], ELM does not have the smallest training error and
the smallest norm of output weights. The natural result of
this particular problem is to produce any solution other than
ordinary ELM method.

A number of studies have been carried out to explore the
effects of these drawbacks, and attempts have been made
to improve ELM to deal with these drawbacks. In the lin-
ear regression field, ridge estimator proposed by Hoerl and
Kennard [4] is one of the most well-known methods to over-
come the ill-conditioning problem.Therefore,Deng et al. [5],
Li and Niu [6], Huang and Sun [7], Shao and Er [8], Chen
andWang [9], Yu et al. [10], Wang and Li [11], Yıldırım and
Özkale [12], and Luo et al. [13] proposed some alternative
algorithms based on the ridge estimator to take advantage
of its ability to deal with the ill-conditioning problem, and
showed that it generally contributes positively to the perfor-
mance of the ELM in practical applications. Although ridge
estimators is the most used shrinkage method in the litera-
ture, Liu estimator proposed by Keijian [14] is considered as
a powerful alternative to ridge estimator. Because the ridge
estimator is not linearly dependent, while the Liu estimator
is linearly dependent on the tuning parameter which makes it
easier to calculate the Liu estimator than the ridge estimator.
In the context of ELM, Yıldırım and Özkale [15] proposed
ELM based on Liu estimator with various tuning parameter
selection techniques and proved that Liu estimator makes the
ELM performance more stable and generalizable.

In addition to ill-conditioning problem, sparsity is another
problem. The sparsity is critical property of any algorithm
from the perspective of speed and compactness which is sim-
ply refers to a matrix of numbers (i.e., matrix of predictors
in linear regression) that includes many zeros or values that
will not significantly impact the calculation. However, ELM
does not have the sparsity property and its variants based on
ridge or Liu estimator are not the solutions at this point. Since

Lasso regression proposed byTibshirani [16] in linear regres-
sion is a remedy to provide sparse solutions by shrinking
some of regression coefficients to exactly zero, Miche et al.
[17, 18], Martínez-Martínez et al. [19], Luo et al. [13], Shan
et al. [20], Li et al. [21] and Preeti et al. [22] developed ELM-
based Lasso algorithms to improve the ELMperformance via
pruning the irrelevant nodes. Although Lasso enjoys sparsity,
it selects as many predictors (p) as the maximum number of
observations (n) in the p > n case, it does not have grouping
effect and its performance is dominated by ridge regression
if there exists high correlation between predictors. Because
of these reasons, Zou and Hastie [23] introduced Elastic Net
(ENet) in linear regression. Martínez-Martínez et al. [19]
considered the ENet approach which can be seen as the
cascade of the ridge and Lasso estimators into the learning
process of ELM. Yıldırım and Özkale [24] proposed a novel
regularized algorithm called as LL-ELM based on both Liu
and Lasso regressions as alternative to ENet.

From a statistical point of view, Liu and ridge estima-
tors have their own characteristics in shrinking the hidden
layer structure. They have different objective functionswhich
affect their ability to learn the inherent patterns in the data.
Therefore, ridge and Liu-based ELM algorithms act differ-
ently, affecting generalization performance [15].

ResearchMotivation and Enthusiasm

The motivation of this study is based on the idea that a new
regularized ELM algorithm with sparsity property can be
developed by simultaneously taking advantage of the dif-
ferent properties of the ridge and Liu estimators. Influenced
with this idea,wepropose a novel regularizedELMalgorithm
based on the combination of Liu, ridge and Lasso regressions
which we call as GO-ELM. The GO-ELM has following
major contributions into the existing literature:

• GO-ELM can easily deal with the multicollinearity prob-
lem (i.e., the ill-conditioning).

• GO-ELM has the sparsity property as a result of L1 norm
regularization and may provide more compact and better
generalization performance.

• GO-ELM carries the advantages of ridge and Liu regres-
sions since it carries the shrinkage idea of both ridge
and Liu.

• GO-ELM has the grouping effect as ENet so that it over-
comes Lasso which selects one predictor from the highly
correlated group.

• Although GO-ELM has the sparsity feature like ENet
and Lasso, the shrinkage effect is different fromENet and
Lasso. Such thatwhile ENet andLasso shrink theweights
to the origin, GO-ELM shrinks to dβ̂ELM , 0 < d < 1.
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• GO-ELM can be extended to the classification problems.
This property makes it usable for various kinds of data-
driven machine learning problems.

Review of ELM and Its Variants

ELM is based on a classical SLFN but differs from the point
that during the training process, the parameters like input
weights and biases in the hidden layer are selected arbitrar-
ily unlike the iterative process in any other neural network.
As a result of fixed parameters, the learning problem (classi-
fication or regression) is reduced to a system which consists
of a series of linear equations. For any linear system, OLS
method can be used to find the solution. A SLFN can be
written as

ϕ∑

i=1

β i g
(
ωi .x j + bi

) = y j , j = 1, 2, ..., N , (1)

where
(
xTj , y

T
j

)
is the set of N distinct patterns with x j ∈

Rp and y j ∈ Rm , y j is the m-dimensional network output,
ωi is the input weight between the i-th hidden neuron and
the hidden layer, bi is the bias, ϕ is the number of hidden
neurons, g (.) is the activation function and β i is the output
weights [1, 2].

Equation (1) can be written in a matrix form as

Sβ = Y (2)

where

S =
⎡

⎢⎣
g (ω1.x1 + b1) ... g

(
ωϕ.x1 + bϕ

)

... ...
...

g (ω1.xN + b1) ... g
(
ωϕ.xN + bϕ

)

⎤

⎥⎦

N×ϕ

= [
h1 . . . hϕ

]
N×ϕ

is the output matrix of hidden layer, βϕ×m = (
β1, ..., βϕ

)T

and Y N×m = (y1, ..., yN )T are the output weight vector and
output value vector, respectively. Here,m corresponds to the
number of output layer neurons which is commonly equal to
the number of target variable and fixed as 1 in most practical
applications. To estimate the β parameter, the objective form
of Eq. (2) is defined as:

‖Sβ − Y‖2 = (S β− Y)T (S β− Y) . (3)

The β estimator minimizing Eq. (3) is obtained as β̂ELM
= S+Y where S+ is the Moore-Penrose inverse of matrix
S [2]. Some popular ways of calculating the Moore-Penrose

inverse are the orthogonal projection method, iterative meth-
ods and singular value decomposition [25, 26]. According
to the orthogonal projection method, S+ is calculated via

ST
(
SST

)−1
if S is full row rank, else S+ = (

STS
)−1

ST if
S is full column rank.

When there is a multicollinearity problem, inverting the

matrix
(
STS

)−1
can sometimes be impossible and sometimes

unstable. Therefore, alternativemethods to ordinaryELMare
recommended. On the other hand, ordinary ELM does not
have sparsity property; that is, does not do variable selection.
The methods proposed on the basis of ELM as a solution to
these two problems are as follows:

Li andNiu [6] considered ridge regression in the context of
ELM which was originally proposed by Hoerl and Kennard
[4] and defined the ridge-ELM as

β̂
k
R−ELM =

(
STS+kIϕ

)−1
STY, k≥ 0

where k is the ridge tuning parameter and Iϕ is the identity
matrix with dimension ϕ. Although the value of k affects the
performance of R-ELM, there is no single best and suitable
method for selecting the ridge tuning parameter. Regression
studies literature [6, 27] indicates that R-ELM can provide
smaller error than ELM if k is correctly determined.

Yıldırım and Özkale [15] considered the Liu regression in
the context of ELM which was originally defined by Kejian
[14] and defined the Liu-ELM as

β̂
d
Liu−ELM = (STS + Iϕ)−1

(
STY + dβ̂ELM

)
(4)

where 0 < d < 1 is the Liu tuning parameter which shrinks

each element of β̂ELM by the same d value. Since β̂
d
Liu−ELM

is in linear form of d, computing β̂
d
Liu−ELM is much easier

and faster than β̂
k
R−ELM which provides computationally

effective and cost minimized solutions for machine learn-
ing. β̂

d
Liu−ELM is also a convex combination of β̂ELM and

β̂
k
R−ELM for k = 1 which claims that β̂

d
Liu−ELM provides

solution paths between β̂ELM and β̂
(k=1)
R as d goes from

1 to 0:

β̂
d
Liu−ELM = dβ̂ELM + (1 − d)β̂

(k=1)
R−ELM .

Yıldırım and Özkale [28] proposed OK-ELMwhich takes
the advantages of ridge and Liu regressions as

β̂OK−ELM =
(
STS + kIϕ

)−1 (
STY + kdβ̂ELM

)

where 0 < d < 1 and k > 0 are the tuning parameters.
OK-ELM is a convex combination of R-ELM and ELM:
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β̂OK−ELM = dβ̂ELM + (1 − d) β̂
(k)
R−ELM ,

where d serves as a balance parameter between ELM and R-
ELM and refers the relative contributions of them. Basically,
while the higher d towards to 1 yields more contribution in
favor of ELM, the lower d increases the effect of R-ELM to
the solution.

In order to gain the sparsity property to ELM,Miche et al.
[17] andMartínez-Martínez et al. [19] defined ELMbased on
Lasso (β̂Lasso−ELM ) as the solution of the objective function

‖Sβ − Y‖2 + λ ‖β‖1 .

The main idea behind Lasso − ELM is to select the nodes
which minimize the error by shrinking some of the nodes to
exactly zero. The sparsity property provides (i) compactness,
(ii) stability, (iii) generalization ability, (iv) interpretability
and (v) speed. The solution of Lasso−ELM can be obtained
via LARS-EN algorithm [23] or algorithm of Sjöstrand
et al. [29] which is based on the LARS algorithm [30] and the
algorithmwith piecewise linear regularization path proposed
by Rosset and Zhu [31]. The details of these algorithms can
be found in Sjöstrand et al. [29].

Although Lasso does shrinkage and automatic variable
selection simultaneously, it has disadvantages in linear
regression. Similarly, in ELM-based studies, Lasso-ELM
has same disadvantages. Therefore, Miche et al. [17] pro-
posed ELMbased on ENet which has the grouping effect and
simultaneously the shrinkage and automatic variable selec-
tion properties and has the objective function

‖Sβ − Y‖2 + k

2
‖β‖2 + λ‖β‖1.

To solve the ENet-ELM, Miche et al. [17] and Luo et al. [13]
applied the LARS-EN algorithm.

The Proposed Algorithm: GO-ELM

An algorithm holding the sparsity property can easily out-
perform any other algorithm in terms of speed, compactness
and generalization performance. To gain OK-ELM the spar-
sity capability, we propose a new algorithm called GO-ELM
which has triple shrinkage. The first two shrinkage effects
are same with those of ridge and Lasso as in ENet and the
third shrinkage factor makes the result closer to the real
value than ENet. We define the objective function of the GO-
ELM as:

D(β, k, λ) = ‖Sβ − Y‖2+ k

2

∥∥dβ̂ELM − β
∥∥
2+λ‖β‖1. (5)

In the proposed approach, the characteristic features of
both ridge and Liu estimators to handle the multicollinearity
problem occurring in the hidden layer of output matrix, are
considered in learning process of algorithm. Additionally,
the sparsity capability has been added via L1-norm simulta-
neously with ridge and Liu estimators.

The objective function of GO-ELM can be written in aug-
mented form given in Eq. (5) as follows:

D(β, k, λ) =
∥∥∥S̃β − Ỹ

∥∥∥
2
+ λ‖β‖1 (6)

where S̃ =
(

S√
kIϕ

)
and Ỹ =

(
Y√

kdβ̂ELM

)
are the aug-

mented form of the hidden layer and output matrices. The
advantage of writing Eq. (6) in form Eq. (5) is to solve the
GO-ELM problem as an L1-norm problem. Therefore, vari-
ous types of algorithm like LARS can be used to obtain the
optimal solution of Eq. (6) via Eq. (5). The GO-ELM has the
following properties which show that it is a generalization of
ENet-ELM, Lasso-ELM, Liu-ELM, R-ELM and OK-ELM:

• As d goes to 0, GO-ELM behaves similar to ENet-ELM
• When λ = 0, GO-ELM and OK-ELM give same solu-
tions.

• When k = 1, GO-ELM solution is same with Liu-ELM
solution andwhen k = 0, GO-ELM solution is samewith
Lasso-ELM solution. Then, GO-ELM solutions trace a
curve path through the parameter space from the Liu-
ELM to Lasso-ELM as k goes from 1 to 0.

• When λ = 0 and d = 0, GO-ELM gives R-ELM solu-
tions

• Since GO-ELM solutions can also be obtained from Eq.
(6), it does variable selection as Lasso-ELM and ENet-
ELM.

• The GO-ELM is strictly convex which can be seen from
the equivalent objective function:

‖Sβ − Y‖2 + λ1(
1 − α

2

∥∥dβ̂ELM − β
∥∥
2 + α‖β‖1)

where λ1 = k+λ, α = λ/(λ+k) and λ1 ≥ 0, 0 ≤ α ≤ 1
are tuning parameters. The GO-ELM solutions trace a
curve path through the parameter space from the OK-
ELM to Lasso-ELM as α goes from 0 to 1.

Choice of Tuning Parameters

GO-ELM depends on three tuning parameters which can be
selected similarly to Lasso-ELM and ENet-ELM. First, the
d values in the interval (0,1) are selected, and for each d
value, a k value is selected for the k grid values in the spec-
ified range. Then, for each (d, k) pair, GO-ELM is solved
by any algorithm such as LARS-EN [23, 29] to select λ via
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K-fold cross-validation. The cross-validation is done on a
three-dimensional surface. By cross-validating the training
data by considering every possible combination of three dif-
ferent tuning parameters, the best performing values were
determined as optimum for the current trail. The tuning
parameters are then chosen so as to give the smallest cross-
validation error.

The pseudo-code for GO-ELM algorithm is as given by
Algorithm 1.

Algorithm 1 GO-ELM Algorithm
Require: Training set {(xi , yi )}, the maximum number of hidden neu-

rons {ω}, an activation function {g (.)}, number of trials {L}.
Ensure: The β weight matrix.
1: Randomly generate the initial parameters wi and bi , 1 ≤ i ≤ ω.
2: Obtain S and the basic ELM solution via Eq. (2).
3: Find the solution of the objective function of GO-ELM given by Eq.

(6) via LARS-EN algorithm as β =LARS-EN
(
S̃, Ỹ, d̂, k̂, λ̂

)
. for

1 ≤ i ≤L).
4: repeat
5: Calculate β solution for each combination k, d, and λ grid param-

eters.
6: Find the optimal solution providing smallest error based on

LARS-EN algorithm.
7: until Convergence
8: Repeat this process via k-fold cross-validation for L trials.
9: Calculate the global optimum weight matrix and its performance

metrics.

Sparsity Property

Figure1 is given to show the sparsity property of GO-ELM
and to compare the coefficient paths for GO-ELM, Lasso-
ELMandENet-ELMunderBodyFat data set. In order to give
better insights as visually, the number of hidden layer is fixed
to 20. The differences between the coefficient paths of Lasso-
ELM, ENet-ELM and GO-ELM algorithms are noticeable,
but (ii) and (iii) exhibit a similar structure. This is because the
value of d is a small value. While k is constant, the value of d
is effective in determining the difference betweenENet-ELM
and GO-ELM algorithms. Figure1 proves that all three algo-
rithms do variable selection and the ways to select variables
are different from each other.

Grouping Property

Grouping effect property of the ENet states that highly cor-
related features will have similar estimated coefficients. The
property is described formally in terms of an upper bound
on the difference between two coefficients as it relates to the
correlation between the predictors (e.g., Zou and Hastie [23],
Theorem 1, Zhou [32], Theorem 2).

The grouping effect of GO-ELM is encouraged from the
tuning parameter k and it is stated by Theorem 1.

Fig. 1 A comparison of the coefficient paths for variable selection
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Theorem 1 Given (Y,S) and parameters λ, k, and d are
fixed. If β̂i β̂t > 0, then

(
β̂i − β̂t − d(β̂ELMi − β̂ELMj )

)

≤ 1

k
‖hi − ht‖2

(
‖Y‖2 + kd2

2
‖β̂ELM‖2

)

where β̂ is the GO-ELM solution.

Proof Let us first take the derivative of Eq.(5) with respect
to βi and βt and set the results to zero:

∂D(.)

∂βi

∣∣∣∣
βi=β̂i

= 2hTi (Sβ − Y)

+ k
(
β̂i − dβ̂ELMi

)

+ λsi = 0

(7)

∂D(.)

∂βt

∣∣∣∣
βt=β̂t

= 2hTt (Sβ − Y)

+ k
(
β̂t − dβ̂ELMt

)

+ λst = 0

(8)

where

si =
⎧
⎨

⎩

−1, z < 0
[−1, 1], z = 0

1, z > 0

and si and st have the same sign. Subtracting Eq. (8) from
Eq. (7), we obtain

(
β̂t − dβ̂ELMt

) − (
β̂i − dβ̂ELMi

)

= 1

k

(
hTt − hTi

)
(Sβ − Y).

(9)

Applying the Cauchy-Schwarz inequality to Eq. (9),
we get

∣∣(β̂t − β̂i
) − d

(
β̂ELMt−β̂ELMi

)∣∣

≤ 1

k
‖ht − hi‖2 ‖Sβ − Y‖2 .

Since β̂ is a minimizer of Eq. (6), by taking β = 0, we
see that D(β̂, k, λ) ≤ ‖Y‖2 + k

2

∥∥dβ̂ELM
∥∥
2 and we write

the inequality

‖Sβ − Y‖2 ≤ D(β̂, k, λ) ≤ ‖Y‖2 + k

2
d2

∥∥β̂ELM
∥∥
2 . (10)

With respect to Eq. (10), we complete the proof.

If hi , i = 1, . . . , ϕ are standardized as
N∑
j=1

hi j =
N∑
j=1

g
(
ωi .x j + bi

) = 0 and
N∑
j=1

h2i j =
N∑
j=1

g2
(
ωi .x j + bi

) = 1,

the inequality in Theorem 1 reduces to

∣∣(β̂i − β̂t
) − d

(
β̂ELMi −β̂ELMt

)∣∣

≤ 1

k

√
2

(
1 − hTi ht

) (
‖Y‖2 + +kd2

2

∥∥β̂ELM
∥∥
2

)

where hTi ht is the correlation between hi and ht .
When hi and ht are highly correlated, hTi ht goes to 1 (if it

goes to -1 then consider −ht ). In this case, Theorem 1 says
that the difference between the coefficient paths of hi and ht
is almost 0 (this result is the same with the linear regression
as Zou and Hastie [23] and Zhou [32] stated).

Performance Evaluation

Data Sources

In this study, Body Fat, Boston Housing, Machine CPU,
Servo, Fish, Heart and Abalone data sets have been retrieved
from the UCI database and have been considered to com-
pare the performance of all algorithms. Their properties are
tabulated in Table 1.

Experimental Settings

The design of the experiment plays a critical role on the
performance of each algorithm considered in this study. The
process followed in this study can be summarized as follows:

• The inputs were standardized with a mean of zero and
a variance of one so that possible performance losses
due to data structure (such as scale and unit properties)
was avoided.

Table 1 The properties of data sets used in this study

Data sets Sample Attributes Training Data Test Data
Size Size Size

Body Fat 252 15 177 75

Boston Housing 506 14 355 151

Machine CPU 209 7 146 63

Servo 167 5 117 50

Fish 908 7 636 272

Heart 303 14 212 91

Abalone 4177 9 2924 1253
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• Model training was initialized with random weight and
bias values. In order to eliminate the effect of this ran-
domness, each trial was performed using fixed starting
points (i.e., seed values) by grid searching over the same
range of tuning parameters depending on each algorithm.

• The sine function, which is one of the commonly
used functions in ELM models, was used as the
activation function.

• The data set was split into 70% and 30% training and
test data, respectively. According to this splitting, the
sample size of the training and test data sets for each
data set is given in Table 1. The algorithms were trained
using the training data and a 5-fold cross-validation (CV)
was applied to obtain the tuning parameters on the train-
ing data. Then, the performance analysis on the test data
was obtained.

• Too few neurons in the hidden layers to adequately detect
signals in a complex data set can cause poor fit. An exces-
sive number of neurons in the hidden layers can increase
the time required to train the ELM. Training time can
increase to a point where it is impossible to adequately
train the ELM. To reach a compromise between toomany
and too few neurons in the hidden layers, the number of
hidden layer neurons was taken as 100 and fixed across
all data sets.

• The number of trials was set at twenty and the average of
the trial results was reported.

• A grid search approach was used to determine the tuning
parameters. Since different parameters are effective in
training each algorithm, all algorithms were trained as
a whole for all possible combinations of (d, k and λ)
values. In Lasso, the conventional tuning parameter is
the L1-norm of the coefficients or the fraction of each
regression coefficient estimates to the L1-norm (s) (e.g.,
[23]). The advantage of s, is that it is valued within [0, 1].
Therefore, Lasso tuning parameter λ is reported through
s. The grid of values for the parameters are picked as:

d ∈ [
10−5, 10−4, .., 10−2, 0.02,

0.03..., 0.1, 0.15, 0.2, ..., 1
]
,

k ∈ [
10−5, 10−4, .., 10−2, 0.02,

..., 0.1, 0.2, ..., 1, 1.5, 2, ..., 5
]
,

s ∈ [
10−5, 10−4, .., 10−2, 0.02,

0.03..., 0.1, 0.15, 0.2, ..., 1
]
.

To get the optimum (d, k) pairs for the OK-ELM, 5-
fold CV is conducted on two-dimensional space and to
get the optimum (d, k, s) pairs for the GO-ELM, 5-fold
CV is conducted on three-dimensional space. In each
fold, the tuning parameters minimizing the CV error are
determined as optimal for the corresponding fold. This

process is repeated for twenty trials and the mean values
of the tuning parameters calculated as overall for all folds
are reported.

• The Norm (Mean), Norm (SD), RMSE and SD criteria
were used for the performance evaluation. The optimal
tuning parameters found through the training data set are
used to produce the lowest RMSE value in each trial and
the average of the statistics are presented in Table 2.

The number of nodes, the norm values and standard devi-
ations of the obtained coefficients are presented in Table 2.

The changes in the comparisons are also presented
by Figs. 2 and 3 where the relative reduction rate is as
computed as

RR = RMSEany alg. − RMSEGO−ELM

RMSEany alg.
× 100.

Some of the results provided through Figs. 2 and 3with Table
2 are listed as follows:

• From the view of training RMSE, the GO-ELM algo-
rithm outperforms the ELM, R-ELM, Lasso-ELM and
ENet-ELM algorithms for all data sets except the Heart
data. The superiority of GO-ELM over ELM, R-ELM,
Lasso-ELM and ENet-ELM is more than by an average
of 40% for RMSE (compared to other algorithms, GO-
ELM gives a minimum of 7% and a maximum of 95%
improvement) and more than by an average of 80% for
SD (compared to other algorithms,GO-ELMgives amin-
imum of 25% and a maximum of 99% improvement).

• GO-ELM is superior over ELM, R-ELM, Lasso-ELM
and ENet-ELM with more than by an average of 20%
in the sense of testing RMSE (minimum 2%, maximum
92% improvement), this superiority is more than by an
average of 60% in the sense of SD (minimum 54%, max-
imum 99% improvement).

Results and Discussion

Table 2 gives the performance comparison of all algorithms
based on the fixed parameters for the proposed algorithm
and the optimal tuning parameter values for each algorithm
itself, respectively. The performance measures such as Norm
(Mean), Norm (SD), RMSE and SDwere all computed on the
test data sets using the optimal tuning parameters obtained
through training data set. Since the training data sets are used
for optimum tuning parameter selection, the comparisons
will be made according to the test data. When the perfor-
mance comparison is performed using the parameters for
which the proposed algorithm is optimal, the results given in
Table 2 are achieved.
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Table 2 The performance comparisons of algorithms over their own optimum tuning parameters

Data Algorithm d k s # of Nodesa Norm (Mean) Norm (SD) Training Data Test Data

RMSE SD RMSE SD

Body Fat ELM * * * 100.00 1.7549 0.2014 0.9632 0.2377 0.9579 0.2325

R-ELM * 5 * 100.00 1.2152 0.0840 0.8001 0.1438 0.7931 0.1458

OK-ELM 0.0001 5 * 100.00 1.2052 0.0844 0.2990 0.0237 0.5791 0.0686

Lasso-ELM * * 0.47 39.08 1.4612 0.1908 0.6903 0.2033 0.6795 0.2082

ENet-ELM * 0.0001 0.59 44.60 1.6518 0.2242 0.5885 0.2045 0.6816 0.1922

GO-ELM 0.3 0.00001 0.53 35.16 1.0823 0.1535 0.3437 0.0381 0.5283 0.0664

Boston ELM * * * 100.00 2.0858 0.1596 1.2510 0.4625 1.2318 0.4586

R-ELM * 5 * 100.00 1.5605 0.0909 1.1038 0.3671 1.0872 0.3554

OK-ELM 0.0001 5 * 100.00 1.5606 0.0900 0.4067 0.0327 0.6019 0.0434

Lasso-ELM * * 0.26 39.96 1.4694 0.1775 0.9395 0.1913 0.9200 0.1847

ENet-ELM * 0.001 0.33 41.28 1.4987 0.1782 0.8892 0.2114 0.9874 0.1741

GO-ELM 0.95 0.01 0.53 38.64 1.2801 0.1839 0.4468 0.0440 0.5962 0.0481

MachineCPU ELM * * * 100.00 3.1271 0.7724 1.2829 0.6026 1.0442 0.0742

R-ELM * 5 * 100.00 1.6069 0.0883 1.1465 0.2474 0.7513 0.3340

OK-ELM 0.03 5 * 100.00 1.8895 0.1304 0.2115 0.0156 0.2553 0.0413

Lasso-ELM * * 0.09 38.64 1.0299 0.3677 1.0093 0.1277 0.5483 0.1893

ENet-ELM * 0.001 0.19 38.60 1.0278 0.3942 0.9893 0.1102 0.5199 0.1692

GO-ELM 0.45 0.01 0.62 54.35 2.0779 0.1416 0.1844 0.0227 0.2554 0.0399

Servo ELM * * * 100.00 10.7167 1.8277 4.7303 2.5689 4.7282 2.5862

R-ELM * 5 * 100.00 0.9697 0.0563 0.8932 0.2138 0.9093 0.2155

OK-ELM 0.05 1 * 100.00 5.6507 0.8669 0.2529 0.0058 0.3383 0.0184

Lasso-ELM * * 0.26 41.20 1.4476 0.2090 0.9192 0.2237 0.9670 0.2220

ENet-ELM * 0.1 0.45 38.63 1.3211 0.2111 0.7864 0.2302 0.9009 0.1689

GO-ELM 0.45 0.02 0.81 80.79 6.1466 1.4467 0.2591 0.0089 0.3373 0.0182

Fish ELM * * * 100.00 4.0606 0.8500 2.3368 1.1685 2.3560 1.1540

R-ELM * 0.88 * 100.00 2.4286 0.1393 1.6976 0.6028 1.7160 0.6055

OK-ELM 0.25 0.90 * 100.00 2.4298 0.1398 0.5750 0.0085 0.7145 0.0473

Lasso-ELM * * 0.18 33.84 1.1287 0.2421 0.8688 0.1202 0.9068 0.1060

ENet-ELM * 0.01 0.24 35.40 1.1677 0.2506 0.7660 0.1196 0.9220 0.1119

GO-ELM 0.62 0.02 0.81 27.84 0.8702 0.1223 0.5077 0.0058 0.6004 0.0232

Heart ELM * * * 100.00 1.4190 0.1201 1.0909 0.1628 1.0673 0.1829

R-ELM * 1.30 * 100.00 1.3558 0.1068 1.0818 0.1545 1.0593 0.1742

OK-ELM 0.09 0.80 * 100.00 1.3550 0.1059 1.0747 0.0298 1.1960 0.0628

Lasso-ELM * * 0.27 33.12 0.6143 0.1177 0.9831 0.0346 0.9973 0.0290

ENet-ELM * 0.001 0.11 33.55 0.6210 0.1108 0.9880 0.0344 0.9987 0.0311

GO-ELM 0.001 1.26 0.28 33.16 0.6074 0.1131 0.9963 0.0258 1.0351 0.0344

Abalone ELM * * * 100.00 3.6096 0.4124 1.3704 0.3651 1.3809 0.3869

R-ELM * 0.62 * 100.00 2.9142 0.2143 1.2118 0.2542 1.2213 0.2759

OK-ELM 0.16 0.58 * 100.00 2.8848 0.2144 0.6381 0.0065 0.6570 0.0074

Lasso-ELM * * 0.09 35.08 1.1570 0.2565 0.9836 0.1762 0.9979 0.1726

ENet-ELM * 0.01 0.11 34.96 1.1488 0.2561 0.9987 0.1849 0.9892 0.1706

GO-ELM 0.01 0.74 0.32 34.72 1.0561 0.2596 0.6459 0.0029 0.6278 0.0044

Values in bold correspond to the best (optimal) values
aThe node numbers of Lasso-ELM, ENet-ELM and GO-ELM are the average on twenty trails. Therefore, they are in decimal but can be rounded
to integer
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Fig. 2 Comparison of GO-ELM with other algorithms via RR percentage of RMSE and SD for training data set

Fig. 3 Comparison of GO-ELM with other algorithms via RR percentage of RMSE and SD for test data set

123



650 Cognitive Computation (2024) 16:641–653

Fig. 4 The change of testing errors for Body fat data set

The comprehensive evaluation of the tuning parameters in
the grid space using the optimal values for each algorithm is
presented in Table 2. The important results from Table 2 are
as follows:

• Considering the test data, GO-ELM outperforms OK-
ELM on the RMSE criterion in all other data sets except
the MachineCPU data set. The superiority percentage of
OK-ELM over GO-ELM in the MachineCPU data set

Fig. 5 The change of testing errors for Boston data set
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Fig. 6 The change of testing errors for Abalone data set

is only 0.039%. According to the test data set, except
for the Boston data set, GO-ELM outperforms OK-ELM
under the SD criterion. In all test data sets except the
Heart test data set, GO-ELM shows better RMSE and
SD performances than ELM, R-ELM, Lasso-ELM, and
ENet-ELM. The testing RMSE error of GO-ELM for the
data sets except Machine CPU and Heart is the smallest
value when compared to its competitors.

• Considering the number of nodes for all data sets, it
is seen that ELM, R-ELM and OK-ELM do not select
nodes, while Lasso-ELM, ENet-ELM and GO-ELM do
node selection. This is an indication that Lasso-ELM,
ENet-ELM and GO-ELM have been proposed as solu-
tions to the sparsity problem.

• The norm of GO-ELM is less than ELM in all data sets.
Except for the Servo and MachineCPU data, the mean
of the norm of GO-ELM is smaller than the other algo-
rithms, even if the standard error of the norm is not small
in all other data sets.

On the test data, the changes of the residual values of the
algorithms trained at their optimum tuning parameters are
presented in Figs. 4, 5, and 6 for Body, Boston and Abalone
data sets.

In order to evaluate the stability of the algorithms, the
narrow range of residual values is preferable. Figures4, 5,
and 6 show that the stability of GO-ELM algorithm over the
other algorithms are obvious for Body Fat and Abalone data
sets. Considering Fig. 5 for theBoston data set, GO-ELMand

Table 3 Statistical comparison results of GO-ELM algorithm with each algorithm based on test data predictions

Data GO-ELM vs ELM GO-ELM vs R-ELM GO-ELM vs OK-ELM GO-ELM vs Lasso-ELM GO-ELM vs Enet-ELM

Body Fat < 0.001 < 0.001 0.0046 0.001 0.0006

Boston < 0.001 < 0.001 0.1392 < 0.001 < 0.001

MachineCPU < 0.001 < 0.001 0.1988 < 0.001 < 0.001

Servo < 0.001 < 0.001 0.1728 < 0.001 < 0.001

Fish < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

Heart 0.0896 0.1098 < 0.001 0.0002 0.0002

Abalone < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
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OK-ELM algorithms show almost the same stability perfor-
mance and it is seen that both algorithms outperform other
algorithms. In order to determinewhether the performance of
the proposed algorithm is statistically significant compared to
other algorithms, paired samples t-test with Bonferroni cor-
rection was used on the test data predictions (i.e., errors) and
the results are given in Table 3. According to these results, it
is mostly observed that the performance difference is statis-
tically significant.

Conclusion

The aim of the current study is to present a new regular-
ized ELM algorithm based on the simultaneous use of both
ridge andLiu regressionwith Lasso regression to improve the
ELM and its variants to cope with some drawbacks such as
instability, poor generalization performance and lack of spar-
sity. This new algorithm has been proposed as a solution to
multicollinearity and sparsity problems such as Lasso-ELM
and ENet-ELM by both node selection and shrinkage. After
conducting experimental study via real-world applications,
the findings indicate that the proposed algorithm provides
effective solutions to the mentioned drawbacks and yields
more stable and sparse performance with better generaliza-
tion capability than its competitors.

Limitations and Ideas for FutureWorks

Although the proposed algorithm provides significant
improvements on the performance of ELM and its vari-
ants, the major limitation of this study is the method of
selection of tuning parameters. Some solid and analytical
or genetic algorithm-based approaches should be considered
in the future works. Secondly, the proposed algorithm cannot
be used in high-dimensional data and it should be possible
to make an adaptation that can be used in high-dimensional
data. Additionally, keeping the number of hidden neurons
fixed can be considered as another limitation. Future studies
may include finding the optimum number of neurons using
ELM and then choosing a sparse model using the number of
neurons found.

Author Contribution HasanYıldırım:methodology, investigation, soft-
ware, data curation, formal analysis, visualization, writing — original
draft. M. Revan Özkale: methodology, conceptualization, supervision,
writing — review editing, validation.

Data Availability The datasets generated during and/or analyzed during
the current study are available in the UCI repository (https://archive-
beta.ics.uci.edu/).

Declarations

Competing Interest The authors declare no competing interests.

References

1. Huang GB, Zhu QY, Siew CK. Extreme learning machine: a new
learning scheme of feedforward neural networks. In: 2004 IEEE
International Joint Conference onNeural Networks (IEEECat. No.
04CH37541) (Vol. 2). IEEE; 2004. p. 985–90.

2. Huang GB, Zhu QY, Siew CK. Extreme learning machine: Theory
and applications. Neurocomputing. 2006;70(1–3):489–501.

3. Huang GB, Zhou H, Ding X, Zhang R. Extreme learning machine
for regression and multiclass classification. IEEE Trans Syst Man
Cybernet B (Cybernet). 2011;42(2):513–29.

4. Hoerl AE, Kennard RW. Ridge regression: Applications to
nonorthogonal problems. Technometrics. 1970;12(1):69–82.

5. DengW, ZhengQ, Chen L. Regularized extreme learningmachine.
In: 2009 IEEESymposiumonComputational Intelligence andData
Mining. IEEE; 2009. p. 389–95

6. Li G, Niu P. An enhanced extreme learningmachine based on ridge
regression for regression. Neural Comput Appl. 2013;22:803–10.

7. Huang WB, Sun FC. Building feature space of extreme learning
machine with sparse denoising stacked-autoencoder. Neurocom-
puting. 2016;22(174):60–71.

8. Shao Z, Er MJ. Efficient leave-one-out cross-validation-based
regularized extreme learning machine. Neurocomputing. 2016;
19(194):260–70.

9. Chen YY, Wang ZB. Novel variable selection method based on
uninformative variable elimination and ridge extreme learning
machine: CO gas concentration retrieval trial. Guang pu xue yu
guang pu fen xi= Guang pu. 2017;37(1):299–305.

10. Yu Q, Miche Y, Eirola E, Van Heeswijk M, Séverin E, Lendasse A.
Regularized extreme learning machine for regression with missing
data. Neurocomputing. 2013;15(102):45–51.

11. Wang H, Li G. Extreme learning machine Cox model for high-
dimensional survival analysis. Stat Med. 2019;38(12):2139–56.

12. Yildirim H, Özkale MR. The performance of ELM based ridge
regression via the regularization parameters. Expert Syst Appl.
2019;15(134):225–33.

13. Luo X, Chang X, Ban X. Regression and classification using
extreme learning machine based on L1-norm and L2-norm. Neu-
rocomputing. 2016;22(174):179–86.

14. Kejian L. A new class of blased estimate in linear regression. Com-
mun Stat Theor Methods. 1993;22(2):393–402.

15. Yıldırım H, Özkale MR. An enhanced extreme learning machine
based on Liu regression. Neural Process Lett. 2020;52:421–42.

16. Tibshirani R. Regression shrinkage and selection via the lasso. J R
Stat Soc Ser B Stat Methodol. 1996;58(1):267–88.

17. Miche Y, Sorjamaa A, Bas P, Simula O, Jutten C, Lendasse A. OP-
ELM: Optimally pruned extreme learning machine. IEEE Trans
Neural Netw. 2009;21(1):158–62.

18. Miche Y, Van Heeswijk M, Bas P, Simula O, Lendasse A. TROP-
ELM: a double-regularized ELM using LARS and Tikhonov
regularization. Neurocomputing. 2011;74(16):2413–21.

19. Martínez-Martínez JM, Escandell-Montero P, Soria-Olivas E,
Martín-Guerrero JD, Magdalena-Benedito R, Gómez-Sanchis J.
Regularized extreme learning machine for regression problems.
Neurocomputing. 2011;74(17):3716–21.

20. Shan P, Zhao Y, Sha X, Wang Q, Lv X, Peng S, Ying Y. Interval
lasso regression based extreme learningmachine for nonlinearmul-
tivariate calibration of near infrared spectroscopic datasets. Anal
Methods. 2018;10(25):3011–22.

21. Li R, Wang X, Lei L, Song Y. L21-norm based loss func-
tion and regularization extreme learning machine. IEEE Access.
2018;18(7):6575–86.

22. Preeti, Bala R, Dagar A, Singh RP. A novel online sequential
extreme learning machine with L 2, 1-norm regularization for pre-
diction problems. Appl Intell. 2021;51:1669–89.

123

https://archive-beta.ics.uci.edu/
https://archive-beta.ics.uci.edu/


Cognitive Computation (2024) 16:641–653 653

23. Zou H, Hastie T. Regularization and variable selection via the elas-
tic net. J R Stat Soc Ser B Stat Methodol. 2005;67(2):301–20.

24. Yıldırım H, Özkale MR. LL-ELM: a regularized extreme learning
machine based on L 1-norm and Liu estimator. Neural Comput
Appl. 2021;33(16):10469–84.

25. Rao CR, Mitra SK. Generalized inverse of a matrix and its
applications. In: Proceedings of the Sixth Berkeley Symposium
on Mathematical Statistics and Probability, Volume 1: Theory of
Statistics (Vol. 6). University of California Press; 1972. p. 601–21.

26. Schott JR. Matrix analysis for statistics. JohnWiley & Sons; 2016.
27. Tutz G, Binder H. Boosting ridge regression. Comput Stat Data

Anal. 2007;51(12):6044–59.
28. Yıldırım H, Özkale MR. A combination of ridge and Liu

regressions for extreme learning machine. Soft Comput. 2023;
27(5):2493–508.

29. Sjöstrand K, Clemmensen LH, Larsen R, Einarsson G, Ersbøll B.
Spasm: a Matlab toolbox for sparse statistical modeling. J Stat
Softw. 2018;23(84):1–37.

30. EfronB,Hastie T, Johnstone I, TibshiraniR. Least angle regression.
Ann Stat. 2004;32(2):407–99.

31. Rosset S, Zhu J. Piecewise linear regularized solution paths. Ann
Stat. 2007;1:1012–30.

32. Zhou DX. On grouping effect of elastic net. Stat Probab Lett.
2013;83(9):2108–12.

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

123


	A Novel Regularized Extreme Learning Machine Based on L1-Norm and L2-Norm: a Sparsity Solution Alternative to Lasso and Elastic Net
	Abstract
	Introduction
	Research Motivation and Enthusiasm

	Review of ELM and Its Variants
	The Proposed Algorithm: GO-ELM
	Choice of Tuning Parameters
	Sparsity Property
	Grouping Property

	Performance Evaluation
	Data Sources
	Experimental Settings
	Results and Discussion

	Conclusion
	Limitations and Ideas for Future Works
	References


