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Abstract

Recent advancements in the manufacturing and commercialisation of miniaturised sensors and low-cost wearables
have enabled an effortless monitoring of lifestyle by detecting and analysing physiological signals. Heart rate variability
(HRV) denotes the time interval between consecutive heartbeats.The HRV signal, as detected by the sensors and devices,
has been popularly used as an indicative measure to estimate the level of stress, depression, and anxiety. For years, artificial
intelligence (Al)-based learning systems have been known for their predictive capabilities, and in recent years, Al models
with deep learning (DL) architectures have been successfully applied to achieve unprecedented accuracy. In order to deter-
mine effective methodologies applied to the collection, processing, and prediction of stress from HRV data, this work presents
an in depth analysis of 43 studies reporting the application of various Al algorithms. The methods are summarised in tables
and thoroughly evaluated to ensure the completeness of their findings and reported results. To make the work comprehensive,
a detailed review has been conducted on sensing technologies, pre-processing methods applied on multi-modal data, and
employed prediction models. This is followed by a critical examination of how various Machine Learning (ML) models,
have been utilised in predicting stress from HRV data. In addition, the reported reseults from the selected studies have been
carefully analysed to identify features that enable the models to perform better. Finally, the challenges of using HRV to
predict stress are listed, along with some possible mitigation strategies. This work aims to highlight the impact of Al-based
stress prediction methodologies from HRV data, and is expected to aid the development of more meticulous techniques.
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Introduction

In the human body, numerous receptors such as skin and
eyes receive external environmental stimuli, transmit the
signal to the brain for processing, and then produce a
corresponding response. The harmful stimuli modify the
human body’s internal or external steady-state conditions
(both physical and chemical). To correct this imbalance,
the human body develops stress in order to maintain a
steady state condition, also known as homeostasis [1].
This stress is detected by the body’s sympathetic nervous
system, which results in the secretion of hormones such
as cortisol. The stress hormone increases the blood sugar,
alertness, and blood pressure to supply additional blood
flow in the body [2].

The heart rate (HR) is defined as the number of heart-
beats per minute. The discrepancy in the time intervals
between consecutive heartbeats (interbeat intervals (IBIs))
is considered heart rate variability (HRV). The autonomic
nervous system (ANS), a rudimentary nervous system
component, regulates unconscious body effects such as
HR, ventilation, metabolism, mental stress, and hyperten-
sion [3]. Non-invasive monitoring of HRV offers a numeri-
cal metric to evaluate blood pressure [4]. Numerous HRV-
derived parameters are used to diagnose mental stress and
are indeed a critical indicator to evaluate body and mind
conditions.

The resting HR of a person critically ranges from 60
to 90 beats per minute. When a person gets stressed, their
HR rises dramatically. Increased HR causes a considerable
increase in blood pressure, which is linked to low HRV.
Thus, low HRV is a well-known indicator of stress. There-
fore, it clearly shows that stress is closely related to the
neurological system and the balance of the human body
[5]. A growing amount of data shows a rising incidence of
stress-related health problems connected to today’s hectic
lifestyle. Therefore, predicting stress has become a priority
in order to maintain a productive and healthy lifestyle [6].

There is a growing demand for fast and efficient stress
detection systems that can effectively help people under-
stand and manage their stress levels. There have been
many models developed for the prediction of stress from
physiological parameters (such as electroencephalogram
(EEG), electrocardiogram (ECG), galvanic skin response
(GSR), blood pressure (BP), HRV), behavioural features
(such as facial expression, speech, posture), and self-
reported questionnaires. In addition, current pieces of
research have emphasised the significance of monitoring
physiological signals in order to provide user’s brief and
effective feedback during regular tasks [7].

Collecting relevant data from cell phones is quite con-
venient and straightforward in this age of technological
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progress. Behavioural patterns, as well as physiological
data (GSR, EEG, HR), can be collected through smart-
phones, and by combining these sensor data and smart-
phone records (calls, locations), stress can be predicted
[8]. Video cameras, accelerometers, and touch displays
based on data can also be a stress predictor and used for
model construction [9]. However, smartphone-based data
is not that accurate as the sensors are not medical grade.
Furthermore, only device-based systems have some situ-
ation-based constraints where it gives poor predictions.

Figure 1 shows a possible representation of the Al frame-
work for predicting stress from multi-modal sensor data. The
EEG parameters and stress questionnaires are the most used
mental stress detectors for participants in a contained envi-
ronment. The feature sets by combining EEG measurements
(distraction, levels of engagement, cognitive state) with sta-
tistical characteristics (mean, median, mode, and variance)
are used to categorise stress levels into high and low catego-
ries [10]. But the heterogeneously collected self-reported
stress questionnaires are susceptible to missing values and
the halo effect, which results in a defective prediction model
[7]. In addition, from a psychological point of view, self-
reports are more related to current feelings.

Figure 2a presents the year-wise, and Fig. 2b shows the
algorithm-wise distribution of the research works in this
article.

In order to conduct this review, stress prediction studies
that incorporate Al-based techniques, which predict HRV,
were searched in sources such as the IEEE Xplore digital
library, Science Direct, PubMed, and Google Scholar. For
this purpose, 242 papers were initially found. After remov-
ing duplicates and reviewing the abstracts, 102 publications
were chosen for full-text review. After reviewing the entire
text of these publications, 56 were eliminated since they
were not stress prediction-focused studies that incorporated
both HRV and Al. Finally, we have thoroughly reviewed
43 articles in this research. Figure 3 depicts the process of
selecting articles for this study.

A population pyramid depicting the distribution of male
and female participants in available datasets is presented in
Fig. 4. A word cloud representing the keywords extracted
from article titles is presented in Fig. 5.

Related Works

Many researchers make use of machine learning (ML) and/
or rule-based (RB) methods to infer the mental state of an
individual based on HRV. The HRV can be estimated using a
variety of physiological measures, including heart rate, gal-
vanic skin response, body temperature, and blood pressure.
In this section, we have presented several works that provide
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Fig.2 a The year-wise distribution of studies. We presented the num- of the articles. The bar diagram shows the most popular algorithms

ber of research papers on stress prediction using Al approaches that found in the reviewed studies
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Fig.3 Reviewing research articles, we identified 242 research publications in Science Direct, PubMed, Google Scholar, and the IEEE Xplore
digital library at first. Ultimately, 43 research articles were chosen for this review after the screening process

a review of HRV-based stress prediction models with ML
algorithms and rule-based approaches.

Panicker and Gayathri [11] proposed extensive reviews
on different ML algorithms such as support vector machine
(SVM), K-nearest neighbour (KNN), multilayer perceptron
(MLP), long short-term memory (LSTM), decision tree
(DT), linear discriminant analysis (LDA), Naive Bayes (NB),
logistic regression (LR), and probabilistic neural network
(PNN) to predict various emotions (fear, anger, sadness) and
stress using physiological data. These data were collected
using EEG, ECG, GSR, and skin conductivity sensors. They
investigated the connections between the biological charac-
teristics of persons with emotional and mental stress. The
authors have ignored different state-of-the-art RB methods
in their survey. They did not incorporate the pre-processing

Fig.4 Population distribution
of datasets from the selected
articles showing the number of
male and female participants
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of data properly. These RB systems attracted researchers
due to their explainability and better performance for the
small dataset.

Piotrowski and Szypulska [12] provided a comprehen-
sive overview of KNN, NB, and neural network (NN)-based
drowsiness detection methods relying on HRV data extracted
from ECG, EEG, and electrooculography (EOG) readings.
They reviewed several ML techniques as well as pre-press-
ing approaches for this purpose. However, RB techniques
were not included in their research.

Can et al. [13] investigated various stress detection
approaches using data from smartphones and wearable sen-
sors like ECG, EMG, electrodermal activity (EDA), EEG,
GSR, and PPG. They classified the outputs into stress lev-
els and classes. In their review, the authors focused more
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on multimodal data-gathering approaches for stress detec-
tion. The authors addressed several ML and RB approaches
like SVM, LDA, LR, AdaBoost, KNN, fuzzy logic, NB, and
convolutional neural networks (CNN). Smartphone sensors
and wearable-based data were used only. They avoided
research challenges and different preprocessing techniques
for the data.

Bulagang et al. [14] looked into emotion categorisa-
tion based on ECG and EEG sensor data. They also used
EDA, HR sensor, GSR, etc. and reviewed some ML and
RB algorithms KNN, SVM, fuzzy logic, and random for-
est (RF) utilising data from numerous sensors. The authors
considered the utilisation of multimodal physiological sig-
nals. They concentrated their research on several emotion
categories rather than stress. The paper was also lacking in
pre-processing methods and data fusion.

Pramanta et al. [15] studied stress identification methods
to identify stress levels depending only on the HR data.
The authors investigated various ways of extracting prop-
erties from heartbeat data collected using HRV, GSR, BP
(blood pressure), and EEG sensors, as well as the perfor-
mance of SVM, RF, NB, DT, and KNN approaches based
on such data. They concentrated on classification methods
and overlooked multimodal and fusion-based data process-
ing. Furthermore, RB techniques were not included in their
research. Both multimodal data and RB techniques can per-
form better when it comes to identification and classifica-
tion tasks.

Katarya and Maan [16] proposed a review of stress detec-
tion using SVM, KNN, LR, RF by GSR, EDA, skin tem-
perature (ST), blood volume pressure (BVP), HR, and HRV
data collected from smartwatches. They explored various
smartwatch-based data collection methods and compared
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several ML techniques based on their stress detection abili-
ties for different stress levels. The use of multimodal data
or RB techniques ignored stress in the detection system. In
addition, just a few related publications were examined for
the purpose of comparing ML approaches.

Nath et al. [17] reviewed and discussed stress detection
techniques which used ML algorithms like SVM, KNN, DT,
LDA, NB, ANN, and RF. In their review study, the authors
identified GSR, ANS, EDA, PPG, HR, HRV, EOG, EEG,
ECG, EMG, EGG, and respiration-based physiological indi-
cators for classifying stress based on subjective and objec-
tive assessments. They compared various ML algorithms’
accuracy, classes, and acquisition windows. However, they
did not mention data pre-processing strategies or the chal-
lenges encountered while doing research. RB procedures
were not included in their assessment.

Smets et al. [18] compared SVM, LDA, Bayesian net-
works, DT, RF, and LR algorithms for the measurement
of stress levels based on physiological responses. Their
research includes data from ECG, GSR, HRYV, ST, respira-
tion, and EMG sensors. Rest detection rate, stress detection
rate, and average detection rate were used to compare accu-
racy. The authors employed questionnaires and sensors for
data collection, but data was used from one source. They
tested six alternative ML algorithms but did not incorporate
multimodal data or RB detection strategies in the detection
system. Tonacci et al. [19] evaluated physiological data
linked to ANS activity, along with ECG and GSR; ANS,
ECG, HRYV, HR, and cardiac sympathetic index (CSI) meas-
ures were used. The performances of SVM, KNN, DT, LDA,
quadratic discriminant, and LR-based algorithms were com-
pared for physiological stress-level detection. The authors
talked about what the study could be used for in the future
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and what problems other researchers might face. However,
they ignored RB approaches for their study and only consid-
ered relaxation in place of stress detection.

In earlier review studies, several stress prediction
approaches based on HRV were explored, which were done
utilising a variety of ML techniques. The bulk of them were
targeted at utilising ML to detect and classify stress. In most
cases, the reviews were limited to ML methods. Only a tiny
fraction of their research employed RB methods. Although
pre-processing approaches prepare data for the core clas-
sification, they were mostly discarded in the bulk of the
literature. For enhanced and more accurate data gathering,
multimodal and fusion-based sensors are essential. Even so,
the majority of the studies employed very specific types of
sensors, and review papers ignored the use of multimodal
sensors. A common framework for stress detection might
be beneficial to add in review articles for possible future
studies. However, none of the studies provided a unified
framework for detecting stress.

There is no agreed standard for stress evaluation at pre-
sent. This study intended to cover works that provide a basis
for using HRV as a psychological stress indicator and to pro-
vide a comprehensive analysis of Al-based pre-processing
and stress prediction models derived from HRV. Table 1
indicates the characteristics of the already available review
articles in the field of stress prediction from HRV.

Stress Prediction and Heart Rate Variability

The field of stress research has a wide variety of applica-
tions, as it has the potential to boost learning and increase
work productivity. The potential applications of stress
research include the ability to enhance personal, govern-
ment, and industrial operations and the resilience of military
operations and life support systems [20]. As there may be
discrepancies between numerical scales suggested by vari-
ous researchers, stress detection systems rely on qualitative

judgement. To evaluate stress levels, many researchers
have utilised various sorts of phrases. Some class labels are
determined only by the presence of stress; others are defined
by stress and relaxation levels, which can be expressed as
extremely stressed, mildly stressed, stressed, extremely
relaxed, relaxed, and so on [11].

For identifying stress, HRV is a crucial feature and indi-
cator for evaluating body and mind states. Therewith, while
interpreting the relationship between HRV and stress (see
Fig. 6 for the relationship between brain and HRV), it is
critical to grasp the entire autonomic context and analyse a
patient’s medical and psychiatric history due to the diversity
of possible stressors and individual stress responses [2].

Artificial Intelligence Algorithms

Recently, artificial intelligence (AI) has played a significant
role in the methodological developments for diverse problem
domains, including computational biology [21, 22], cyber
security [23-26], disease detection [27-33] and manage-
ment [34-39], elderly care [40, 41], epidemiological study
[42], fighting pandemic [43—49], healthcare [5S0-54], health-
care service delivery [55-57], natural language processing
[58-62], and social inclusion [63-65].

In this article, we categorised the algorithms found from
the different review publications as RB approaches, shallow
machine learning approaches, and deep machine learning
approaches. This section discusses the basic principle of
these three approaches and their pros and cons, along with
all the algorithms we have found being used by different
articles.

Rule-Based Approaches
Rule-based approach, often known as expert systems, makes

judgements or solves issues by using logic and previously
established rules. These rules are typically created by

Table 1 Characteristics of Ref

. . Datatype Sensor Data set Data pre-pro-  Classification
current review articles . . cessing
Multi-  Fusion RB ML DL
modal
[11] v v v v X v v v
[12] v X v X v x X X
[13] v v v v X v v v
[14] v X v v v X v v
[15] v X X X X x v X
[16] v X v X X X v X
[17] X X X X X X X X
[18] X X x X X X X X
This article v v v v v v v v
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Fig.6 The relation cycle of stress with HRV and relation with autonomous nervous system (ANS) is presented

experts in the field and are unique to their particular sec-
tors. The system analyses incoming data and produces an
output or recommendation by abiding by these rules. The
decision-making process for RB approaches is transpar-
ent. In the majority of instances, the rationale and condi-
tions for RB approaches are clearly stated and transparent.
Additionally, it is useful for updating guidelines or rules
of decision-making because they are clear and provide the
approach flexibility and adaptability. On the other hand, RB
approaches have limited compatibility in complex domains
and require manual effort to design the rule bases.

Shallow Machine Learning Approaches

Shallow machine learning, sometimes called traditional
machine learning or supervised learning, encompasses
the process of training a model using labelled examples.
Through this process, the model gains an understanding of
patterns and relationships within the data, enabling it to pre-
dict outcomes or classify new, unseen data. The emphasis
lies in extracting relevant features from the input data and
utilising them to guide decision-making. In shallow machine
learning, the model is required to be provided with labelled
examples of inputs and their corresponding outputs. From
these examples, the model is learned to make predictions
on new, unseen data. However, shallow machine learning
models often offer interpretability and take less training time
than deep machine learning models. Shallow machine learn-
ing models are also easier to implement and debug.

Deep Machine Learning Approaches

Deep machine learning, often referred to as deep learning, is
a subset of machine learning that uses neural networks with
multiple layers to learn representations of data. It involves
training a complex network of interconnected artificial

neurons to automatically discover and learn hierarchical
representations of the input data. Deep learning excels in
tasks such as image and speech recognition, natural language
processing, and other complex pattern recognition tasks. It
can automatically extract features from raw data, eliminat-
ing the need for manual feature engineering. However, deep
learning models often require substantial computational
resources and often lack interpretability [66—70].

Summary of Al Algorithms

For stress prediction, Al algorithms have been extensively
used in recent years. Table 2 described the basics of various
RB and ML techniques extensively used to predict stress
from HRV.

The AT algorithms which have been used throughout this
reviewed article are conferred in Table 2. In this section, the
algorithms, along with their pros and cons with graphical
representation, have been presented. Figure 7 represents the
Al algorithms in pictorial form.

Al for Stress Prediction

The widespread adoption of Al can be attributed to several
factors, two of the most important of which are its remark-
able accuracy and lightning-fast response times. Addition-
ally, it does an excellent job of predicting stress, which is
essential to living a healthy life.

Rule-Based Approach
Various types of RB systems, such as fuzzy logic, neuro-

fuzzy systems or fuzzy neural networks [83], and fuzzy
adaptive resonance theory (ART) [84], are used in clinical
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Table 2 (continued)

Type Pros

Description

Cons

DNN has multiple hidden layers in between the input and

e Slow learning process.

o Can do multi-level processing.

DNN

output layers. It has the ability to extract features from data
without any feature extraction algorithms. DNNs mimic

e Requires a large amount of data.

e Can work with complicated feature representation.

the multilevel processing mechanism of vision by Cortical

areas of the brain [80]

Backpropagation network consisting of multiple layers. It

e Slower in training than DNNs.

e Little reliance on pre-processing.
e Provide more accurate results.

CNN

combines three architectural ideas: the receptive field,

e Training set needs to be much larger for successful train-

ing.

shared weights, and subsampling [81]. The architecture of
CNN is based on the visual cortex of human beings [82]

FL fuzzy logic, FNN fuzzy neural network, NB naive Bayes, LR logistic regression, DT decision tree, KNN K-nearest neighbours, SVM support vector machine, KMC K-means clustering, RF

random forest, RNN recurrent neural network, DNN deep neural network, CNN convolutional neural network

applications where the knowledge of different experts are
converted into a set of “if-then” rules. Many researchers
have utilised fuzzy logic to assess stress from HRV.

Kumar et al. [85] developed a fuzzy theoretic nonpara-
metric deep model for predicting stress based on heartbeat
analysis. In addition to the stress value, the authors cre-
ated weights for subjective stress evaluation and empirical
HRYV analysis to illustrate the explainability of the pro-
posed model.

El-Samahy et al. [83] proposed Mamdani fuzzy infer-
ence systems to find mental stress using heart rate and
diameter of the pupil. The authors carried out a closed-
loop experiment between two personal computers, one for
imposing mental stress and the other for monitoring and
managing the human mental state.

Ranganathan et al. [86] proposed a stress assessment
approach that analyses heart rate signals using a wavelet
transform and a neural fuzzy model. Techniques such as
wavelet decomposition and reconstruction were employed
to minimise noise and recover specific time-frequency fea-
tures that were previously lost. It is necessary to apply
neural fuzzy training in order to recognise spectral fea-
tures, and fuzzy clustering techniques are used to evaluate
mental stress. They kept track of the heart rate recordings
and used the wavelet transform to evaluate the data (WT).
Neuro-fuzzy evaluation approaches were used to improve
the reliability of HRV analysis and to track the activity of
the autonomic nervous system (ANS) under a variety of
stress conditions.

Kumar et al. [87] developed a novel heart rate variabil-
ity analysis technique for measuring mental stress based
on fuzzy clustering. An accurate and dependable fuzzy
identification technique was used to deal with the uncer-
tainties created by individual differences in the assessment
of mental stress levels. Their method requires the con-
tinuous monitoring of heart rate signals over the Internet.
Later, the signals are processed by means of a continuous
wavelet transform in order to recover the local features of
HRYV in the time-frequency domain.

Wang et al. [84] presented a pattern recognition sys-
tem for learning complicated HRV-salivary stress cor-
relations. In order to predict salivary response given a
set of ECG measurements, the researchers used a fuzzy
ARTMAP (FAM) classifier. They improved FAM utilis-
ing GA ensembles, which improved the training cycle
order and ARTMAP parameters. They also devised a sys-
tem for simultaneously collecting heart rate and salivary
data under various stress induction strategies. A sum-
mary of used algorithms, pre-processing, sensors, and
features by RB stress prediction approaches is presented
in Table 3.
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Shallow Machine Learning Approaches

In shallow ML, the training process is carried out using data
with predefined features where it is necessary to perform
feature extraction by hand, as the use of domain knowledge
is essential. Shallow ML includes well-known algorithms
such as RF, NB, DT, SVM, KNN, and LR. This section

contains a list of studies which utilises shallow ML meth-
ods to predict stress.

Sriramprakash et al. [88] extracted the most important
and overlapping characteristics from physiological sensors in
order to identify stress in working individuals. The authors
extracted time- and frequency-domain features as well as
physiological features (HR, HRV, GSR, and so on) from the

Table 3 A summary of used algorithms, pre-processing, sensors, and features by rule-based stress prediction approaches

Ref. Model Pre-processing Sensors Features
[85] Fuzzy theoretic nonparametric - PPG R-R Features
deep model
[83] Mamdani fuzzy Downsampling Ohmeda 2300 Finap- HRV2, mPD
ress, Gazepoint GP3
eye tracker
[86] Sugeno neuro fuzzy Wavelet transformation, noise removal ECG Time-frequency features
[87] Sugeno fuzzy clustering Continuous wavelet transformation Polar S810i HR, Mw, 1/a, p1,p2,p3
[84] Fuzzy ARTMAP Dimensionality reduction, normalisation ECG, microtiter plate ~ Alpha amylase, cortisol,
spectrophotometer R-R intervals
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physiological data. They employed SVM and KNN classi-
fiers to detect stress and assess the validity of the retrieved
features for stress detection.

Huang et al. [89] recruited 35 participants who wore
wearable devices to collect ECG from the participants.
In this experiment, the authors collected 8 HRV features,
namely RMSSD, PNN50, TP, HF, LF, VLF, and the LF/HF
ratio and transmitted these collected data to a smartphone
via Bluetooth interface. SVM, KNN, NB, and LR were used
to train the model that automatically detected the fatigue
state.

Wu et al. [90] attempted to overcome the challenge of
identifying physiological stress caused by engaging in physi-
cal activities. They used wristband sensors to capture biosig-
nals. GSR, BVP, HR, ACC, and ST sensors were employed
to acquire physiological data in this investigation. The
authors utilised KNN, SVM, DT, NB, ensemble learning
(EL), and DL models to categorise physical activities and
acute physical stress.

Sevil et al. [75] reported models to detect stress and
awareness levels in knowledge workers using biometric
sensors. The authors used wristbands to collect biosignals
like GSR, BVP, ST, and HR from knowledge workers. For
the purpose of detecting stress levels and awareness, they
used ML models, such as KNN, SVM, NB, DT, and DNN.
The performance of these algorithms was compared with the
state-of-the-art techniques.

Pourmohammadi and Maleki [91] compare the efficacy
of the EMG signal and the ECG signal in detecting mental
stress. This work examines the EMG signal of the right and
left trapezius and the right and left erector spinal muscles
in depth for multi-level stress recognition. To create stress
in the laboratory, mental arithmetic, the Stroop colour word
test, time constraints, and a stressful atmosphere were used.
The effectiveness of EMG signals for stress detection was
tested using an ECG signal.

Maldonado et al. [92] introduced an expert system that
used an SVM-based features selection method to analyse
the mental workload of individuals while performing daily
tasks. The authors used multiple mobile devices to capture
HR, blood oxygen saturation (SpO2), and temperature to
construct a system for mental stress analysis.

Pluntke et al. [93] introduced a framework that uses HRV
analysis to detect and classify physical and mental stress
in real time without interfering with the person’s activities.
HRYV data was labelled and gathered in controlled situations
where subjects were subjected to physical, psychological,
and combination stressors. They used SVM and C5 DT to
segregate and identify distinct stress kinds and the relation-
ship between HRV data and stress levels.

Giannakakis et al. [94] examines the effects of stress on
HRYV parameters and seeks to discover the best mix of HRV
features for reliably detecting stress. In order to account for

the individualised baseline of each phase in developing the
stress model, the retrieved HRV features were converted cor-
respondingly using the pairwise transformation.

Castaldo et al. [95] used linear and non-linear HRV char-
acteristics extracted during an oral test (stress) and during
rest after a holiday to detect mental stress. They showed
that nonlinear ultrashort-term (3 min) HRV features might
automatically predict mental stress in healthy participants.
ECG sensor data was used to extract HRV features, which
were then evaluated using Kubios software tools. Following
that, the HRV properties were applied to statistical and data
mining analysis.

Delmastro et al. [96] examine the impact of a specific
training procedure on the cognitive function and stress
response of a group of MClI-fragile older persons. They
tested a stress detection system based on different ML algo-
rithms to see how well they performed on a real-world data-
set. They also proposed a mobile system architecture for
online stress monitoring that can infer the amount of tension
during a session.

Lima et al. [97] developed a model that can predict
how people will react using HRV characteristics and EDA
signals, which were extracted using a wearable device to
provide continuous monitoring. Participants were placed
through a mental arithmetic stress test to extract the HRV
and EDA characteristics.

Yu et al. [98] propose a new way to track office work-
ers’ behaviour and HRV. They used ML techniques to create
a classification model that could distinguish distinct work
behaviours (moving the body, typing, talking, and reading)
from sensor data. The system utilised a lightweight EMFi
sensor for measuring the changes in pressure induced by
human motions and heartbeat in office chairs.

Padmaja et al. [99] proposed a model based on four
major well-being dimensions. The stress level of a person
is determined by combining their HRYV, sleeping pattern,
social behaviour, and physical activity. They developed
DetectStress, a cognitive stress-level detection system that
uses smartphone daily activity data and data from a wireless
physical activity tracker to evaluate an individual’s stress
levels in an unobtrusive manner (FITBIT).

Can et al. [100] developed an autonomous stress detection
system that relies on physiological information collected
from discreet smart wearable gadgets that people can take
about with them. This system has modality-specific artefact
removal and feature extraction techniques for real-world
settings.

Chen et al. [101] investigated consumer-grade wrist-based
PPG sensors, which are as cheap, convenient, and accurate
as consumer ECG sensors. They created an individual stress
prediction model to assess the performance of different PPG
LED lights and the suitable window widths. To extract ten
HRYV characteristics, the authors utilised half-overlapping
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moving windows (1/3/5 min). They find that a 3-min interval
is adequate to distinguish between a stressful mental state
and illustrate how to utilise ML methods to combine HRV
features for reliable stress identification.

Koldijk et al. [102] discover that addressing individual
variations is especially important when assessing mental
states. The authors explored several ML techniques for infer-
ring working circumstances and mental states from a mul-
timodal set of sensor data, including computer logs, facial
expressions, posture, and physiology. They discovered that
sensor data can better predict the subjective variable “mental
effort” than it can predict “felt stress”.

Ciabattoni et al. [103] proposed a smart-watch-based sys-
tem for collecting and analysing biosignal data in order to
detect mental stress in the course of daily activities. Using
data from a commercial wristwatch, they classified stress
using GSR, RR interval, and body temperature (BT). Data
from smartwatches is filtered and adjusted to smooth down
noise and motion distortions.

Attaran et al. [104] presented a design for a multi-modal
stress monitoring system. They extracted 17 different fea-
tures from ECG, accelerometer, SpO2, EDA, and respira-
tory sensor to explore them for maximising the detection
accuracy of SVM and KNN classifiers. Finally, they used
the results to implement a low-power-consuming ASIC
implementation of the SVM classifier in stress monitoring.
Castaldo et al. [105] suggested a method using mental stress
assessment to identify the extent of ultra-short HRV as a
valid replacement for short HRV features. They extracted
23 ultra-short HRV features and used SVM and DT classi-
fiers to identify their validity in the case of automatic stress
assessment.

Hantono et al. [106] targeted to analyse the stress level
of people while using smartphones. They used PPG heart
rate sensing on mobile devices to record the heart rate of the
subjects while they were doing different tasks. Finally, they
compared NN, discriminant analysis, NB, and KNN algo-
rithms while doing time- and frequency-domain analysis-
based classifications.

Tiwari et al. [107] explored an SVM-based prediction
model of mental stress and workload. The authors extracted
HRYV and breathing signals for computing ultra-short-term
segments of the signals to use them as features. The system
was developed to provide a fast prediction of stress and men-
tal workload depending on frequency- and time-domain fea-
tures from less than 5 min segments of the sensor readings.

Clark et al. [108] presented an RF classifier-based model
for the prediction of people’s stress levels at least one minute
prior to the event. They extracted 42 features from GSR,
respiration, and ECG sensors and expanded to 252 features.
These features were used to identify whether the stress level
of the subject would rise to a higher level in the coming
scenarios.

@ Springer

Ahmad et al. [109] reported a study on stress-level assess-
ment in virtual reality environments. They collected ECG
signals from subjects under VR influence. They transformed
the collected data into 1-D and 2-D forms to create a mul-
timodal fusion of ECG data. Using this multimodal deep
fusion model and RF, KNN, SVM, and XGBoost classi-
fier (XGB) algorithms, they evaluated the performances for
stress-level detection from 1-s windows.

Dalmeida and Masala [110] developed a comparative
study that tests the compatibility of HRV features as physi-
ological data to accurately classify the level of stress. This
was achieved by extracting HRV parameters from ECG sen-
sor data and selecting the more relevant features using Pear-
son’s correlation, recursive feature elimination (RFE), and
extra tree classifier. They used different ML methodologies
such as KNN, SVM, MLP, RF, and gradient boosting (GB)
to test and develop the best model for the purpose.

Sandulescu et al. [111] presented an SVM-based stress
detection approach from data collected through wearable
sensors on people. They collected the PPG value, PPG auto-
correlation value, HRV value, and EDA value for each state
to be determined. The model they proposed was demon-
strated to detect real-time stress levels in people.

Munla et al. [112] investigated stress-level detection
of drivers in a real-world driving situation. The authors
extracted HRV features using domain analysis approaches
such as time, frequency, time-frequency, or non-linear meth-
ods using wavelet and STFT. They built a feature vector out
of the extracted parameters and tested KNN, RBF, and SVM
ML approaches. A summary of used algorithms, pre-pro-
cessing, sensors, and features by shallow ML-based stress
prediction approaches is presented in Tables 4, 5, 6, and 7.

Deep Machine Learning Approaches

de Vries et al. [113] used learning vector quantisation (LVQ)
to classify stress and relaxation from different physiological
signals. To create the stress classifier, the authors collected
features from ECG, GSR, and RSP data and observed car-
diac activity. To train the LVQ classifier, the authors experi-
mented with different very high-frequency band features in
addition to common properties of these signals.

Son [114] created a model to forecast mood changes con-
nected to LSTM, RNN, and LSTM-RNN in order to provide
a framework that will estimate the mood based on a particu-
lar detail of people’s qualitative ability to adapt. Variations
in moods, such as his cognitive activity in response to his
activities, surroundings, environment, HR, HRV, and other
states, might be easily justified with this feature-rich wear-
able device in a consecutive time domain.

Rastgoo et al. [115] assessed a driver’s critical situa-
tion, and the authors utilised CNN and LSTM. To construct
this predictor, parameters were taken from ECG, vehicle
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Table 4 A summary of used algorithms, pre-processing, sensors, and features by Shallow ML-based stress prediction approaches

Ref. Model Pre-processing Sensors Features

[88] SVM, KNN - Kinect 3D sensor, ECG sensor RMSSD, AVNN, SDANN, SDNN,
NNS50, PNN50, LF, HF, LF/HF

[89] SVM, KNN, NB, LR - ECG NN.Mean, PNN50, rtMSSD, TP,
LF, HF, VLF, LF/HF

[90] k-NN, SVM, DT, NB SG-filter, BWF, ANC algorithm GSR, BVP, ST, 3-D ACC, HR Time-domain, frequency-domain,

[75] KNN, SVM, NB, DT and DNN -

[911 SVM FIR filters, IIR filters, EMD and
DWT

[92] SVM Canny’s edge detection algo-
rithm, LPFr

[93] SVM, C4.5DT 3-sigma rule

[94] RF, SVM time series polynomial fit and
bandpass filtered

[95] NB, SVM, MLP, AB, C4.5 DT QRS detector, PhysioNet’s

WAVE

[96] BN, SVM, k-NN, C4.5 DT Lomb-Scargle algorithm, LPF,

CDA

and distribution features of BVP,
ACC, GSR, and HR

Biometric Sensors Statistical Features of RR

ECG v.12 devices, SX230 sur-
face electrode, Skintact F-55
electrode

Pulse oximeter, ST, ECG, and
eye tracker

ECG, Polar H7 chest strap

Statistical and time-domain fea-
tures of RR

HRYV, HR, PS, temperature, SpO2

Statistical features of RR;
frequency-domain features of RR

ECG Time-domain features of RR, HRV
triangular index, ECG envelope,
frequency-domain features of RR

ECG Statistical features of RR, absolute

power, frequency-domain fea-
tures of RR, SampEn, D2, fal,
dfa2, ShanEn

Statistical features of RR, tot spec-
trum power, frequency-domain
features of RR, Amps, ISCR,
mean SCL, mean EDA, max
EDA deflection

Zephyr BioHarness34, Shim-
mer3 GSR + Development
Kit5

In pre-processing column: PPG-PD PPG peak detection, HR heart rate, RR-ISF RR-interval series filtering, HRV and EDA electrodermal activ-
ity features extraction, BCG ballistocardiography, SG-Filter Savitzky-Golay filter, BWF Butterworth filter, ANC adaptive noise cancellation,
EMD empirical mode decomposition, FIR finite impulse response, /IR infinite impulse response, LPF low pass filter, CDA continuous deconvo-

lution analysis

In sensor column: SCR skin conductance response, SCL skin conductance level, RiseT rise time, ST skin temperature, ECG ecocardiogram, GSR

galvanic skin response, ACC accelerometer

characteristics, and relevant information and then input into
separate CNNGs as the driver’s stress-level components were
classified into low, medium, and high categories and then
merged into a two-layer LSTM.

Akbulut et al. [116] provided a model to allow the simu-
lation of stress as well as a variety of mood shifts based
on physiological factors. The researchers used ECG, GSR,
body temperature, blood pressure, glucose level, and SpO2
information to construct this framework, along with observ-
ing changes in behaviour and quantifying HRV according
to stress levels. In addition to determining similar traits of
these signals, the authors examined other often quite fre-
quency band features as well as time-domain and variational
analytic factors.

Coutts et al. [117] used an LSTM system to capture HRV
signals from a wrist device that can monitor inter-beat inter-
vals using mean, standard deviation, and root mean square
successive difference. Physiological signals and character-
istics were acquired to use this sensor reading device. The

spectrum properties were determined in a comprehensible
fashion of frequency domain to construct the frequency-
based ML technique.

He et al. [118] used CNN technique on various physio-
logical signals to assess chronic perceptual anxiety and tran-
quillity. To construct this model, the researchers analysed
characteristics from ECG, EEG, and EMG readings, along
with observed heart activity. The scientists used several
really quiet frequency band components as well as common
aspects of these transmissions to develop the CNN-based
analyser.

Qin et al. [119] assessed the BP feed-forward approach
for the relaxed state, low stress, medium stress, high stress,
and other metabolic variables. The authors had to obtain
information from GSR or skin temperature and BVP to
design an assessment technique to determine HRV charac-
teristics. HRV features obtained from time- and frequency-
domain evaluation of R-R intervals recorded during the
enhanced practice session are the most efficient and precise
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Table 5 A summary of used algorithms, pre-processing, sensors, and features by shallow ML-based stress prediction approaches

Ref.  Model Pre-processing Sensors Features
[97] SVM;LR; RF PPG-PD; HR; RR-ISF; HRV; EDA DA wrist, PPG, Spare, TVOC, CO2, Statistical features of RR, SCR, SCL;
TEMP RiseT
[98] SVM; KNN; EnL. BCG processing EMFi sensor Statistical features
[99] NB; DT Normalization and transformation  Fitbit Tracker Number of calls, duration, no. of SMS,
the app usage information
[100] PCA, SVM, Artefact-(interpolation/removal) 3D accelerometer (ACC), PPG, EDA  Statistical and frequency-domain
KNN, LR, RF, features of RR
MLP
[101] RF Filtering using BWBPF Wristband device, Polar H10 SD1, SD2, RMSSD, SDNN, MHR,
MRRI, TP, VLP, LF, HF
[102] NB, SVM, KNN, - ECG and skin conductance Facial expressions, head orientation
Bayes Net, RF; action units, emotion, body postures,
DT; MLP joint angles, HR, HRV, skin conduct-
ance
[103] KNN Artefacts and noise removal HR, GSR and BT RR, GSR, BT

In pre-processing column: PPG-PD PPG peak detection, HR heart rate, RR-ISF RR-interval series filtering, HRV and EDA electrodermal activ-
ity features extraction, BCG ballistocardiography, BWBPF high-order Butterworth bandpass filter

In sensor column: SCR skin conductance response, SCL skin conductance level, RiseT rise time, GSR galvanic skin response, PPG photoplethys-

mogram, EDA electrodermal activity, EMFi electro-mechanical film

indicators of ANS at the time of constructing the artificial
neural network algorithm.

Ding et al. [120] proposed a study that uses multimodal
measurements to measure mental workload and validates
the features for mental workload estimation. The authors
created a backpropagation neural network (BPNN) classifier
to evaluate the workload using physiological data (HR, HRV,
EMG, ETA, and respiration), subjective ratings of mental
exertion (NASA Task Load Index), and task performance
metrics. They compared the BPNN’s performance against
KNN, SVM, medium tree, and LDA algorithms.

Kalatzis et al. [121] conducted a study that determines
stress levels of older adults from ECG signals while

performing a hand grip strength task. The author extracted
time- and frequency-domain features of HR and HRV to
perform the identification of stress and no-stress states. They
proposed an optimised ANN model to identify the states
and proposed the effects of this model for a better stress
management system.

Dhaouadi and Ben Khelifa [122] utilised LSTM and deep
neural networks (DNN) to assess legitimate anxiety levels as
well as detect other lifestyle patterns in young gamers based
on physiological measurements. To establish such models,
researchers gathered the required characteristics from ECG,
EEG, EDA, and EMG recordings and estimated emotional
state variations. As a result, to construct the frameworks

Table 6 A summary of used algorithms, pre-processing, sensors, and features by shallow ML-based stress prediction approaches

Ref. Model Pre-processing Sensors Features
[104] KNN, SVM HR, accelerometer, Statistical features of HR and RR, mean SpO2
EDA, Resp. Rate,
Sp0O2
[105] SVM, DT RR-SE and Corr ECG Statistical features of NN, dfal, dfa2, RPlmean, RPImax, REC, RPadet,
ShanEn
[106] NN, KNN, DA, NB Corr PPG mHR, RR, SDHR, SDRR, CVRR, RMSSD, pRR20, and pRR50. ULF,
VLF, LF, HF
[107] SVM BPF (5-25 Hz) BioHarness 3, Zephyr Time-domain and frequency-domain features of HRV
[108] RF classifier Normalising, BWF GSR, ECG, Resp Time-domain and frequency-domain features of GSR respiration: the

mean and variance time-domain and frequency-domain features of
HRV

In pre-processing column: HR heart rate, RR-SE RR-interval series extraction, Corr correlation, BPF bandpass filter, BWF Butterworth filter

In sensor column: SCR skin conductance response, HR heart rate, ECG ecocardiogram, PPG photoplethysmogram, EDA electrodermal activity,

Resp respiration
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Table 7 A summary of used algorithms, pre-processing, sensors, and features by shallow ML-based stress prediction approaches

Ref. Model Pre-processing Sensors

Features

[109] RF, KNN, SVM, and XGB LS-method ECG, EMG, PPG
[110] KNN, SVM, MLP, RF, and GB WQRS tool PhysioNet HRV  Apple watch

toolkit, pyhrv, data normali-

zation
[111] SVM Downsampling, noise removal BioNomadix module from
Biopac, model BN-
PPGED
[112] SVM, KNN Filtering, derivative, SW inte- ECG sensor

gration, QRS detection

Time-domain and frequency-domain
features of HRV

HR, AVNN, SDNN, RMSSD, pNN50, TP,
and VLF

ppgt, ppgaut, HRV t, EDA t

Time-domain and frequency-domain
features of RR

In pre-processing column: SW squaring and window integration, LS-method Lomb-Scargle method

In sensor column: EMG electromyography, HR heart rate, ECG ecocardiogram

(LSTM and DNN), the scholars had to conduct several inves-
tigations and frequency variations to determine the frequent
and unusual properties.

Stewart et al. [123] suggests neural processes as a tech-
nique for developing personalised models and addressing
individual interactions with physiological processes. They
used standard ML models (such as SVM, KNN) and neural
processes to develop stress classifiers which were compared
on two datasets using leave-one-participant cross-validation.

Silva et al. [124] compared baseline and stress situations
to look at HR and HRV indicators. The authors used sev-
eral statistical tests and ML models, both shallow (which
includes SVM, KNN, and RF) and deep, to build a predictive
model for stress monitoring, evaluation, and chronic stress
prediction.

A summary of used algorithms, pre-processing, sensors,
and features by deep ML-based stress prediction approaches
is presented in Tables 8 and 9.

Performance Analysis and Discussion
Rule-Based Approaches

Kumar et al. [85] addressed the issue of explainability of
fuzzy theoretic nonparametric deep model applications in
biology and medicine. They used one previously studied
dataset of 50 subjects and a new dataset of 100 subjects
and obtained (Pearson’s correlation coefficient (r): 0.8162
(old dataset) vs 0.6809 (new dataset), RMSE: 6.8382 (old
dataset) vs 9.4872 (new dataset)).

El-Samahy et al. [83] found a close match between
the measurement of the proposed system and the actual
measurements acquired from human volunteers. The sys-
tem was built and evaluated using heart rate and pupil
diameter data collected from 5 people. To compare the
achievements of subjects 1 and 2, an evaluation index (EI)

Table 8 A summary of used algorithms, pre-processing, sensors, and features by deep ML-based stress prediction approaches

Ref.  Model Pre-processing Sensors Features
[113] LVQ R-PD, IBI outlier removal, and SCRG ECG, GSR, RSP Time-domain, frequency-domain, and
method distribution features of ECG, GSR, RSP
[114] LSTM-RNN All features are normalised into arange A Tizen component on smart-watch HR avg, HRV arg, HR min, HR max,
of [-1,1] SDHR, SDHRYV, hr diff avg, hr diff var
[115] CNN-LSTM A Butterworth band-pass filter (5-15 ECG Mean, standard deviation, mean of the
Hz), R-peaks are extracted, Pan-Tomp- first difference of HRV, average normal-
kins algorithm to-normal (NN) and intervals, SDNN,
RMSSD, PNN50
[116] FENN DWT, Pan-Tompkins algorithm, down = CVDiMo wearable sensor Statistical and frequency-domain features
sampling of RR
[117] LSTM Noise filtering The bio beam band Statistical and frequency-domain features
of RR
[118] CNN Bandpass filter ECG HR, LH, SDNN, SD2, pQ

In pre-processing column: SCRG SCRGauge method, HR heart rate, RR-SE RR-interval series extraction; Corr correlation, BPF bandpass filter,
BWF Butterworth filter; DWT discrete wavelet transformation, /BI inter-beat interval

In sensor column: GSR galvanic skin response, HR heart rate, ECG ecocardiogram, RSP respiration

@ Springer



470

Cognitive Computation (2024) 16:455-481

Table 9 A summary of used algorithms, pre-processing, sensors, and features by deep ML-based stress prediction approaches

Ref.  Model Pre-processing Sensors Features

[119] NN - Pulse oximeter MEAN, SDNN, SDANN, RMSSD, TF,
VLF, LF, HF, LF/HF

[120] BPNN, SVM, KNN ‘WD and HP, LP, ECG, EDA, EMG, respiration sensors AVHR, LF/HF, Yrm, MF, SC mean,

and RMS filtering respiration

[121] ANN WT ECG probe, BIOPAC ECG100C Time-domain and frequency-domain
features of NN

[122] LSTM, DNN Transfer function, Polar H10, Actigraph wGT3X-BT HR and HRYV features

biosppy and pyhrv
libraries

[123] NP, SVC, KNN

[124] LR, NB, NN, SVM, RF, KNN - PPG

HT algorithm, BWF ECG, GSR

Time-domain and frequency-domain
features of HR, time-domain features of
GSR

Mean RR, Min RR, Max RR, Median RR,
SDNN, RMSSD, pNN50

In pre-processing column: HR heart rate, WD wavelet denoising, BPF bandpass filter, BWF Butterworth filter, WT wavelet transformation, HT

Hamilton-Tompkin, HP high pass, LP low pass;

In sensor column: GSR galvanic skin response, HR heart rate, ECG ecocardiogram, EMG electrmyogram, EDA electrodermal activity, PPG pho-

toplethysmogram

was produced for each of them. During levels 1-3, subject
1 had a high EI of over 90%. On the other hand, subject 2
showed an EI between 60 and 90% throughout the whole
experiment, which means the levels of mental stress will
be unchanged.

Ranganath et al. [86], using their proposed wavelet trans-
form and neuro-fuzzy inference system, evaluate stress using
HRV. To investigate the activity of the ANS, the authors
performed a time-frequency analysis (TFA) of HRV, which
can be used to quantify mental stress. The authors studied
20 physically fit adults at two points in time: before and after
they began smoking and acquired a spectral decomposition
of HRV. These were used to build the proposed NF-based
model.

Kumar et al. [87] proposed a fuzzy clustering method
which helped to quantify mental stress and demonstrate
a direct functional link between ANS activities and men-
tal stress. The researchers used NASA Task Load Index
to examine subjective ratings of mental workload in 38
physically fit volunteers in air traffic management task
simulations.

Wang et al. [84] provided a way for utilising HRV to cor-
relate the human body’s salivary response to stress. They
used 176 ECG recordings and 264 salivary samples from
22 people. They have generated six datasets (3-amylase,
3-cortisol) using alpha-amylase and cortisol measurements
to label ECG feature vectors. The final classifier system cor-
rectly classified salivary cortisol based on ECG characteris-
tics with an accuracy of 80%, compared to 75% for salivary
alpha-amylase. A summary of used algorithms, datasets,
evaluation metrics, and obtained outcomes of RB stress
prediction research is presented in Table 10.

@ Springer

Shallow Machine Learning Approaches

Sriramprakash et al. [88] used ECG, skin conductance, and
Kinect 3D sensor to collect data from selected individuals.
The SWELL-KW dataset was used for classification (149
features and 2688 instances in total) and got accuracies:
66.52% (KNN) vs 72.83% (SVM-RBEF kernel).

Huang et al. [89] demonstrated that the mental fatigue of
the samples could be accurately identified with a wearable
ECG device. They collected 58 samples of ECG signals and
compared SVM, NB, KNN, and LR algorithms to obtain
accuracy (57.08% 9(SVM) vs 48.84% (NB) vs 65.37%
(KNN) vs 59.71% (LR)) and area under the curve (AUC)
(0.68 (SVM) vs 0.64 (NB) vs 0.74 (KNN) vs 0.65 (LR)).
Wau et al. [90] combined HRV sensors and accelerometers
to develop a model for monitoring the perceived stress levels
in daily life. They collected data from 8 participants for their
daily life in about 2 weeks and compared the performances
of NB, J48, RF, and bagging algorithms where accuracy
0.730 (NB) vs 0.819 (J48) vs 0.832 (RF) vs 0.8392 (bagging)
were obtained.

Sevil et al. [75] addressed the problem of detecting psy-
chological stress (APS) using data collected from wrist-
bands. They collected data from 34 samples doing 166
clinical experiments and compared different classification
algorithms: KNN, SVM, DT, NB, EL, LD, and DL, where
SVM had the highest accuracy of 99.1%.

Pourmohammadi and Maleki [91] collected EMG and
ECG signals concurrently from 34 healthy students (23
females and 11 males, ages 20 to 37). They used LIBSVM
(a library for SVM) with RBF (radial basis function) ker-
nel for training the model. Sequentially, stress identification
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Table 10 A summary of used algorithms, datasets, evaluation metrics, and obtained outcomes of rule-based stress prediction research

Ref. Models Dataset

Evaluation metrics Performance

[85] Fuzzy theoretic nonpara-
metric deep model

Private/100 subjects RMSE

[83] Mamdani fuzzy model Private/3 subjects EI
for training and
2 subjects for

testing
[86] Sugeno neuro-fuzzy model Private/20 subjects -

Private/26 males, -
12 females, aged
18-29 years

Private/22 subjects  Acc

[87] Sugeno fuzzy clustering

[84] Fuzzy ARTMAP

PCC: 0.8162 (old dataset) vs 0.6809 (new dataset), RMSE: 6.8382
(old dataset) vs 9.4872 (new dataset)

EI = 2.9412 (Subject 1), 1 (Subject 2)

Established a direct functional relationship between heart rate vari-
ability and mental stress

Minimised the worst-case influence of uncertainty on fuzzy param-
eter identification performance

Acc = 80% (ECG characteristics),75% (salivary alpha-amylase)

In evaluation metrics column: PCC Pearson’s correlation coefficient, EI evaluation index

In performance column: PCC Pearson’s correlation coefficient, EI evaluation index

accuracy was 100%, 97.6%, and 96.2 % for the two, three,
and four levels. Maldonado et al. [92] collected data from
50 engineering students in Chile, with a total of 33 men and
17 women aged 22.4 + 2.8 years. They took HR, SpO2, and
temperature readings to utilise in their SVM model, which
yielded an AUC of 0.994 with a variable collecting cost of
16.

Pluntke et al. [93] acquired HRV data from subjects in a
laboratory setting, and SVM and DT were used to train the
model. A set of labelled RR-interval signals was collected as
a training set. They used an H7 chest strap sensor to collect
data from 26 male and female participants ranging in age
from 23 to 59. A precision, recalling, and F-score of almost
90% were shown in the best model based on a DT of C5.

Giannakakis et al. [94] evaluated 24 participants and 11
tasks, performing a research protocol for about 45 min. They
used KNN, generalised linear model (GLM), NB, linear dis-
criminant analysis (LDA), SVM, and RF classifiers, where
RF excels with a classification accuracy of 75.1% above any
other classification method. 84.4% classification accuracy in
a 10-fold method is the best result in the proposal of stress
recognition simply by using hRV characteristics.

Castaldo et al. [95] used a 3-lead electrocardiogram
(ECQ) to collect data from 42 students on two distinct days,
including during an oral examination (stress) and during rest
following a holiday. They employed five distinct algorithms
(NB, SVM, MLP, AB, and C4.5 (DT)). With sensitivity,
specificity, and accuracy rates of 78%, 80%, and 79%, cor-
respondingly, the C4.5 tree algorithm was the best ML tech-
nique for distinguishing between stress and rest.

Delmastro et al. [96] collected data conducting a ran-
domised cross-over observational study where Zephyr Bio-
Harness34 device was used for ECG monitoring and Shim-
mer3 GSR+Development Kit5 for EDA. Some algorithms
(BN, SVM, k-NN, C4.5 DT, AB) were used where RF and

AB learning schemes outperform the other classifier learn-
ing methods (accuracy: 87% for RF and 88.2% for AB).

Lima et al. [97] gathered information using some sen-
sors (such as PPG, Spare, TVOC) from a group of willing
participants (15 participants, ranging in age from 21 to 55
years old (9 females and 6 males)). While under stress, the
model had an accuracy of about 80% in terms of HRV fea-
tures in baseline and about 77 % in terms of HRV and EDA
simultaneous baseline characteristics.

Yu et al. [98] used the ensemble learning technique to
create a classifier that incorporates three separate work
activities: body movement, typing, and browsing. These
can be identified with 94.2%, 93.2%, and 91.2% accuracy,
correspondingly. They gathered information from ten office
workers, all of whom were around 31 years old.

Padmaja et al. [99] collected data from a smartphone and
a Fitbit and then preprocessed and normalised it. They used
NB (accuracy: 72%) and DT (accuracy: 62%) for classifica-
tion. DetectStress has a 72% accuracy rate in recognising
perceived stress utilising data from both smartphones and
wireless fitness trackers.

Can et al. [100] collected physiological signal and ques-
tionnaire data from the 21 participants by using Samsung
Gear S and S2 and Empatica E4 sensors. From HR and ACC
signals acquired using Empatica E4, the MLP algorithm
produced the best results (92.19%), while the RF algorithm
produced the best classification accuracy (88.26%) with HR
and ACC data collected from all devices.

Chen et al. [101] collected data from PPG and Polar
H10 sensors, used RF as a classifier, and compared it
with the SVM, Naive Bayes, and MLP model. In the
PPG dataset, their approach obtains an overall leave-
one-participant-out F1-score of 80%, while the ground
truth ECG scores 79.7%. Koldijk et al. [102] used the
SWELL-KW dataset (149 features and 2688 instances in
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total) and compared SVM (accuracy: 90.0298%) with 7
other algorithms, which includes NB (64.7693%), K-star
(65.8110%), Bayes net (69.0848%), J48 (78.1994%), IBk
(nearest neighbour with euclidean distance (84.5238%)),
RF(87.0908%), and MLP (88.5417%).

Ciabattoni et al. [103] utilised KNN to classify stress
using uniform precedence probability and Euclidean dis-
tance metrics with one neighbour. An accuracy of 84.5%
has been determined altogether. In recognition of stress,
a 26% misclassification error was detected when the indi-
vidual was calm.

Attaran et al. [104] utilised the ThreatFire belt for
data collection and employed several physiological and
behavioural factors with both SVM and KNN classifiers
to increase the detection accuracy. The best classification
accuracy to identify stress was observed for the heart rate
(HR) and accelerometer characteristics. For hardware
implementation, the SVM classification was utilised, and
this system has an overall classification accuracy of 96%.

Castaldo et al. [105] collected 23 ultra-short HRV fea-
tures from 42 healthy subjects. They found six out of 23
ultra-short HRV features (MeanNN, StdNN, MeanHR,
StdHR, HF, and SD2) displaying consistency in the detec-
tion of stress. The authors employed 5 ML algorithms and
found their accuracies: MLP (98%) vs SVM (88%) vs C4.5
DT(94%) vs IBK (94%) vs LDA (94%).

Hantono et al. [106] recorded heart rate data using PPG
sensors in smartphones from 41 subjects. They analysed
the data and extracted HRV features to detect mental
stress. The authors employed NN, KNN, DA, and NB algo-
rithms to find the accuracies: NN (73%) vs KNN (82%) vs
DA (66%) vs NB (60%).

Tiwari et al. [107] collected ECG and breathing data
from 27 police trainees over the course of 15 weeks. They
extracted ultra-short-term HRV and breathing features
from the data and predicted stress. Results suggested that
ultra-short-term analysis for stress prediction results in
performance losses lower than 7% when compared to
short-term analysis. They used an SVM classifier with
RBF kernel, resulting in 80% performance accuracy.

Clark et al. [108] proposed a model for driver stress
prediction. They collected data from 17 subjects using
ECG, GSR, and respiration sensors after they completed
a 20-mile drive. The authors extracted 42 features from the
data to use in an RF classifier which achieved an average
accuracy of 94%. Ahmad et al. [109] collected the dataset
named Ryerson Multimedia Research Laboratory (RML),
which was recorded by physiological signals using 9 par-
ticipants and measured ECG, GSR, and respiration signals.
They used raw data, which is procured from the ECG sig-
nal. For the proposed fusion model, they got 66.6% and
72.7% in the RML and WESAD datasets, respectively.
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Dalmeida et al. [110] investigated the role of HRV fea-
tures stress predicted from ECG, EMG, GSR, and respira-
tion sensor data. They used a dataset collected by MIT and
available in Physionet. They tested different ML models such
as KNN, SVM, MLP, RF, and GB. MLP was considered
an appropriate stress classification method with an 80%
sensitivity score. HRV features such as the AVNN, SDNN,
and RMSSD were found to be relevant aspects for stress
identification.

Sandulescu et al. [111] present an SVM-based approach
for stress prediction by collecting PPG, HRV, and EDA sen-
sor data from 5 participants. The results showed 82% accu-
racy on two participants and more than 80% precision level
for all the participants.

Munla et al. [112] intended to study stress-level detec-
tion from HRYV features extracted from 16 different subjects
from the Stress Recognition in Automobile Driver database
(DRIVEDB). They used three ML models and achieved
accuracies: KNN (66.66%) vs SVM (83.33%) and SVM with
RBF kernel (83.3%).

A summary of used algorithms, datasets, evaluation met-
rics, and obtained outcomes of shallow ML-based stress pre-
diction research is presented in Tables 11, 12, and 13.

Deep Machine Learning Approaches

de Vries et al. [113] collected GSR, RSP, and ECG sensor
data from 61 participants from the age of 18 to 28 years
to perform stress and relaxation classification. They used
learning vector quantisation to achieve an accuracy of 88%
for the classification.

Rastgoo et al. [115] collected ECG, vehicle, and envi-
ronmental data from 27 participants in a vehicle simulator.
They proposed a CNN and LSTM-based multimodal fusion
model, which showed an accuracy of 92.8%, sensitivity of
94.13%, specificity of 97.37%, and precision of 95.00%.

Akbulut et al. [116] developed a stress model that incor-
porates an algorithm for detecting affective states based on
HRYV analysis, emotion recognition, and other statistical
data. They collected the dataset conducted with 30 volun-
teers and named it CVDiMo. In categorising the stress levels
of all patients, their suggested method had a 90.5% accuracy
rate. The average success rate of MES patients was found
to be 92%, which is greater than the general performance of
healthy people.

Coutts et al. [117] recorded HRV features from 652 par-
ticipants using a wearable sensor. They employed an LSTM
network for the detection of stress, anxiety, and depression
levels, finding 85% classification accuracy.

He et al. [118] used ECG sensor data from 20 partici-
pants to extract six HRV features (HR, LH, pQ, SD2, SDNN,
Comb). They used SVM, LDA, and CNN-based models
to detect cognitive stress from these models, where CNN
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Table 11 A summary of used algorithms, datasets, evaluation metrics, and obtained outcomes of Shallow ML-based stress prediction research

Ref. Models Dataset Evaluation metrics Performance
[88] SVM and KNN SWELL-KW Acc Acc of 0.9275
[89] SVM, KNN, NB, and LR Private/35 participant (mean age AUC Acc =0.755 AUC =0.74
of 23 + 4 years and a male-to-
female ratio of 1:1.3)
[90] NB, J48, RF and bagging Private/8 participants Acc prediction Acc = 0.857
[751 KNN, SVM, DT, NB Private/34 participants Acc Acc =0.991
[91] SVM Private/34 students (23 females and Acc The accuracies two level = 1.0,
11 males, aged 20-37 years) three level = 0.976, and four
levels were 0.962
[92] SVM Private/50 participants (33 men &  AUC, variable collection cost AUC = 0.994, Vcost = 16
17 women)
[93] SVM, C5DT Private Pre, Rec f1, Acc 88% Acc, all
[94] RF, SVM Private/24 participants ageing Acc Acc =0.844
47.3+9.3 years
[95] NB, SVM, MLP, AB, Dt C4.5  Private/42 participants Sen, Spe and Acc Sen=0.78, Spe=0.80 and Acc
rate=0.79
[96] BN, SVM, k-NN, C4.5 DT, AB Private/9 older adults Acc; Pre; Rec; AUPRC RF (Acc =87.0%; Pre =92.4%;

Rec=88.2%; AUPRC =0.97) and
AB (Acc=88.2%; Pre =92.3%;
Rec=92.0%; AUPRC =0.92)

In evaluation metrics column: Acc accuracy, AUC area under the ROC curve, Vcost variable collection cost, Pre precision, Rec recall, Sen sensi-
tivity, Spe specificity

In performance column: Acc accuracy, AUC area under the ROC curve, Vcost variable collection cost, Pre precision, Rec recall, Sen sensitivity,
Spe specificity

Table 12 A summary of used algorithms, datasets, evaluation metrics, and obtained outcomes of Shallow ML-based stress prediction research

Ref. Models Dataset Evaluation metrics Performance
[97] SVM, LR, RF Private Acc 80% accuracy for HRV features
in baseline and about 77% for
HRYV and EDA simultaneous
features
[98] SVM, KNN, and EnLL 15 office workers (five female, Acc Accuracies of up to 91%
five males, age: 31 +5.3)
[99] NB,DT 35 young adults Sen, Spe, Acc, Pearson’s cor- NB classifier has 72% accuracy
relation
[100] PCA, SVM, KNN, LR, RF, 21 participants (18 males and 3 Acc, f-Measure, Pre, Rec Obtained 92.15% accuracy maxi-
MLP females with an average age mum three-level classification
of 20)
[101] RF 6 healthy participants ages Acc 10-fold accuracy of stress state is
21-40 years old 98%, and F1-score reaches 80%
[102] NB, SVM, KNN, BN, RF, DT, 25 participants (8 female, aver-  Acc Best results were obtained
MLP age age 25, stdv 3.25) with an SVM (RBF kernel):
90.0298%
[103] KNN Private/10 young subjects (mean Acc, Error Acc = 0.845, misclassification
age 24; 5 female) Error = 0.26
[104] KNN, SVM Private Acc The overall classification accu-

racy of this system is 96%

In evaluation metrics column: Acc accuracy, AUC area under the ROC curve, Vcost variable collection cost, Pre precision, Rec recall, Sen sensi-
tivity, Spe specificity

In performance column: Acc accuracy, AUC area under the ROC curve, Vcost variable collection cost, Pre precision, Rec recall, Sen sensitivity,
Spe specificity
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Table 13 A summary of used algorithms, datasets, evaluation metrics, and obtained outcomes of Shallow ML-based stress prediction research

Ref. Models Dataset Evaluation metrics Performance
[105] SVM, DT ECG from 42 healthy subjects (19 AUC, Sen, Spe, Acc Achieved good performance accu-
female, 23 male) racy above 88%
[106] NN, KNN, DT, NB 41 students AUC, ROC, Acc, confusion -
matrix

[107] SVM Data was collected from 27 (6 BAC In HRV segments BAC =0.579 for

females) police 300 s window duration

[108] RFr Private Acc Acc =94%

[109] RF, KNN, SVM, XGB RML, WESAD Acc., precision, recall, F1-Score ~ Acc. = 66.6 (RML dataset), Acc. =
72.7 (WESAD dataset)

[110] KNN, SVM, MLP, RF, GB PhysioNet AUROC MLP, RF and GB yielded an
AUROC of 83%, 85%, and 85%,
respectively

[111] SVM Private/5 participants aged 18 Acc, Pre Best Acc and Pre for P3:83.08(Acc)

to 39 & 83.87(Pre)

[112] SVM-RBF, KNN DRIVEDB Acc Acc = 83%

In evaluation metrics column: Acc accuracy, AUROC area under the ROC curve, Vcost variable collection cost, Pre precision, Rec recall, Sen

sensitivity, Spe specificity, BAC balanced accuracy

(17.3%) outperformed LDA (25.1 + 14.2%) and SVM (24.5
+ 13.2%) according to detection error rate.

Qin et al. [119] used 10 HRYV features extracted from
56 samples of R-R intervals recorded during the modified
Stroop test. They used 40 samples as training data and 16 as
testing for a stress evaluation system based on the BP neural
network, which could detect different levels of stress with an
accuracy rate of 93.75%.

Ding et al. [120] recruited 18 healthy individuals to col-
lect heart rate, heart rate variability, electromyography,
electrodermal activity, and respiration physiological data
to measure changes in physiological activity with varied
levels of tasks. While combining physiological signals and
task performance, their classification models could achieve
accuracy at 96.4% but 78.3% when taking physiological fea-
tures only.

Kalatzis et al. [121] recruited 57 participants to extract
time- and frequency-domain features of HR and HRV using
ECG sensors. They used an ANN-based model to classify
stress and no-stress states, achieving a 90.83% accuracy
level.

Qin et al. [119] used 10 HRV features extracted from
56 samples of R-R intervals recorded during the modified
Stroop test. They used 40 samples as training data and 16 as
testing for a stress evaluation system based on the BP neural
network, which could detect different levels of stress with an
accuracy rate of 93.75%.

Ding et al. [120] recruited 18 healthy individuals to
collect heart rate, heart rate variability, electromyography,
electrodermal activity, and respiration physiological data
to measure changes in physiological activity with varied
levels of tasks. While combining physiological signals and
task performance, their classification models could achieve
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accuracy at 96.4% but 78.3% when taking physiological
features only.

Kalatzis et al. [121] recruited 57 participants to extract
time- and frequency-domain features of HR and HRV
using ECG sensors. They used an ANN-based model to
classify stress and no-stress states, achieving a 90.83%
accuracy level.

Dhaouadi and Ben Khelifa [122] used ECG, EDA, and
EMG measures taken by wearable devices from 15 young
gamers in order to stress monitoring in real time. They
explored LSTM and DNN networks where the DNN model
obtained the best accuracy of 65% at 15 and 30 epochs,
but LSTm achieved the best accuracy of 95% at 30 epochs.

Stewart et al. [123] used two publicly available data-
sets, which include drivedb and WESAD. Data was col-
lected from both datasets using multiple sensor recordings,
including ECG and GSR. They used shallow ML models
(such as KNN, SVM, and LR). Neural processes mod-
els outperformed those models (WESAD: 0.957 (average
precision), drivedb: 0.804 (average precision)) and had
the best performance when using periods of stress and
baseline as context.

Silva et al. [124] monitored the stress of 83 medical stu-
dents by comparing stress levels during academic exams
and a regular week. Data was collected from wearable sen-
sors such as Microsoft Smart band 2 and PPG. The neural
network revealed better performance (model-1: sensitiv-
ity, 75.2%; specificity, 77.9%. Model-2: sensitivity, 74.2%;
specificity, 78.1%.) where two models were established to
predict stress comparing shallow ML algorithms (such as
SVM, KNN, LR, RF). A summary of used algorithms, data-
sets, evaluation metrics, and obtained outcomes of deep ML-
based stress prediction research is presented in Table 14.
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Table 14 A summary of used algorithms, datasets, evaluation metrics, and obtained outcomes of deep ML-based stress prediction research

Ref.  Models Dataset Evaluation metrics Performance

[113] LVQ Private/61 (20 male, 41 female) Acc RSP =0.71, ECG = 0.834, Acc = 0.877

[115] LSTM-RNN Private/a group of Vietnamese students Framework proposed -

[114] CNN-LSTM Private/27 participants aged 2140 years Acc Sen Spe: Pre Acc: 0.928, Sen: 0.9413, Spe: 0.9737 and
(55% male) Pre: 0.95

[116] FFNN CVDiMo/conducted with 30 volunteers AUC, Acc AUC = 0.978, Acc=0.92

[117] LSTM Private/for trial-1: 91 participants (62% ACC Acc =0.85
female, 38% male); for trial-2: 600 (72%
female, 28% male)

[118] CNN Private/20 healthy subjects, aged from 18 ER, FAR, and FRR  CNN ER=17.3 FAR=0.01 FRR = 32.1
to 35

[119] NN 56 samples Acc 93.75% accuracy

[120] BPNN, SVM, KNN 18 right-handed, healthy individuals, 20.1 + Acc, Rec, Pre Accuracy can reach 96.4% and 78.3%
0.94 years

[121] ANN Private/57 participants, and all are above 65 acc Acc =90.83%
years

[122] LSTM, DNN Private/15 gamers Age of 10 to 22 acc Acc = 64% (DNN) vs 92% (LSTM)

[123] LR, SVM, KNN Drivedb, WESAD Avg precision, AUC ~ WESAD: 0.957 average precision, same-

participant vs 0.780 other-participant,
drivedb: 0.804 vs 0.757
[124] LR, NN, NB, SVM, Private/63 (76.8%) were female, and 19 Sen, Spe For Model 1, Sen = 0.752 and Spe = 0.779.

RF, and KNN (23.2%) were male aged 17 to 38 years

For Model 2, Sen = 0.742 and Spe =
0.781

In evaluation metrics column: Acc accuracy, AUC area under the ROC curve, Vcost variable collection cost, Pre precision, Rec recall, Sen sensi-

tivity, Spe specificity, FAR false acceptance rate, FRR false rejection rate

Discussion

Stress can lead to a variety of psychological issues. Many
disorders are more likely to develop in a stressful environ-
ment, particularly if the stress is intense and long-lasting
[125]. Therefore, being able to predict stress in an effective
manner is a crucial fact. In this research, we observed HRV
characteristics as physiological indicators for stress detection
based on a review of 43 studies published between 2016 and
2021. RMSSD, SDNN, pNN50, and AVNN are determined
to be the most often utilised HRV features in our tables.
ECG, PPG, and GSR are the most deployed sensors for data
collection.

In Al accuracy is one of the most important performance
indicators. The present research has been examined in this
article in order to provide a full understanding of the field
of stress prediction via HRV.

According to Fig. 8 displaying the performance compari-
son of the papers based on accuracy level, only one article by
Wang et al. [84] employed accuracy as a performance meas-
ure for RB techniques. Using the fuzzy ARTMAP classifier,
they explored the stress association between HRV and sali-
vary, achieving an overall accuracy of 80% for ECG records.

In the case of shallow ML approaches, Sevil et al. [75]
achieved the highest accuracy among the 21 studies utilising
accuracy as a performance measure. They used wristband data

to quantify psychological stress and attained 99.1% accuracy
using the SVM classifier, which is also the highest among all
the publications reviewed in this review article. For deep ML
techniques, Ding et al. [120] used a BPNN classifier to assess
stress based on physiological activity with varying levels of
tasks and achieved high accuracy. Their classification models
have a 96.4% accuracy rate.

Another performance metric for assessing classification
errors is the AUC. This review article contained 5 studies that
employed the AUC measure, a two-dimensional area beneath
the ROC curve. The highest AUC value for deep ML tech-
niques was attained by Akbulut et al. [116], as shown in Fig. 9.
They created a stress model based on HRV analysis, emo-
tion recognition, and other statistical data from the CVDiMo
dataset, which includes an algorithm for recognising affective
states. Using FFNN, they were able to attain an AUC of 0.97.
Maldonado et al. [92] used shallow ML to get the best AUC
value of 0.99 for stress detection, which is significantly higher
than other models that use AUC as a performance indicator.

Challanges and Future Scope
Due to a lack of quality data, data collection procedures,

detection methodology selection, and other factors, research
for predicting and detecting mental stress confront numerous
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Fig.8 Performance comparison of the articles based on accuracy level. The different algorithm types are presented using different colours

challenges. In this section, we will discuss the difficulties
that stress researchers face and how to overcome them,
which might be very useful for future researchers.

Effect of individual moods and health

HRYV is very much dependent on the change in ANS
activity. In fact, HRV is controlled by ANS, a primi-
tive part of the nervous system. As a result, individuals’
native mood and health issues like blood sugar, hor-

Fig.9 Performance comparison
of the articles based on AUC
level. The different algorithm
types are presented using differ-
ent colours
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the real-world office or driving situations. Moreover, the
dataset largely comprises male participants. As a result,
the data are more biased towards male participants and
can show poor performance in female-centric data.
3. Lack of large benchmark dataset
Much research included in this article has used its own
dataset, but most of which is not publicly available. But
datasets that were publicly available were collected from
a small number of participants. As a result, the data is
not that generalised. So, there is not really a benchmark
dataset that can be used for all Al approaches to make a
performance comparison among them.
4. Sensor quality and multimodal sensors
Data collection is the most important part of any
research process. For HRV-based stress prediction,
ECG, EMG, GSR, etc., sensors are used in different
articles reviewed earlier, but the quality of sensors used
and fusion of the right sensors are very important in
this case. A multimodal dataset with data collected from
high-quality and suitable sensors can produce a better
and more fitting dataset for future research.
5. Real-time stress monitoring
In real life, stress has been described in various ways,
but it has been established that any stress leads to an
unbalanced bodily and mental situation. This can lead
to productivity loss, diminished work abilities, and a
slew of other health issues. However, a real-time stress
monitoring system is rarely investigated. As a result, a
real-time stress monitoring system could be a promising
future study topic.
6. Fusion of hybrid architectures
Many ML and DL approaches have been used in the
reviewed research in this article, but there have not been
cases where hybrid architecture has been used to develop
the stress detection or prediction model. Even though
hybrid architectures can be a promising future prospect
for accurate results.
7. Exploration of HRV features
The majority of datasets utilised in recent studies have
employed the same HRV features to identify stress in
individuals, more or less. However, more noteworthy
statistical, frequency-domain, and time-domain features
could be investigated to provide effective stress predic-
tion datasets.
8. Less use of rule-based approaches
Throughout stress-related research, very rarely fuzzy
and researchers have used other RB approaches to
develop stress prediction systems. But due to human-like
inference ability and understandability, RB approaches
can be applied to develop a more suitable decision
support system. So, fuzzy-based stress management
and decision support systems can be a possible future
research topic.

9. Differences in evaluation metrics

Researchers have utilised a variety of metrics to demon-
strate the performance of their stress prediction or detec-
tion system in various studies. As a result, new research-
ers and explorers in this sector are finding it increasingly
difficult to compare these approaches to find one more
appropriate. Setting a very acceptable and benchmark
evaluation metric could be a solution to this issue.

Conclusion

Stress has become an inevitable element of our daily rou-
tines. It has resulted in an alarming scenario for adolescent
and juvenile mental health throughout the world. Controlling
stress has become a critical issue since it directly impacts
physical and mental health. It has a negative influence on a
country’s socioeconomic condition. The growing Al disci-
pline can provide effective solutions for stress prediction.
In this study, we have conducted a comprehensive survey of
the sensors employed for acquiring HRV data and their fea-
tures, Al models applied on those data and their performance
assessed using avialable evaluation metrics, pre-processing
methods applied on multi-modal data, and existing datasets.
The identified approaches have been summarised in tables
and explored and their results were compared in depth.
Stated outcomes of the methodologies, used datasets, and
applied evaluation criteria were also presented.

Author Contribution This work was carried out in close collabora-
tion between all co-authors. They first defined the research theme and
contributed an early design of the system, further implemented and
refined the system development, and wrote the paper. All authors have
contributed to, seen, and approved the final manuscript.

Data Availability The datasets generated during and/or analysed dur-
ing the current study are available from the corresponding author upon
reasonable request.

Declarations

Ethical Approval All procedures performed in studies involving human
participants were in accordance with the ethical standards of the insti-
tutional and/or national research committee and with the 1964 Helsinki
Declaration and its later amendments or comparable ethical standards.

Informed Consent Informed consent was obtained from all individual
participants included in the study.

Conflict of Interest The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are

@ Springer



478

Cognitive Computation (2024) 16:455-481

included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

11.

12.

13.

15.

16.

. Acharya UR, Joseph KP, Kannathal N, Lim CM, Suri JS.

Heart rate variability: a review. Med Biol Eng Compu.
2006;44(12):1031-51.

Kim HG, Cheon EJ, Bai DS, Lee YH, Koo BH. Stress and heart
rate variability: a meta-analysis and review of the literature. Psy-
chiatry Investig. 2018;15(3):235.

Sztajzel J, et al. Heart rate variability: a noninvasive electrocar-
diographic method to measure the autonomic nervous system.
Swiss Med Wkly. 2004;134(35-36):514-22.

Shaffer F, Ginsberg JP. An overview of heart rate variability met-
rics and norms. Front Public Health. 2017:258.

Mohan PM, Nagarajan V, Das SR. Stress measurement from
wearable photoplethysmographic sensor using heart rate vari-
ability data. In: 2016 International Conference on Communica-
tion and Signal Processing (ICCSP). IEEE; 2016. p. 1141-4.
Oskooei A, Chau SM, Weiss J, Sridhar A, Martinez MR, Michel
B. Destress: deep learning for unsupervised identification of
mental stress in firefighters from heart-rate variability (HRV)
data. In: Explainable Al in Healthcare and Medicine. Springer;
2021. p. 93-105.

Maxhuni A, Hernandez-Leal P, Sucar LE, Osmani V, Morales
EF, Mayora O. Stress modelling and prediction in presence of
scarce data. J] Biomed Inform. 2016;63:344-56.

Bauer G, Lukowicz P. Can smartphones detect stress-related
changes in the behaviour of individuals? In: 2012 IEEE Interna-
tional Conference on Pervasive Computing and Communications
Workshops. IEEE; 2012. p. 423-6.

Carneiro D, Castillo JC, Novais P, Fernandez-Caballero A, Neves
J. Multimodal behavioral analysis for non-invasive stress detec-
tion. Expert Syst Appl. 2012;39(18):13376-89.

Gaurav AR, Kumar V. EEG-metric based mental stress detection.
Netw Biol. 2018;8(1):25-34.

Panicker SS, Gayathri P. A survey of machine learning tech-
niques in physiology based mental stress detection systems. Bio-
cybern Biomed Eng. 2019;39(2):444-69.

Piotrowski Z, Szypulska M. Classification of falling
asleep states using HRV analysis. Biocybern Biomed Eng.
2017;37(2):290-301.

Can YS, Arnrich B, Ersoy C. Stress detection in daily life scenar-
ios using smart phones and wearable sensors: a survey. ] Biomed
Inform. 2019;92.

Bulagang AF, Weng NG, Mountstephens J, Teo J. A review of
recent approaches for emotion classification using electrocardi-
ography and electrodermography signals. Inform Med Unlocked.
2020;20:100363.

Pramanta SA, Prihatmanto AS, Park MG. A study on the stress
identification using observed heart beat data. In: 2016 6th Inter-
national Conference on System Engineering and Technology
(ICSET). IEEE; 2016. p. 149-52.

Katarya R, Maan S. Stress detection using smartwatches with
machine learning: a survey. In: 2020 International Conference on
Electronics and Sustainable Communication Systems (ICESC).
IEEE; 2020. p. 306-10.

@ Springer

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

Nath RK, Thapliyal H, Caban-Holt A, Mohanty SP. Machine
learning based solutions for real-time stress monitoring. IEEE
Consum Electron Mag. 2020;9(5):34-41.

Smets E, Casale P, GroB3ekathofer U, Lamichhane B, De Raedt
W, Bogaerts K, et al. Comparison of machine learning techniques
for psychophysiological stress detection. In: International Sym-
posium on Pervasive Computing Paradigms for Mental Health.
Springer; 2015. p. 13-22.

Tonacci A, Dellabate A, Dieni A, Bachi L, Sansone F, Conte
R, et al. Can machine learning predict stress reduction based on
wearable sensors’ data following relaxation at workplace? A pilot
study. Processes. 2020;8(4):448.

Sharma N, Gedeon T. Objective measures, sensors and computa-
tional techniques for stress recognition and classification: a sur-
vey. Comput Methods Programs Biomed. 2012;108(3):1287-301.
Rahman MA. Gaussian process in computational biology: covari-
ance functions for transcriptomics [phd]. University of Sheffield;
2018. Available from: https://etheses.whiterose.ac.uk/19460/.
Rakib AB, Rumky EA, Ashraf AJ, Hillas MM, Rahman MA.
Mental healthcare chatbot using sequence-to-sequence learning
and BiLSTM. In: Mahmud M, Kaiser MS, Vassanelli S, Dai Q,
Zhong N, editors. Brain Informatics. Cham: Springer Interna-
tional Publishing; 2021. p. 378-87.

Islam N, et al. Towards machine learning based intrusion detec-
tion in IoT networks. Comput Mater Contin. 2021;69(2):1801-21.
Farhin F, Kaiser MS, Mahmud M. Secured smart healthcare sys-
tem: blockchain and Bayesian inference based approach. In: Proc.
TCCE. 2021. p. 455-65.

Ahmed S, et al. Artificial intelligence and machine learning for
ensuring security in smart cities. In: Data-driven mining, learning
and analytics for secured smart cities. Springer; 2021. p. 23-47.
Zaman S, et al. Security threats and artificial intelligence based
countermeasures for Internet of Things networks: a comprehen-
sive survey. IEEE Access. 2021;9:94668-90.

Noor MBT, Zenia NZ, Kaiser MS, Mamun SA, Mahmud M.
Application of deep learning in detecting neurological disorders
from magnetic resonance images: a survey on the detection of
Alzheimer’s disease, Parkinson’s disease and schizophrenia.
Brain Inform. 2020;7(1):1-21.

Ghosh T, Al Banna MH, Rahman MS, Kaiser MS, Mahmud M,
Hosen AS, et al. Artificial intelligence and Internet of Things in
screening and management of autism spectrum disorder. Sustain
Cities Soc. 2021;74.

Biswas M, Kaiser MS, Mahmud M, Al Mamun S, Hossain M,
Rahman MA, et al. An XAI based autism detection: The con-
text behind the detection. In: Proc. Brain Informatics. 2021. p.
448-59.

Wadhera T, Mahmud M. Computing hierarchical complexity of
the brain from electroencephalogram signals: a graph convolu-
tional network-based approach. In: Proc. IJCNN. 2022. p. 1-6.
Wadhera T, Mahmud M. Influences of social learning in indi-
vidual perception and decision making in people with autism: a
computational approach. In: Proc. Brain Inform. 2022. p. 50-61.
Wadhera T, Mahmud M. Brain networks in autism spectrum
disorder, epilepsy and their relationship: a machine learning
approach. In: Artificial Intelligence in Healthcare: Recent Appli-
cations and Developments. Springer; 2022. p. 125-42.
Wadhera T, Mahmud M. Brain functional network topology in
autism spectrum disorder: a novel weighted hierarchical com-
plexity metric for electroencephalogram. IEEE J Biomed Health
Inform. 2023:1-8.

Sumi Al et al. fASSERT: a fuzzy assistive system for children
with autism using Internet of Things. In: Proc. Brain Inform.
2018. p. 403-12.


http://creativecommons.org/licenses/by/4.0/
https://etheses.whiterose.ac.uk/19460/

Cognitive Computation (2024) 16:455-481

479

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

Akhund NU, et al. ADEPTNESS: Alzheimer’s disease patient
management system using pervasive sensors-early prototype and
preliminary results. In: Proc. Brain Inform. 2018. p. 413-22.
Al Banna M, Ghosh T, Taher KA, Kaiser MS, Mahmud M, et al.
A monitoring system for patients of autism spectrum disorder
using artificial intelligence. In: Proc. Brain Informatics; 2020.
p- 251-62.

Jesmin S, Kaiser MS, Mahmud M. Artificial and Internet of
Healthcare Things based Alzheimer care during COVID 19. In:
Proc. Brain Inform.; 2020. p. 263-74.

Ahmed S, Hossain M, Nur SB, Shamim Kaiser M, Mahmud M,
et al. Toward machine learning-based psychological assessment
of autism spectrum disorders in school and community. In: Proc.
TEHI; 2022. p. 139-49.

Mahmud M, Kaiser MS, Rahman MA, Wadhera T, Brown D],
Shopland N, et al. Towards explainable and privacy-preserving
artificial intelligence for personalisation in autism spectrum
disorder. In: Universal Access in Human-Computer Interac-
tion. User and Context Diversity: 16th International Confer-
ence, UAHCI 2022, Held as Part of the 24th HCI International
Conference, HCII 2022, Virtual Event, June 26-July 1, 2022,
Proceedings, Part II. Springer; 2022. p. 356-70.

Nahiduzzaman M, et al. Machine learning based early fall detec-
tion for elderly people with neurological disorder using multi-
modal data fusion. In: Proc. Brain Inform.; 2020. p. 204-14.
Biswas M, et al. Indoor navigation support system for patients
with neurodegenerative diseases. In: Proc. Brain Inform.; 2021.
p-411-22.

Sadik R, Reza ML, Al Noman A, Al Mamun S, Kaiser MS, Rahman
MA. COVID-19 pandemic: a comparative prediction using machine
learning. International Journal of Automation, Artificial Intelligence
and Machine Learning. 2020;1(1):1-16.

Mahmud M, Kaiser MS. Machine learning in fighting pandemics:
a COVID-19 case study. In: COVID-19: prediction, decision-
making, and its impacts. Springer; 2021. p. 77-81.

Kumar S, et al. Forecasting major impacts of COVID-19 pan-
demic on country-driven sectors: challenges, lessons, and future
roadmap. Pers Ubiquitous Comput. 2021:1-24.

Bhapkar HR, et al. Rough sets in COVID-19 to predict sympto-
matic cases. In: COVID-19: Prediction, Decision-Making, and
its Impacts. Springer; 2021. p. 57-68.

Satu MS, et al. Short-term prediction of COVID-19 cases using
machine learning models. Appl Sci. 2021;11(9):4266.

Prakash N, et al. Deep transfer learning for COVID-19 detection
and infection localization with superpixel based segmentation.
Sustain Cities Soc. 2021;75: 103252.

AlArjani A, et al. Application of mathematical modeling in pre-
diction of COVID-19 transmission dynamics. Arab J Sci Eng.
2022:1-24.

Paul A, et al. Inverted bell-curve-based ensemble of deep learn-
ing models for detection of COVID-19 from chest X-rays. Neural
Comput Appl. 2022:1-15.

Mahmud M, Kaiser MS, Rahman MM, Rahman MA, Shabut A,
Al-Mamun S, et al. A brain-inspired trust management model to
assure security in a cloud based IoT framework for neuroscience
applications. Cogn Comput. 2018;10(5):864-73.

Mahmud M, Kaiser MS, Hussain A, Vassanelli S. Applications
of deep learning and reinforcement learning to biological data.
IEEE Trans Neural Netw Learn Syst. 2018;29(6):2063-79.
Mahmud M, Kaiser MS, McGinnity TM, Hussain A. Deep learn-
ing in mining biological data. Cogn Comput. 2021;13(1):1-33.
Nasrin F, Ahmed NI, Rahman MA. Auditory attention state
decoding for the quiet and hypothetical environment: a compari-
son between bLSTM and SVM. In: Kaiser MS, Bandyopadhyay
A, Mahmud M, Ray K, editors. Proceedings of TCCE. Advances

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

in Intelligent Systems and Computing. Singapore: Springer;
2021. p. 291-301.

Rahman MA, Brown DJ, Mahmud M, Shopland N, Haym N,
Sumich A, et al. Biofeedback towards machine learning driven
self-guided virtual reality exposure therapy based on arousal
state detection from multimodal data. In: Proc. BI2022; 2022.
p- 1-12.

Farhin F, Kaiser MS, Mahmud M. Towards secured service pro-
visioning for the Internet of Healthcare Things. In: Proc. AICT;
2020. p. 1-6.

Kaiser MS, et al. 6G access network for intelligent Internet of
Healthcare Things: opportunity, challenges, and research direc-
tions. In: Proc. TCCE; 2021. p. 317-28.

Biswas M, et al. ACCU3RATE: a mobile health application rat-
ing scale based on user reviews. PLoS ONE. 2021;16(12).
Rabby G, et al. A flexible keyphrase extraction technique for
academic literature. Procedia Comput Sci. 2018;135:553-63.
Rabby G, Azad S, Mahmud M, Zamli KZ, Rahman MM. TeKET:
a tree-based unsupervised keyphrase extraction technique. Cogn
Comput. 2020;12(4):811-33.

Adiba FI, Islam T, Kaiser MS, Mahmud M, Rahman MA. Effect
of corpora on classification of fake news using naive Bayes clas-
sifier. International Journal of Automation, Artificial Intelligence
and Machine Learning. 2020 Oct;1(1):80-92. Number: 1. Avail-
able from: https://researchlakejournals.com/index.php/AAIML/
article/view/45.

Das S, Yasmin MR, Arefin M, Taher KA, Uddin MN, Rahman
MA. Mixed Bangla-English spoken digit classification using
convolutional neural network. In: Kaiser MS, Kasabov N,
Iftekharuddin K, Zhong N, editors. Mahmud M. Applied
Intelligence and Informatics. Communications in Computer and
Information Science. Cham: Springer International Publishing;
2021. p. 371-83.

Nawar A, Toma NT, Al Mamun S, Kaiser MS, Mahmud M,
Rahman MA. Cross-content recommendation between movie and
book using machine learning. In: 2021 IEEE 15th International
Conference on Application of Information and Communication
Technologies (AICT); 2021. p. 1-6.

Rahman MA, Brown DJ, Shopland N, Burton A, Mahmud M.
Explainable multimodal machine learning for engagement analy-
sis by continuous performance test. In: Stephanidis C, Antona
M, editors. Universal Access in Human-Computer Interaction.
User and Context Diversity. Lecture Notes in Computer Science.
Cham: Springer International Publishing; 2022. p. 386-99.
Rahman MA, Brown DJ, Shopland N, Harris MC, Turabee ZB,
Heym N, et al. Towards machine learning driven self-guided
virtual reality exposure therapy based on arousal state detection
from multimodal data. In: Mahmud M, He J, Vassanelli S, van
Zundert A, Zhong N, et al., editors. Brain Informatics. Cham:
Springer International Publishing; 2022. p. 195-209.

Mahmud M, Kaiser MS, Rahman MA. Towards explainable and
privacy-preserving artificial intelligence for personalisation in
autism spectrum disorder. In: Stephanidis C, Antona M, editors.
Universal Access in Human-Computer Interaction. User and
Context Diversity. Lecture Notes in Computer Science. Cham:
Springer International Publishing; 2022. p. 356-70.

Tasnim N, Al Mamun S, Shahidul Islam M, Kaiser MS, Mahmud
M. Explainable mortality prediction model for congestive heart
failure with nature-based feature selection method. Appl Sci.
2023;13(10):6138.

Banerjee JS, Mahmud M, Brown D. Heart rate variability-
based mental stress detection: an explainable machine learning
approach. SN Comput Sci. 2023;4(2):176.

Vimbi V, Shaffi N, Mahmud M, Subramanian K, Hajamohideen
F. Application of explainable artificial intelligence in Alzheimer’s

@ Springer


https://researchlakejournals.com/index.php/AAIML/article/view/45
https://researchlakejournals.com/index.php/AAIML/article/view/45

480

Cognitive Computation (2024) 16:455-481

69.

70.

71.

72.

73.

74.

75.

76.

71.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

disease classification: a systematic review. Cogn. Comput.
2023:1-27. [ePub Ahead of Print].

Banerjee JS, Chakraborty A, Mahmud M, Kar U, Lahby M,
Saha G. Explainable artificial intelligence (XAI) based analysis
of stress among tech workers amidst COVID-19 pandemic. In:
Advanced Al and Internet of Health Things for Combating Pan-
demics. Springer; 2023. p. 151-74.

Hassija V, Chamola V, Mahapatra A, Singal A, Goel D, Huang
K, et al. Interpreting black-box models: a review on explainable
artificial intelligence. Cogn. Comput. 2023:1-30. [ePub Ahead
of Print.].

Lohani A, Kumar R, Singh R. Hydrological time series mode-
ling: a comparison between adaptive neuro-fuzzy, neural network
and autoregressive techniques. J Hydrol. 2012;442:23-35.

Kuo R, Hong S, Huang Y. Integration of particle swarm optimi-
zation-based fuzzy neural network and artificial neural network
for supplier selection. Appl Math Model. 2010;34(12):3976-90.
Dimitoglou G, Adams JA, Jim CM. Comparison of the C4. 5
and a Naive Bayes classifier for the prediction of lung cancer
survivability. arXiv:1206.1121 [Preprint]. 2012.

Ray S. A quick review of machine learning algorithms. In: 2019
International conference on machine learning, big data, cloud
and parallel computing (COMITCon). IEEE; 2019. p. 35-9.
Sevil M, Rashid M, Hajizadeh I, Askari MR, Hobbs N, Brandt R,
et al. Discrimination of simultaneous psychological and physical
stressors using wristband biosignals. Comput Methods Programs
Biomed. 2021;199: 105898.

Tang C, Chen F, Li X. Perceptron implementation of triple-
valued logic operations. IEEE Trans Circuits Syst II Express
Briefs. 2011;58(9):590—4.

Alzubi J, Nayyar A, Kumar A. Machine learning from theory
to algorithms: an overview. In: Journal of Physics: Conference
Series, vol. 1142. IOP Publishing; 2018. p. 012012.

Liu Y. Random forest algorithm in big data environment. Com-
puter Modelling & New Technologies. 2014;18(12A):147-51.
Pascanu R, Gulcehre C, Cho K, Bengio Y. How to construct deep
recurrent neural networks. arXiv:1312.6026 [Preprint]. 2013.
Schmidhuber J. Deep learning in neural networks: an overview.
Neural Netw. 2015;61:85-117.

LeCun Y, Bengio Y, et al. Convolutional networks for images,
speech, and time series. The Handbook of Brain Theory and
Neural Networks. 1995;3361(10):1995.

Shrestha A, Mahmood A. Review of deep learning algorithms
and architectures. IEEE Access. 2019;7:53040-65.

El-Samahy E, Mahfouf M, Torres-Salomao L, Anzurez-Marin J. A
new computer control system for mental stress management using
fuzzy logic. In: 2015 IEEE International Conference on Evolving
and Adaptive Intelligent Systems (EAIS). IEEE; 2015. p. 1-7.
Wang J, Belatreche A, Maguire LP, McGinnity TM. SpikeTemp:
an enhanced rank-order-based learning approach for spiking neu-
ral networks with adaptive structure. IEEE Trans Neural Netw
Learn Syst. 2015;28(1):30-43.

Kumar M, Zhang W, Weippert M, Freudenthaler B. An explainable
fuzzy theoretic nonparametric deep model for stress assessment
using heartbeat intervals analysis. IEEE Trans Fuzzy Syst. 2020.
Ranganathan G, Rangarajan R, Bindhu V. Estimation of heart
rate signals for mental stress assessment using neuro fuzzy tech-
nique. Appl Soft Comput. 2012;12(8):1978-84.

Kumar M, Weippert M, Vilbrandt R, Kreuzfeld S, Stoll R. Fuzzy
evaluation of heart rate signals for mental stress assessment.
IEEE Trans Fuzzy Syst. 2007;15(5):791-808.

Sriramprakash S, Prasanna VD, Murthy OR. Stress detection in
working people. Procedia Comput Sci. 2017;115:359-66.
Huang S, Li J, Zhang P, Zhang W. Detection of mental fatigue
state with wearable ECG devices. Int J Med Informatics.
2018;119:39-46.

@ Springer

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.

Wu M, Cao H, Nguyen HL, Surmacz K, Hargrove C. Modeling
perceived stress via HRV and accelerometer sensor streams.
In: 2015 37th Annual International Conference of the IEEE
Engineering in Medicine and Biology Society (EMBC). IEEE;
2015. p. 1625-8.

Pourmohammadi S, Maleki A. Stress detection using ECG and
EMG signals: a comprehensive study. Comput Methods Pro-
grams Biomed. 2020;193.

Maldonado S, Lépez J, Jimenez-Molina A, Lira H. Simultane-
ous feature selection and heterogeneity control for SVM classi-
fication: an application to mental workload assessment. Expert
Syst Appl. 2020;143.

Pluntke U, Gerke S, Sridhar A, Weiss J, Michel B. Evalua-
tion and classification of physical and psychological stress in
firefighters using heart rate variability. In: 2019 41st Annual
International Conference of the IEEE Engineering in Medicine
and Biology Society (EMBC). IEEE; 2019. p. 2207-12.
Giannakakis G, Marias K, Tsiknakis M. A stress recognition
system using HRV parameters and machine learning tech-
niques. In: 2019 8th International Conference on Affective
Computing and Intelligent Interaction Workshops and Demos
(ACIIW). IEEE; 2019. p. 269-72.

Castaldo R, Xu W, Melillo P, Pecchia L, Santamaria L, James
C. Detection of mental stress due to oral academic examina-
tion via ultra-short-term HRV analysis. In: 2016 38th Annual
International Conference of the IEEE Engineering in Medicine
and Biology Society (EMBC). IEEE; 2016. p. 3805-8.
Delmastro F, Di Martino F, Dolciotti C. Cognitive training and
stress detection in MCI frail older people through wearable
sensors and machine learning. IEEE Access. 2020;8:65573-90.
Lima R, de Noronha Osério DF, Gamboa H. Heart rate vari-
ability and electrodermal activity in mental stress aloud: pre-
dicting the outcome. In: Biosignals. 2019. p. 42-51.

Yu B, Zhang B, An P, Xu L, Xue M, Hu J. An unobtrusive
stress recognition system for the smart office. In: 2019 41st
Annual International Conference of the IEEE Engineering
in Medicine and Biology Society (EMBC). IEEE; 2019. p.
1326-9.

Padmaja B, Prasad VR, Sunitha K, Reddy NCS, Anil C. Detect-
Stress: a novel stress detection system based on smartphone and
wireless physical activity tracker. In: First international confer-
ence on artificial intelligence and cognitive computing. Springer;
2019. p. 67-80.

Can YS, Chalabianloo N, Ekiz D, Ersoy C. Continuous stress
detection using wearable sensors in real life: algorithmic pro-
gramming contest case study. Sensors. 2019;19(8):1849.

Chen C, Li C, Tsai CW, Deng X. Evaluation of mental stress
and heart rate variability derived from wrist-based photoplethys-
mography. In: 2019 IEEE Eurasia Conference on Biomedical
Engineering, Healthcare and Sustainability (ECBIOS). IEEE;
2019. p. 65-8.

Koldijk S, Neerincx MA, Kraaij W. Detecting work stress in
offices by combining unobtrusive sensors. IEEE Trans Affect
Comput. 2016;9(2):227-39.

Ciabattoni L, Ferracuti F, Longhi S, Pepa L, Romeo L, Verdini F.
Real-time mental stress detection based on smartwatch. In: 2017
IEEE International Conference on Consumer Electronics (ICCE).
IEEE; 2017. p. 110-1.

Attaran N, Brooks J, Mohsenin T. A low-power multi-
physiological monitoring processor for stress detection. In: 2016
IEEE Sensors. IEEE; 2016. p. 1-3.

Castaldo R, Montesinos L, Melillo P, James C, Pecchia L. Ultra-
short term HRV features as surrogates of short term HRV: a case
study on mental stress detection in real life. BMC Med Inform
Decis Mak. 2019;19(1):1-13.


https://arxiv.org/abs/1206.1121
http://arxiv.org/abs/1312.6026

Cognitive Computation (2024) 16:455-481

481

106.

107.

108.

109.

110.

111.

112.

113.

114.

115.

116.

Hantono BS, Nugroho LE, Santosa PI. Mental stress detection
via heart rate variability using machine learning. Int J Electr Eng
Inform. 2020;12(3):431-44.

Tiwari A, Cassani R, Gagnon JF, Lafond D, Tremblay S, Falk
TH. Prediction of stress and mental workload during police acad-
emy training using ultra-short-term heart rate variability and
breathing analysis. In: 2020 42nd Annual International Confer-
ence of the IEEE Engineering in Medicine & Biology Society
(EMBC). IEEE; 2020. p. 4530-3.

Clark J, Nath RK, Thapliyal H. Machine learning based predic-
tion of future stress events in a driving scenario. arXiv:2106.
07542 [Preprint]. 2021.

Ahmad Z, Rabbani S, Zafar MR, Ishaque S, Krishnan S, Khan
N. Multi-level stress assessment from ECG in a virtual reality
environment using multimodal fusion. arXiv:2107.04566 [Pre-
print]. 2021.

Dalmeida KM, Masala GL. HRV features as viable physiologi-
cal markers for stress detection using wearable devices. Sensors.
2021;21(8):2873.

Sandulescu V, Andrews S, Ellis D, Bellotto N, Mozos OM. Stress
detection using wearable physiological sensors. In: International
work-conference on the interplay between natural and artificial
computation. Springer; 2015. p. 526-32.

Munla N, Khalil M, Shahin A, Mourad A. Driver stress level
detection using HRV analysis. In: 2015 International Confer-
ence on Advances in Biomedical Engineering ICABME). IEEE;
2015. p. 61-4.

de Vries JJG, Pauws SC, Biehl M. Insightful stress detection
from physiology modalities using learning vector quantization.
Neurocomputing. 2015;151:873-82.

Son HH. Toward a proposed framework for mood recognition
using LSTM recurrent neuron network. Procedia Computer Sci-
ence. 2017;109:1028-34.

Rastgoo MN, Nakisa B, Maire F, Rakotonirainy A, Chandran
V. Automatic driver stress level classification using multimodal
deep learning. Expert Syst Appl. 2019;138: 112793.

Akbulut FP, Ikitimur B, Akan A. Wearable sensor-based evalua-
tion of psychosocial stress in patients with metabolic syndrome.
Artif Intell Med. 2020;104: 101824.

117.

118.

119.

120.

121.

122.

123.

124.

125.

Coutts LV, Plans D, Brown AW, Collomosse J. Deep learning
with wearable based heart rate variability for prediction of men-
tal and general health. J Biomed Inform. 2020;112: 103610.

He J, Li K, Liao X, Zhang P, Jiang N. Real-time detection of
acute cognitive stress using a convolutional neural network from
electrocardiographic signal. IEEE Access. 2019;7:42710-7.
Qin Z, Li M, Huang L, Zhao Y. Stress level evaluation using
BP neural network based on time-frequency analysis of HRV.
In: 2017 IEEE International Conference on Mechatronics and
Automation (ICMA). IEEE; 2017. p. 1798-803.

Ding Y, Cao Y, Duffy VG, Wang Y, Zhang X. Measurement and
identification of mental workload during simulated computer
tasks with multimodal methods and machine learning. Ergonom-
ics. 2020;63(7):896-908.

Kalatzis A, Stanley L, Karthikeyan R, Mehta RK. Mental stress
classification during a motor task in older adults using an artifi-
cial neural network. In: Adjunct Proceedings of the 2020 ACM
International Joint Conference on Pervasive and Ubiquitous
Computing and Proceedings of the 2020 ACM International
Symposium on Wearable Computers; 2020. p. 244-8.
Dhaouadi S, Ben Khelifa MM. A multimodal physiological-
based stress recognition: deep Learning models’ evaluation in
gamers’ monitoring application. In: 2020 5th International Con-
ference on Advanced Technologies for Signal and Image Process-
ing (ATSIP). IEEE; 2020. p. 1-6.

Stewart CL, Folarin A, Dobson R. Personalized acute stress
classification from physiological signals with neural pro-
cesses. arXiv:2002.04176 [Preprint]. 2020.

Silva E, Aguiar J, Reis LP, e Sa JO, Gongalves J, Carvalho V.
Stress among Portuguese medical students: the EuStress solution.
J Med Syst. 2020;44(2):1-6.

Yaribeygi H, Panahi Y, Sahraei H, Johnston TP, Sahebkar A.
The impact of stress on body function: a review. EXCLI J.
2017;16:1057.

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

@ Springer


http://arxiv.org/abs/2106.07542
http://arxiv.org/abs/2106.07542
http://arxiv.org/abs/2107.04566
https://arxiv.org/abs/2002.04176

	State-of-the-Art of Stress Prediction from Heart Rate Variability Using Artificial Intelligence
	Abstract
	Introduction
	Related Works
	Stress Prediction and Heart Rate Variability
	Artificial Intelligence Algorithms
	Rule-Based Approaches
	Shallow Machine Learning Approaches
	Deep Machine Learning Approaches
	Summary of AI Algorithms

	AI for Stress Prediction
	Rule-Based Approach
	Shallow Machine Learning Approaches
	Deep Machine Learning Approaches

	Performance Analysis and Discussion
	Rule-Based Approaches
	Shallow Machine Learning Approaches
	Deep Machine Learning Approaches
	Discussion

	Challanges and Future Scope
	Conclusion
	References


