
Vol:.(1234567890)

Cognitive Computation (2023) 15:2216–2231
https://doi.org/10.1007/s12559-023-10183-y

1 3

Cognitively Inspired Group Decision‑Making with Linguistic q‑Rung 
Orthopair Fuzzy Preference Relations

Tao Li1 · Liyuan Zhang2 

Received: 7 September 2021 / Accepted: 30 July 2023 / Published online: 14 August 2023 
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
In actual decision-making problems, it is very difficult to appropriately depict the cognitive information of the relevant 
experts because cognition is usually diverse and contains uncertainties and fuzziness. The recently introduced linguistic 
q-rung orthopair fuzzy set (Lq-ROFS), which determines the linguistic preferred degree and linguistic nonpreferred degree 
within a wider space, has been shown to be effective in representing cognitive information. However, the corresponding 
preference relation has yet to be studied. Pairwise comparison is an effective way for decision-makers to express their pref-
erences, especially when cognition is complex and indeterminate. Therefore, this paper employs linguistic q-rung orthopair 
fuzzy preference relations (Lq-ROFPRs) to express the cognitive information of experts. The additive consistency of Lq-
ROFPR is introduced to rank the objects, and a consistency-based model is built to obtain the normalized linguistic q-rung 
orthopair fuzzy priority weight vector (Lq-ROFPWV). Then, several models are constructed to estimate missing values and 
improve the additive consistency level. For the group decision-making (GDM) problem, a model is first built with which 
to gain the weights of decision-makers. When group consensus is not achieved, a consensus-reaching model is designed 
as a means of increasing the consensus level. This study designs a decision support model to address GDM problem with 
incomplete Lq-ROFPRs and presents a step-by-step algorithm. The proposed method is utilized to assess four Chinese shop-
ping platforms, and the comprehensive ranking result is reasonable and reliable. This is the first time to investigate GDM 
with Lq-ROFPRs based on consistency and consensus analysis, the newly studied Lq-ROFPRs not only extend the applica-
tions for linguistic preference relations but also endow experts with more flexibility in denoting their cognitive preferences. 
Compared to the latest published work in this domain, the novel approach conducts a reasonable decision-making process 
and has some advantages.
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Introduction

A decision-making problem is usually full of social cogni-
tion, which is the basis of individual behavior, and thus, 
experts are needed to provide cognitive information [1]. The 
representation and processing of cognitive information is an 
essential step before making a decision. Cognitive informa-
tion mainly refers to decision-makers’ subjective cognition 
originating from their perceptions and carrying vague and 

fuzzy information [2]. However, due to the increasing com-
plexities and uncertainties of actual socioeconomic activity, 
experts may come from different fields and have only lim-
ited knowledge, which leads to the provision of complicated, 
diverse, and indeterminate cognitive information [3].

To deal with cognitive information, Zadeh introduced the 
fuzzy set, which uses the degree of membership to describe 
fuzzy information. However, the nonpreferred cognition is 
missed. To overcome this shortcoming, Atanassov [4] pro-
posed the intuitionistic fuzzy set, which uses membership 
degree � and nonmembership degree � to provide cogni-
tive information. The intuitionistic fuzzy number ( �, � ), 
which satisfies � + � ≤ 1 , is an important tool in express-
ing uncertain and complex cognitive information. Yager [5] 
defined the Pythagorean fuzzy set, where the Pythagorean 
fuzzy number ( �, � ) satisfies �2 + �2 ≤ 1 . Yager [6] further 
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proposed the q-rung orthopair fuzzy set, which general-
ized the intuitionistic fuzzy set and the Pythagorean fuzzy 
set. The q-rung orthopair fuzzy number ( �, � ), satisfying 
�q + �q ≤ 1 ( q ≥ 1 ), can provide more cognitive information. 
For example, a decision-maker may give a cognitive value of 
(0.7,0.8), i.e., the membership degree � = 0.7 and the non-
membership degree � = 0.8 . We can see that (0.7, 0.8) is nei-
ther an intuitionistic fuzzy number nor a Pythagorean fuzzy 
number because 0.7 + 0.8 > 1 and 0.72 + 0.82 > 1 , respec-
tively. However, when q = 3 , 0.73 + 0.83 ≤ 1 holds, which 
means that (0.7, 0.8) is a q-rung orthopair fuzzy number for 
q ≥ 3 . Thus, compared with the intuitionistic fuzzy set and 
the Pythagorean fuzzy set, the q-rung orthopair fuzzy set 
has a stronger cognitive information description capability. 
Recently, these three fuzzy sets have been used to deal with 
cognitive information in various fields. For instance, Xin 
et al. [7] proposed an intuitionistic fuzzy three-way decision 
model based on incomplete cognitive information. Zhou and 
Chen [8] presented a combined technique for selecting an 
appropriate blockchain technology provider using Pythago-
rean fuzzy cognitive information. Krishankumar et al. [9] 
developed a framework to handle vagueness by reducing 
human intervention, where q-rung orthopair fuzzy cognitive 
information was adopted to minimize subjective random-
ness. For certain other applications, readers can also refer 
to [10–13].

In real decision-making problems, except for quantitative 
cognitive information conveyed by using real values in [0, 1], 
experts may want to use linguistic variables to offer qualita-
tive cognitive judgments such as “good,” “fair,” and “bad.” 
For a symmetric linguistic set S = {si ∣ i = 0, 1,⋯ , 2�} , by 
combining linguistic variables and intuitionistic fuzzy num-
bers, an intuitionistic fuzzy linguistic number can be given 
as ⟨s� , (�, �)⟩ , where s� ∈ S [14, 15]. Some extended forms 
have also been considered by many researchers [16–19]. 
However, if decision-makers want to use linguistic vari-
ables to simultaneously express the preferred cognitive and 
nonpreferred cognitive information, the intuitionistic fuzzy 
linguistic number is inappropriate. In this case, both the lin-
guistic intuitionistic fuzzy set (LIFS) and linguistic intuition-
istic fuzzy number (LIFN) (s�, s�) were predefined, where 
s� ∈ S , s� ∈ S , and � + � ≤ 2� [20]. LIFSs are very suitable 
for providing imprecise and uncertain cognitive informa-
tion because they combine the advantages of both linguistic 
variables and intuitionistic fuzzy sets, and the membership 
degree and nonmembership degree only need to be given 
as linguistic variables rather than as exact values. Liu et al. 
[21] introduced LIFNs into loss functions and designed 
an algorithm to determine the thresholds for linguistic 
intuitionistic fuzzy cognitive information. The linguistic 
Pythagorean fuzzy set (LPFS) and linguistic Pythagorean 
fuzzy number (LPFN) (s�, s�) were proposed by Garg [22], 

where �2 + �2 ≤ (2�)2 . Ping et al. [23] provided an extended 
alternative queuing method based on LPFS to capture the 
cognitive opinions of experts. A general Lq-ROFS and lin-
guistic q-rung orthopair fuzzy number (Lq-ROFN) (s�, s�) 
were developed by Liu and Liu [24], where �q + �q ≤ (2�)q 
for q ≥ 1 . Clearly, as a generalization of LIFN and LPFN, 
Lq-ROFN contains more qualitative cognitive information.

With the development of social and economic research, 
human cognition is full of fuzziness and vagueness, and it is 
convenient to use Lq-ROFNs to describe qualitative cogni-
tive information in real life. Hence, an increasing number 
of researchers have considered decision-making problems 
under the linguistic q-rung orthopair fuzzy environment. At 
present, research on Lq-ROFS has mainly focused on aggre-
gation operators, such as the linguistic q-rung orthopair 
fuzzy power Bonferroni mean operator [24], linguistic 
q-rung orthopair fuzzy power Muirhead mean operator [25], 
linguistic q-rung orthopair fuzzy interactional partitioned 
Heronian mean operator [26], linguistic q-rung orthopair 
fuzzy partitioned Maclaurin symmetric mean operator [27], 
and linguistic q-rung orthopair fuzzy generalized point oper-
ator [28]. Moreover, Akram et al. [29] proposed a graph-
based GDM method with linguistic q-rung orthopair fuzzy 
cognitive information based on the Einstein operator. Liu 
et al. [30] developed the TOPSIS approach, and Peng et al. 
[31] and Verma [32] both considered similarity measures.

For some GDM problems, the preference relation is a 
popular technique that can be conducted by comparing 
each pair of objects. During the last few years, various 
types of linguistic preference relations have been studied 
to express decision-makers’ cognitive information [33–37]. 
On the basis of LIFS and LIFN, the linguistic intuitionis-
tic fuzzy preference relation (LIFPR) was introduced and 
further examined by researchers [38–41]. The LIFPR can 
be used to provide qualitative positive and negative cogni-
tive judgments. For GDM with preference relations, a com-
mon approach is applying the modeling method to obtain 
the priority weight vector, and consistency and consensus 
analysis should be conducted. The additive consistency of 
LIFPR was investigated by Pei et al. [38], Meng et al. [39], 
and Zhang et al. [40], while the multiplicative consistency 
was analyzed by Jin et al. [41]. Liu et al. [42] further intro-
duced the linguistic Pythagorean fuzzy preference relation 
(LPFPR) to describe fuzzy and uncertain cognitive informa-
tion, and the multiplicative consistency was studied.

In this paper, on the basis of Lq-ROFS and Lq-ROFN, 
we construct a new preference relation to provide quali-
tative cognitive information, which is referred to as Lq-
ROFPR. The additive consistency of Lq-ROFPR is first 
defined, and then the relationship between the normalized 
Lq-ROFPWV and an additively consistent Lq-ROFPR is 
established. Moreover, several different optimization models 
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are proposed to obtain missing values, derive an acceptably 
additively consistent Lq-ROFPR, obtain decision-maker 
weights, and reach a level of consensus. Finally, an algo-
rithm for GDM with Lq-ROFPRs based on consistency and 
consensus analysis is presented and used to deal with some 
illustrative examples.

The rest of the paper is organized as follows: The “Basic 
Concepts” section reviews the literature on LIFPR and 
LPFPR, which motivated us to introduce the definition of Lq-
ROFPR. In the “Additive Consistency Analysis for Incomplete 
Lq-ROFPR” section, we investigate the additive consistency 
of Lq-ROFPR and provide a mathematical formula to con-
struct an additively consistent Lq-ROFPR from a normalized 
Lq-ROFPWV. Then, two programming models are estab-
lished to address inconsistent and incomplete Lq-ROFPRs. In 
the “Group Decision-Making with Incomplete Lq-ROFPRs” 
section, a mathematical model is developed to obtain the 
decision-maker weights. When the consensus of Lq-ROFPR 
is unacceptable, another model is presented to improve the 
consensus level. Moreover, the concrete steps for the GDM 
method with incomplete Lq-ROFPRs are also described. The 
“A Case Study and Comparison Analysis” section deals with 
some numerical examples, and the comparison analysis shows 
that the proposed approach is effective and feasible. Finally, 
the “Conclusion” section concludes the paper.

Basic Concepts

Linguistic variables are a useful tool for providing the 
qualitative cognitive information of decision-makers. 
Herrera et  al. [43] proposed a symmetric linguistic set 
S = {si ∣ i = 0, 1,⋯ , 2�} , where si represents a possible 
linguistic variable and � is a positive integer. Herrera et al. 
[43] also defined one operational law for linguistic terms, 
which specifies that a set is ordered, i.e., if i > j , then si > sj . 
To save more linguistic cognitive information, the discrete 
linguistic set S was extended to a continuous linguistic set 
S = {s� ∣ � ∈ [0, 2�]} [44]. The linguistic variable s� is 
called an original linguistic term when s� ∈ S and a virtual 
linguistic term otherwise [44]. Furthermore, for a linguistic 
term s� ∈ S , we can introduce a function I(⋅) ∶ S → [0, 2�] 
to derive its lower index, i.e., I(s�) = � . It is obvious that 
there is an inverse function I−1(⋅) ∶ [0, 2�] → S , such that 
I−1(�) = s� for any � ∈ [0, 2�].

The definitions of LIFPR and LPFPR are given as 
follows:

Definition 1  [38–41] An LIFPR on a finite object set 
X = {x1, x2,⋯ , xn} for the continuous linguistic set S is 
defined as R = (rij)n×n , where rij = (s�ij

, s�ij ) , s�ij
∈ S , s�ij ∈ S , 

s�ij
= s�ji , s�ij = s�ji

 , s�ii
= s�ii = s� , and I(s�ij

) + I(s�ij ) ≤ 2� , 
for all i, j = 1, 2,⋯ , n.

Definition 2  [42] An LPFPR on a finite object set 
X = {x1, x2,⋯ , xn} for the continuous linguistic set S is 
defined as R = (rij)n×n , where rij = (s�ij

, s�ij ) , s�ij
∈ S , s�ij ∈ S , 

s�ij
= s�ji , s�ij = s�ji

 , s�ii
= s�ii = s√

2�
 , and I2(s�ij

) + I2(s�ij )

≤ (2�)2 , for all i, j = 1, 2,⋯ , n.

Inspired by LIFPR and LPFPR, we can introduce the 
following concept of Lq-ROFPR.

Definition 3  An Lq-ROFPR on a finite object set X = {x
1
,

x
2
,⋯ , xn} for the continuous linguistic set S is defined as 

R = (rij)n×n , where rij = (s�ij
, s�ij ) , s�ij

∈ S , s�ij ∈ S , s�ij
= s�ji , 

s�ij = s�ji
 , s�ii

= s�ii = s
2�

q
√
0.5

 , and Iq(s�ij
) + Iq(s�ij )≤ (2�)q , for 

all i, j = 1, 2,⋯ , n , q ≥ 1.

In Definition 3, s�ij
 can be explained as the qualitative 

preferred degree of xi over xj , while s�ij means the qualita-
tive nonpreferred degree of xi over xj . Moreover, the quali-
tative hesitation degree can be given by s�ij = I−1(

q

√
(2�)q − Iq(s�ij

) − Iq(s�ij )
)
 . In this paper, for a real num-

ber a ≥ 0 , q
√
a is defined as a when q = 1.

For convenience, s̃ = (s�, s�) is called an Lq-ROFN if 
s� ∈ S , s� ∈ S , and Iq(s�) + Iq(s�) ≤ (2�)q [24]. Clearly, 
when q = 1 , the Lq-ROFN rij = (s�ij

, s�ij ) becomes an LIFN, 
and the Lq-ROFPR R = (rij)n×n reduces to an LIFPR 
[38–41]. When q = 2 , the Lq-ROFN rij = (s�ij

, s�ij ) becomes 
an LPFN, and the Lq-ROFPR R = (rij)n×n reduces to an 
LPFPR [42].

Definition 4  [26] For an Lq-ROFN s̃ = (s�, s�) , �(̃s)  = 

I−1
(

q

√(
(2�)q + Iq(s�) − Iq(s�)

)
∕2

)
 is denoted as the score 

function, and the accuracy function is given by ℍ(̃s) = 
I−1

�
q
√
Iq(s�) + Iq(s�)

�
 . To compare two Lq-ROFNs 

s̃1 = (s�1
, s�1 ) and s̃2 = (s�2

, s�2 ) , the following comparison 
law is proposed:

If �(�s1) > �(�s2) , then �s1 > �s2;
If �(s̃1) = �(s̃2) , and

if ℍ(�s1) > ℍ(�s2) , then �s1 > �s2;
if ℍ(s̃1) = ℍ(s̃2) , then s̃1 = s̃2.

Definition 5  Given two Lq-ROFPRs Rk = (rk
ij
)n×n with 

rk
ij
= (s�k

ij
, s�k

ij
) ( k = 1, 2 ), the distance between them is 

defined as follows:
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Additive Consistency Analysis 
for Incomplete Lq‑ROFPR

For any preference relation, consistency is a basic property 
because a lack of consistency may lead to an unreliable 
conclusion. In this section, the definition of additive con-
sistency is first introduced, and a mathematical formula is 
developed to construct an additively consistent Lq-ROFPR 
from the normalized Lq-ROFPWV. Then, a model is pre-
sented to derive the priority weight vector. Finally, two 
programming models are proposed to address inconsistent 
and incomplete Lq-ROFPRs.

Definition 6  An Lq-ROFPR R = (rij)n×n with rij = (s�ij
, s�ij ) 

is called additively consistent if

Theorem  1  Let R = (rij)n×n with rij = (s�ij
, s�ij ) be an Lq-

ROFPR; then, the following statements are equivalent:

(a)	
Iq(s�ij

) + Iq(s�jk
) + Iq(s�ik ) = Iq(s�ij )

+ Iq(s�jk ) + Iq(s�ik
), i, j, k = 1, 2,⋯ , n,

 

(b)	
Iq(s𝜇ij

) + Iq(s𝜇jk
) + Iq(s𝜈ik ) = Iq(s𝜈ij ) + Iq(s𝜈jk )

+ Iq(s𝜇ik
), i, j, k = 1, 2,⋯ , n, i < j < k.

 

Proof  This theorem can be easily demonstrated according 
to the six possible position cases of i, j, k. 	�  ◻ 

For a decision-making problem with preference rela-
tions, deriving the priority weight vector to rank objects 
is one of the most important tasks. For the Lq-ROFPR, it 
is reasonable to assume that the priority weights are Lq-
ROFNs. Assume s� = (s�1

, s�2
,⋯ , s�n

)T  is an Lq-ROF-
PWV, where s�i

= (s��

i
, s��

i
) (i = 1, 2,⋯ , n) is an Lq-ROFN, 

t h e n  s��

i
, s��

i
∈ S  a n d  Iq(s��

i
) + Iq(s��

i
) ≤ (2�)q  a r e 

satisfied.

Definition 7  Given an Lq-ROFPWV s� = (s�1
, s�2

,⋯ , s�n
)T 

with s�i
= (s��

i
, s��

i
) , s��

i
, s��

i
∈ S and Iq(s��

i
) + Iq(s��

i
) ≤ (2�)q , 

(1)
d(R1,R2) =

1

n(n − 1)(2𝜏)q

∑
1≤i<j≤n

(||Iq(s𝜇1

ij
)

− Iq(s𝜇2

ij
)|| + ||Iq(s𝜈1ij ) − Iq(s𝜈2

ij
)||
)
.

(2)
Iq(s�ij

) + Iq(s�jk
) + Iq(s�ik ) = Iq(s�ij )

+ Iq(s�jk ) + Iq(s�ik
), i, j, k = 1, 2,⋯ , n.

s� is said to be normalized if it satisfies the following equa-
tions for all i = 1, 2,⋯ , n:

Using the normalized Lq-ROFPWV s� = (s�
1

, s�
2

,⋯ , s�n
)T , 

we can construct an additively consistent Lq-ROFPR.

Theorem 2  Let s� = (s�1
, s�2

,⋯ , s�n
)T be a normalized Lq-

ROFPWV with s�i
= (s��

i
, s��

i
) , s��

i
, s��

i
∈ S , Iq(s��

i
) + Iq(s��

i
)

≤ (2�)q , 
∑n

j=1,j≠i
Iq(s��

j
) ≤ Iq(s��

i
) and Iq(s��

i
) + (n − 2)(2�)q

≥
∑n

j=1,j≠i
Iq(s��

j
) for all i = 1, 2,⋯ , n ; then, the preference 

relation P = (pij)n×n is an additively consistent Lq-ROFPR, 
where

Proof  It is obvious that sp�
ij
= sp�

ji
 , sp�

ij
= sp�

ji
 , and sp�

ii
= sp�

ii
=

s
2�

q
√
0.5

 for all i, j = 1, 2,⋯ , n . Since s��

i
, s��

i
∈ S , and 

Iq(s��

i
) + Iq(s��

i
) ≤ (2�)q , we can easily obtain

which means that pij = (sp�
ij
, sp�

ij
) is an Lq-ROFN. Thus, 

P = (pij)n×n is an Lq-ROFPR. Moreover, for i < j < k,

n∑
j=1,j≠i

Iq(s��

j
) ≤ Iq(s��

i
),

Iq(s��

i
) + (n − 2)(2�)q ≥

n∑
j=1,j≠i

Iq(s��
j
).

(3)

pij = (sp�
ij
, sp�

ij
)

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩

�
s
2�

q
√
0.5
, s

2�
q
√
0.5

�
, i = j,�

I−1
�

q

�
0.5

�
Iq(s��

i
) + Iq(s��

j
)
��

,

I−1
�

q

�
0.5

�
Iq(s��

i
) + Iq(s��

j
)
���

, i ≠ j.

q

√
0.5

(
Iq(s��

i
) + Iq(s��

j
)
)
≤

q

√
0.5

(
(2�)q + (2�)q

)

= 2� ⟹ I−1
(

q

√
0.5

(
Iq(s��

i
) + Iq(s��

j
)
))

∈ S,

q

√
0.5

(
Iq(s��

i
) + Iq(s��

j
)
)
≤

q

√
0.5

(
(2�)q + (2�)q

)

= 2� ⟹ I−1
(

q

√
0.5

(
Iq(s��

i
) + Iq(s��

j
)
))

∈ S,

(
q

√
0.5

(
Iq(s��

i
) + Iq(s��

j
)
))q

+

(
q

√
0.5

(
Iq(s��

i
) + Iq(s��

j
)
))q

= 0.5

(
Iq(s��

i
) + Iq(s��

i
) + Iq(s��

j
) + Iq(s��

j
)
)

≤ 0.5
(
(2�)q + (2�)q

)
= (2�)q,
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Clearly, Iq(sp�
ij
) + Iq(sp�

jk
) + Iq(sp�

ik
) = Iq(sp�

ij
) + Iq(sp�

jk
) + Iq(sp�

ik
) . In 

accordance with Definition 6 and Theorem 1, Lq-ROFPR 
P = (pij)n×n is additively consistent. 	�  ◻ 

Corollary 1  For an Lq-ROFPR R = (rij)n×n with rij = (s�ij
, s�ij ) , 

if there exists a normalized Lq-ROFPWV s� = (s�1
, s�2

,⋯ , s�n
)T  

with s�i
= (s��

i
, s��

i
) such that

then R = (rij)n×n is additively consistent.

According to Corollary 1, for an additively consistent Lq-
ROFPR R = (rij)n×n , there exists a normalized Lq-ROFPWV 
s� = (s�1

, s�2
,⋯ , s�n

)T  such that rij = (s�ij
, s�ij ) can be 

expressed as Eq. (4). Then, for i ≠ j , we have

Iq(sp�
ij
) + Iq(sp�

jk
) + Iq(sp�

ik
)

= 0.5

(
Iq(s��

i
) + Iq(s��

j
) + Iq(s��

j
)

+ Iq(s��
k
) + Iq(s��

i
) + Iq(s��

k
)
)
,

Iq(sp�
ij
) + Iq(sp�

jk
) + Iq(sp�

ik
)

= 0.5

(
Iq(s��

i
) + Iq(s��

j
) + Iq(s��

j
)

+ Iq(s��

k
) + Iq(s��

i
) + Iq(s��

k
)
)
.

(4)

rij = (s�ij
, s�ij )

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩

�
s
2�

q
√
0.5
, s

2�
q
√
0.5

�
, i = j,�

I−1
�

q

�
0.5

�
Iq(s��

i
) + Iq(s��

j
)
��

,

I−1
�

q

�
0.5

�
Iq(s��

i
) + Iq(s��

j
)
���

, i ≠ j,

Iq(s�ij
) = 0.5

(
Iq(s��

i
) + Iq(s��

j
)
)
,

Iq(s�ij ) = 0.5

(
Iq(s��

i
) + Iq(s��

j
)
)
.

However, in a real decision-making problem, it is 
extremely difficult for the expert to give an additively con-
sistent Lq-ROFPR R = (rij)n×n , which means that the above 
equations may not always hold. Therefore, the following 
deviation variables can be introduced:

Clearly, the additive consistency of Lq-ROFPR 
R = (rij)n×n is better when the absolute deviations |�ij| and 
|�ij| are smaller. Let �+

ij
=

|�ij|+�ij
2

≥ 0 , �−
ij
=

|�ij|−�ij
2

≥ 0 , 

�+
ij
=

|�ij|+�ij
2

≥ 0 ,  �−
ij
=

|�ij|−�ij
2

≥ 0 ,  then �ij = �+
ij
− �−

ij
 , 

|�ij| = �+
ij
+ �−

ij
 , �ij = �+

ij
− �−

ij
 , |�ij| = �+

ij
+ �−

ij
 . Since �ij = �ji 

and �ij = �ji , we can establish Model 1 to obtain the normal-
ized Lq-ROFPWV s� = (s�1

, s�2
,⋯ , s�n

)T.

In a practical decision-making process, it is unrealis-
tic for an expert to give an absolutely additively consist-
ent Lq-ROFPR. In this case, there exist i, j and k such that 
Eq. (2) does not hold. Then, the following definition of the 
additive consistency index (ACI) for an Lq-ROFPR can be 
introduced.

Definition 8  Let R = (rij)n×n with rij = (s�ij
, s�ij ) be an Lq-

ROFPR, and the additive consistency index of R is defined 
as follows:

where q ≥ 1 and ACI(R) ∈ [0, 1].

Clearly, if ACI(R) = 0 , the Lq-ROFPR R = (rij)n×n 
is absolutely additively consistent. Since the absolute 

�ij = Iq(s�ij
) − 0.5

(
Iq(s��

i
) + Iq(s��

j
)
)
, i ≠ j,

�ij = Iq(s�ij ) − 0.5

(
Iq(s��

i
) + Iq(s��

j
)
)
, i ≠ j.

Model 1 min J =
�

1≤i<j≤n

�
𝜀+
ij
+ 𝜀−

ij
+ 𝜂+

ij
+ 𝜂−

ij

�

s.t.

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Iq(s𝜇ij
) − 0.5

�
Iq(s𝜔𝜇

i
) + Iq(s𝜔𝜈

j
)
�
− 𝜀+

ij
+ 𝜀−

ij
= 0, 1 ≤ i < j ≤ n,

Iq(s𝜈ij ) − 0.5

�
Iq(s𝜔𝜈

i
) + Iq(s𝜔𝜇

j
)
�
− 𝜂+

ij
+ 𝜂−

ij
= 0, 1 ≤ i < j ≤ n,

I(s𝜔𝜇

i
), I(s𝜔𝜈

i
) ∈ [0, 2𝜏], Iq(s𝜔𝜇

i
) + Iq(s𝜔𝜈

i
) ≤ (2𝜏)q, i = 1, 2,⋯ , n,∑n

j=1,j≠i
Iq(s𝜔𝜇

j
) ≤ Iq(s𝜔𝜈

i
), Iq(s𝜔𝜇

i
) + (n − 2)(2𝜏)q ≥

∑n

j=1,j≠i
Iq(s𝜔𝜈

j
), i = 1, 2,⋯ , n,

𝜀+
ij
≥ 0, 𝜀−

ij
≥ 0, 𝜂+

ij
≥ 0, 𝜂−

ij
≥ 0, 1 ≤ i < j ≤ n.

(5)

ACI(R) =
2

n(n − 1)(n − 2)(2𝜏)q

∑
1≤i<j<k≤n

× ||Iq(s𝜇ij
) + Iq(s𝜇jk

) + Iq(s𝜈ik )

− Iq(s𝜈ij ) − Iq(s𝜈jk ) − Iq(s𝜇ik
)||,
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consistency is too strict, we further introduce the concept of 
acceptably additively consistent Lq-ROFPR.

Definition 9  An Lq-ROFPR R = (rij)n×n is said to be 
acceptably additively consistent if ACI(R) ≤ ACI , where 
ACI ∈ [0, 1] is the consistency threshold.

Due to the complexities and uncertainties of most practical 
decision-making problems, experts usually provide unaccept-
ably additively consistent Lq-ROFPRs. Since an inconsistent 
Lq-ROFPR may lead to unreasonable results, we should first 
repair the unacceptably additively consistent Lq-ROFPR to be 
of acceptable consistency, which can be realized via Model 2.

Model 2 min f =
�

1≤i<j≤n

���Iq(s𝜇ij
) − Iq(s𝜇�

ij
)�� + ��Iq(s𝜈ij ) − Iq(s𝜈�

ij
)��
�

s.t.

⎧⎪⎨⎪⎩

2

n(n − 1)(n − 2)(2𝜏)q
∑

1≤i<j<k≤n

���Iq(s𝜇�ij ) + Iq(s𝜇�
jk
) + Iq(s𝜈�

ik
) − Iq(s𝜈�

ij
) − Iq(s𝜈�

jk
) − Iq(s𝜇�

ik
)
��� ≤ ACI,

I(s𝜇�
ij
), I(s𝜈�

ij
) ∈ [0, 2𝜏], Iq(s𝜇�

ij
) + Iq(s𝜈�

ij
) ≤ (2𝜏)q, 1 ≤ i < j ≤ n.

The second restraint condition in Model 2 means that 
r�
ij
= (s��

ij
, s��

ij
) is an Lq-ROFN, and the first restraint condi-

tion guarantees that R� = (r�
ij
)n×n with r�

ij
= (s��

ij
, s��

ij
) is accept-

ably additively consistent. Moreover, according to Eq. (1), 
the objective function means that Lq-ROFPR R� = (r�

ij
)n×n 

has the smallest distance from R = (rij)n×n . Thus, the 
adjusted Lq-ROFPR R� = (r�

ij
)n×n can retain more original 

cognitive information. In particular, when the consistency 
threshold ACI = 0 , the Lq-ROFPR R� = (r�

ij
)n×n is absolutely 

additively consistent.
By introducing some positive slack variables a+

ij
 , a−

ij
 , b+

ij
 , 

b−
ij
 , c+

ijk
 , and c−

ijk
 , Model 2 can be transformed into Model 3.

Model 3 min f =
�

1≤i<j≤n

�
a+
ij
+ a−

ij
+ b+

ij
+ b−

ij

�

s.t.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Iq(s𝜇ij
) − Iq(s𝜇�

ij
) − a+

ij
+ a−

ij
= 0, 1 ≤ i < j ≤ n,

Iq(s𝜈ij ) − Iq(s𝜈�
ij
) − b+

ij
+ b−

ij
= 0, 1 ≤ i < j ≤ n,

2

n(n − 1)(n − 2)(2𝜏)q
∑

1≤i<j<k≤n

�
c+
ijk
+ c−

ijk

�
≤ ACI,

Iq(s𝜇�
ij
) + Iq(s𝜇�

jk
) + Iq(s𝜈�

ik
) − Iq(s𝜈�

ij
) − Iq(s𝜈�

jk
) − Iq(s𝜇�

ik
) − c+

ijk
+ c−

ijk
= 0, 1 ≤ i < j < k ≤ n,

I(s𝜇�
ij
), I(s𝜈�

ij
) ∈ [0, 2𝜏], Iq(s𝜇�

ij
) + Iq(s𝜈�

ij
) ≤ (2𝜏)q, 1 ≤ i < j ≤ n,

a+
ij
≥ 0, a−

ij
≥ 0, b+

ij
≥ 0, b−

ij
≥ 0, 1 ≤ i < j ≤ n,

c+
ijk

≥ 0, c−
ijk

≥ 0, 1 ≤ i < j < k ≤ n.
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Using Lingo software to solve Model 3, an acceptably addi-
tively consistent Lq-ROFPR R� = (r�

ij
)n×n with r�

ij
= (s��

ij
, s��

ij
) 

can be constructed via the optimal solutions.
Consider an Lq-ROFPR R = (rij)n×n with rij = (s�ij

, s�ij ) ; 
if some judgments of R are unknown, then R is called an 
incomplete Lq-ROFPR. Let Z� = {(i, j) ∣ s�ij

is unknown,

1 ≤ i < j ≤ n} , Z𝜈 = {(i, j) ∣ s𝜈ij is unknown, 1 ≤ i < j ≤ n} , 
since the estimated values should make the additive consist-
ency index ACI(R) smaller, we can build Model 4 to estimate 
the unknown values.

By deleting the absolute value symbols, Model 4 can be 
transformed into Model 5.

Solving Model 5, we can obtain the optimal objective value 
�∗ and the optimal solutions I(s�∗

ij
)
(
(i, j) ∈ Z�

)
 and 

I(s�∗
ij
)
(
(i, j) ∈ Z�

)
 . Using these optimal solutions, a complete 

Lq-ROFPR R = (rij)n×n can be built. Four cases may exist 
for the upper triangular elements: (a) rij = (s�ij

, s�ij ) , if 
(i, j) ∉ Z�, (i, j) ∉ Z� ; (b) rij =

(
I−1

(
I(s�∗

ij
)
)
, s�ij

)
 , if (i, j) ∈ Z�,

(i, j) ∉ Z� ; (c) rij =
(
s�ij

, I−1
(
I(s�∗

ij
)
))

 , if (i, j) ∉ Z�, (i, j) ∈ Z� ; 
and (d) rij =

(
I−1

(
I(s�∗

ij
)
)
, I−1

(
I(s�∗

ij
)
))

 , if (i, j) ∈ Z�, (i, j)

∈ Z� . Moreover, if the optimal objective value �∗ ≤ ACI , the 
complete Lq-ROFPR R = (rij)n×n derived from Model 5 is 
acceptably additively consistent.

Group Decision‑Making with Incomplete 
Lq‑ROFPRs

Consider a GDM problem, the set of alternatives is 
X = {x1, x2,⋯ , xn} , the set of experts is D = {d

1
, d

2
,⋯ , dm} , 

and the decision-maker weight vector is � = {�
1
, �

2
,⋯ , �m}

T 

Model 4 min 𝛿

s.t.

⎧
⎪⎪⎨⎪⎪⎩

2

n(n − 1)(n − 2)(2𝜏)q
∑

1≤i<j<k≤n

���Iq(s𝜇ij
) + Iq(s𝜇jk

) + Iq(s𝜈ik ) − Iq(s𝜈ij ) − Iq(s𝜈jk ) − Iq(s𝜇ik
)
��� ≤ 𝛿,

I(s𝜇ij
) ∈ [0, 2𝜏], Iq(s𝜇ij

) + Iq(s𝜈ij ) ≤ (2𝜏)q, (i, j) ∈ Z𝜇, (i, j) ∉ Z𝜈 ,

I(s𝜈ij ) ∈ [0, 2𝜏], Iq(s𝜇ij
) + Iq(s𝜈ij ) ≤ (2𝜏)q, (i, j) ∉ Z𝜇, (i, j) ∈ Z𝜈 ,

I(s𝜇ij
), I(s𝜈ij ) ∈ [0, 2𝜏], Iq(s𝜇ij

) + Iq(s𝜈ij ) ≤ (2𝜏)q, (i, j) ∈ Z𝜇, (i, j) ∈ Z𝜈 .

Model 5 min 𝛿

s.t.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

2

n(n − 1)(n − 2)(2𝜏)q
∑

1≤i<j<k≤n

�
𝜃+
ijk
+ 𝜃−

ijk

�
≤ 𝛿,

Iq(s𝜇ij
) + Iq(s𝜇jk

) + Iq(s𝜈ik ) − Iq(s𝜈ij ) − Iq(s𝜈jk ) − Iq(s𝜇ik
) − 𝜃+

ijk
+ 𝜃−

ijk
= 0, 1 ≤ i < j < k ≤ n,

I(s𝜇ij
) ∈ [0, 2𝜏], Iq(s𝜇ij

) + Iq(s𝜈ij ) ≤ (2𝜏)q, (i, j) ∈ Z𝜇, (i, j) ∉ Z𝜈 ,

I(s𝜈ij ) ∈ [0, 2𝜏], Iq(s𝜇ij
) + Iq(s𝜈ij ) ≤ (2𝜏)q, (i, j) ∉ Z𝜇, (i, j) ∈ Z𝜈 ,

I(s𝜇ij
), I(s𝜈ij ) ∈ [0, 2𝜏], Iq(s𝜇ij

) + Iq(s𝜈ij ) ≤ (2𝜏)q, (i, j) ∈ Z𝜇, (i, j) ∈ Z𝜈 ,

𝜃+
ijk

≥ 0, 𝜃−
ijk

≥ 0, 1 ≤ i < j < k ≤ n.

such that 𝜆l > 0 and 
∑m

l=1
�l = 1 . The expert dl (l = 1, 2,

⋯ ,m) can provide a complete or incomplete Lq-ROFPR 
Rl = (rl,ij)n×n with rl,ij = (sl�ij

, sl�ij ) by making pairwise com-
parisons for all alternatives. If the Lq-ROFPR Rl is 
incomplete, then we should first use Model 5 to obtain 
the complete Lq-ROFPR, which is still denoted as Rl . If 
the individual Lq-ROFPR Rl is of unacceptable consist-
ency, then Model 3 should be used to obtain an acceptably 
additively consistent Lq-ROFPR R�

l
= (r�

l,ij
)n×n with 

r�
l,ij

= (sl��
ij
, sl��

ij
).

In real decision-making problems, different experts may 
have different ranking orders. Thus, it is very important 

to find an acceptable solution that is agreed upon by all 
decision-makers, so consensus analysis should be consid-
ered. In the following, the concept of collective Lq-ROFPR 
is first introduced.

Definition 10  Let R�
l
= (r�

l,ij
)n×n with r�

l,ij
= (sl��

ij
, sl��

ij
) (l = 1,

2,⋯ ,m) be individual Lq-ROFPRs and � = {�1, �2,⋯ , �m}
T 

be the weight vector of decision-makers such that 𝜆l > 0 and ∑m

l=1
�l = 1 ; then, the collective Lq-ROFPR Rc = (rc,ij)n×n is 

defined as follows:

Based on Eq. (6), we can easily prove that Rc = (rc,ij)n×n 
is also an Lq-ROFPR. Moreover, the additive consistency of 
Rc = (rc,ij)n×n can be considered by the following theorem.

(6)
rc,ij = (sc�ij

, sc�ij ) =

(
I−1

(
q

√
Σm
l=1

�lI
q(sl��

ij
)
)
,

I−1
(

q

√
Σm
l=1

�lI
q(sl��

ij
)
))

.
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Theorem  3  The collective Lq-ROFPR Rc = (rc,ij)n×n is 
acceptably additively consistent if all individual Lq-ROFPRs 
R�
l
= (r�

l,ij
)n×n (l = 1, 2,⋯ ,m) are acceptably additively 

consistent.

Proof  Since Lq-ROFPR R�
l
= (r�

l,ij
)n×n with r�

l,ij
= (sl��

ij
, sl��

ij
) is of 

acceptable consistency, according to Definitions 8 and 9, we have

Using Eq. (6), we can obtain

Thus, the collective Lq-ROFPR Rc = (rc,ij)n×n is acceptably 
additively consistent, which completes the proof. 	�  ◻ 

In the above theorem, if the consistency threshold 
ACI = 0 , indicating that all the individual Lq-ROFPRs 
R�
l
= (r�

l,ij
)n×n are absolutely additively consistent, then the 

collective Lq-ROFPR Rc = (rc,ij)n×n is also absolutely addi-
tively consistent.

ACI(R�
l
) =

2

n(n − 1)(n − 2)(2𝜏)q

∑
1≤i<j<k≤n

×
|||I

q(sl𝜇�
ij
) + Iq(sl𝜇�

jk
) + Iq(sl𝜈�

ik
)

− Iq(sl𝜈�
ij
) − Iq(sl𝜈�

jk
) − Iq(sl𝜇�

ik
)
||| ≤ ACI.

ACI(Rc) =
2

n(n − 1)(n − 2)(2𝜏)q

∑
1≤i<j<k≤n

×
|||I

q(sc𝜇ij
) + Iq(sc𝜇jk

) + Iq(sc𝜈ik )

− Iq(sc𝜈ij ) − Iq(sc𝜈jk ) − Iq(sc𝜇ik
)
|||

=
2

n(n − 1)(n − 2)(2𝜏)q

∑
1≤i<j<k≤n

×
|||

m∑
l=1

𝜆lI
q(sl𝜇�

ij
) +

m∑
l=1

𝜆lI
q(sl𝜇�

jk
) +

m∑
l=1

𝜆lI
q(sl𝜈�

ik
)

−

m∑
l=1

𝜆lI
q(sl𝜈�

ij
) −

m∑
l=1

𝜆lI
q(sl𝜈�

jk
) −

m∑
l=1

𝜆lI
q(sl𝜇�

ik
)
|||

=
2

n(n − 1)(n − 2)(2𝜏)q

∑
1≤i<j<k≤n

×
|||

m∑
l=1

𝜆l

(
Iq(sl𝜇�

ij
) + Iq(sl𝜇�

jk
) + Iq(sl𝜈�

ik
)

− Iq(sl𝜈�
ij
) − Iq(sl𝜈�

jk
) − Iq(sl𝜇�

ik
)
)|||

≤

m∑
l=1

𝜆l
2

n(n − 1)(n − 2)(2𝜏)q

∑
1≤i<j<k≤n

×
|||I

q(sl𝜇�
ij
) + Iq(sl𝜇�

jk
) + Iq(sl𝜈�

ik
)

− Iq(sl𝜈�
ij
) − Iq(sl𝜈�

jk
) − Iq(sl𝜇�

ik
)
|||

=

m∑
l=1

𝜆lACI(R
�
l
) ≤

m∑
l=1

𝜆lACI = ACI.

Definition 11  Let R�
l
= (r�

l,ij
)n×n with r�

l,ij
= (sl��

ij
, sl��

ij
) 

(l = 1, 2,⋯ ,m) be individual Lq-ROFPRs and Rc = (rc,ij)n×n 
with rc,ij = (sc�ij

, sc�ij ) be the collective Lq-ROFPR; then, the 
group consensus index (GCI) of R′

l
 is defined as follows:

where q ≥ 1 and GCI(R�
l
) ∈ [0, 1].

If all individual Lq-ROFPRs are the same, i.e., R�
l
= R�

p
 for 

any l, p = 1, 2,⋯ ,m , then the group reaches full consensus. 
Clearly, in this case, GCI(R�

l
) = 0 . However, achieving a full 

consensus is a utopian goal, thus we should further propose 
the concept of acceptable consensus.

Definition 12  An individual Lq-ROFPR R′
l
 (l = 1, 2,⋯ ,m) 

is said to be of acceptable consensus if GCI(R�
l
) ≤ GCI , 

where GCI ∈ [0, 1] is the consensus threshold.

When all individual Lq-ROFPRs R′
l
 are of acceptable con-

sensus, i.e., GCI(R�
l
) ≤ GCI for all l = 1, 2,⋯ ,m , then the 

group reaches acceptable consensus.
In the process of generating collective Lq-ROFPR 

Rc = (rc,ij)n×n , the weights of experts are used. Sometimes, 
the decision-maker weight vector is unknown. Therefore, we 
should first obtain the weights. According to Definition 11, 
when we calculate GCI(R�

l
) , for each pair of (i, j), we have

Clearly, a smaller value of Eq. (8) denotes a better consensus 
level. Hence, Model 6 can be built to determine the weights 
of decision-makers.

By introducing some positive slack variables �+
lij

 , �−
lij

 , �+
lij

 , 
and �−

lij
 , Model 6 can be transformed into Model 7.

(7)
GCI(R�

l
) =

1

n(n − 1)(2𝜏)q

∑
1≤i<j≤n

(||Iq(sl𝜇�
ij
)

− Iq(sc𝜇ij
)|| + ||Iq(sl𝜈�ij ) − Iq(sc𝜈ij )

||
)
,

(8)

|||I
q(sl��

ij
) − Iq(sc�ij

)
||| +

|||I
q(sl��

ij
) − Iq(sc�ij )

|||
=

|||I
q(sl��

ij
) −

m∑
t=1

�tI
q(st��

ij
)
|||

+
|||I

q(sl��
ij
) −

m∑
t=1

�tI
q(st��

ij
)
|||.

Model 6 min g =

m�
l=1

�
1≤i<j≤n

����I
q(sl𝜇�

ij
)

−

m�
t=1

𝜆tI
q(st𝜇�

ij
)
��� +

���I
q(sl𝜈�

ij
) −

m�
t=1

𝜆tI
q(st𝜈�

ij
)
���
�

s.t.

⎧⎪⎨⎪⎩

𝜆l ∈ (0, 1), l = 1, 2,⋯ ,m,
m∑
l=1

𝜆l = 1.
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Using Lingo software to solve Model 7, the decision-maker 
weight vector � = {�1, �2,⋯ , �m}

T can be obtained.
When Lq-ROFPR R�

l
= (r�

l,ij
)n×n with r�

l,ij
= (sl��

ij
, sl��

ij
) is of 

unacceptable consensus, i.e., GCI(R�
l
) > GCI , then we need 

to modify it to increase the consensus level. Let R��
l
= (r��

l,ij
)n×n 

with r��
l,ij

= (sl���
ij
, sl���

ij
) be an adjusted Lq-ROFPR, where

and � ∈ [0, 1] is the adjustment parameter. From Theorem 3, 
we know that the modified Lq-ROFPR R′′

l
 is still acceptably 

additively consistent. Moreover, the adjusted Lq-ROFPR R′′
l
 

should have an acceptable consensus level, and the adjustment 
parameter � should be as small as possible to maintain more 
original information. Therefore, we can establish Model 8.

By deleting the absolute value symbols, Model 8 can be 
transformed into Model 9.

Model 7 min g =

m�
l=1

�
1≤i<j≤n

�
𝜗+
lij
+ 𝜗−

lij
+ 𝜒+

lij
+ 𝜒−

lij

�

s.t.

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Iq(sl𝜇�
ij
) −

m∑
t=1

𝜆tI
q(st𝜇�

ij
) − 𝜗+

lij
+ 𝜗−

lij
= 0, 1 ≤ i < j ≤ n, l = 1, 2,⋯ ,m,

Iq(sl𝜈�
ij
) −

m∑
t=1

𝜆tI
q(st𝜈�

ij
) − 𝜒+

lij
+ 𝜒−

lij
= 0, 1 ≤ i < j ≤ n, l = 1, 2,⋯ ,m,

𝜆l ∈ (0, 1), l = 1, 2,⋯ ,m,
m∑
l=1

𝜆l = 1,

𝜗+
lij
≥ 0, 𝜗−

lij
≥ 0, 𝜒+

lij
≥ 0, 𝜒−

lij
≥ 0, 1 ≤ i < j ≤ n, l = 1, 2,⋯ ,m.

(9)

⎧⎪⎨⎪⎩

sl���
ij
= I−1

�
q

�
(1 − �)Iq(sl��

ij
) + �Iq(sc�ij

)
�
,

sl���
ij
= I−1

�
q

�
(1 − �)Iq(sl��

ij
) + �Iq(sc�ij )

�
,

Model 8 min 𝛽

s.t.

⎧⎪⎪⎨⎪⎪⎩

1

n(n − 1)(2𝜏)q
∑

1≤i<j≤n

����(1 − 𝜆l)
�
(1 − 𝛽)Iq(sl𝜇�

ij
) + 𝛽Iq(sc𝜇ij

)
�
−
∑
k≠l

𝜆kI
q(sk𝜇�

ij
)
���

+
���(1 − 𝜆l)

�
(1 − 𝛽)Iq(sl𝜈�

ij
) + 𝛽Iq(sc𝜈ij )

�
−
∑
k≠l

𝜆kI
q(sk𝜈�

ij
)
���
�

≤ GCI,

𝛽 ∈ [0, 1].

Model 9 min 𝛽

s.t.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1

n(n − 1)(2𝜏)q
∑

1≤i<j≤n

�
𝜁+
ij
+ 𝜁−

ij
+ 𝜉+

ij
+ 𝜉−

ij

�
≤ GCI,

(1 − 𝜆l)
�
(1 − 𝛽)Iq(sl𝜇�

ij
) + 𝛽Iq(sc𝜇ij

)
�
−
∑
k≠l

𝜆kI
q(sk𝜇�

ij
) − 𝜁+

ij
+ 𝜁−

ij
= 0, 1 ≤ i < j ≤ n,

(1 − 𝜆l)
�
(1 − 𝛽)Iq(sl𝜈�

ij
) + 𝛽Iq(sc𝜈ij )

�
−
∑
k≠l

𝜆kI
q(sk𝜈�

ij
) − 𝜉+

ij
+ 𝜉−

ij
= 0, 1 ≤ i < j ≤ n,

𝛽 ∈ [0, 1],

𝜁+
ij
≥ 0, 𝜁−

ij
≥ 0, 𝜉+

ij
≥ 0, 𝜉−

ij
≥ 0, 1 ≤ i < j ≤ n.

Solving Model 9, we can obtain the optimal objective 
value �∗ . Then, taking �∗ into Eq. (9), a modified Lq-ROFPR 
R��
l
= (r��

l,ij
)n×n with acceptable consensus is derived.

In the following, the concrete steps of the GDM method 
with incomplete Lq-ROFPRs are provided. 

Step 1.	� According to a predefined linguistic set, decision-
maker dl ( l = 1, 2,⋯ ,m ) constructs an individual 
Lq-ROFPR Rl = (rl,ij)n×n by making pairwise com-
parisons for all alternatives X = {x1, x2,⋯ , xn} . If 
all Lq-ROFPRs Rl are complete, go to Step 2. If Rl 
is incomplete, then plug Rl into Model 5 to gener-
ate a complete Lq-ROFPR, which is still denoted 
as Rl . This process is repeated until all Lq-ROF-
PRs Rl = (rl,ij)n×n ( l = 1, 2,⋯ ,m ) are complete.

Step 2.	� Compute the additive consistency indices ACI(Rl) 
( l = 1, 2,⋯ ,m ) based on Eq. (5). ACI is set as 
the consistency threshold, and Definition 9 is 

used to check whether Rl is acceptably additively 
consistent or not. If all individual Lq-ROFPRs Rl 



2225Cognitive Computation (2023) 15:2216–2231	

1 3

( l = 1, 2,⋯ ,m ) are of acceptable consistency, let 
R�
l
= Rl , and go to Step 4. Otherwise, go to Step 3.

Step 3.	� Plug an Lq-ROFPR Rl with unacceptable consist-
ency into Model 3, and solve this model to obtain 
an acceptably additively consistent Lq-ROFPR 
R�
l
= (r�

l,ij
)n×n . This process is repeated until all 

individual Lq-ROFPRs are acceptably consistent. 
For the Lq-ROFPR Rl with acceptable additive 
consistency, we set R�

l
= Rl.

Step 4.	� Take all acceptably additively consistent Lq-
ROFPRs R′

l
 ( l = 1, 2,⋯ ,m ) into Model 7 

to derive the decision-maker weight vector 
� = {�1, �2,⋯ , �m}

T.

Step 5.	� According to Eq. (6), we calculate the collective 
Lq-ROFPR Rc = (rc,ij)n×n . Moreover, Eq. (7) is 
applied to compute the group consensus index 
GCI(R�

l
) ( l = 1, 2,⋯ ,m).

Step 6.	� Given a consensus threshold GCI , we utilize Defi-
nition 12 to check whether the individual Lq-
ROFPR R′

l
 is of acceptable consensus or not. If all 

consensus indices GCI(R�
l
) ≤ GCI (l = 1, 2,⋯ ,m) , 

let R��
l
= R�

l
 , and go to Step 8. Otherwise, let 

GCI(R�
k
) = max

1≤l≤m
{GCI(R�

l
)} , and go to Step 7.

Step 7.	� Plug R′
k
 into Model 9 and solve this model to 

obtain an optimal adjustment parameter �∗ , and 
Eq. (9) is then applied to generate a modified 

Fig. 1   The frame diagram of the 
proposed method

Table 1   Individual Lq-ROFPR 
R
1
= (r

1,ij)4×4 given by the first 
expert

Taobao Tmall Jingdong Pinduoduo

Taobao (s
10

3
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0.5
, s
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0.5
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)
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5
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, s
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6
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8
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8
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3
) (s

8
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6
) (s
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, s

10
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) (s

8
, s

5
)

Pinduoduo (s
2
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9
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,−) (s

5
, s

8
) (s
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, s
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3
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Lq-ROFPR R��
k
= (r��

k,ij
)n×n with acceptable consen-

sus. Then, we set R�
k
= R��

k
 and return to Step 5.

Step 8.	� For the individual Lq-ROFPRs R′′
l
 ( l = 1, 2,⋯ ,m ), 

which are of acceptable additive consistency and 
acceptable consensus, Eq. (6) is used to obtain the 
collective Lq-ROFPR R∗

c
 . Taking R∗

c
 into Model 

1 and solving this model, a normalized Lq-ROF-
PWV s� = (s�1

, s�2
,⋯ , s�n

)T can be derived.
Step 9.	� On the basis of Definition 4, we compute the 

score function and accuracy function of s�i
 

( i = 1, 2,⋯ , n ). Then, the ranking order of alter-
natives can be gained by applying the comparison 
law for Lq-ROFNs.

For the convenience of application, a frame diagram of 
the proposed method is presented in Fig. 1.

This paper provides a GDM method with incomplete Lq-
ROFPRs through the conducting of consistency and consen-
sus analysis. The novel findings are presented as follows: ( i ) 
a new preference relation called Lq-ROFPR is defined to 
describe the qualitative cognitive information of experts; ( ii ) 
additive consistency analysis is conducted, and a function is 
established to transform the normalized Lq-ROFPWV into a 
consistent Lq-ROFPR; ( iii ) the missing values of incomplete 
Lq-ROFPR are ascertained; ( iv ) the consistency checking 
and consistency repairing process are performed; ( v ) the 
decision-maker weight vector is objectively obtained from 
an optimization model; ( vi ) the adjusted Lq-ROFPRs can 
maintain more original information during the consensus 
improving procedure, and the repaired Lq-ROFPRs are still 
acceptably additively consistent; and ( vii ) the ranking order 
is derived from acceptably additively consistent Lq-ROFPRs 
with an acceptable consensus level.

A Case Study and Comparison Analysis

In the past decade, with the improvement in living stand-
ards, online shopping has become very common in China. 
According to the 49th Statistical Report on China’s Inter-
net Development published by the China Internet Network 
Information Center, up until December 2021, the user size 
of online shopping in China had reached 842 million, which 
was up 59.68 million from December 2020 and accounted 
for 81.6% of all internet users. At present, four main success-
ful online shopping platforms exist in China, including x1 : 
Taobao, x2 : Tmall, x3 : Jingdong, and x4 : Pinduoduo. To gain 
more business information, shopping platforms mainly con-
sider four measures, including product price, product quality, 
delivery time, and service level. Three experts were invited 
to assess these four shopping platforms to obtain a compre-
hensive ranking order. To fully express the evaluations of 
experts, such experts are allowed to use linguistic variables 
defined in the following linguistic set:

Considering the judgments for qualitative preferred and 
nonpreferred degrees, the decision-makers established 
three individual Lq-ROFPRs by making pairwise compari-
sons for the four shopping platforms. Furthermore, when 
the experts were unable or unwilling to provide judgments, 
missing values are permitted. Suppose q = 3 ; in this case, 
three individual Lq-ROFPRs are constructed as shown in 
Tables 1, 2, and 3.

S = {s0 ∶ extremely bad, s1 ∶ very bad, s2 ∶ bad,

s3 ∶ relatively bad, s4 ∶ a little bad, s5 ∶ fair,

s6 ∶ a little good, s7 ∶ relatively good,

s8 ∶ good, s9 ∶ very good, s10 ∶ extremely good}.

Table 2   Individual Lq-ROFPR 
R
2
= (r

2,ij)4×4 given by the 
second expert
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Table 3   Individual Lq-ROFPR 
R
3
= (r

3,ij)4×4 given by the third 
expert

Taobao Tmall Jingdong Pinduoduo
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To rank these four shopping platforms, the following 
decision-making steps are conducted. 

Step 1.	� With respect to each incomplete individual Lq-
ROFPR, Model 5 is applied to obtain the missing 
linguistic variables, and three complete individual 
Lq-ROFPRs R1 , R2 , and R3 can be derived. 

Step 2.	� According to Eq. (5), we can obtain ACI(R
1
) =

0.1365 , ACI(R2) = 0.0582 , and ACI(R3) = 0.0768 . 
Without loss of generality, we assume that the 
consistency threshold ACI = 0.1 . Clearly, Lq-
ROFPR R1 is unacceptably additively consistent.

Step 3.	� By plugging Lq-ROFPR R1 into Model 3, a 
repaired Lq-ROFPR R′

1
 with acceptable additive 

consistency can be obtained. 

	� Using Eq. (5), we can check that ACI(R�
1
) = 0.1 , 

which indicates that R′
1
 is of acceptable consistency.

Step 4.	� Taking three acceptably additively consistent Lq-
ROFPRs R′

1
 , R�

2
= R2 , and R�

3
= R3 into Model 7, 

we can obtain the decision-maker weight vector 
� = {0.4598, 0.3701, 0.1701}T.

Step 5.	� According to Eq. (6), the collective Lq-ROFPR Rc 
can be derived. 

R
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=
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	� Based on Eq. (7), we have GCI(R�
1
) = 0.0672 , 

GCI(R�
2
) = 0.0774 and GCI(R�

3
) = 0.1114.

Step 6.	� Assume a consensus threshold of GCI = 0.1 ; then, 
according to Definition 12, the individual Lq-
ROFPR R′

3
 is of unacceptable consensus, which 

means that the consensus level of R′
3
 needs to be 

improved.

Step 7.	� Plugging R′
3
 into Model 9 and solving this model, 

we can obtain an optimal adjustment parameter 
�∗ = 0.1233 . Then, Eq. (9) is applied to gener-
ate a modified Lq-ROFPR R′′

3
 with acceptable 

consensus. 

	� Furthermore, the new collective Lq-ROFPR R(1)
c

 
can be derived. 

	� Based on Eq. (7), we have GCI(R�
1
) = 0.0665 , 

GCI(R�
2
) = 0.0769 and GCI(R��

3
) = 0.1.

Step 8.	� Now, we have three individual Lq-ROFPRs 
R��
1
= R�

1
 , R��

2
= R�

2
= R2 , and R′′

3
 with an accept-

able consensus level. Moreover, according to The-
orem 3, R′′

3
 is also acceptably additively consistent. 

In fact, we can check that ACI(R��
3
) = 0.0633 via 

Eq. (5). Thus, R′′
1
 , R′′

2
 , and R′′

3
 are all acceptably 

additively consistent. Taking the collective Lq-
ROFPR R∗

c
= R(1)

c
 into Model 1 and solving this 

model, a normalized Lq-ROFPWV can be derived 
as follows: 

Step 9.	� Through calculating the score functions of the lin-
guistic q-rung orthopair fuzzy priority weights 
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s� = (s�1
, s�2

, s�3
, s�4

)T

=
(
(s0, s6.8734), (s3.4067, s6.5823),

(s6.5823, s6.5657), (s0, s9.8958)
)T
.
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s�i
 ( i = 1, 2, 3, 4) , we derive �(s�1

) = s6.9633 , 
�(s�2

) = s7.2252 , �(s�3
) = s7.9427 , and �(s�

4

) = 
s
2.4916

 . Using the ranking method in Definition 4, we 
obtain s𝜔3

> s𝜔2
> s𝜔1

> s𝜔4
 , which means that the 

four online shopping platforms can be ranked as Jin-
gdong, Tmall, Taobao, and Pinduoduo.

For a GDM with complete Lq-ROFPRs, although the 
linguistic q-rung orthopair fuzzy aggregation operators 
can be used to derive the final ranking order, consistency 
analysis and consensus analysis are not considered. To the 
best of our knowledge, no previous study has addressed the 
consistency and consensus of Lq-ROFPR. In the following, 
to provide a comparative analysis based on consistency and 
consensus, we use our approach to solve two GDM prob-
lems with different preference relations [41, 42].

Example 1  [41]: A city is affected by fog-haze, and there 
are four influence factors, including x1 : geographical 
conditions, x2 : concentration of gaseous pollutants, x3 : 
meteorological conditions, and x4 : mass concentration of 
PM2.5. Three experts are invited to evaluate the importance 
degrees of these factors, and the weight vector of experts is 
� = {0.3, 0.4, 0.3}T . Each decision-maker conducts pairwise 
comparisons for the four factors by using the following lin-
guistic set:

Three LIFPRs RJin
k

= (rJin
k,ij
)4×4 ( k = 1, 2, 3 ) are constructed 

by experts and listed in Example 4 of [41].
Assuming ACI = 0.1 and GCI = 0.1 , by using our pro-

posed method (when q = 1 ), we can obtain three LIFPRs R′Jin
1

 , 
R�Jin
2

= RJin
2

 , and R′Jin
3

 , where each LIFPR R′Jin
k

 ( k = 1, 2, 3 ) is 
acceptably additively consistent and the group reaches accept-
able consensus level (the detailed steps are omitted for brevity).

S = {s0 ∶ extremely low, s1 ∶ very low, s2 ∶ low,

s3 ∶ sightly low, s4 ∶ medium, s5 ∶ sightly high,

s6 ∶ high, s7 ∶ very high, s8 ∶ extremely high}.
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=
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Using Eq. (6), the collective LIFPR R∗Jin
c

 can be derived.

We can check that ACI(R�Jin
1

) = 0.0392 , ACI(R�Jin
2

) = 0.0625 , 
ACI(R�Jin

3
) = 0.0329 , GCI(R�Jin

1
) = 0.1 , GCI(R�Jin

2
) = 0.0659 , 

and GCI(R�Jin
3

) = 0.0938 . Taking the collective LIFPR R∗Jin
c

 
into Model 1, a normalized linguistic intuitionistic fuzzy 
priority weight vector can be derived as follows:

The score functions are �(sJin
�1

) = s0.5418 , �(sJin�2

) = s2.9302 , 
�(sJin

�3

) = s2.7068 , and �(sJin
�4

) = s0.9612 . Thus, we obtain 
sJin
𝜔2

> sJin
𝜔3

> sJin
𝜔4

> sJin
𝜔1

 , which means that the ranking of 
these four influence factors is x2 > x3 > x4 > x1 , and the 
ranking order is the same as that shown in [41].

To show the effect of parameter q, we use Table 4 to 
provide the ranking results with respect to q from 1 to 5. 
Table 4 demonstrates that the ranking of these four influence 
factors is always x2 > x3 > x4 > x1 , and the ranking order 
does not vary when parameter q changes. When q = 1, we 
obtain four linguistic intuitionistic fuzzy priority weights as 
follows: (s0.0408, s6.9572) , (s2.1242, s4.2638) , (s2.0408, s4.6272) , and 
(s0.4622, s6.5398) . When q  = 2, we derive four linguistic 
Pythagorean fuzzy priority weights as follows: (s0, s5.6453) , 
(s2.3222, s3.5402) , (s3.1934, s4.3497) , and (s0, s5.0227) . When q = 3, 
we obtain four linguistic q-rung orthopair fuzzy priority 
weights as follows: (s0, s5.5198) , (s1.7960, s3.5445) , (s3.2144,
s
4.4187

) , and (s0.6827, s4.6999) . In addition, with increasing 
parameter q, the lower index difference between �(sJin

�i
) and 

�(sJin
�j
) ( i = 2, j = 3 or i = 3, j = 4 or i = 4, j = 1 ) decreases. 

Moreover, before aggregating the four acceptably additively 
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Table 4   The score functions 
and ranking orders with respect 
to different parameter q 

Parameter Four score functions Ranking order
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consistent LIFPRs, which are also of acceptable levels of 
consensus, the original LIFPRs RJin

1
 and RJin

3
 are adjusted for 

q = 1 and q = 2, and only RJin
3

 is adjusted for q = 3, while 
none of RJin

k
 ( k = 1, 2, 3 ) is changed for q = 4 and q = 5. In 

general, decision-makers can flexibly determine the value 
of q based on the practical situation.

Example 2  [42]: With development of the economy, people 
want to find the significant factors that influence the sustainable 
development of innovative companies. There are four influence 
factors, including x1 : the sustainable development of the econ-
omy and society, x2 : innovative talents, x3 : capacity for continu-
ous innovation, and x4 : enterprise culture. Four experts are 
invited to evaluate the importance degrees of these factors, and 
the weight vector of experts is � = {0.2, 0.3, 0.3, 0.2}T . Each 
decision-maker conducts pairwise comparisons for the four fac-
tors by using the linguistic set given in Example 1. Four LPF-
PRs RLiu

k
= (rLiu

k,ij
)4×4 ( k = 1, 2, 3, 4 ) are constructed by the 

experts and listed in subsection 6.1 of [42].

Assuming ACI = 0.1 and GCI = 0.1 , by using our pro-
posed method (when q = 2 ), we can obtain four LPFPRs 
R′Liu
1

 , R′Liu
2

 , R′Liu
3

 , and R�Liu
4

= RLiu
4

 , where each LPFPR R′Liu
k

 
( k = 1, 2, 3, 4 ) is acceptably additively consistent and the 
group reaches acceptable consensus level (the detailed steps 
are omitted for brevity).

Using Eq. (6), the collective LPFPR R∗Liu
c

 can be derived.

We can check that ACI(R�Liu
1

) = 0.1 , ACI(R�Liu
2

) = 0.0796 , 
ACI(R�Liu

3
) = 0.1 , ACI(R�Liu
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) = 0.0960 , 

R�Liu
1

=

⎛⎜⎜⎜⎜⎝

(s
4
√
2
, s

4
√
2
) (s5.2915, s6) (s2, s5) (s3, s5)

(s6, s5.2915) (s
4
√
2
, s

4
√
2
) (s4, s6) (s4.9598, s6)

(s5, s2) (s6, s4) (s
4
√
2
, s

4
√
2
) (s7, s3)

(s5, s3) (s6, s4.9598) (s3, s7) (s
4
√
2
, s

4
√
2
)

⎞⎟⎟⎟⎟⎠
.

R�Liu
2

=

⎛⎜⎜⎜⎜⎜⎝

(s
4

√
2
, s

4

√
2
) (s5.0433, s5.7974) (s2.5740, s5.7742) (s2.8277, s3.4172)

(s5.7974, s5.0433) (s
4

√
2
, s

4

√
2
) (s3.1289, s5.1498) (s3.2503, s5.9004)

(s5.7742, s2.5740) (s5.1498, s3.1289) (s
4

√
2
, s

4

√
2
) (s2.4326, s3.4008)

(s3.4172, s2.8277) (s5.9004, s3.2503) (s3.4008, s2.4326) (s
4

√
2
, s

4

√
2
)

⎞⎟⎟⎟⎟⎟⎠

.

R�Liu
3

=

⎛⎜⎜⎜⎜⎝

(s
4
√
2
, s

4
√
2
) (s4.7958, s3) (s4, s5) (s3, s4.9396)

(s3, s4.7958) (s
4
√
2
, s

4
√
2
) (s3.6056, s6) (s5, s4)

(s5, s4) (s6, s3.6056) (s
4
√
2
, s

4
√
2
) (s6, s2)

(s4.9396, s3) (s4, s5) (s2, s6) (s
4
√
2
, s

4
√
2
)

⎞⎟⎟⎟⎟⎠
.

R∗Liu
c

=

⎛⎜⎜⎜⎜⎜⎝

(s
4

√
2
, s

4

√
2
) (s

5.2278
, s

4.8149
) (s

3.5479
, s

5.4500
) (s

2.7747
, s

4.5632
)

(s
4.8149

, s
5.2278

) (s
4

√
2
, s

4

√
2
) (s

3.6383
, s

5.7581
) (s

4.1700
, s

5.4447
)

(s
5.4500

, s
3.5479

) (s
5.7581

, s
3.6383

) (s
4

√
2
, s

4

√
2
) (s

5.2321
, s

3.1096
)

(s
4.5632

, s
2.7747

) (s
5.4447

, s
4.1700

) (s
3.1096

, s
5.2321

) (s
4

√
2
, s

4

√
2
)

⎞⎟⎟⎟⎟⎟⎠

.

GCI(R�Liu
2

) = 0.1 , GCI(R�Liu
3

) = 0.0913 , and GCI(R�Liu
4

) =

0.0931 . Taking the collective LPFPR R∗Liu
c

 into Model 1, 
a normalized linguistic Pythagorean fuzzy priority weight 
vector can be derived as follows:

The score functions are �(sLiu
�1

) = s3.4645 , �(sLiu�2

) = s2.8030 , 
�(sLiu

�3

) = s5.5496 and �(sLiu
�4

) = s4.2150 . Thus, we obtain sLiu
𝜔
3

>

sLiu
𝜔
4

> sLiu
𝜔
1

> sLiu
𝜔
2

 , which means that the ranking of these four 
influence factors is x3 > x4 > x1 > x2 , and the ranking order 
is the same as that shown in [42].

Compared with the methods shown in [41, 42], our 
approach has the following advantages: 

1.	 Jin et al.’s method [41] can only deal with GDM with 
LIFPRs, while Liu et  al. [42] only provide a GDM 
method based on LPFPRs. However, the constraints of 
membership and nonmembership degrees in this paper 
are Iq(s�ij

) + Iq(s�ij ) ≤ (2�)q ( q = 1, 2,⋯ ), which means 
that LIFPR and LPFPR can be regarded as special cases 
of Lq-ROFPR. Thus, Lq-ROFPR increases the scope of 
application and has a stronger ability to measure cogni-
tive preference information.

2.	 The methods [41, 42] are only used to analyze complete 
preference relations; when the preference values are 
unknown, these two methods are inapplicable. In our 
proposed algorithm, we consider this issue and establish 
a programming model to estimate the unknown elements 
from incomplete Lq-ROFPR in a reasonable way.

3.	 The weights of experts are predefined in [41, 42], which 
means that the experts’ objective weights cannot be 
derived. In our method, by taking into account the group 
consensus level, Model 7 is constructed to generate the 
decision-maker weight vector.

4.	 The methods [41, 42] are used to repair the unacceptably 
consistent preference relation to be of acceptable con-
sistency via an iterative method, which may take consid-
erable time and effort. In contrast, our method utilizes 
Model 3 to achieve this goal, which is only based on a 
single adjustment. Moreover, our adjusted Lq-ROFPR 
has the smallest distance from the original Lq-ROFPR.

5.	 In the procedure of consensus analysis, the iterative 
method is still used, and the adjustment parameter is 
also predetermined [41, 42]. However, our proposed 
method improves the consensus level only by solving 
a programming model, which is time-saving. Further-
more, to retain more original information, our adjust-
ment parameter derived from Model 9 is the smallest.

sLiu
�

= (sLiu
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, sLiu
�3

, sLiu
�4

)T

=
(
(s0.9259, s6.3915), (s2.3485, s7.3350),

(s4.3075, s4.5781), (s0.8915, s5.4094)
)T
.
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Conclusion

Based on the consistency and consensus analysis, this paper 
presents a new GDM approach using incomplete Lq-ROF-
PRs. The main advantages and limitations of the proposed 
method are as follows. Advantages: (1) a new linguistic pref-
erence relation is introduced in this paper to provide qualita-
tive cognitive information, and it is called Lq-ROFPR; (2) 
the additive consistency of Lq-ROFPR is defined, and two 
models are designed to ascertain the missing values and 
repair the unacceptably additively consistent Lq-ROFPR; 
(3) the normalized Lq-ROFPWV of Lq-ROFPR is derived 
by constructing a consistency-based model; (4) the objec-
tive weights of decision-makers are obtained; and (5) the 
consensus checking and consensus reaching process are 
considered. Limitations: (1) the consistency and consensus 
thresholds are predefined, and the effect of these two thresh-
olds is not discussed in this paper; and (2) the number of 
alternatives and the number of decision-makers are small, 
and Lq-ROFPRs in a large scale GDM environment are not 
addressed in this paper.

In the future, the proposed GDM method can be applied to 
other practical fields, such as cognitive computation [45], ERP 
selection [46], social cognition [47], medical diagnosis [48], 
and pattern recognition [49]. Moreover, investigating the mul-
tiplicative consistency of Lq-ROFPR or developing a similar 
method in the interval-valued linguistic environment [50–52] 
is also an interesting and meaningful research direction.

Funding  This work is supported by the National Social Science Foun-
dation of China (No.19CGL045).

Data Availability  No data was used for the research described in the 
article.

Declarations 

Ethical Approval  This article does not contain any studies with human 
participants performed by any of the authors.

Conflict of Interest  The authors declare no competing interests.

References

	 1.	 Frith CD, Singer T. The role of social cognition in decision 
making. Phil Trans R Soc B. 2008;363:3875–86.

	 2.	 Behimehr S, Jamali HR. Relations between cognitive biases 
and some concepts of information hehavior. Data Inf Manag. 
2020;4(2):109–18.

	 3.	 Schunk DH, Dibenedetto MK. Motivation and social cognitive 
theory. Contemp Educ Psychol. 2020;60: 101832.

	 4.	 Atanassov K. Intuitionistic fuzzy sets Fuzzy Set Syst. 1986;20: 
87–96.

	 5.	 Yager RR. Pythagorean membership grades in multicriteria 
decision making. IEEE T Fuzzy Syst. 2014;22(4):958–65.

	 6.	 Yager RR. Generalized orthopair fuzzy sets. IEEE T Fuzzy Syst. 
2017;25(5):1222–30.

	 7.	 Xin XW, Sun JB, Xue ZA, Song JH, Peng WM. A novel intui-
tionistic fuzzy three-way decision model based on an intuition-
istic fuzzy incomplete information system. Int J Mach Learn 
Cyb. 2022;13:907–27.

	 8.	 Zhou F, Chen TY. A hybrid approach combining AHP with 
TODIM for blockchain technology provider selection under the 
Pythagorean fuzzy scenario. Artif Intell Rev. 2022;55:5411–43.

	 9.	 Krishankumar R, Nimmagadda SS, Rani P, Mishra AR, Ravichandran 
KS, Gandomi AH. Solving renewable energy source selection 
problems using a q-rung orthopair fuzzy-based integrated decision-
making approach. J Clean Prod. 2021;279: 123329.

	10.	 Garg H, Rani D. An efficient intuitionistic fuzzy MULTI-
MOORA approach based on novel aggregation operators for 
the assessment of solid waste management techniques. Appl 
Intell. 2022;52:4330–63.

	11.	 Wang L, Garg H. Algorithm for multiple attribute decision-making 
with interactive Archimedean norm operations under Pythagorean 
fuzzy uncertainty. Int J Comput Int Sys. 2021;14(1):503–27.

	12.	 Tang GL, Yang YX, Gu XW, Chiclana F, Liu PD, Wang FB. 
A new integrated multi-attribute decision-making approach for 
mobile medical app evaluation under q-rung orthopair fuzzy 
environment. Expert Syst Appl. 2022;200(15): 117034.

	13.	 Yang ZY, Zhang LY, Li T. Group decision making with incom-
plete interval-valued q-rung orthopair fuzzy preference rela-
tions. Int J Intell Syst. 2021;36:7274–308.

	14.	 Liu PD, Wang YM. Multiple attribute group decision making 
methods based on intuitionistic linguistic power generalized 
aggregation operators. Appl Soft Comput. 2014;17:90–104.

	15.	 Liu PD, Gao H, Fujita H. The new extension of the MULTI-
MOORA method for sustainable supplier selection with intui-
tionistic linguistic rough numbers. Appl Soft Comput. 2021;99: 
106893.

	16.	 Deng X, Wang J, Wei G, Wei C. Multiple attribute decision mak-
ing based on Muirhead mean operators with 2-tuple linguistic 
Pythagorean fuzzy information. Sci Iran E. 2021;28(4):2294–322.

	17.	 Mandal P, Samanta S, Pal M. Large-scale group decision-making 
based on Pythagorean linguistic preference relations using experts 
clustering and consensus measure with non-cooperative behavior 
analysis of clusters. Complex Intell Syst. 2022;8:819–33.

	18.	 Zhao HM, Zhang RT, Zhang A, Zhu XM. Multi-attribute group 
decision making method with unknown attribute weights based 
on the q-rung orthopair uncertain linguistic power Muirhead 
mean operators. Int J Comput Commun. 2021;16(3):4214.

	19.	 Yang ZL, Garg H. Interaction power partitioned Maclaurin 
symmetric mean operators under q-rung orthopair uncertain 
linguistic information. Int J Fuzzy Syst. 2022;24:1079–97.

	20.	 Chen ZC, Liu PH, Pei Z. An approach to multiple attribute 
group decision making based on linguistic intuitionistic fuzzy 
numbers. Int J Comput Int Sys. 2015;8(4):747–60.

	21.	 Liu JB, Mai JX, Li HX, Huang B, Liu YJ. On three perspectives 
for deriving three-way decision with linguistic intuitionistic fuzzy 
information. Informa Sciences. 2022;588:350–80.

	22.	 Garg H. Linguistic Pythagorean fuzzy sets and its applications 
in multiattribute decision-making process. Int J Intell Syst. 
2018;33(6):1234–63.

	23.	 Ping YJ, Liu R, Wang ZL, Liu HC. New approach for quality 
function deployment with an extended alternative queuing method 
under linguistic Pythagorean fuzzy environment. Eur J Ind Eng. 
2022;16(3):349–70.

	24.	 Liu PD, Liu WQ. Multiple-attribute group decision-making based 
on power Bonferroni operators of linguistic q-rung orthopair 
fuzzy numbers. Int J Intell Syst. 2019;34(4):652–89.

	25.	 Liu PD, Liu WQ. Multiple-attribute group decision-making 
method of linguistic q-rung orthopair fuzzy power Muirhead 



2231Cognitive Computation (2023) 15:2216–2231	

1 3

mean operators based on entropy weight. Int J Intell Syst. 
2019;34(8):1755–94.

	26.	 Lin MW, Li XM, Chen LF. Linguistic q-rung orthopair fuzzy 
sets and their interactional partitioned Heronian mean aggregation 
operators. Int J Intell Syst. 2020;35(2):217–49.

	27.	 Ling J, Li XM, Lin MW. Medical waste treatment station selection 
based on linguistic q-rung orthopair fuzzy numbers. CMES-Comp 
Model Eng. 2021;129(1):117–48.

	28.	 Liu PD, Naz S, Akram M, Muzammal M. Group decision-making 
analysis based on linguistic q-rung orthopair fuzzy generalized 
point weighted aggregation operators. Int J Mach Learn Cyb. 
2022;13:883–906.

	29.	 Akram M, Naz S, Edalatpanah SA, Mehreen R. Group decision-
making framework under linguistic q-rung orthopair fuzzy Ein-
stein models. Soft Comput. 2021;25:10309–34.

	30.	 Liu DH, Liu YY, Wang LZ. The reference ideal TOPSIS method 
for linguistic q-rung orthopair fuzzy decision making based on 
linguistic scale function. J Intell Fuzzy Syst. 2020;39(3):4111–31.

	31.	 Peng D, Wang J, Liu DH, Liu ZM. The similarity measures for lin-
guistic q-rung orthopair fuzzy multi-criteria group decision mak-
ing using projection method. IEEE Access. 2019;7:176732–45.

	32.	 Verma R. Generalized similarity measures under linguistic q-rung 
orthopair fuzzy environment with application to multiple attribute 
decision-making. Granul Comput. 2022;7:253–75.

	33.	 Meng FY, Tang J, Xu ZS. Exploiting the priority weights from 
interval linguistic fuzzy preference relations. Soft Comput. 
2019;23:583–97.

	34.	 Meng FY, Tang J, Zhang YL. Programming model-based group 
decision making with multiplicative linguistic intuitionistic fuzzy 
preference relations. Comput Ind Eng. 2019;136:212–24.

	35.	 Wu P, Liu JP, Zhou LG, Chen HY. Algorithm for improving addi-
tive consistency of linguistic preference relations with an integer 
optimization model. Appl Soft Comput. 2020;86: 105955.

	36.	 Ren PJ, Xu ZS, Wang XX, Zeng XJ. Group decision making with 
hesitant fuzzy linguistic preference relations based on modified 
extent measurement. Expert Syst Appl. 2021;171: 114235.

	37.	 Xue M, Fu C, Yang SL. A comparative analysis of probabilistic 
linguistic preference relations and distributed preference relations 
for decision making. Fuzzy Optim Decis Ma. 2022;21:71–97.

	38.	 Pei LD, Jin FF, Ni ZW, Chen HY, Tao ZF. An automatic iterative 
decision-making method for intuitionistic fuzzy linguistic prefer-
ence relations. Int J Syst Sci. 2017;48(13):2779–93.

	39.	 Meng FY, Tang J, Hamido F. Linguistic intuitionistic fuzzy pref-
erence relations and their application to multi-criteria decision 
making. Inform Fusion. 2019;46:77–90.

	40.	 Zhang LY, Liang CL, Li T, Yang WT. A two-stage EDM method 
based on KUCBR with the incomplete linguistic intuitionistic 
fuzzy preference relations. Comput Ind Eng. 2022;172: 108552.

	41.	 Jin FF, Ni ZW, Pei LD, Chen HY, Li YP, Zhu XH, Ni LP. A deci-
sion support model for group decision making with intuitionistic 

fuzzy linguistic preferences relations. Neural Comput Appl. 
2019;31:1103–24.

	42.	 Liu JP, Fang MD, Jin FF, Tao ZF, Chen HY, Du PC. Pythagorean 
fuzzy linguistic decision support model based on consistency-
adjustment strategy and consensus reaching process. Soft Comput. 
2021;25:8205–21.

	43.	 Herrera F, Herrera-Viedma E, Verdegay JL. A model of consensus 
in group decision making under linguistic assessments. Fuzzy Set 
Syst. 1996;78:73–87.

	44.	 Xu ZS. EOWA and EOWG operators for aggregating linguistic 
labels based on linguistic preference relations. Int J Uncertain 
Fuzz. 2004;12:791–810.

	45.	 Hu HZ, Tang YB, Xie YQ, Dai YH, Dai WH. Cognitive com-
putation on consumer’s decision making of internet financial 
products based on neural activity data. Comput Sci Inf Syst. 
2020;17(2):689–704.

	46.	 Carpitella S, Certa A, Izquierdo J, Cascia ML. Multi-criteria 
decision-making approach for modular enterprise resource 
planning sorting problems. J Multi-Criteria Dec. 2021;28:234–47.

	47.	 Ho IK, Lawrence JS. The role of social cognition in medical deci-
sion making with Asian American patients. J Racial Ethn Health. 
2021;8:1112–8.

	48.	 Chai JS, Selvachandran G, Smarandache F, Gerogiannis VC, Son 
LH, Bui QT, Vo B. New similarity measures for single-valued 
neutrosophic sets with applications in pattern recognition and 
medical diagnosis problems. Complex Intell Syst. 2021;7:703–23.

	49.	 Gohain B, Chutia R, Dutta P. Distance measure on intuitionistic 
fuzzy sets and its application in decision-making, pattern recogni-
tion, and clustering problems. Int J Intell Syst. 2022;37(3):2458–501.

	50.	 Tang J, Meng FY, Cabrerizo FJ, Herrera-Viedma E. A procedure 
for group decision making with interval-valued intuitionistic 
linguistic fuzzy preference relations. Fuzzy Optim Decis Ma. 
2019;18:493–527.

	51.	 Verma1 R, Agarwal N. Multiple attribute group decision-mak-
ing based on generalized aggregation operators under linguistic 
interval-valued Pythagorean fuzzy environment. Granul Comput. 
2022;7:591-632.

	52.	 Khan MSA, Khan AS, Khan IA, Mashwani WK, Hussain F. Lin-
guistic interval-valued q-rung orthopair fuzzy TOPSIS method for 
decision making problem with incomplete weight. J Intell Fuzzy 
Syst. 2021;40(3):4223–35.

Publisher's Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds 
exclusive rights to this article under a publishing agreement with the 
author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of 
such publishing agreement and applicable law.


	Cognitively Inspired Group Decision-Making with Linguistic q-Rung Orthopair Fuzzy Preference Relations
	Abstract
	Introduction
	Basic Concepts
	Additive Consistency Analysis for Incomplete Lq-ROFPR
	Group Decision-Making with Incomplete Lq-ROFPRs
	A Case Study and Comparison Analysis
	Conclusion
	References


