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Abstract
Underwater robots are widely used in underwater missions. However, due to complex scenes, it is difficult to obtain high-
quality underwater images, which usually suffer from severe distortions such as low visibility, blurred edges, and color cast. 
In this paper, a Transformer embedded generative adversarial network for underwater image enhancement is presented. We 
propose a window-based dual local enhancement block to compensate for the Transformer’s shortcomings in extracting local 
features and improving image clarity. Convolutional neural network is deployed in sequential and parallel modes for local 
enhancement. Second, for generator construction, a fusion scheme combining convolutional neural network and Transformer 
block in units is designed. We exploit a self-attention mechanism to extract long-distance dependencies and fully extract 
the original features at the initial stage to enhance the image details. Meanwhile, global information is captured through 
the bottleneck for color correction. Convolutional neural network, which is good at extracting local features, is introduced 
in Encoder/Decoder units for multiscale feature extraction and reconstruction to effectively reduce edge blurring. Finally, 
a Transformer embedded generative adversarial network with a two-branch discriminator is established to generate more 
realistic colors while preserving the image content. Comparative experimental results show that our method can achieve 
superior results to the state-of-the-art approaches on both paired and unpaired datasets. Excellent learning and generalization 
ability make it outperform others in subjective perception and overall performance evaluated by image quality metrics. In 
addition, the enhancement results also show the significant improvement it brings in the downstream visual application tasks.

Keywords  Transformer · Generative adversarial network · Underwater image enhancement · Dual local enhancement · 
Two-branch discriminator

Introduction

Underwater robots with vision guidance have become 
increasingly common in critical applications in recent years. 
Examples include underwater exploration [1], monitoring 
marine species [2], and underwater rescue missions [3]. 
Approximately 70% of the Earth’s area is the sea, which is 
closely related to human life, but human exploration of the 
sea is still less than 10%. Unlike in-air images, because of 

the complex and diverse underwater environments, under-
water images suffer from various degradations. According to 
the principle of underwater imaging, water absorption dur-
ing light propagation and the forward/back scattering of sus-
pended particles in water are the main factors contributing 
to degradation. Absorption is mostly responsible for color 
distortion, while light attenuation is nonlinear and related 
to the wavelength of light. Due to the large wavelength of 
red light, it is absorbed faster with depth in water. Thus, 
most underwater images are greenish and bluish. In addi-
tion, forward scattering causes blurred details in underwater 
images, while backward scattering leads to low contrast and 
thus a haze effect.

Many traditional methods have been developed for under-
water image enhancement (UIE) [4–15]. Although in certain 
ways, these traditional methods have achieved good results, 
when dealing with various kinds of underwater environ-
ments, there still exist some disadvantages. As shown in 
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Fig. 1, the diversity of image quality degradation usually 
includes color cast, haze, and blur.

Recently, generative adversarial network (GAN) [16] 
and Transformer [17] have already been effectively imple-
mented for the translation task of images. The two-player 
zero-sum game serves as an inspiration for GAN, which is 
mainly applied to image generation and data enhancement 
and is further developed for other tasks. It consists of two 
models: a generator G that captures the data distribution 
and a discriminator D. The two neural networks are trained 
simultaneously to finally achieve that the samples gener-
ated by the generator are real samples. GAN is also used in 
unsupervised learning, such as CycleGAN [18], which is 
used to generate paired datasets to guide deep learning net-
work training. However, standard GAN suffers from mode 
collapse and vanishing gradients, making training unstable. 
In addition, because the discriminator only contains one 
branch and mainly focuses on some of the image’s content 
and details, the color features of the image are challeng-
ing to handle. Transformer emerged from the field of NLP. 
Transformer abandons the traditional convolutional neural 
network (CNN) and recurrent neural network (RNN). The 
whole network is composed of self-attention and a feedfor-
ward neural network. Due to Transformer’s ability to cap-
ture long-range dependencies, it has also been successfully 
applied to the field of computer vision [19]. However, Trans-
former suffers from high computational consumption and a 
weak ability to extract local features. In short, Transformer 
contributes to the network learning capabilities, and GAN 
contributes to the network learning goals.

To fully utilize the respective advantages of Trans-
former and GAN, we effectively fuse the two together. 
First, we propose a window-based dual local enhancement 
Transformer block (DleWin), which is more suitable for 
UIE tasks. The DleWin block implements a self-attention 
mechanism to extract long-range information well. On the 
other hand, local features are crucial to UIE tasks. We 
adopt CNN in serial and parallel modes in the DleWin 
block for local enhancement, and the generator is built 
based on the DleWin block. Second, we propose a fusion 
scheme that combines convolutional neural network and 
Transformer in units. Since Transformer is good at captur-
ing long-range dependencies and extracting raw informa-
tion, while CNN is good at extracting local features, the 
two can be effectively fused to correct the color devia-
tion and enhance image clarity. To make it easier for the 
DleWin block to obtain global information, the generator 
is designed as a UNet-like network [20]. In the framework 
of the generator, the DleWin Transformer block is imple-
mented to extract the raw and global information. Finally, 
we propose a GAN with a two-branch discriminator con-
taining a feature branch and a color branch. The feature 
branch is used to preserve image features and enhance 
contrast, while the color branch performs color correc-
tion to generate more realistic colors. For the design of 
the discriminator, we implement it as stacked convolu-
tional layers. The feature branch training is guided by the 
Wasserstein GAN with gradient penalty (WGAN-GP) [21] 
loss, and the underwater index loss (Uloss) [22] is used 
to guide the training of the color branch. Based on the 

Fig. 1   Underwater images with various degradations
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above three designs, we propose a Transformer embed-
ded generative adversarial network for underwater image 
enhancement (TEGAN). Comparative experimental results 
demonstrate that, for both paired and unpaired datasets, 
our method is superior to the state-of-the-art approaches. 
It achieves not only the best subjective perception effect 
but also the overall best performance in terms of image 
quality evaluation metrics. To show the contribution of 
each core component, ablation analyses are conducted. In 
addition, we also test the effect on the downstream tasks. 
According to the findings, TEGAN can greatly boost the 
efficiency of visual tasks such as edge detection, under-
water object detection, and keypoint matching.

Unlike other comparative methods, TEGAN with a 
new Transformer block, fusion scheme, and two-branch 
discriminator is very suitable for solving the degrada-
tion problem of underwater images. The contributions are 
organized as follows:

•	 We propose a window-based dual local enhancement 
Transformer block (DleWin) that is more suitable for 
the UIE task. This novel block can be used to fully 
extract the original features and global information of 
the image, alleviate blur, and improve image clarity.

•	 A fusion scheme that combines convolutional neural 
network and Transformer in units is designed. Accord-
ing to the fact that CNN is good at extracting local 
features and Transformer can capture long-distance 
dependencies well, the two can be effectively fused to 
correct the color deviation and enhance image clarity.

•	 A Transformer embedded generative adversarial net-
work with a two-branch discriminator is proposed. The 
feature branch preserves image features and realizes 
contrast enhancement, while the color branch rectifies 
the color cast to generate more realistic colors.

•	 Extensive experiments demonstrate that TEGAN can 
achieve superior results compared to the state-of-the-
art approaches on public underwater image datasets 
such as EUVP [24], RUIE [25], and UIEB [26]. In 
addition, outstanding results reveal that it can signifi-
cantly facilitate the performance of other downstream 
visual tasks.

Related Work

For UIE tasks, the existing methods are systematically 
divided into the following three types. The enhancement 
methods directly enhance the visual effects. The recovery 
methods based on the physical model consider the degrada-
tion process of underwater images. The deep-learning meth-
ods are data-driven.

Enhancement Methods

Enhancement methods directly adjust the pixel values of a 
given underwater image to achieve contrast enhancement 
and color correction without considering the degradation 
process. The enhancement methods reassign the pixel values 
of a given image without considering the image degradation 
process for contrast enhancement and color correction. In 
recent years, fusion-based methods of enhancement have 
shown promising results. EUF [4] is based on the princi-
ple of fusion and does not need professional hardware or 
learning about underwater scene structure and conditions. 
Only input and weight metrics are obtained from degraded 
images. CBFU [5] is proposed to build on the coordination 
of color compensation and white balance versions of the 
raw degraded image. It promotes the conversion of edge and 
color contrast to the enhanced image, and multiscale fusion 
strategies are employed. ICM [6] is proposed based on shift 
stretching. The stretches on color contrast, saturation, and 
intensity are deployed to improve the image quality. Among 
other enhancement methods, the gamma correction (GC) 
[7] approach corrects the images with too much gray and 
too little gray to enhance the contrast. A model that utilizes 
the features of light scattering is proposed in [8]. First, the 
RGB channel average ratio is used to categorize the color 
projection into five different groups. To restore the color 
projection of underwater images, a multiscene color recov-
ery method is developed using the optical attenuation char-
acteristics to determine the color loss rate of RGB channels 
in various scenarios. These enhancement methods directly 
apply image processing by subjectively adjusting the pixel 
values to eliminate noise, improve edge blur, enhance the 
features of the target object, and weaken the effect of irrel-
evant environmental factors on the target. However, since the 
underwater optical imaging model is not considered, some 
additional noise is introduced, which can cause severe over-
saturation in different image regions.

Recovery Methods

The recovery methods take into account the underwater 
image degradation process, the imaging principle of the 
image, and the building of a physical model. DCP [10] is a 
solution to the image haze reduction issue. Many researchers 
have created DCP-based underwater recovery methods after 
observing the resemblance between hazy photos and blurred 
underwater images in descattering. Because of the particu-
lar features of the underwater environment, UDCP [11] is 
designed to implement DCP within the green and blue chan-
nels. IBLA [12] is an underwater scene depth estimation 
approach according to image blurring and light absorption. 
It gives more precise background light and depth estimates 
that may be utilized in the image formation model (IFM). 



194	 Cognitive Computation (2024) 16:191–214

1 3

First, the method selects the background light by the blurred 
region and obtains a depth map. Then, the transmission map 
based on the background light is used to recover the scene 
radiation. The coefficients of ULAP [14] are trained using 
supervised linear regression based on learning. To recover 
the real scene radiation, the approach first performs depth 
estimation. It next estimates the background light and trans-
mission map of RGB relying on the depth map. A new color 
compensation method is proposed in [15]. The underwater 
image region with the most severe color distortion is com-
pensated by combining the polarized image with the inten-
sity image. It can improve the exposure of the low-lumi-
nance area of the image. The dark channel prior approach 
is then used to deblur and improve the image. The recovery 
method recovers degraded images by a priori knowledge, 
but when the a priori knowledge is inaccurate, it often leads 
to serious estimation errors. In this area, the absence of reli-
able priori information about underwater images is now a 
major obstacle.

Data‑Driven Deep Learning Methods

Data-driven deep learning-based approaches are now 
mainly classified as CNN-based, GAN-based, and Trans-
former-based. WaterNet [26] takes three images processed 
by white balance, histogram equalization, and GC as 
input images and uses the gated fusion network for learn-
ing the corresponding confidence map to determine the 
most important features of the residual inputs in the final 
result. WaterNet can vastly improve image contrast and 
correct color cast to some extent. However, for images 
with a great color cast, the color cast needs to be cor-
rected, and overenhancement is another issue. UWCNN 
[27] is proposed based on the underwater scene a priori, 
which may be utilized to create training data. UWCNN 
reconstructs a clean underwater submerged image without 
the need for underwater estimate of the imaging model’s 
parameters. MLFcGAN [31] extracts multiscale features 
and then uses global features to improve local features at 
each scale. MLFcGAN performs better in off-color cor-
rection, but it is challenging to handle hazy images or even 
introduce false enhancement effects. FUnIEGAN [24] is 
designed based on a conditional generative adversarial 
network, formulating an objective function with content-
aware loss that assesses perceptual image quality using 
information about global content, color, local texture, and 
style. The model uses only a simple 4-layer UNet network 
to achieve a real-time effect. Since many paired underwa-
ter image datasets are generated using CycleGAN [18], 
CycleGAN can also be used in underwater image enhance-
ment tasks. Uformer [23] is proposed for image restora-
tion with self-attention local enhancement based on a 
nonoverlapping window (LeWin) Transformer block and a 

multiscale recovery modulator, which is used to adjust the 
features in the Uformer decoder layers. Uformer is mainly 
applied in image enhancement tasks, and its application 
in underwater image tasks can improve the cast effect and 
the contrast to some extent. However, it cannot improve 
the underwater image haze effect. STSC [28] develops an 
efficient and compact enhancement network in collabora-
tion with a high-level semantic-aware pretrained model, 
aiming to exploit the hierarchical feature representation as 
an auxiliary for low-level underwater image enhancement. 
SCNet [29] focuses on spatial and channel dimensions, 
with the key idea of learning water type desensitized fea-
tures. The purpose of this method is to improve the image 
quality and deal with the degradation diversity of water. 
TACL [30] achieves both visual-friendly and task-oriented 
enhancement. The sharpness of the image may be notice-
ably enhanced, but it is prone to residual water color, and 
some areas of the image are too bright.

Since the underwater environment is complicated, 
many methods cannot fully learn the distribution of the 
target image, so there exists a large deviation between the 
enhanced image and the target image. Moreover, there are 
still large differences between synthesized images and real 
underwater images. The distribution learned on synthe-
sized images by the data-driven deep learning method is 
difficult to apply to real underwater images, and the pro-
cessed images still have some defects, such as color cast, 
missing detail, and overenhancement. How to better solve 
the aforementioned issues is the focus of this paper.

Proposed Method

Underwater image enhancement learns a mapping from 
underwater images degraded for various reasons to tar-
get clear images. Due to GAN’s outstanding performance 
in the field of image generation, it has drawn increasing 
attention. As a framework for this paper, we adopt the 
conditional generative adversarial network (cGAN) [32] 
and design a proper generator (G) for learning the map-
ping mentioned above. Recently, Transformer has been 
increasingly used for visual domain tasks since it can 
extract long-range dependencies well. This new technol-
ogy is also incorporated into the construction of TEGAN 
in this paper.

Here, we introduce a new architecture that contains a 
well-designed novel generator and a two-branch discrimi-
nator. Then, by referring to the LeWin block in Uformer [23] 
and RPE [33], we propose a new window-based dual local 
enhancement (DleWin) block that is more suitable for the 
UIE task. Finally, the WGAN-GP loss, Uloss, and L1 loss 
are adopted to guide the network training.
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Network Architecture

Figure 2 depicts the TEGAN architecture in detail. Elabo-
rately constructed Inception, Bottleneck, and Fusion unit 
are introduced to the original Encoder-Decoder generator, 
which is designed as a UNet-like network. The effectiveness 
of each component will be demonstrated in the “Experi-
ments and Analysis” section. The discriminator includes two 
branches, namely, a feature branch and a color branch.

Generator

Inspired by Uformer, we propose a Transformer embedded 
generator framework in our underwater image enhance-
ment tasks, but we do not embed Transformer block for 
each scale as Uformer does. Specifically, a partial fusion 
scheme is designed to effectively combine Transformer and 
convolutional neural network. We believe that compared 
with Transformer, convolutional neural network performs 
better in multiscale feature extraction, so we use convo-
lutional neural network in the Encoder and Decoder units 
for multiscale feature extraction and reconstruction, which 
can effectively reduce the edge blurring and retain more 
details. Transformer block, due to its expertise in extracting 
raw and global information from images, is used in Incep-
tion and Bottleneck units. The advantage of incorporat-
ing global information into each scale is demonstrated in 
MLFcGAN [31]. We adopt this operation for reference. The 
global information fully extracted by the Transformer block 
is integrated into each feature scale, which is particularly 

effective in solving the problem of color cast in underwater 
image degradation.

As we can see in Fig. 2a, one DleWin block is embedded 
in Inception unit to extract the long-range dependencies of 
the features directly from the original image. Then, it can 
be used for subsequent feature extraction. We also explore 
the effect of the number of DleWin blocks in the Incep-
tion unit on the model performance, as shown in Fig. 3a. It 
can be concluded that when there is more than one DleWin 
block, the time consumption is dramatically increased, and 
the performance is degraded.

The Encoder unit consists of five encoding layers. Details 
are shown in Fig. 4 Encoder. It performs multiscale feature 
extraction on the features preliminarily obtained through the 
Inception unit and finally inputs the shape of 512 × 8 × 8 
feature maps to the Bottleneck unit. In addition, the extracted 
features of each layer are transferred to the corresponding 
layer of the Decoder unit through skip connections, as shown 
in Fig. 2a. Encoder1 contains a convolutional layer, while 
encoder2-encoder5 contain a Conv + BatchNorm + ReLU 
(CBR) module. The parameters of all convolutional layers 
are size = 4 × 4, stride = 2, and padding = 1, which plays the 
role of downsampling while extracting features.

The Bottleneck unit embeds two DleWin blocks. When 
the features extracted by the Inception are downsampled by 
Encoder to a size of 8 × 8 (the same size as the window 
of the DleWin block), the Transformer block can extract 
global information, such as the overall lighting and image 
layout. Since Transfomer’s self-attention mechanism is good 
at extracting long-range information, the DleWin block can 
be used in this unit to achieve a significant performance 
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Fig. 2   The architecture of the TEGAN proposed in this paper. From 
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and DleWin blocks (c). The generator is composed of Inception, 

Encoder, Bottleneck, Decoder, and Fusion units. The discriminator is 
composed of a feature branch and a color branch. The DleWin block 
consists of Attn, LeFF, and PLE modules
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improvement. We also investigate how the number of 
DleWin blocks in this unit affects the effectiveness of the 
model. The number of DleWin blocks is set to 2 for the 
following reasons. As we can see in Fig. 3b, in the Bot-
tleneck, the optimal performance is achieved when the 
number of DleWin blocks is 2. As this number increases, 
network performance deteriorates. An excessive number 
of DleWin blocks will make the model extract too much 
global information, resulting in overfitting of training, which 
will adversely affect the generalization ability and perfor-
mance of the model. Meanwhile, the time consumption 
will be dramatically increased due to the deepening of the 
network. Moreover, the global information extracted by the 
previous DleWin block will become blurred after the subse-
quent DleWin processing, thus weakening the positive role 
of global information in image enhancement. On the other 
hand, if the number of DleWin blocks is too small (less than 
two), the extracted global information is not sufficient, and 

the utilization efficiency is low. In this case, the correspond-
ing network performance is also poor.

The Decoder unit has five decoding layers, as shown in 
Fig. 4. Decoder receives the global information extracted 
from the Bottleneck and outputs the enhanced image with 
a shape of 3 × 256 × 256 after five decoding layers. Similar 
to the Encoder, decoder1 contains a transposed convolution 
and a tanh activation function. Encoder2-decoder5 each con-
tain a CBR module. All transposed convolution parameters 
are size = 4 × 4, stride = 2, and padding = 1, which plays the 
role of upsampling while reconstructing features.

The Fusion unit integrates the global information 
extracted by the Bottleneck unit, such as the overall lighting 
and layout, into each scale. As shown in Fig. 5, the global 
information will first go through a F_adjust operation, which 
is a convolution with size = 1 × 1 and stride = 1. Through the 
F_adjust operation, the channels of the global information 
can be adjusted to correspond to Decoder. Then, the global 
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information will be copied and reshaped by the F_copy and 
F_reshape operations to finally achieve the effect that the 
shape of the output fusion information is the same as the fea-
ture map of the corresponding layer of Decoder. The fusion 
of global information to each scale helps to provide more 
realistic colors and finer details.

Discriminator

We use a two-branch discriminator containing a feature 
branch and a color branch in Fig. 2b, where the feature 
branch is used to preserve image features and enhance con-
trast, while the color branch performs color correction to 
generate more realistic colors. They both adopt PatchGAN 
[34], as shown in Fig. 6a. The discriminator of the origi-
nal GAN evaluates only one value (true or false) for the 
whole image generated by the generator, as we can see in 
Fig. 6b. This operation evaluates the overall image qual-
ity. However, it lacks image localization evaluation, causing 
the local details of the image generated by the generator to 
be blurred. PatchGAN adopts the form of full convolution, 
and the discriminator evaluates the generated image as a 
matrix of N × N. Each element in the matrix corresponds to 
the discriminator’s evaluation of a small patch region. The 
average value of the matrix forms the final evaluation of the 
discriminator for the whole image. PatchGAN focuses on 
local information, which can make the generated image have 
more details and reduce local blur. Moreover, compared to 
the full-image discriminator, PatchGAN has fewer convolu-
tional layers. In this paper, for a 256 × 256 generated image, 
the discriminator forms a 30 × 30 evaluation matrix, and the 
perceptual field (patch size) of each evaluation value in the 
matrix is 70 × 70.

In detail, the feature branch preserves the image con-
tent by one convolution layer. Then, it stacks three layers 
of Conv + BatchNorm + Leaky-ReLU (CBL) modules and 
one layer of convolution to identify the authenticity of the 
image. Finally, it generates an adversarial map for evaluation 

and facilitates the generator to generate a realistic image. 
The color branch directly stacks five layers of CBL modules 
and one convolution layer to discriminate whether the image 
belongs to the underwater scene. It generates an underwater 
index map for evaluating the strength of underwater attrib-
utes and facilitates the generator to generate colors consist-
ent with the in-air image. The original image and enhanced 
image or the original image and real image by concatenate 
operation fed into the discriminator to finally obtain an 
adversarial map and an underwater index map.

DleWin Block

In contrast to convolutional neural network, Transformer 
can compute the correlation between each pixel of an image 
directly without passing through hidden layers. CNN models 
the relationship between neighborhood pixels, while Trans-
former pays more attention to the relationship between all 
pixels. Therefore, we can design strategies to make the two 
complement each other well.

For underwater image enhancement using Transformer, 
there are two problems to solve. First, the standard Trans-
former [17] computes global self-attention among all tokens, 
which results in a secondary computational cost for tokens 
and an enormous computational consumption for images. 
Second, local information is particularly important for vision 
tasks, especially underwater image enhancement tasks. How-
ever, Transform is not good at extracting local information.

To address the first issue, we propose a window-based 
DleWin block in which CNNs are introduced for local 
enhancement using both serial and parallel approaches. It 
implements an efficient mechanism for calculating self-
attention in terms of windows. The DleWin block includes 
three modules, namely, a self-attention module (Attn) for 
capturing features, a serial local enhancement feedforward 
network (LeFF), and a parallel local enhancement module 
(PLE). In Fig. 2c, the input feature maps are subjected to 
Attn for feature extraction, and then, LeFF performs local 
enhancement on the features. Meanwhile, PLE performs 
local enhancement on the features before passing through 
Attn. A skip connection is added between Attn and LeFF to 
avoid degradation of the input features.

As we can see in Fig. 2c, Attn contains a layer normaliza-
tion layer (LN) and a window-based multihead self-attention 
(W-MSA). LeFF contains a LN and three convolutional layers, 
where the input tokens are first transformed into tokens by a 
linear projection as conv.(1 × 1). The tokens are reshaped into a 
2D feature map, which is transformed by a convolutional layer 
of size = 3 × 3 and then stretched into new tokens. Finally, it 

Fig. 5   Schematic diagram of 
Fusion unit F_ adjust F_copy F_reshape
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is transformed into the same dimension as the input features 
through linear projection. PLE contains two Conv + Batch-
Norm + GELU (CBG) modules. Unlike LeFF, the input of PLE 
is the features not extracted by Attn. LeFF is the long-range 
dependency captured by Attn for local enhancement, while 
PLE is a direct local enhancement of the input features. There-
fore, they have different local enhancement effects. LeFF is 
used to compensate for the shortcomings of the Transformer in 
extracting local features, while PLE is used to further enhance 
the whole block for local feature extraction. A combination 
of the two can meet the need for underwater image enhance-
ment tasks for extracting local features and further alleviate 
the adverse effect of the long-distance dependencies captured 
by Attn. The differences between PLE and LeFF are shown in 
Fig. 7. The effectiveness of the embedded DleWin block with 
PLE and LeFF will be demonstrated in the “Experiments and 
Analysis” section.

In addition, instead of implementing a global self-attention 
mechanism, we deploy W-MSA with window-based multi-
head self-attention. The input feature matrix X ∈ RC×H×W is 
partitioned into N feature windows of M × M, where C, H, and 
W are the number of channels, width, and height, respectively. 
Then, the transposed and stretched features Xi ∈ RM2×C of each 
window are obtained. In short, W-MSA encodes every pixel 
within the window as a token. It performs self-attention within 
nonoverlapping local windows, which significantly reduces 
the computational cost. The motivation for using the multi-
head self-attention mechanism is that dividing the model into 
multiple heads and forming multiple subspaces by channels 
allows the model to focus on different aspects of information. 
Finally, we combine the information from all aspects. Suppose 
there are k heads; then, each head has dimension dk = C∕k , 
and the kth head processes a feature map X̂k ∈ RM2∗dk . The 
self-attention of the kth head can be calculated as follows:

(1)X =
{
X1,X2,…XN

}
,N = HW∕M2

(2)Yi
k
= Attention

(
XiW

Q

k
,XiWK

k
,XiWV

k

)
, i = 1,… ,N

(3)X̂k =
{
Y1

k
, Y2

k
,…YM

k

}

where WQ

k
,WK

k
,WV

k
∈ RC×dk represent the projection matri-

ces of query (Q), key (K), and value (V) of the kth head, 
respectively. The outputs of all heads are then concatenated 
and linearly mapped to obtain the final results. W-MSA 
also applies relative position encoding. The attention can 
be expressed as

B is the relative position bias, with the value derived 
from the learnable parameter B̂ ∈ R(2M−1)×(2M−1) . Com-
pared to global attention, W-MSA can decrease the time 
complexity of the input feature map X ∈ RC×H×W  from 
O(H2W2C) to O(M2HWC).

The so-called self-attention mechanism is depicted in 
Fig. 8. For the input feature matrix, the query (Q), key 
(K), and value (V) are generated by the learnable param-
eter matrices Wq,Wk,Wv , respectively. Then, Q and K are 
multiplied together with relative position encoding (B) and 
undergo zero-mean normalization (Z-norm) to obtain the 
attention matrix Attn. Finally, Attn is activated by Softmax 
and multiplied by V for output.

(4)Attention(Q,K,V) = Sof tMax

�
QKT

√
dk

+ B

�
V

Concat
Attn LeFF

PLE

Out

Feature map Attention map

Fig. 7   Schematic diagram for different enhancement modes between 
PLE and LeFF

Linear Linear Linear

Q K V

Attn

Output

Input

Scale

Softmax

B

Fig. 8   Illustration of W-MSA’s self-attention mechanism
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Objective Function

The standard GAN suffers from mode collapse and vanish-
ing gradient. Mode collapse does not occur in underwa-
ter image enhancement. To solve the vanishing gradient 
problem, Martin Arjovsky proposed the Wasserstein GAN 
(WGAN) [35]. WGAN is needed to compute the Wasser-
stein distance, requiring that the discriminator satisfies the 
Lipschitz restriction. First, weights are clipped to a fixed 
interval [− c, c], but this simple and brutal operation can-
not yield better results. Therefore, the WGAN with gradient 
penalty (WGAN-GP) [21] is introduced, and the equation is 
transformed as

where x and y are the degraded image and ground truth (in 
the air, clear, color balanced target image), respectively. x̂ 
is a linear sample between G(x) and y. In this paper, we use 
WGAN-GP for the adversarial branch.

To guide the training of the color branch, we introduce 
Uloss from GAN-RA [22].

As shown in Fig. 9, in the Lab color space, we take the 
in-air image as the target. The distance between the image 
and the in-air image is evaluated using the underwater index 
(U). Its formula is as follows:

where d0 is the distance from the image mean to the center 
of a and b color channels. al denotes the mean of the L chan-
nel, while dadb denotes the area of the image pixel value 
distribution. The higher the value of d0 is, the more severe 
the color distortion.

The underwater index loss is designed using the L2 loss:

X is the original image, y is the ground truth, and U(·) 
is the underwater index for computing an image. In the 
initial stage of training, the color branch is not sufficiently 
trained to thoroughly distinguish the difference between 
underwater and in-air images. Thus, it is not sufficient 
to guide the generator to learn the distribution of in-air 
images. Therefore, we adopt a two-phase training strategy, 
i.e., the generator does not add the underwater index loss at 

(5)
LWGAN−GPD

=Ex,y

�
DW (x, y)

�
− Ex

�
DW (x,G(x))

�

+ �Ex̂[(‖∇x̂DW

�
x̂
�
‖
2
− 1)

2
]

(6)LWGAN−GPG
= Ex

[
DW (x,G(x))

]

(7)U =

√
d0

10aldadb

(8)
LUD

= Ex,y[(DU(x, y) − U(x, y))2] + Ex[(DU(x,G(x)) − U(x,G(x)))2]

(9)LUG
= Ex

[(
DU(x,G(x)

)
)
2
]

the beginning of training but adds it after the color branch 
is sufficiently trained.

Existing methods show that adding the L1(L2) loss to the 
objective function allows the generator to learn the distance 
from the original image to the ground truth directly [36]. It 
can focus on the low-frequency information of the image, 
thus reducing blur. Compared to L2 loss, L1 loss is deployed 
in this paper for blur reduction due to its greater robustness. 
Its formula is as follows:

The global objective function can be expressed as follows:

where �W , �U , and �l1 are the weight factors. The optimal 
model is D∗ = argDminLD , G∗ = argGminLG.

Experiments and Analysis

Datasets

Data acquisition for UIE tasks is extremely difficult, espe-
cially for paired images with ground truth. We deploy a 
paired underwater image dataset from UGAN [37] as the 

(10)Ll1G = Ex,y

�
‖y − G(x)‖1

�

(11)LD = LWGAN−GPD
+ LUD

(12)LG = �WLWGAN−GPG
+ �ULUG

+ �l1Ll1G

b

a

Fig. 9   Underwater index illustration. The elliptical region represents 
the a-b distribution of the image in the Lab color space. The smaller d0 , 
larger da and db indicate that the image is closer to the in-air image [22]
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training set and validation set. Simultaneously, several pub-
licly available paired and unpaired underwater image data-
sets are taken as the test set. All image sizes are adjusted to 
256 × 256 using bicubic linear interpolation.

Training Set

To better learn the features from ground truth and preserve 
the content of the images, our model is trained on paired 
datasets (including ground truth and degraded underwa-
ter images). A total of 6000 pairs of images are randomly 
selected from 6128 pairs generated by CycleGAN [18] in 
the literature [37] as our training set. The remaining images 
serve as the verification set.

Test Set

We cite EUVP [24], RUIE [25], and UIEB [26] as our test datasets.
The EUVP (Enhancing Underwater Visual Perception) 

dataset contains separate sets of paired and unpaired images 
with varying degrees of perceptual quality. It mainly contains 
three subsets: paired, unpaired, and test samples. The paired 
subset contains dark images, images collected from ImageNet, 
and bluish and greenish images from real underwater scenes.

The RUIE dataset is a real underwater image dataset with-
out ground truth. It includes three subsets: UCCS, UIQS, 
and UHTS. Among them, the UCCS subset contains blue, 
green, and blue-green subsets, corresponding to the common 
color cast problem in underwater image degradation.

The UIEB dataset achieves the goal of underwater image 
data collection [26], i.e., diversity of underwater scenes, 
different characteristics of quality degradation, and a wide 
range of image contents. It consists of raw and challenge 
subsets. The raw subset contains 890 underwater images 
and corresponding reference images. The reference images 
are the subjective optimal enhancement results selected by 
using various underwater image enhancement methods. The 
challenge subset contains 60 underwater images, which have 
a high degree of degradation and have not achieved satis-
factory results by many previous enhancement methods. 
It should be noted that although UIEB provides reference 
images, it is only the images generated by other enhance-
ment methods and cannot be considered ground truth.

We construct four separate groups of paired tests contain-
ing ground truth and four groups of unpaired tests without 
ground truth, as shown in Table 1. The paired image test 
set is divided into four groups, i.e., the Validation set (Val), 
Underwater-dark, Underwater-imagenet, and Underwater-
scenes subsets from EUVP. The total number of paired test 
images is 1028. For the unpaired image test set, we also 
divide it into four groups, i.e., all 2574 unpaired images in 
EUVP, all 4229 real-world underwater images in the three 
subsets of RUIE, all 890 images in the raw subset of UIEB, 
and all 60 images in the challenge subset of UIEB. From 
Table 1, we can see that the unpaired real-world underwater 
test images are more sufficient, which can reflect the gener-
alization ability of our method.

Table 1   Description of the test 
datasets

Paired test images Total Val Underwater-dark Underwater-imagenet Underwater-scenes

1028 128 300 300 300

Unpaired test images Total EUVP RUIE UIEB-Raw UIEB-Challenge

7753 2574 4229 890 60

(a) Generator loss (b) Discriminator loss
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Fig. 10   Illustration of the training losses. a G: WGAN-GP, G: U, G: 
l1, and G: T are labeled as the feature branch loss LWGAN−GPG

 , color 
branch loss LUG

 , L1 loss Ll1G , and global loss LG of the generator, 
respectively. b D: WGAN-GP, D: U, and D: T are labeled as the fea-

ture branch loss LWGAN−GPD
 , the color branch loss LUD

 , and the global 
loss LD . When LUG

 starts to take effect, it can be seen that each loss 
has a significant change



201Cognitive Computation (2024) 16:191–214	

1 3

Training Details

We set a batch size of 32, �W = 0.1 , �U = 5 , �l1 = 10 and 
use Adam optimizer with a learning rate = 0.0002, β1 = 0.5, 
β2 = 0.999. The training set images are all first adjusted to 
286 × 286 using bicubic linear interpolation and then ran-
domly cropped to 256 × 256 to achieve data enhancement. 
We use PyTorch as a deep learning framework to train 200 
epochs on an Inter(R) Xeon Silver 4214R, 4 GB RAM, and 
GeForce RTX 3090 GPU platform.

Loss curves are shown in Fig. 10. The feature branches 
LWGAN−GPG

 are gradually in a dynamic equilibrium at the 
beginning. As mentioned in the “DleWin Block” section, 
here, we adopted a two-phase training strategy. The genera-
tor does not add the underwater index loss at the beginning 
of training but adds it until the color branch is well trained. 
In detail, after the 30th epoch, the color branch starts to 
work due to the addition of LUG

 to the generator training, and 
each loss begins to change dramatically. Then, LUG

 and LUD
 

tend to be in dynamic equilibrium. Moreover, Ll1(G) stead-
ily decreases except for the rapid increase when the color 
branch starts to take effect.

Models for Comparison

Traditional and deep learning-based (data-driven) methods 
are conducted for comparison to demonstrate the superiority 
of TEGAN, as shown in Table 2.

The enhancement methods include EUF, CBFU, ICM, 
and GC (where EUF and CBFU are based on the fusion 
method). Recovery methods include MIP, DCP, UDCP, 
and ULAP. Learning-based methods are CycleGAN, 
FUnIEGAN, MLFcGAN, UWCNN, WaterNet, Uformer-
B (the best performance parameter setting in Uformer), 
STSC, SCNet, and TACL. To compare the performance in 
an objective way, all learning-based methods except TACL 
are trained on the same training set. The network parameters 
for comparison are the recommended settings captured from 
the original paper to obtain the best enhancement results. It 
is worth mentioning that the source training code of TACL 

is not publicly available. Here, we use the trained network 
parameters provided by the author for comparison.

Results and Analysis

Paired Test Images

The benefits of our method are illustrated by the visual 
comparisons in Fig. 11. Compared with other methods, the 
images enhanced by our method are color balanced with 
higher contrast and better visual effects. Using GT (ground 
truth) as a reference, it can be seen that some methods have 
limited quality improvement, while others have obvious 
quality improvement but still cause overenhancement or 
wrong color correction. Most traditional methods have dif-
ficulty improving the color deviation, which is far from GT.

For the enhanced methods, although ICM and GC can 
reduce blur, in Fig. 11a, c, h, ICM does not reduce the 
image’s color divergence, while GC reduces the image’s 
brightness. The fusion-based methods are more effective in 
brightness enhancement, but there are still obvious prob-
lems, such as overenhancement compared to GT. As we can 
see, EUF introduces a large amount of red-blue noise in 
Fig. 11a and is severely exposed in Fig. 11d, e. In Fig. 11b, 
d, CBFU has serious color distortion compared to GT.

For the recovery methods, the brightness of MIP is 
improved to some extent, but the yellow compensation is 
excessive, resulting in the yellow color of the restored image, 
as shown in Fig. 11b, e, g. DCP can augment the image’s 
contrast, but it cannot solve color divergence, as in Fig. 11a, 
d, f, g, h. UDCP increases the haze effect while reducing the 
color cast, in Fig. 11b, d, e, g. Compared with GT, the recov-
ered image still exists residual water color. The quality of 
ULAP is improved in some images, but still, some images, 
such as Fig. 11a, d, h, are not good at removing the effects 
of water bodies and adjusting the color cast.

For the deep-learning based method, improving the color 
deviation is generally better than the traditional method, but 
it may not have good results in other aspects of image quality 
improvement. CycleGAN and Uformer-B retain details well, 

Table 2   Models for comparison

Traditional methods

Model EUF [4] CBFU [5] ICM [6] GC [7] MIP [9] DCP [10] UDCP 
[11]

ULAP [14]

Year 2012 2018 2007 2015 2010 2010 2013 2018

Deep learning-based methods

Model CycleGAN 
[18]

FUnIEGAN 
[24]

MLFcGAN 
[31]

UWCNN 
[27]

WaterNet [26] Uformer-B 
[23]

STSC [28] SCNet 
[29]

TACL [30]

Year 2017 2020 2020 2020 2020 2021 2022 2022 2022
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but there is an obvious haze effect, as shown in Fig. 11g. 
Uformer-B also has a haze effect on Fig. 11f. The effect of 
noise removal of the water body in CycleGAN is not sat-
isfactory, as shown in Fig. 11c, f. The color saturation of 
FUNIEGAN enhanced image is improved, but there is still 
color distortion, such as the background color distortion in 
Fig. 11e, g. The performance of MLFcGAN is closer to GT 
but still has a slight color cast. As in Fig. 11a, there is a blu-
ish effect, and the color of the flower is somewhat orange 
in Fig. 11f. UWCNN and WaterNet contribute to remov-
ing blurring, but for images with serious color cast, color 
deviation still exists. Moreover, STSC and SCNet can largely 
eliminate the influence of color cast, but STSC still has color 
deviation, in Fig. 11a, and whitening effects, in Fig. 11c, d. 
SCNet makes the objects in Fig. 11c, d green, and it cannot 
remove the haze completely, as shown in Fig. 11g. TACL 
can improve clarity and brightness to a certain extent, but 
its performance in color correction is not good, as shown in 
Fig. 11a. In addition, Fig. 11b, f, g still have serious residual 
water color, and they are much different from GT. In con-
trast, TEGAN exhibits competitive performance. As shown 
in Fig. 11a, e, h, our results are almost the same as GT, while 
Fig. 11f, c, d are closer to GT. It is worth mentioning that 
compared with GT, the result in Fig. 11b improves the color 
cast, while Fig. 11g reduces the haze effect.

Consistent quantitative conclusions can be inferred from 
Table 3 for the paired image test sets. Since GT images exist, 
we select the full-reference evaluation metrics MSE, PSNR, 
and SSIM [38]. Among them, MSE is the expected value of 
the square of the gap between the enhanced image and GT. 
PSNR measures the difference between the enhanced image 
and GT pixels. SSIM is an image quality evaluation criterion 
that conforms to human intuition. It indicates how close the 
enhanced image is to GT in structure and texture properties.

Table 3 displays the full-reference evaluation metrics. We 
can see that traditional methods perform unsatisfactorily in 
general, and none of them have entered the top two. Some 
methods perform well on specific test sets, e.g., MLFcGAN 
achieves the best PSNR and SSIM and the second-best MSE 
on the Val test set. Notably, UWCNN achieves the best MSE, 
PSNR, and SSIM on the Underwater-scenes test set. SCNet 
also seems to perform well in Underwater-dark and has aver-
age results. Our TEGAN achieves outstanding results on all 
data sets. The good generalization capability and competi-
tive performance of TEGAN benefit from the strong learn-
ing ability of the DleWin block.

Unpaired Test Images

Experimental results for the unpaired images are depicted in 
Fig. 12, where every two images are selected from one test 
set. For the original images, two images from the EUVP are 
blue-green casted. For the two images from RUIE, Fig. 12c 
is heavily greenish, and Fig. 12d has greenish haze and 
blurred details. The two images from UIEB-Raw, exhibited 
in Fig. 12e, f, show a slight blue cast. In the UIEB-Challenge 
dataset, Fig. 12g shows a slight haze effect, and Fig. 12h 
shows a haze and green cast effect.

The traditional methods fail to solve the color cast prob-
lem better, except for EUF and CBFU. However, both EUF 
and CBFU have color distortion caused by color over-
saturation and excessive color compensation, as shown in 
Fig. 12c–e. In Fig. 12a, b, d, f, the other two enhancement 
methods, GC and ICM, contribute to blur reduction, but 
the color distortion and haze effect are not significantly 
improved.

Among the recovery methods, MIP can improve the color 
saturation to some extent, but it will cause overenhance-
ment and under-enhancement for slightly degraded and 
severely degraded images, respectively, such as the overen-
hancement effect in Fig. 12a and almost no improvement in 
Fig. 12d. DCP can correct color distortion, but it will cause 
lower image brightness, as shown in Fig. 12f, and it will not 
improve the color deviation of the seriously degraded image, 
as shown in Fig. 12d. UDCP can improve the brightness, but 
it will cause a serious haze effect. ULAP improves the cast 
color correction, but the blue color is overcompensated, and 
the recovered image is bluish, in Fig. 12g, h.

For the deep-learning based method, CycleGAN 
enhanced image still has color deviation. The color cor-
rection effect of FUnIEGAN and MLFcGAN on the image 
with slight color deviation is relatively good, as shown in 
Fig. 12a, b. However, there will be wrong halos for the hazy 
image, as shown in Fig. 12d, h. UWCNN and Uformer-B are 
also ideal for color correction of images with slight color 
deviation, but they are unable to improve the haze effect. 
WaterNet works well for detail processing, as in Fig. 12a, 
b, but it also shows the wrong enhancement effect, such as 
the wrong green lines on top of Fig. 12f. STSC and SCNet 
have a satisfactory improvement on some images with less 
serious color distortion, such as Fig. 12a–c. However, the 
color saturation and contrast generated in Fig. 12e are low, 
and the haze removal effect is not satisfactory in Fig. 12d. 
The sharpening effect of TACL on the edge of the object is 
relatively obvious, such as the echinus in Fig. 12c, d. How-
ever, on the whole, the color deviation is nonnegligible, as 
shown in Fig. 12a, b, d–f. In contrast, TEGAN achieves the 
best effect both from the perspective of color correction and 
blur elimination, making the enhanced image richer in color, 
higher in contrast, and more distinct in detail. It is worth 

Fig. 11   Visual comparison of various methods in terms of color, 
sharpness, and contrast on paired test image sets. Each row is the pro-
cessing result of the corresponding method. a, b Selected from Val. c, 
d From Underwater-dark. e, f From Underwater-imagenet. g, h From 
Underwater-scenes. Raw denotes the original raw image, and GT 
denotes the corresponding ground truth

◂
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mentioning that, in contrast to CycleGAN, we can see that 
the supervised learning used in our paper is more suitable 
for underwater image enhancement tasks than unsupervised 
learning. Compared with MLFcGAN, it can be concluded 
that using Transformer block is more effective than using 
CNN in extracting long-distance or even global informa-
tion. More importantly, the comparison with Uformer 
reveals that the unit fusion scheme we proposed is superior 
to the method of using Transformer block in each layer of 
the network.

For the unpaired image test set, since there is no GT as 
a reference, we choose nonreference evaluation metrics: 
UIQM [39], UCIQE [40], NIQE [41], BRISQUE [42], 
FRIQUEE [43], information entropy (Entropy), and under-
water index (U) [22].

UIQM consists of three underwater image attribute met-
rics: UICM, UISM, and UIConM. Each attribute is selected 
to evaluate one aspect of underwater image degradation. 
UCIQE uses the Lab color space to linearly combine color 
density, saturation, and contrast to quantitatively evaluate 
underwater images for nonuniform color cast, blurring, and 
low contrast. NIQE extracts features using a multivariate 
Gaussian model and then combines them with quality dis-
tributions using an unsupervised approach. It is concluded 
that BRISQUE and FRIQUEE have a high consistency of 
human subjective perception and allow objective evalua-
tion of images [44]. Due to the high time complexity of 
FRIQUEE, only the first 100 images are evaluated for each 
test group at most. Information entropy reflects the richness 
of the image, and the underwater index can be considered as 
the characteristic image intensity.

The numerical comparison results shown in Table 4 dem-
onstrate the excellent performance of TEGAN. According 
to the average results of the five test groups, our method 
is superior to others in UIQM, NIQE, BRISQUE, and 
FRIQUE. UIQM is at least 0.3175 higher, UCIQE is at least 
0.0054 higher, NIQE is at least 0.4465 lower, BRISQUE 
is at least 8.1168 lower, and FRIQUEE is at least 2.4478 
higher. The performance of TEGAN in Entropy and under-
water index needs to be improved, but it still ranks at the 
forefront among various comparison methods.

Ablation Study

To confirm the efficacy of our strategy, several ablation 
studies are carried out. The color branch of the discrimi-
nator aims to generate more realistic colors than the GT. 
Therefore, for the validation set with GT, to evaluate and 
demonstrate the learning ability of the DleWin block and 
other units of the generator, in this part of the experiment, 
the discriminator only uses the feature branch to guide the 
generator’s training (see Table 5).

1.	 The generator deploys only the Encoder + Decoder unit, 
noted as ED.

2.	 The generator adds a Bottleneck unit in the middle of the 
Encoder and Decoder based on ED, denoted as ED-B.

3.	 The generator adds the fusion unit to ED-B and fuses the 
features extracted by the Bottleneck unit into each layer 
of the Decoder, which is named ED-BF.

4.	 Replace the DleWin block with W-MSA on the generator 
framework proposed in this paper, denoted as Ours-W.

5.	 On the generator framework proposed in this paper, 
replace the DleWin block with the LeWin block, 
denoted as Ours-L.

6.	 The generator framework of TEGAN proposed in this 
paper is denoted as Ours.

Here, each generator structure is trained on the training 
set, and the model with the largest PSNR on the validation 
set is taken as a comparison. Detail is crucial for improv-
ing the quality of the underwater image. We compare the 
detailed enhancement effect of different generator frame-
works and Transformer blocks in Fig. 13. From a global 
perspective, TEGAN’s generator framework improves the 
input image significantly in terms of brightness, color, 
and contrast and is closest to the GT. Locally, our genera-
tor enhances the structural details well, as shown by the 
enlarged areas in the red and blue boxes in Fig. 13.

Table 6 exhibits the quantitative evaluations of differ-
ent generators on the validation set. Due to the robustness 
and excellent learning ability of our proposed generator 
framework, it achieves the best results on MSE, PSNR, 
and SSIM. In addition, from Table 6, we can derive the 
following conclusions:

1.	 Transformer can extract global information, which is 
very important for UIE. The role of Transformer can 
be clearly seen from the comparison between ED and 
ED-B.

2.	 Fusion unit has an excellent ability to fuse features 
across different scales. ED-B and ED-BF show that the 
Fusion unit has a positive effect. It integrates global 
information, such as overall lighting and image layout, 
into each scale. The fusion of global and local infor-
mation at different scales facilitates the generation of 
images with more natural colors and better details.

3.	 Transformer can effectively extract the original features. 
The comparison between ED-BF and Ours shows that 
the extraction of dependency between original features 
is helpful to improve the enhancement results.

4.	 The DleWin block is more effective for underwater 
image enhancement tasks. Numerical comparisons 
between Ours-W, Ours-L, and Ours show that local 
enhancement is particularly important. Notably, compar-
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ing Ours-W and Ours-L shows that LeFF can effectively 
improve the model’s metric performance. Comparing 
Ours-L and Ours, we can also see the positive effect of 
PLE. Dual local enhancement can effectively improve 
image clarity and significantly correct the overall color 
of the image.

Running Time Comparison

The average running times for different methods on the 
Intel(R) Core i5-9th CPU and GeForce RTX 3090 GPU 
platforms are illustrated in Table 7. The image resolution 
is 256 × 256. Among them, only GC, FUnIEGAN, and 
UWCNN are faster than ours because these three methods 
mainly pursue time performance. We can conclude that 
TEGAN not only achieves superior image quality improve-
ments but also has a relatively high speed to meet real-time 
processing requirements.

Fig. 12   Visual comparison of various methods in terms of color, 
sharpness, and contrast on unpaired test image sets. Each row is the 
processing result of the corresponding method. a, b Selected from 
EUVP. c, d From RUIE. e, f From UIEB-Raw. g, h From UIEB-Chal-
lenge. Raw indicates the original image

◂

Table 4   Nonreference image quality evaluation for unpaired image test sets

Dataset Model UIQM↑ UCIQE↑ NIQE↓ BRISQUE↓ FRIQUEE↑ Entropy↑ U↓

EUVP EUF [4] 4.3605 0.4569 6.1210 49.8592 60.5756 7.2300 5.2731
CBFU [5] 4.8559 0.4689 4.8432 44.5544 57.8182 7.4979 0.8520

ICM [6] 4.3895 0.4708 4.9388 44.6138 55.6038 7.3679 1.3448

GC [7] 4.5395 0.4400 4.9167 45.4318 56.7953 7.1317 1.6230

MIP [9] 3.1248 0.4870 5.6630 49.4842 57.3332 6.9780 1.3280

DCP [10] 3.6444 0.4770 5.1293 44.7957 55.1869 7.0497 1.3332

UDCP [11] 4.2555 0.4612 5.0583 44.0932 54.8832 7.0843 1.5592

ULAP [14] 3.5666 0.4804 5.2165 47.5604 60.2092 7.2905 0.8728

CycleGAN [18] 4.7943 0.4678 4.9743 38.9983 55.8087 7.3096 1.4579

FUnIEGAN [24] 4.5453 0.4785 4.6151 36.3961 62.8247 7.2652 0.5127

MLFcGAN [31] 4.6513 0.4758 5.8194 39.5810 51.8567 7.2509 0.6951

UWCNN [27] 4.4731 0.4629 6.0721 47.7350 59.2801 7.2498 0.7432

WaterNet [26] 4.7310 0.4612 5.2515 40.7045 54.4222 7.1574 1.1002

Uformer-B [23] 4.1923 0.4597 5.2934 51.8378 63.5998 7.2652 0.6358

STSC [28] 4.6549 0.3883 5.7503 43.0354 54.7920 7.2488 1.8633

SCNet [29] 4.6623 0.3875 5.4085 43.2540 55.7166 7.2024 1.3603

TACL [30] 4.8071 0.4019 4.4481 41.0130 58.5231 7.5932 0.7890

TEGAN(Ours) 5.0046 0.4832 4.0557 29.9324 68.3314 7.4676 0.6093

RUIE EUF [4] 4.6946 0.4254 5.5569 46.5171 64.0904 6.7802 6.1083
CBFU [5] 4.8801 0.4574 4.8306 44.7774 64.6524 7.2173 2.2157
ICM [6] 4.7870 0.4525 4.7716 43.8303 63.9481 7.3133 1.3726
GC [7] 3.8810 0.4085 5.1634 44.8073 65.0544 6.5722 2.9404
MIP [9] 4.1749 0.4412 5.2502 43.8162 63.9635 6.6336 3.8282
DCP [10] 4.0101 0.4497 5.4381 42.6637 63.9148 6.5310 3.8083
UDCP [11] 4.0145 0.4394 5.5014 42.6025 64.0881 6.4275 4.1596
ULAP [14] 4.1918 0.4476 5.0156 44.6175 65.3616 6.8414 2.9148
CycleGAN [18] 4.6778 0.4483 4.9908 39.0995 58.1584 7.1954 2.0706
FUnIEGAN [24] 4.1129 0.4397 5.3971 40.0753 61.8528 6.7025 1.0773
MLFcGAN [31] 4.0349 0.4509 5.8126 37.4295 53.5573 6.7106 1.0855
UWCNN [27] 3.9704 0.4337 6.3955 43.4842 53.1582 6.6867 5.6886
WaterNet [26] 4.5347 0.4274 5.5067 41.9502 54.5429 6.5759 2.4009



208	 Cognitive Computation (2024) 16:191–214

1 3

Table 4   (continued)

Dataset Model UIQM↑ UCIQE↑ NIQE↓ BRISQUE↓ FRIQUEE↑ Entropy↑ U↓

Uformer-B [23] 4.0131 0.4313 5.4822 39.6656 56.8438 6.6721 3.6738
STSC [28] 4.3872 0.3478 5.9195 42.2562 55.8793 6.8004 3.6151
SCNet [29] 4.1591 0.3553 5.4893 39.5819 58.0078 6.6918 3.4528
TACL [30] 4.8640 0.3890 4.2395 38.7441 64.8604 7.6556 0.9030
TEGAN(Ours) 5.1054 0.4510 4.0887 29.5649 66.8172 7.1121 1.4617

UIEB-Raw EUF [4] 4.3533 0.4443 5.6150 49.6060 66.6609 7.0417 3.8549

CBFU [5] 4.7121 0.4585 4.2984 43.2827 66.5699 7.3973 1.1379

ICM [6] 4.2979 0.4631 4.4754 42.0219 64.5000 7.2737 1.5602

GC [7] 3.9741 0.4251 4.3815 41.2776 65.2016 6.8713 2.8155

MIP [9] 3.6387 0.4684 4.7268 44.6651 63.4432 6.9466 2.0195

DCP [10] 3.8068 0.4655 4.7534 41.7284 62.9893 6.8783 1.8785

UDCP [11] 4.0091 0.4467 4.6350 41.0713 63.3175 6.8696 2.7133

ULAP [14] 3.7549 0.4652 4.4575 44.3742 65.6067 7.2090 1.0840

CycleGAN [18] 4.6478 0.4612 4.6871 38.7810 56.9937 7.2008 1.5918

FUnIEGAN [24] 4.4433 0.4736 4.5994 39.1750 62.3954 7.1242 0.5619

MLFcGAN [31] 4.3514 0.4634 5.5019 37.6960 53.8039 7.0965 0.7319

UWCNN [27] 4.3294 0.4492 5.7197 44.3048 58.5633 7.0170 1.3305

WaterNet [26] 4.6768 0.4489 4.9557 41.6345 57.8682 6.9959 1.3131

Uformer-B [23] 4.1303 0.4430 4.6986 44.9932 61.1022 7.0378 1.3397

STSC [28] 4.4883 0.3718 5.7175 47.6483 58.4120 7.1524 2.0971

SCNet [29] 4.3964 0.3694 5.1116 44.7554 58.9690 7.0257 1.8784

TACL [30] 4.6030 0.3933 4.1232 41.3565 66.2499 7.5516 0.9533

TEGAN(Ours) 5.0246 0.4771 3.6101 29.1717 68.4747 7.3943 0.7216
UIEB-Challenge EUF [4] 3.9284 0.4329 6.4262 49.7073 64.1524 6.7990 1.9861

CBFU [5] 4.3636 0.4499 5.3194 45.1126 63.9500 7.1765 1.7696
ICM [6] 3.8398 0.4491 5.9938 43.1220 58.5856 6.9660 2.2257
GC [7] 3.4450 0.4139 6.1840 43.1688 61.6943 6.6510 3.5586
MIP [9] 2.7937 0.4450 6.5929 46.3823 57.3661 6.2865 6.2615
DCP [10] 3.1293 0.4482 6.5111 43.0522 56.5807 6.3873 4.8595
UDCP [11] 3.4065 0.4362 6.6717 43.2497 57.8285 6.4536 5.0141
ULAP [14] 2.9505 0.4488 6.1821 45.7979 60.9854 6.6874 6.5051
CycleGAN [18] 4.1463 0.4517 5.7245 38.9674 50.0609 6.9731 2.3589
FUnIEGAN [24] 3.7477 0.4544 5.0228 44.5457 55.6403 6.6343 1.1139
MLFcGAN [31] 3.6526 0.4555 6.5267 37.7937 47.8029 6.7071 1.2746
UWCNN [27] 3.6827 0.4375 7.2701 44.3438 51.9532 6.5983 4.6327
WaterNet [26] 4.0754 0.4402 6.1286 42.5714 54.2292 6.6321 2.5510
Uformer-B [23] 3.3948 0.4348 5.8971 46.9003 60.2016 6.7350 1.8592
STSC [28] 3.8233 0.3692 6.8951 46.5192 56.3617 6.7155 4.1391
SCNet [29] 3.7517 0.3698 6.4181 42.0599 56.5097 6.6261 3.5771
TACL [30] 4.3727 0.3907 4.5992 40.3940 60.8208 7.4045 1.1685
TEGAN(Ours) 4.9469 0.4565 3.8694 31.3636 61.6470 7.0560 1.0573

Average EUF [4] 4.3342 0.4399 5.9298 48.9224 63.8698 6.9627 4.3056

CBFU [5] 4.7029 0.4587 4.8229 44.4318 63.2476 7.3223 1.4938
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Enhancement Effect for High‑Resolution Images

High-resolution images cited from SUIM dataset [45] with 
512 × 512 are tested to verify the enhancement effect of 
TEGAN. Several representative comparison methods and 
evaluation metrics are selected. The enhancement effects 
are shown in Fig. 14. As we can see, CBFU easily causes 
color bias. The color corrections of ULAP, WaterNet, 
Uformer-B, and SCNet are incomplete, and the enhanced 
image still has a thin veil effect. TACL results in incor-
rect enhancement, such as white patches appearing in the 
lower areas of the turtle. Additionally, there still exists 
residual water color in the TACL-enhanced image of the 
second row. The TEGAN-enhanced image has high clarity 

and realistic color. The advantages of TEGAN in terms of 
evaluation metrics are exhibited in Table 8. These results 
indicate that TEGAN can handle high-resolution images 
well. In addition, the average running times of different 
methods on high-resolution images are shown in Table 9. 
Among them, TEGAN has the fastest processing speed, 
which can facilitate many practical applications.

Downstream Application Test

In this section, several typical downstream visual tasks 
are selected to prove the effectiveness of our model. We 
test SIFT keypoint matching [46], Canny edge detection 

Table 4   (continued)

Dataset Model UIQM↑ UCIQE↑ NIQE↓ BRISQUE↓ FRIQUEE↑ Entropy↑ U↓

ICM [6] 4.3286 0.4589 5.0449 43.3970 60.6594 7.2302 1.6258

GC [7] 3.9599 0.4219 5.1614 43.6714 62.1864 6.8066 2.7344

MIP [9] 3.4330 0.4604 5.5582 46.0870 60.5265 6.7112 3.3593

DCP [10] 3.6477 0.4601 5.4580 43.0600 59.6679 6.7116 2.9699

UDCP [11] 3.9214 0.4459 5.4666 42.7542 60.0293 6.7088 3.3616

ULAP [14] 3.6160 0.4605 5.2180 45.5875 63.0407 7.0071 2.8442

CycleGAN [18] 4.5666 0.4573 5.0942 38.9615 55.2554 7.1697 1.8698

FUnIEGAN [24] 4.2123 0.4616 4.9086 40.0480 60.6783 6.9316 0.8165

MLFcGAN [31] 4.1726 0.4614 5.9152 38.1250 51.7552 6.9413 0.9468

UWCNN [27] 4.1139 0.4458 6.3644 44.9670 55.7387 6.8879 3.0987

WaterNet [26] 4.5045 0.4444 5.4606 41.7152 55.2656 6.8403 1.8413

Uformer-B [23] 3.9326 0.4422 5.3428 45.8492 60.4368 6.9275 1.8771

STSC [28] 4.3384 0.3693 6.0706 44.8648 56.3612 6.9793 2.9287

SCNet [29] 4.2424 0.3705 5.6069 42.4128 57.3008 6.8865 2.5672

TACL [30] 4.6617 0.3937 4.3525 40.3769 62.6135 7.5512 0.9535

TEGAN(Ours) 5.0204 0.4670 3.9060 30.0082 66.3176 7.2575 0.9625

Bold indicates the best, Italic indicates the second best, and Underline indicates the third best

Table 5   Model description with 
different generator structures

Units/blocks Model

Encoder Decoder Bottleneck Fusion Inception W-MSA LeWin

√ √  ×   ×   ×   ×   ×  ED
√ √ √  ×   ×   ×   ×  ED-B
√ √ √ √  ×   ×   ×  ED-BF
√ √ √ √ √  ×   ×  Ours
√ √ √ √ √ √  ×  Ours-W
√ √ √ √ √  ×  √ Ours-L
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Raw/15.17 dB ED/15.89 dB ED-B/24.16 dB ED-BF/25.90 dB Ours-W/25.38 dB Ours-L/23.12 dB Ours/27.22 dB GT

Raw/15.23 dB ED/24.66 dB ED-B/25.30 dB ED-BF/24.18 dB Ours-W/24.02 dB Ours-L/25.27 dB Ours/28.14 dB GT

Fig. 13   Ablation study of the contributions of each unit/block in terms of color, sharpness, and contrast on the validation set. Red and blue areas 
in each image are enlarged and displayed above to indicate the details. The number on the bottom of each image refers to its PSNR (dB)

Table 6   Quantitative 
evaluations of the ablation study 
on the validation set

Raw ED ED-B ED-BF Ours-W Ours-L Ours

MSE↓ 0.0277 0.0056 0.0043 0.0042 0.0042 0.0042 0.0039
PSNR↑ 16.3432 23.3505 24.8078 24.8716 24.5245 24.5896 25.1048
SSIM↑ 0.6664 0.8750 0.9030 0.9025 0.9014 0.8986 0.9034

Table 7   Average running times of different methods (in seconds)

Model Runtimes↓ Model Runtimes↓ Model Runtimes↓ Model Runtimes↓

DCP [10] 3.1561 ULAP [14] 0.3195 SCNet [29] 0.0606 UWCNN [27] 0.0129
UDCP [11] 2.7793 Uformer-B [23] 0.3141 TACL [30] 0.0528 FUnIEGAN [24] 0.0118
MIP [9] 2.4418 WaterNet [26] 0.2409 CycleGAN [18] 0.0444 GC [7] 0.0108
ICM [6] 0.6752 STSC [28] 0.1692 MLFcGAN [31] 0.0319
CBFU [5] 0.3550 EUF [4] 0.1344 TEGAN (Ours) 0.0291

Raw CBFU ULAP WaterNet Uformer-B SCNet TACL TEGAN(Ours)

Fig. 14   Enhancement effect for high-resolution images on SUIM
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[47], and underwater object detection and then compare 
them with some representative underwater image process-
ing methods. As shown in Fig. 15, the SIFT algorithm 
has only a few matched keypoints on the original image, 
while other enhanced methods have improved the number 

of matches. In the images enhanced by our model, sig-
nificant features have been extracted, and a large number 
of accurate matchings can be attained. The same conclu-
sion can be seen from Fig. 16. Canny detection only has 
relatively few edges on the original image. Compared 

Table 8   Nonreference image quality evaluation for high-resolution images on SUIM

Bold indicates the best, Italic indicates the second best, and Underline indicates the third best

CBFU [5] ULAP [14] WaterNet [26] Uformer-B [23] SCNet [29] TACL [30] TEGAN (Ours)

UIQM↑ 4.0765 4.0786 2.7571 3.3433 3.8316 3.9983 4.5687
UCIQE↑ 0.3927 0.3778 0.3757 0.3784 0.3678 0.3861 0.3851
NIQE↓ 6.33252 5.463042 5.094818 6.527694 5.17847 5.390188 5.208449
BRISQUE↓ 44.9696 41.2959 39.4789 37.5817 41.5359 39.1594 34.0691

Table 9   Average running time of different methods on high-resolution images (in seconds)

Model CBFU [5] ULAP [14] WaterNet [26] Uformer-B [23] SCNet [29] TACL [30] TEGAN (Ours)

Runtimes 0.8785 1.1938 0.4412 0.4804 0.3153 0.0862 0.0471

Raw CBFU ULAP WaterNet

Uformer-B SCNet TACL TEGAN(Ours)

Fig. 15   SIFT keypoint matching results with different methods. The original image and its flipped mirror image are used to exhibit the feature 
point matching performance

Raw CBFU ULAP WaterNet Uformer-B SCNet TACL TEGAN(Ours)

Fig. 16   Canny edge detection results with different methods. The upper row represents the images to be detected, and the lower row represents 
the edge
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with others, the image enhanced by ours can significantly 
obtain more edges. In Fig. 17, we use YOLOv5 [48] model 
for underwater object detection, which is trained on a data-
set containing 300 labeled images. By comparing with 
original images and other enhancement methods, TEGAN 
can achieve significant and competitive improvement in 
detection accuracy. The numerical experiments shown in 

Fig. 18 indicate the percentage of performance improve-
ment tested on the above three downstream applications. 
Although the results vary depending on different tasks, 
we observe approximately 41–117, 4–32, and 13–46% 
improvements, respectively. The outstanding results reveal 
that our model can facilitate the performance of other vis-
ual tasks.

Raw CBFU ULAP WaterNet Uformer-B SCNet TACL TEGAN(Ours)

Fig. 17   Underwater object detection results by YOLOv5 with different methods. The labeled bounding boxes 1, 2, 3, and 4 represent the object 
categories of holothurian, echinus, scallop, and starfish, respectively
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Fig. 18   Percentage of performance improvement tested on SIFT keypoint matching, Canny edge detection, and underwater object detection with 
different methods

Fig. 19   Failure enhancement 
results. The upper row repre-
sents the raw images with seri-
ous haze, low brightness, and 
serious loss of color. The lower 
represents the less satisfactory 
enhancement results by our 
method
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Failure Case Analysis

Our method still has some shortcomings. For images with 
severe haze, after enhancement, some noise and blur will be 
introduced, as shown in Fig. 19a, b, respectively. For images 
with very low brightness and serious color loss, the bright-
ness has not been greatly improved while suffering from 
excessive color enhancement, as we can see in Fig. 19c, d.

These failure cases are mainly caused by the fact that 
our training set does not contain these severely degraded 
and distorted images. For the deep learning method, it is 
difficult to handle images with large differences from the 
training set. In addition, since all our images are tested on 
the size of 256 × 256, for some very large size images, some 
edge features will be lost after the scaling down operation, 
which also leads to blurring.

Conclusions and Future Work

In this paper, we propose a Transformer embedded genera-
tive adversarial network for underwater image enhancement. 
A DleWin Transformer block that can adapt well to the high 
demands of underwater image enhancement tasks for local 
feature extraction is designed. We also fuse Transformer 
with CNN in units, which allows our model to focus on local 
information and capture long-range or even global depend-
encies. The proposed TEGAN with a two-branch discrimi-
nator can preserve the image content by the feature branch 
and restore the image color by the color branch. Compared 
with other methods, TEGAN achieves the best results in 
terms of comprehensive performance, whether on paired or 
unpaired datasets. Moreover, it can significantly facilitate 
the performance of other downstream visual tasks. Future 
works can be carried out in the following aspects. Other 
attention mechanisms can be integrated into Transformer 
to further improve the downstream application tasks. Com-
bining unsupervised and supervised methods for training 
to solve the problem of insufficient paired datasets will be 
another focus. In addition, there are still some problems with 
the mainstream evaluation metrics. In some cases, there is 
a deviation between image quality metrics and subjective 
perception. The inconsistency between the two is also an 
urgent issue to be studied and improved.
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