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Abstract
Artificial intelligence (AI) has recently seen explosive growth and remarkable successes in several application areas. How-
ever, it is becoming clear that the methods that have made this possible are subject to several limitations that might inhibit 
progress towards replicating the more general intelligence seen in humans and other animals. In contrast to current AI 
methods that focus on specific tasks and rely on large amounts of offline data and extensive, slow, and mostly supervised 
learning, this natural intelligence is quick, versatile, agile, and open-ended. This position paper brings together ideas from 
neuroscience, evolutionary and developmental biology, and complex systems to analyze why such natural intelligence is 
possible in animals and suggests that AI should exploit the same strategies to move in a different direction. In particular, it 
argues that integrated embodiment, modularity, synergy, developmental learning, and evolution are key enablers of natural 
intelligence and should be at the core of AI systems as well. The analysis in the paper leads to the description of a biologically 
grounded deep intelligence (DI) framework for understanding natural intelligence and developing a new approach to building 
more versatile, autonomous, and integrated AI. The paper concludes that the dominant paradigm of AI today is unlikely to 
lead to truly natural general intelligence and that something like the biologically inspired DI framework is needed for that.
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Introduction

AI and machine learning have recently made great strides—
thanks especially to the explosive developments in neural 
networks [1–9]. But several critics, including some of the 
leading researchers in AI, have noted the fact that the cur-
rently dominant AI paradigm—often referred to as deep 
learning—diverges from natural intelligence in fundamental 
ways [10–16]. Concurring with these critiques, this position 
paper argues that these divergences will keep current ML 
systems from achieving the flexible and versatile general 
intelligence of the kind seen even in fairly simple animals 
with central nervous systems, though they will become far 
better than humans at solving a wide range of very specific, 
extremely complex problems that are traditionally associ-
ated with human intelligence. The paper argues further that 
building natural intelligence will require a way of thinking 
about AI that is rooted more firmly in biology and complex 

systems rather than computational engineering [15]. The 
classical engineering paradigm based on the concepts of 
design, optimization, verification, validation, stability, 
predictability, controllability, and goal-directedness does 
not work well for complex adaptive systems and must be 
replaced by a different framework that emphasizes self-
organization, autonomy, functional adequacy, versatility, 
flexibility, adaptivity, growth, and resilience [17]. In doing 
so, the focus should be on identifying and deploying the 
“enabling technologies” of biology that have produced func-
tional intelligent systems of great complexity and ultimately 
develop an engineering framework based on these.

One part of the question motivating this special issue of Cog-
nitive Computation is, “What can AI learn from neuroscience?” 
The main message of this position paper is that AI should learn 
not only from neuroscience, but also from evolutionary and 
developmental biology, and from the emergent behavior of ani-
mals as self-organizing complex dynamical systems.

In the 1980s, the re-emergence of neural networks was 
seen as liberating AI from this abstract symbolic approach 
to a more biologically inspired, distributed, and adaptive 
one. However, it is now clear that not all the problems 
were solved, and some new ones were created. The neural 
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networks of today may nominally use biologically inspired 
neurons and synapses, but in fact, the biologically implau-
sible, hand-crafted, serial, symbolic algorithms of the past 
have simply been replaced by parallel, distributed algorithms 
trained on data while retaining the dualistic notion that the 
function of intelligence can be abstracted away completely 
from its natural biological substrate. This position paper 
argues for an alternative set of principles to first under-
stand and then, perhaps, to build a more natural AI that is 
grounded firmly in biology.

The proposed approach is termed deep intelligence (DI) 
because it sees intelligence as requiring depth along several 
dimensions: Structural, functional, and adaptive. But, more 
fundamentally, it asserts that flexible, fluent, and versatile 
general intelligence is a biological phenomenon that is a 
property of the organism as a whole and emerges naturally 
from the structure and dynamics of the organism as it inter-
acts with its environment. The organisms—in this case, ani-
mals with nervous systems—are seen as self-organizing com-
plex systems embedded in a complex, dynamic environment.

These ideas are not very new in themselves and have been 
explored well within disciplines relevant to AI, including 
evolutionary and developmental biology [18–21], neurosci-
ence [22–25], cognitive science [26, 27], complex systems 
studies [28, 29], and robotics [30–35]. Unfortunately, their 
application in AI has remained confined to sub-disciplines 
such as developmental and evolutionary robotics, while the 
mainstream thrust of AI in recent years has been on build-
ing ever larger deep neural networks trained primarily with 
supervised learning—no doubt because such networks pro-
duce more immediate benefits from an applications perspec-
tive. This tendency is also rooted in a brain-centric view of 
intelligence, assuming that the best way to obtain general 
intelligence is to model higher cognitive abilities—notably 
language and reasoning—and that, after sufficient scaling 
up, such models would lead to artificial general intelligence 
(AGI). With this focus on large neural networks learning 
statistical inference from large datasets, AI has moved stead-
ily away from the biological nature of intelligence, and thus 
from the viewpoint stated above. Most of the well-known 
neural models of today—with the possible exception of 
convolutional neural networks [5] and some recent work in 
reinforcement learning (RL) [36–38]—have very little of 
the biological inspiration that originally motivated neural 
networks.

Natural Intelligence

What makes an agent intelligent? Much of the work on AI 
has been based on a human-centric and brain-centric defini-
tion of intelligence, which sees it as an attribute comprising 
human—or human-like—capabilities associated with the 

brain: Reasoning, planning, language, complex problem-solv-
ing, etc. But, in fact, intelligence is an attribute of all animals 
with central nervous systems: It is an inherent understanding 
of the world that gives the animal the ability to exploit its 
environment opportunistically and pervasively for productive 
survival. A spider weaving a web to catch prey, an octopus 
changing color to camouflage itself, a leopard stalking deer 
on the savannah, and a human shopping for groceries are all 
examples of intelligence at various levels. The complexity 
of intelligent behaviors is related directly to the complexity 
of the animal’s body and its nervous system. Thus, intelli-
gence is something that has evolved gradually over hundreds 
of millions of years, punctuated with sharp jumps in com-
plexity corresponding to the emergence of novel “enabling 
technologies” such as the spinal cord, the neocortex, and 
bipedality. Human intelligence is only the latest stage of this 
long process. This type of intelligence will be termed natural 
intelligence in this paper to distinguish it from the techni-
cal definition of general intelligence in cognitive psychology  
[39, 40].

Natural intelligence has many specific characteristics, but 
the following stand out in particular:

Autonomy Natural intelligence is autonomous in the sense 
that it involves only the animal and its environment (includ-
ing other organisms). Intelligent behavior emerges from the 
interaction between the two, driven and modulated by the 
internal motivations, drives, and emotions of the animal. At 
its most basic level, it is automatic and has implicit goals, 
but more deliberate behaviors with subjectively perceived 
goals emerge in more complex animals [41].

Integrity Intelligence is a property of the whole animal, with all 
its sensory, cognitive, and behavioral capacities, not a piecemeal 
collection of distinct functions. This means that intelligence 
always interacts with the world as a single entity, and, except in 
pathological cases, never faces the problem of integrating parts 
of its immediate perception, memory, and emotion post facto 
to make inferences across all aspects of experience. The animal 
always lives in a single, unified moment even though its atten-
tion may focus only on parts of it.

Fluency Natural intelligence is always “real-time”— 
continually receiving sensory data and generating internal and 
external behaviors in the context of its internal state. It learns 
extremely rapidly—sometimes with almost no experience—
and generalizes well out of sample. There is no opportunity 
for massive off-line learning—only limited intervals of mental 
rehearsal learning and memory consolidation. Humans have, 
of course, developed layers of external communication (e.g., 
language) and memory (e.g., written knowledge) that extend 
this, but that is a late emergent feature of intelligence that must  
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have developed by leveraging more rudimentary capacities 
present in earlier primates and other animals.

Adaptivity The ability to adapt over time is an essential 
feature of all intelligent animals—even the simplest. How-
ever, this adaptation is not confined just to neural plastic-
ity. It includes the developmental process of the animal 
and its real-time behavior that is always dynamically adap-
tive and emergent. At a deeper level, it also includes the 
evolutionary process that has brought the animal to its 
current form.

Versatility Intelligence in all animals is versatile in that a 
single, integrated brain-body system performs all the func-
tions underlying intelligence. Importantly, these functions 
are always inherently coordinated because they have evolved 
and developed within an integrated system through evolu-
tionary, developmental, and behavioral time.

Resilience The quality of an animal’s intelligence depends 
ultimately on its ability to survive in perpetually unexpected 
situations, i.e., resilience. There are very specific features 
of the biological system that make it resilient, including 
modularity [19, 42], emergent coordination [28, 29], and 
functional diversity [43].

Evolvability Intelligence emerged in its simplest form in very 
simple animals and has developed over several hundred mil-
lion years into a far, far more complex functional attribute as 
instantiated in humans. This ability to evolve and grow over 
orders of magnitude is not an accidental thing, but the result 
of specific biological principles that are grouped under the 
term evolvability [44–46]. Successful intelligence that can 
thrive in a changing world must itself be evolvable.

The term “intelligent system” is often used casually 
to refer to any system that can learn from data, but it 
is absurd to say that any one function such as vision or 
language is “intelligent” in any real sense. The proposed 
DI framework  attempts to make the term “intelligent  
systems” more specific, applying it only to systems that 
possess the seven features listed above to some degree. 
The question is: How many of these features are present 
in the widely celebrated AI systems of today? The answer 
is that almost none are, except adaptivity, and that too in 
a superficial, narrowly defined way. The next question 
is: Is it possible to get to a system with these features 
using today’s dominant AI approaches? The case made in 
this position paper is that it will not be possible (or will 
be extremely difficult), and a different approach—Deep 
Intelligence—is needed, first to understand and then to 
replicate natural intelligence.

Critique of Current AI Methods

Deep Learning and Natural Intelligence

This, in many ways, is the golden age of AI—a time when 
it is, at last, achieving real-world successes at an impressive 
pace that is likely to continue for the foreseeable future. But 
today’s successful deep learning-based machine learning—
referred to henceforth as DL/ML—differs from natural intel-
ligence in several fundamental ways:

• Most DL/ML systems are specialists that perform only 
a single task (or a well-defined range of tasks) that they 
are explicitly trained for, whereas natural systems show 
versatile intelligence across a broad range of modalities 
and tasks.

• DL/ML systems typically require a large amount of  
data and a large number of learning iterations, whereas 
natural systems can often learn to solve real-world  
problems quickly from very limited data [12, 14, 37].

• Most of the successful, application-scale DL/ML sys-
tems use supervised learning, whereas natural systems 
depend much more on unsupervised and fast reinforce-
ment learning.

• In most DL/ML methods, data needs to be stored  
offline so it can be iterated through repeatedly whereas 
natural systems learn mainly from real-time data with 
only limited off-line storage and recall (rehearsal).

• While DL/ML systems can be extremely good at gen-
eralizing within sample (after sufficient training), they 
remain poor in out-of-sample generalization, which  
natural intelligent systems do as a matter of course [47].

• While DL/ ML systems are extremely good at pattern 
recognition and statistical inference, they are severely 
limited in terms of the symbolic processing and compo-
sitionality that would be required for human capacities 
such as language, domain-independent reasoning, and 
complex planning [12].

• DL/ML systems have difficulty with causal inference 
because of their inability to handle complex temporal 
compositionality [10].

• DL/ML systems have a fixed learning capacity that 
causes them to converge to a good solution on a complex 
task and stop or just maintain performance with some 
ongoing learning. In contrast, natural intelligent systems 
start with simple tasks and become more capable over 
their lifetime by building on the scaffolding of previous 
learning. Thus, learning depletes the learning capacity of 
DL/ML systems but enhances that of natural ones.

• DL/ML systems do not have any notion of meaning 
beyond inferred statistical regularities present in their 
training datasets whereas natural intelligent systems 
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ground meaning in the experience of their physical  
environment [14, 15]. As a result, even extremely  
sophisticated ML systems are “cognitively shallow”  
[48], and frequently make absurd inferences [13].

• DL/ML systems are not autonomous in the sense of being 
driven by internal motivations. They are trained only to 
serve specific purposes defined by external users and 
evaluated in terms of these purposes.

These differences do not matter much when AI is applied 
to narrow problems where a large amount of reliable data 
is available. Exponential increases in computational power 
and advances in learning algorithms are allowing DL/ML 
systems to show remarkable performance on tasks such as 
translation [49, 50], code generation [51], game playing 
[52, 53], image analysis [5, 54], and answering complicated 
questions [55], to name a few. However, it is not compatible 
with the goal of developing natural intelligence.

Why Is a New Framework Needed?

There are many reasons why a new framework beyond the 
DL/ML approach is needed, but two stand out in particular: 
Lack of scalability, and difficulty of integration.

Building large-scale flexible and versatile intelligent 
systems—such as high degree-of-freedom (DOF) autono-
mous intelligent robots expected to perform a wide range 
of functions in the real world—will require exponentially  
greater amounts of data, time, and computational resources 
with increasing system complexity, and the data- and 
compute-hungry DL/ML approaches will have difficulty 
scaling in this situation. A major reason for this is that 
DL/ML systems try to learn very complex tasks using 
neural networks that: (1) Are initially naïve, i.e., have 
very limited, if any, prior inductive biases; and (2) Have  
generic, architecturally simple forms, e.g., repeated atten-
tional, convolutional, feed-forward layers, etc., that are 
expected to work across a broad range of tasks. Functional 
systems in animals are much more heterogeneous and 
function-specific. To be sure, the human brain has its own 
generic processor in the neocortex, but all the functions 
it is involved in are performed in conjunction with very 
specifically structured systems such as the hippocampus, 
basal ganglia, cerebellum, the spinal cord, etc.—and, of 
course, the very specific networks of sensory receptors and 
musculoskeletal elements. The effort to learn very complex 
functions with initially naïve and generic networks is what 
requires so much supervised learning. Animals, in contrast, 
do neural learning on top of a non-naïve substrate con-
figured by evolution, and refined not only through neural  
learning but also via a gradual developmental process.

With regard to having the DL/ML approach possibly lead 
to natural intelligence that is autonomous, versatile, and 

flexible, the main challenge is the narrow functional speci-
ficity of most systems. There are two obvious paths towards 
greater generality: (1) Start with a system that does a single 
thing, e.g., a large language model (LLM) generating text 
[55], and gradually add new task capabilities; (2) Implement 
specialist systems for all complex tasks important to intel-
ligence, and then combine them into a single system. Both 
approaches have severe problems—above all the fact that 
there is no canonical list of tasks that an intelligent must 
perform, nor any applicable metrics: After merging N tasks, 
there will always be an (N + 1)th. All that can be hoped for 
is ad hoc combination of modalities, which is essentially 
what a system like DALL-E does [56]. Second, even if all 
the tasks could be enumerated, each of the task-specific 
DL/ML systems would require huge amounts of data and 
computation time to train, and the real world offers neither 
the data nor the time. Third, the world is too complex for 
any amount of data and training to exhaust its possibilities 
and ground the system in the real world, so the system will 
always make absurd errors. And finally, the fact is that the 
best systems currently available for various tasks are very 
different from each other in fundamental ways, including the 
way they learn. Patching them onto each other or combining 
them will lead to conflicts and arbitrarily serious emergent 
problems that are always created when very complicated 
systems are combined. These will be apparent especially 
when brain-centric (rather than intrinsically embodied) AI 
systems trained only on large datasets are embedded into 
embodied real-world agents with many degrees-of-freedom.

Both these difficulties are addressed by the approach pro-
posed below.

The Deep Intelligence View

Background

The alternative Deep Intelligence approach to AI proposed 
in this position paper begins with a crucial observation: 
There is only one class of systems in the world that actu-
ally have natural intelligence—animals with central nerv-
ous systems. Based on this observation, it recommends that, 
instead of trying to outdo Nature by devising new models 
of intelligence based purely on reductionistic computa-
tional thinking, AI research should build from a deeper, 
more comprehensive understanding of how the biological 
structures and processes of the animal lead to intelligence 
with all its capacities. While this may sound like a standard, 
old-fashioned statement of biological inspiration that has 
putatively driven neural networks for decades, it is, in fact, 
advocating a complete reimagining of the AI enterprise and 
abandoning the computational-utilitarian, “neural learn-
ing only” approach in favor of one that looks at the entire 
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biology of intelligence. This does not deny the utility of 
studying the system at different levels and in different parts, 
but emphasizes that such analysis must not lose sight of the 
whole at any point. Indeed, even for specific domains and 
models, e.g., neural networks, more biologically grounded 
approaches should be adopted instead of relying on abstract 
computational ones.

The evolution of intelligence can be seen via a soft-
core, hard-periphery model [57]. In this view, the earliest 
behaving animals consisted of rather rigid sensory networks 
connecting to rather rigid musculoskeletal networks with 
minimal mediation by the intervening nervous system. Such 
animals were like low-order Braitenberg vehicles [58] where 
specific stimuli elicited fast, stereotypical responses. Since 
then, evolution has done three things in modular fashion:

1. Complexified the sensory networks—both by adding 
modalities, and by making the networks for each modal-
ity more complex—but keeping the network structure 
fairly rigid and steroeotypical, e.g., the pattern of recep-
tors in the retina.

2. Complexified the musculoskeletal networks by pro-
ducing bodies with increasing degrees of freedom and 
more complex architectures, but here too, keeping the 
structure quite stereotypical, e.g., segmented, bilaterally 
symmetric bodies [20].

3. Greatly complexified the nervous system network 
mediating between the other two networks by making 
its architecture wider, deeper, and more sophisticated, 
thus adding an enormous number of adaptable degrees 
of freedom into the system.

Each of these coevolving networks has constrained the 
others, ensuring that the sensory and behavioral capacities 
of the animal remain matched with the capacity of its cen-
tral nervous system. More recently—and especially in the 
evolution from pre-hominids to humans—the soft cogni-
tive component has grown much more rapidly than the hard 
periphery, layering more levels to create increasing cogni-
tive depth. This has allowed wholly new capacities such as 
natural language, symbolic reasoning, abstraction, complex 
causal inference, etc., to emerge—creating, in layers, a Sys-
tem 2 on top of the more primitive System 1 in the terminol-
ogy of Kahnemann [41]. AI should understand this process 
in depth, and use it as a template for systematically building 
intelligent systems of increasing complexity.

The Significance of Depth

In the DI framework, depth does not refer just to the 
structural depth of deep neural networks (though that 
too is useful), but also functional and adaptive depth. 

Structural depth follows from the fact that the brain-
body system of the animal is organized into multiple 
levels, each instantiated by a structurally deep network. 
These include the musculoskeletal network of the body, 
and the networks of the sensory receptors, thalamus, 
spinal cord and brainstem, the midbrain, the limbic sys-
tem, the basal ganglia, the hippocampus, the neocor-
tex, etc. This structural depth induces functional depth, 
as each level has its own functionality, and the final 
behavior emerges as a result of bidirectional interaction 
and dynamics across all these levels. Very importantly, 
functional depth is accompanied by functional diver-
sity: Each level’s structure and function are distinct, 
not generic. This is the case with all highly optimized  
complex systems [59, 60].

But the most important type of depth for AI is adaptive 
depth, which comes from the fact that intelligence is an emer-
gent product of four complex, multi-scale adaptive processes:

1. Evolution configures useful structures and processes in 
species over a very slow time-scale and encodes them 
into the genetic code of each species. These structures 
and processes represent prior inductive biases that are 
well-tuned to the environment in which the organisms 
of that species have to survive and reproduce [61].

2. Development instantiates the design specified by evolution 
in individual organisms, using a staged process of inter-
leaved growth and learning to produce an extremely com-
plex, well-trained intelligent agent at maturity. Each stage 
makes the system a little more complex and learns in the 
context of what prior stages have set up, thus constraining 
the complexity of the learning process at each stage [27].

3. Learning in the nervous system works in tandem with 
development to create detailed maps, programs, and 
control strategies to exploit the physical configuration 
produced by evolution and development extremely effi-
ciently for survival in the animal’s specific environment. 
Once development slows down or stops, neural plasticity 
becomes the primary mechanism for further learning.

4. Emergent behavior is the result of real-time, dynamic 
assembly of synergistic coordination modes in neu-
ral and musculoskeletal networks to generate ongoing 
external behaviors (actions) and internal perceptual and 
cognitive states [28, 29, 62]. This is what enables a deep 
complex system with relatively slow components to gen-
erate real-time responses [63, 64].

Figure 1 shows this deep intelligence adaptive process 
that produces adaptation in a way that is very different  
from current ML practice of shallow adaptation where all 
adaptation beyond the initial design of the naïve agent is 
packed into neural learning (Fig. 2).
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The Role of Evolution

“Nothing in biology makes sense except in the light of 
evolution.” That famous quote by Theodosius Dobzhansky 
[65]—a major figure in the Modern Synthesis of evolution-
ary biology—is an excellent principle for thinking about 
the fundamentally biological phenomenon of intelligence. 
Looking at evolution helps answer two fundamental ques-
tions about intelligence: (1) How do animals learn rapidly in 
a complex world? (2) What makes animals with extremely 
complex intelligence possible?

The answer to the first question is that evolution config-
ures useful priors, or inductive biases, in the embodiment of 
animals, which make rapid learning possible. For example, 
the genetically specified connectivity patterns of neurons in 

the visual cortex enable mammals to learn feature detectors 
very rapidly [66, 67]; or the connectivity of the spinal cord 
neural networks and muscles enables many animals to walk or 
swim immediately after birth. In these cases, evolution can be 
seen as a designer of extremely learning-ready systems with 
excellent inductive biases. However, the deeper question—and 
one of profound relevance for AI—is how such complex, well-
tuned systems are possible in the first place.

The evolutionary paradigm has had a place in AI for a 
long time [68, 69], mainly as an optimization mechanism 
[30, 70–73], but the truly important thing AI can learn from 
evolution is the set of strategies it uses to generate more and  
more complex organisms, i.e., evolvability [44–46]. As engi-
neers know all too well, building more complex systems  
can increase the risk of failure exponentially. Evolvability is 

Fig. 1  The deep adaptation 
process

Fig. 2  The shallow adaptation 
process used in most  
machine learning
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the capacity to avoid this explosion of risk. It is what makes 
natural intelligence possible.

The key insight that has emerged from the study of evolv-
ability is that modularity and its diverse modes of deploy-
ment play a central role in evolvability [19, 42]. These 
modes include hierarchical modular composition [74–76], 
encapsulation of critical functions [77, 78], creation of 
neutral spaces for exploration [79, 80], re-use of modules 
for different functions [20, 78], and emergent coordination 
between modules [81, 82]. The brain too has a hierarchical 
modular structure [22–24]. Two important examples of hier-
archical modularity enabling complex functions are the cer-
ebral cortex in humans, with its structure of columns [83], 
hypercolumns [84], cell assemblies [85, 86], etc., and the 
hierarchical networks underlying motor control [36, 87–91]. 
Hierarchical modularity is also important because it means 
that the system is nearly decomposable, i.e., it minimizes 
cross-module dependencies, which is a key attribute of suc-
cessful and evolvable complex systems [92, 93]. Evolution 
exploits this to produce increasingly complex viable systems 
by deepening modular hierarchies (Fig. 3).

The Role of Development

While evolution has the role of designing potentially use-
ful structures and processes available in all multicellular 
organisms of any given species, development ensures that 
each individual organism realizes that potential effec-
tively and efficiently. The importance of a developmental 
approach to learning has been asserted before in the frame-
work of autonomous mental development, with a focus 

on autonomy and internal motivation rather than external 
tuning [24, 31, 34].

From an AI engineering viewpoint, development ena-
bles two crucial abilities in the adaptive system:

1. Development releases the eventually available degrees 
of freedom in the system gradually in stages, allowing 
each newly released set to settle into coordination pat-
terns with those released in previous stages, and only 
then making new degrees of freedom available. It also 
ensures that the behavioral degrees of freedom are 
released in conjunction with increased perceptual and 
cognitive capacity, so that the complexity of the behav-
iors the organism is learning at any stage is matched 
with the complexity of the environment in which it per-
ceives itself as operating. This turns what would have 
been an extremely complex learning problem of coordi-
nating the full set of degrees of freedom all at once into 
a sequence of simpler, more constrained problems that 
are much likelier to converge to good solutions without 
requiring a lot of data and training.

2. Development enables the construction of increasingly 
complex functionality by hierarchical functional mod-
ularization. In humans, for example, this is apparent 
in linguistic learning, as simple words and sentences 
become building blocks for more complex ones in mul-
tiple stages. The same is true in motor learning, where 
simpler actions can serve as functional modules for the 
construction of more complex actions [94, 95]. The lack 
of this developmental process is a major reason why DL/
ML systems are not lifelong learners.

Fig. 3  A conceptual view of 
how evolution builds more 
complex systems by deepen-
ing modular hierarchies with 
composition and variation
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Using a developmental approach to learning in neural net-
works was proposed by Elman in a seminal paper [96], where 
he noted: “Maturational changes may provide the enabling 
conditions which allow learning to be most effective. …. 
these models work best (and in some cases, only work at all) 
when they are forced to “start small” and to undergo a devel-
opmental change which resembles the increase in working 
memory which also occurs over time in children. This effect 
occurs because the learning mechanism in such systems has 
specific shortcomings which are neatly compensated for 
when the initial learning phase takes place with restricted 
capacity.” Unfortunately, there was very little follow-up on 
Elman’s suggestions until the recent emergence of curricu-
lum learning [97], which has since seen significant growth 
[98, 99]. Curriculum learning focused initially on managing 
the presentation of data, but has since expanded to include 
models of growing networks, but without connecting with 
the biology of development. Work on developmental robotics 
[34, 35, 99–102] has more in common with the DI frame-
work, with its focus on autonomous learning with a devel-
opmental construction of internal models.

The Importance of Inherent Integration

In addition to structural, functional, and adaptive depth, the 
other major attribute that makes systems with natural intelli-
gence possible is that they are inherently integrated at every 
level of the deep, multi-scale adaptive process described 
above. Whether the animal is simple or complex, infant or 
mature, it always experiences the world as a whole, while 
DL/ML systems only experience the parts captured by their 
training data and their task. An animal does not need to 
“maintain consistency” between its models explicitly, or to 
merge them post facto; it has only one multimodal, multi-
scale model of how the world works in all its complexity, 
and the model inherently integrates the perceptual and 
behavioral affordances of the animal. Natural intelligence 
is always general, even at the simplest level.

A crucial capacity enabled by this integration is perva-
sive zero-shot generalization. In an integrated world model 
that is self-consistent across all modalities and experi-
ences, even very novel stimuli can find system-wide reso-
nances leading to sensible inference—especially after the 
animal has significant experience of its world. All intel-
ligent animals have this instinctive, inherent “common 
sense.” In contrast, for DL/ML systems, there is no world 
outside of their training data, which is a very limited simu-
lacrum of the world, so a lot of real-world stimuli seem 
far out-of-sample. That is a major reason why common 
sense continues to elude AI so far, and why producing AI 
with this critical attribute will require an approach based 
on inherent integration.

The Importance of Embodiment

In cognitive psychology, embodiment is the idea that mental 
function is not just a product of the brain, but of the brain 
and the rest of the body as an integrated system embedded 
within a specific environment [103, 104]. It is a powerful 
idea that is often seen in opposition to a purely computa-
tional view of the mind and purely control theoretic mod-
els of movement. Among other things, this is because the 
embodied agent can generate cognitive states and motor 
behavior through emergent coordination rather than explicit 
information processing or signaling [64, 105, 106].

From an AI perspective—and thus within the DI 
framework—embodiment is especially important because 
it grounds mental functions in the physical reality expe-
rienced by the agent rather than just in a dataset. The 
critical point is that the embodied agent (animal or AI 
system) and the environment it is embedded in (the real 
world) are both integrated systems operating under the 
same laws, i.e., the laws of physics, and can actually 
be seen as comprising a single integrated complex sys-
tem. This means that the agent’s experience is inherently 
self-consistent, and thus grounded and generalizable. 
Contrast this with a purely computational (simulated) 
agent that is not necessarily bound by the laws of phys-
ics experiencing a dataset that is, at best, an extremely 
limited, distorted, and selective view of reality. Expect-
ing such a system to then be intelligent in the real world 
is unrealistic.

To be sure, advanced intelligence builds abstractions 
on top of direct sensorimotor experience, and one of the 
most important questions that should be explored in the DI 
framework is how, in the course of evolution, the ability to 
create abstract representations has arisen in animals. There 
has long been great debate in AI about symbolic process-
ing and compositionality, which has been called “the central 
problem of AI” [107]. However, once the dualistic view of 
mind and body [108, 109] is rejected, it is obvious that any 
symbolic processing emerges necessarily from the physics 
of the brain-body system—especially the neural networks 
of the brain [24]. The central question, then, is: How does a 
brain-like physical system achieve this? Several models have 
been proposed to address this at the level of artificial neural 
networks [110–116], but all of them have serious limita-
tions. There also have been experimental studies to under-
stand how concepts, numbers, words, and other symbolic 
entities might be represented and composed in the human 
brain [117–122]. However, interpreting these results is com-
plicated by the immense complexity of the systems being 
considered (e.g., the human brain), resulting in a focus on 
simplistic tasks and experiments. From a DI perspective, 
with its focus on evolution, development, and embodiment 
(in addition to neural learning), the way to understand the 
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mechanisms of abstraction and symbolic processing is to 
study it first in simpler animals, to understand their sim-
pler underlying neural mechanisms, and then build system-
atically upon that understanding. For example, experiments 
have shown that a sense of numerical value and numerical 
order exists in birds [123], and perhaps even in fish [124]. 
By understanding the neural basis of this simplest type 
of abstract processing, it might be possible to understand 
the more complex kind seen in humans. Similarly, it has 
been suggested that the abstract, high-dimensional repre-
sentations of the cortex may be built on the scaffolding of 
spatial, 2-dimensional concrete representations of place in 
the hippocampus [125]. Exploring the path from embodi-
ment to abstraction is, therefore, the most principled path to 
understanding the mechanisms of higher cognition. Doing 
this will be extremely difficult in practice, but the first step 
must be to devise new experiments that explore the neu-
ral processes underlying any primitive abstract processing 
capacities in simpler animals, focusing on the underlying 
neural architectures, modules, and processes. Computational 
modeling based on the results can then be used to generate 
further hypotheses in more complex animals, and these can 
be rejected or validated using new experiments. It would 
also be useful to apply lessons from purely computational 
models [110–116, 126, 127], and from the vast quantitative 
literature on conceptual representation and processing in 
humans [120, 128–131]. A potentially promising, general, 
and biologically plausible way to understand how the ability 
for abstract thinking could emerge from evolutionarily more 
primitive cognitive tasks such as sensorimotor prediction 
might be to use free-energy and predictive coding-based 
approaches to mental function [132, 133]. Indeed, recent 
work has demonstrated how such processing could lead to 
the emergence of abstractions from a sub-symbolic neural 
substrate [134–136].

The Significance of Modularity

Hierarchical modularity is perhaps the single most important 
“enabling technology” underlying the emergence of intelli-
gence (and all other attributes of complex living organisms) 
[42]. Not only does it allow evolution to build systems of arbi-
trary complexity without encountering catastrophic failure, 
it is also crucial to the ability of a complex agent to generate 
useful complex behavior in the real world because it allows 
behavior to be produced through selection, combination  
and hierarchical encapsulation of modular primitives rather 
than explicit construction. This is a principle familiar to engi-
neers at the structural level—most complex design and con-
struction is now done using modules—but biology uses mod-
ularity in both structure and function. In cognitive science, 
the latter has been studied most intensively in the context of 
motor control. The embodiment of any organism configures 

coordination modes or synergies throughout the brain-body 
system, so that neural structures and muscles across several 
joints are constrained collectively, and global responses can 
arise without information propagating explicitly through all 
layers of the deep but slow brain-body system [63, 64]. For 
example, specific muscles act in an inherently coordinated 
way because of their connectivity with the central pattern 
generators (CPGs) of the spinal cord [87–91], and groups of 
muscles develop prototypical activation patterns called muscle 
synergies that are used as primitives in the construction of a 
whole range of complex movements [25, 63, 94, 137–140]. 
This means that the actual degrees of freedom available to the 
system in any specific situation are fewer than the entire com-
binatorial space of all degrees of freedom—thus addressing 
the so-called degrees of freedom problem [141, 142]. Essen-
tially, the modules and their configuration predefine a rich 
but lower-dimensional latent repertoire of behaviors, and a 
high-level controller—the brain—simply needs to specify the 
code that unlocks a specific behavior rather than directing the 
individual muscles in detail [91]. This idea is also implicit in 
the subsumption model of behavior [143, 144], and the use of 
motor primitives in robots [145, 146].

While synergies are seen most clearly in motor control, 
the concept is widely applicable across the entire network-
of-networks system, which is why synergies have been 
termed “the atoms of brain and behavior” [147]. Attractors 
in recurrent networks are an example of coordination modes 
and are likely to be widely used across the nervous sys-
tem [148]. So are the patterns generated by CPGs [88]. It 
has been suggested that the entire cortex could usefully be 
seen as a very complex, hierarchical central pattern genera-
tor consisting of modules of neural subpopulations forming 
interacting CPGs [149]. Others have also noted the hierar-
chical modular organization of the cortex [84, 150], and a 
general theory of intelligence has recently been proposed 
that sees cortical columns as information processing mod-
ules that represent information and learn by making local 
predictions [151, 152]. An especially interesting hypothesis 
is to see intelligence, understanding, and even life in terms of 
emergent modules within the self-organizing networks com-
prising an organism [57, 62, 153–155]. This is completely 
consistent with the DI perspective, which sees all mental 
processes—perception, cognition, memory, and behavior—
as the emergence of synergistic activation patterns across 
networks of sensors, neurons, and musculoskeletal ele-
ments. In this sense—and as also implied by [62]—there is 
no essential difference between “thought” and “action”. It is 
just that the networks involved in “thought” are networks of 
neurons, and those involved in action are networks of both 
neurons and musculoskeletal elements. It is worth noting 
that coordination modes can also be dynamic—emerging 
as metastable, context-dependent attractors in multi-scale 
networks [106, 156–161].
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Most neural architectures are inherently—though super-
ficially—modular, and the idea of exploiting structural 
modularity more directly to enable higher-level cognitive 
processes has been well-explored [5, 23, 85, 86, 162–166]. 
It is now being applied explicitly to symbolic tasks [47, 
167], albeit for specific problems and deriving more from 
symbolic abstractions than embodied biology. Modular self-
organized neural networks have also been proposed as the 
basis of sensorimotor integration [168, 169].

One place where evolutionary and developmental adap-
tation in a hierarchically modular agent could be applied 
fruitfully to AI is in selective attention. It has been shown 
that the reason humans can learn new reinforcement learn-
ing (RL) tasks rapidly is that they abstract the complexity  
of the given stimulus into lower-dimensional representa-
tions through attentional mechanisms [170], but it is not 
clear how they learn which features to attend to. In the DI 
framework, evolution would have already provided modu-
lar priors that privilege specific feature classes, and devel-
opmental learning starting with very simple tasks would 
have allowed the agent to refine them to learn what types of 
features are generally useful to attend to in the real world. 
Thus, the system goes into any specific task with strong 
generically useful attentional biases, and RL simply needs 
to select and shape them rather than discovering and learn-
ing them from scratch.

Engineering Deep Intelligence

Defining a Feasible Framework

While the DI framework is motivated mainly as a way to 
understand intelligence better, the goal for AI must be to 
turn it into an engineering framework. In doing so, the goal 
would not be to replicate the entire process of animal evo-
lution and development—an impossible task in any case. 
Rather, the approach would be as follows: a) To operation-
alize the principles underlying the success of evolution and 
developmental learning; and b) To incorporate into AI sys-
tems the architectures, modules, and processes that underlie 
intelligence in behaving animals.

Evolutionary and developmental biologists have expli-
cated the principles of evolvability in great detail over the 
last several decades [20, 44–47] (as discussed in the section 
entitled “The Deep Intelligence View”), and more recently 
under the rubric of evolutionary developmental biology 
(EvoDevo) [20, 171–173]. A DI-based system would use 
these principles to build sequentially more complex intel-
ligent systems by explicit complexification rather than 
artificial evolution. Each system would display integrated 
intelligence at its own level, and become the basis for the 
next more complex system. At each level, the brain and body 

architectures, modules, and processes would derive from 
those observed in animals—albeit with some abstraction, 
and at a feasible level of detail.

The learning process would begin with a simple, modular 
system with limited but integrated perception, cognition, and 
behavior. The system would learn neurally how to exploit 
its limited capabilities in its limited environment, then add 
a bit more complexity through modular operators such as 
duplication, growth, splitting, modularization, etc., creating 
new sensory, cognitive, and motor modalities emergently as 
variations or combinations of the prior ones, learning more 
by building on what has already been learned, and so on, 
bootstrapping to a full-scale complex system by repeated  
cycles of alternating complexification and additive learning—
remaining integrated all the while. The developmental com-
plexification and learning could be nested within the outer 
loop of evolutionary complexification, but it would prob-
ably be more feasible to structure the process as alternating  
between architectural and modular complexification  
(evolution) and functional complexification (development) 
interleaved with learning. Figure 4 illustrates this process 
conceptually in comparison with the DL/ML approach.

An extremely simple version of this approach can be seen 
in the work of Sims [74, 75] and others, but the explicit 
use of simulated evolution would need to be replaced by a 
more scalable framework, one that incorporates evolutionary 
developmental insights more directly with neural learning. 
Developing such a framework—even for neural networks 
alone—is quite non-trivial. At a minimum, it would require 
defining canonical repertoires of (a) modules; (b) architec-
tures; (c) adaptive mechanisms; (d) developmental opera-
tors to complexify modules; and (e) evolutionary operators 
to grow and reconfigure the system. All of these would be 
grounded in biology and ranging across the spectrum of ver-
tebrate and arthropod evolution, development, and neural 
learning, and, as a result, across many spatial and temporal 
scales, as is the case in biological systems. Of course, all 
five things would need to be instantiated in computational 
or physical models. Human AI engineers would focus on 
designing richer repertoires and generative programs rather 
than specific large-scale neural architectures and training 
algorithms. Most importantly, the modules, architectures, 
and mechanisms of this generative framework would come 
from those of animal biology rather than abstract formalisms 
such as Markov decision processes, predicate logic, causal 
analysis, or even uniformly structured neural networks. The 
animal may be a kludge produced by evolution’s tinkering 
over billions of years [174], but it is this kludge that is actu-
ally intelligent in ways that human ingenuity still cannot 
replicate. AI should respect the kludge and stop trying to 
fit the complexity of Nature’s imagination into simplified, 
abstract boxes. This does not mean that every molecular 
detail and every voltage spike has to be accounted for, or 
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that mathematical models cannot be used. Quite the con-
trary! The goal should be to build better mathematical and 
computational models that capture more of the essential fea-
tures of the biology of intelligence at the level that is most 
appropriate—and, of course, feasible. To do this, it is critical 
to understand all of the biology and underlying intelligence, 
not just neuroscience.

Role of Supervised Learning

Given the cr itique of supervised learning-based 
approaches laid out in this paper and the ubiquity of 
such approaches in AI today, it might be asked if super-
vised learning has a place within the DI framework at 
all. Clearly, it must, because many complex behaviors 
and skills can only be learned through supervision and 
corrective feedback. In humans, this includes things such  
as learning to play a musical instrument, to do mathe-
matics, or even to use language correctly. The key here is 
that supervised learning must build upon and exploit the 
fundamentally integrated and self-organizing nature of 
the DI system rather than replacing it. In general, super-
vised learning should be seen as a late-stage mechanism 
in a system where the DI process has configured—and 
continues to configure—the primitives that supervised 
learning needs. This paradigm of self-organizing pro-
cesses laying the groundwork for more complex, incre-
mental, and careful learning is seen in many parts of 
the brain. For example, the evolutionary architecture 
of the early visual system and the self-organization of 
feature detectors during development provide a general 
basis for the rapid learning of more detailed skills such 
as object segmentation, recognition, etc. that may need 

more corrective feedback. Another example is how mus-
cle synergies [137, 138, 142]—presumably configured 
through evolution and early development—can then  
form the primitive basis functions [145, 146] for an 
ever-growing repertoire of complex movements, many 
of them, e.g., dance moves, requiring careful supervised 
learning. The contention is that a system produced by  
the DI process will, in fact, be more ready to do super-
vised (and reinforcement) learning across a range and 
combination of modalities, and will do so much more 
rapidly, than purely supervised systems, thus coming  
closer to the ideal seen in animals. This point has been 
demonstrated in a recent paper from my lab, where rapid 
unsupervised learning in a simple, hippocampus-like model 
generated a place field substrate for subsequent one-shot 
reinforcement learning of goal-directed navigation [175].

To some degree, this approach of using pre-configura-
tion of priors to facilitate supervised learning is already 
used in a simplistic way when self-supervised restricted 
Boltzmann machines [3] are used to learn initial features 
for subsequent supervised learning [176], and in the use of 
feature transfer to enable rapid learning across tasks [177]. 
However, this idea needs to be generalized and applied in 
integrated systems rather than within narrow modalities. 
Supervised learning in animals is also unlikely to use back-
propagation, though that is not necessarily a barrier in arti-
ficial systems once the basis system has been configured. 
In many—perhaps all—cases, more biologically plausible 
alternatives such as contrastive [176], self-supervised [175, 
178], or resonance-based [23, 179] learning as well as free-
energy and predictive coding approaches [132–156] might 
be sufficient to achieve the same goal when paired with a 
DI process generating good prior biases.

Fig. 4  Conceptual view of how 
the DL/ML and DI approaches 
would produce complex natural 
intelligence. The red arrows for 
the DL/ML systems indicate 
explicit integration; the red 
frame for the DI systems indi-
cates inherent integratedness
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Conclusion

There is currently a great deal of debate on whether AI is going 
in the “right direction” with its focus on scaling up deep learning 
systems [10–16, 180–182]. The debate focuses on such issues 
as symbolic processing, causal reasoning, compositionality,  
etc., with some experts suggesting that these things will need to  
be incorporated by design into the current models. A major 
aim of this position paper has been to suggest that, since all 
these capabilities arise naturally in a self-organizing complex 
system, i.e., the embodied brain, their origins, and mechanisms 
can be understood by studying them in that natural system rather  
than coming up with unnatural, biologically implausible engi-
neering methods and symbolic abstractions. Here, it is important 
to point out that, while the mainstream of AI today is focused 
on the DL/ML approaches, and expects to achieve general  
intelligence through that route, it is more likely that such intel-
ligence will emerge from the work in areas such as evolutionary,  
developmental, and cognitive robotics [30–35, 100–102], where 
embodied agents learn complex tasks in a more biologically 
motivated framework. However, this work is at a very early stage 
and is still focused on specific functions or modalities, such as 
morphology, control, imitation learning, language acquisition, 
vision, etc. A full DI framework would eventually need to apply  
these methods to inherently integrated systems.

One final point: Natural intelligence will not be achieved 
as long as the focus of AI is on building systems purely to 
serve human purposes. This only creates glorified screw-
drivers. A system with natural intelligence must be autono-
mous, have its own—probably unexplainable—purposes, 
and learn all its life in an open-ended way. Such a system 
may not be immediately useful and may even be dangerous 
if it was sufficiently complex, but until such systems are 
built, AI is just the building of smart tools, not intelligent 
systems [183].

Data Availability Data sharing not applicable to this article as no data-
sets were generated or analyzed during the current study.

Declarations 

Ethical Approval This article does not contain any studies with human 
participants or animals.

Informed Consent The work in this paper did not involve any studies 
requiring informed consent.

Conflict of Interest The author declares no competing interests.

References

 1. Hochreiter S, Schmidhuber J. Long short-term memory. Neu-
ral Comput. 1997;9(8):1735–80. https:// doi. org/ 10. 1162/ neco. 
1997.9. 8. 1735.

 2. Bengio Y, Lamblin P, Popovici D, Larochelle H. Greedy layer-
wise training of deep networks. Adv Neur Inform Proc Syst. 
2007;153–160.

 3. Hinton GE. Learning multiple layers of representation. Trends 
Cogn Sci. 2007;11:428–34.

 4. Ciresan D, Meier U, Schmidhuber J. Multi-column deep neu-
ral networks for image classification, Proceedings of the 2012 
IEEE Conference on Computer Vision and Pattern Recognition. 
2012;3642–3649. doi:https:// doi. org/ 10. 1109/ cvpr. 2012. 62481 10.

 5. Krizhevsky A, Sutskever I, Hinton G. ImageNet classification 
with deep convolutional neural networks. Adv Neur Inform 
Proc Syst. 2012.

 6. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 
2015;521(7553):436–44. https:// doi. org/ 10. 1038/ natur e14539.

 7. Schmidhuber J. Deep learning in neural networks: an overview. 
Neural Netw. 2015;61:85–117. https:// doi. org/ 10. 1016/j. neu-
net. 2014. 09. 003.

 8. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez 
AN, Kaiser L, Polosukhin I. Attention is all you need. Adv 
Neur Inform Proc Syst 2017. arXiv: 1706. 03762.

 9. Sejnowski TJ. The deep learning revolution. MIT press. 2018.
 10. Pearl J, McKenzie D. The book of why: the new science of 

cause and effect. Basic Books; 2018.
 11. Harnett K. To build truly intelligent machines, teach them 

cause and effect. Quanta. 2018. https:// www. quant amaga zine. 
org/ to- build- truly- intel ligent- machi nes- teach- them- cause- and- 
effect- 20180 515/.

 12. Marcus G, Davis E. Rebooting AI: building artificial intel-
ligence we can trust. Pantheon. 2019.

 13. Heaven D. Why deep-learning AIs are so easy to fool. Nature. 
2019;574:163–6. https:// doi. org/ 10. 1038/ d41586- 019- 03013-5.

 14. Mitchell M. Artificial intelligence: a guide for thinking 
humans. Strauss and Giroux: Farrar; 2019.

 15. Brooks RA. The cul-de-sac of the computational metaphor: 
a talk by Rodney Brooks. Edge.  2019.  https:// www. edge. 
org/ conve rsati on/ rodney_ a_ brooks- the- cul- de- sac- of- the-  
compu tatio nal- metap hor.

 16. Marcus G, Davis E, Aaronson S. A very preliminary analysis 
of DALL-E 2. 2022. arXiv: 2204. 13807 [cs.CV].

 17. Minai AA, Braha D, Bar-Yam Y. Complex systems engineer-
ing: a new paradigm, in complex engineered systems: science 
meets technology, D. Braha, A.A. Minai, and Y. Bar-Yam 
(Eds.). Springer Verlag. 2006;1–22.

 18. Raff RA. The shape of life: genes, development, and the evolu-
tion of animal form. University of Chicago Press. 1996.

 19. Schlosser G, Wagner GP (eds.). Modularity in development 
and evolution. Univer Chic Press. 2004.

 20. Carroll SB. Endless forms most beautiful: the new science of 
evo-devo and the making of the animal kingdom. WW Norton 
& Company. 2005.

 21. Wagner A. The origins of evolutionary innovations. Oxford: 
Oxford University Press; 2011.

 22. Meunier D, Lambiotte R, Bullmore E. Modular and hierarchi-
cally modular organization of brain networks. Front Neurosci. 
2010;4. https:// doi. org/ 10. 3389/ fnins. 2010. 00200.

 23. Grossberg S. The complementary brain: Unifying brain dynam-
ics and modularity. Trends Cogn Sci. 2000;4:233–46. https:// 
doi. org/ 10. 1016/ S1364- 6613(00) 01464-9.

 24. Grossberg S. Conscious mind, resonant brain: how each brain 
makes a mind. Oxford University Press; 2021.

 25. d’Avella A, Pai DK. Modularity for sensorimotor control: evi-
dence and a new prediction. J Mot Behav. 2010;42:361–9.

 26. Geary DC. The origin of mind: evolution of brain, cognition, and 
general intelligence. Am Psychol Assoc. 2005.

 27. Thelen E, Smith LB. A dynamic systems approach to the devel-
opment of cognition and action. MIT Press; 1994.

https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1109/cvpr.2012.6248110
https://doi.org/10.1038/nature14539
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1016/j.neunet.2014.09.003
http://arxiv.org/abs/1706.03762
https://www.quantamagazine.org/to-build-truly-intelligent-machines-teach-them-cause-and-effect-20180515/
https://www.quantamagazine.org/to-build-truly-intelligent-machines-teach-them-cause-and-effect-20180515/
https://www.quantamagazine.org/to-build-truly-intelligent-machines-teach-them-cause-and-effect-20180515/
https://doi.org/10.1038/d41586-019-03013-5
https://www.edge.org/conversation/rodney_a_brooks-the-cul-de-sac-of-the-computational-metaphor
https://www.edge.org/conversation/rodney_a_brooks-the-cul-de-sac-of-the-computational-metaphor
https://www.edge.org/conversation/rodney_a_brooks-the-cul-de-sac-of-the-computational-metaphor
http://arxiv.org/abs/hep-th/2204.13807
https://doi.org/10.3389/fnins.2010.00200
https://doi.org/10.1016/S1364-6613(00)01464-9
https://doi.org/10.1016/S1364-6613(00)01464-9


2401Cognitive Computation (2024) 16:2389–2404 

1 3

 28. Kelso JAS. Dynamic patterns: the self-organization of brain and 
behavior. Bradford Books; 1995.

 29. Goldfield EC. Emergent forms: origins and early development 
of human action and perception. Oxford University Press; 1995.

 30. Nolfi S, Floreano D. Evolutionary robotics: the biology, intelligence, 
and technology of self-organizing machines. MIT press. 2000.

 31. Weng J, McClelland J, Pentland A, Sporns O, Stockman I, Sur 
M, Thelen E. Autonomous mental development by robots and 
animals. Science. 2001;291:599–600.

 32. Jin Y, Meng Y. Morphogenetic robotics: a new emerging field 
in developmental robotics. IEEE Transactions on Systems, 
Man, and Cybernetics, Part C: Reviews and Applications. 
2011;41(2):145–60.

 33. Weng J. Symbolic models and emergent models: a review. IEEE 
Trans Auton Ment Dev. 2011;4:29–54.

 34. Cangelosi A, Schlesinger M. Developmental Robotics: from 
babies to robots. MIT Press. 2015.

 35. Vujovic V, Rosendo A, Brodbeck L, Iida F. Evolutionary devel-
opmental robotics: Improving morphology and control of physi-
cal robots. Artificial Life. 2017;23(2):169–185. https:// doi. org/ 
10. 1162/ ARTL_a_ 00228.

 36. Merel J, Botvinick M, Wayne G. Hierarchical motor control in 
mammals and machines. Nat Commun. 2019;10:5489. https:// 
doi. org/ 10. 1038/ s41467- 019- 13239-6.

 37. Botvinick M, Ritter S, Wang JX, Kurth-Nelson Z, Hassabis 
D. Reinforcement learning, fast and slow. Trends Cogn Sci. 
2019;23:408–22. https:// doi. org/ 10. 1016/j. tics. 2019. 02. 006.

 38. Barretto A, Hou S, Borsa D, Silver D, Precup D. Fast rein-
forcement learning with generalized policy updates. PNAS. 
2020;117:30079–87.

 39. Spearman C. General intelligence, objectively determined and 
measured. Am J Psychol. 1904;15:201–93.

 40. Cattell EB. Theory of fluid and crystallized intelligence: a criti-
cal experiment. J Educ Psychol. 1963;54:1–22.

 41. Kahneman D. Thinking fast and slow. Straus and Giroux: Farrar; 
2011.

 42. Callebaut W, Rasskin-Gutman D (eds.). Modularity: understand-
ing the development and evolution of natural complex systems. 
MIT Press. 2005.

 43. Whitacre JM. Degeneracy: A link between evolvability, robust-
ness and complexity in biological systems. Theor Biol Med 
Model. 2010;7:6. https:// doi. org/ 10. 1186/ 1742- 4682-7-6.

 44. Dawkins R. The evolution of evolvability, In Langton C. G. (Ed.), 
Artificial life: the proceedings of an interdisciplinary workshop on 
the synthesis and simulation of living systems. Addison‐Wesley 
Publishing Co. 1988;201–220.

 45. Kirschner M, Gerhart J. Evolvability. PNAS. 1998;95(15):8420–
7. https:// doi. org/ 10. 1073/ pnas. 95. 15. 8420.

 46. Wagner A. Robustness and evolvability in living systems. 
Princeton University Press; 2005.

 47. Kerg G, Mittal S, Rolnick D, Bengio Y, Richards B, Lajoie 
G. On neural architecture inductive biases for relational 
tasks. 2022. arXiv: 2206. 05056 [cs.NE]. https:// doi. org/ 10. 48550/ 
arXiv. 2206. 05056.

 48. Bender EM, Gebru T, McMillan-Major A, Shmitchell S. On the 
dangers of stochastic parrots: can language models be too big?. 
Proceedings of the 2021 ACM Conference on Fairness, Account-
ability, and Transparency (FAccT '21). 2021;610–623. https:// 
doi. org/ 10. 1145/ 34421 88. 34459 22.

 49. Chen MX, Firat O, Bapna A, Johnson M, Macherey W, Foster 
GF, Jones L, Parmar N, Schuster M, Chen Z, Wu Y, Hughes M. 
The best of both worlds: combining recent advances in neural 
machine translation, Proceedings of the 56th Annual Meeting 
of the Association for Computational Linguistics, Melbourne, 
Australia (Long Papers). 2018;76–86.

 50. Liu X, Duh K, Liu L, Gao J. Very deep transformers for neural 
machine translation. 2020. arXiv: 2008. 07772 [cs.CL].

 51. Heaven WD. OpenAI’s new language generator GPT-3 is shock-
ingly good—and completely mindless. MIT Technol Rev. 2020. 
https:// www. techn ology review. com/ 2020/ 07/ 20/ 10054 54/ openai- 
machi ne- learn ing- langu age- gener ator- gpt-3- nlp/.

 52. Silver D, Huang A, Maddison CJ, Guez A, Sifre L, va den  
Driessche G, Schrittwieser J, Antonoglou I, Panneershelvam V, 
Lanctot M, Dieleman S, Grewe D, Nham J, Kalchbrenner N,  
Sutskever I, Lillicrap T, Leach M, Kavukcuoglu K, Graepel T, 
Hassabis D. Mastering the game of Go with deep neural networks 
and tree search. Nature. 2016;529(7587):484–9. https:// doi. org/ 10.  
1038/ natur e16961.

 53. Silver D, Schrittwieser J, Simonyan K, Antonoglou I, Huang A, 
Guez A, Hubert T, Baker L, Lai M, Bolton A, Chen Y, Lillicrap 
T, Hui F, Sifre L, van den Driessche G, Graepel T, Hassabis D. 
Mastering the game of Go without human knowledge. Nature. 
2017;550(7676):354–9. https:// doi. org/ 10. 1038/ natur e24270.

 54. Girshick, R.B. (2015) Fast R-CNN, 2015 IEEE International 
Conference on Computer Vision (ICCV), pp. 1440–1448.

 55. OpenAI (2022) ChatGPT: Optimizing language models for dia-
logue. https:// openai. com/ blog/ chatg pt/.

 56. Ramesh A, Pavlov M, Goh G, Gray S, Voss C, Radford A, Chen 
M, Sutskever I. Zero-shot text-to-image generation. 2021. https:// 
arxiv. org/ abs/ 2102. 12092 v2.

 57. Minai AA, Perdoor M, Byadarhaly KV, Vasa S, Iyer LR. A syn-
ergistic view of autonomous cognitive systems. Proceedings of 
the 2010 International Joint Conference on Neural Networks 
(IJCNN’2010). 2010;498–505.

 58. Braitenberg V. Vehicles: experiments in synthetic psychology. 
Cambridge, MA: MIT Press; 1984.

 59. Carlson JM, Doyle J. Complexity and robustness. PNAS. 
2002;99(supp. 1):2538–45.

 60. Tanaka R, Doyle J. Scale-rich metabolic networks: background 
and introduction. 2004. https:// arxiv. org/ abs/q- bio/ 04100 09.

 61. Zador AM. A critique of pure learning and what artificial 
neural networks can learn from animal brains. Nat Commun. 
2019;10:3770.

 62. Latash ML. Understanding and synergy: a single concept at dif-
ferent levels of analysis?. Front Syst Neurosci. 2021;15. https:// 
doi- org. uc. idm. oclc. org/ 10. 3389/ fnsys. 2021. 735406.

 63. Latash ML. Motor synergies and the equilibrium-point hypothesis. Mot 
Control. 2010;14(3):294–322. https:// doi. org/ 10. 1123/ mcj. 14.3. 294.

 64. Riley MA, Kuznetsov N, Bonnette S. State-, parameter-, and 
graph-dynamics: constraints and the distillation of postural con-
trol systems. Science & Motricité. 2011;74:5–18. https:// doi. org/ 
10. 1051/ sm/ 20111 17.

 65. Dobzhansky T. Nothing in biology makes sense except in the 
light of evolution. American Biology Teacher. 1973;35(3):125–9. 
https:// doi. org/ 10. 1093/ icb/4. 4. 443.

 66. Hubel DH, Wiesel TN. Receptive fields, binocular interaction 
and functional architecture in the cat’s visual cortex. J Physiol. 
1962;160:106–54.

 67. Hubel DH, Wiesel TN. Brain and visual perception. New York: 
Oxford Press; 2005.

 68. Fogel LJ, Owens AJ, Walsh MJ. Artificial intelligence through 
simulated evolution. NY: John Wiley; 1966.

 69. Holland JH. Adaptation in natural and artificial systems: an 
introductory analysis with applications to biology, control, and 
artificial intelligence. University of Michigan Press; 1975.

 70. Goldberg D. Genetic algorithms in search, optimization and 
machine learning. Addison-Wesley Professional. 1989.

 71. Stanley KO, Miikkulainen R. Evolving neural networks through 
augmenting topologies. Evol Comput. 2002;10(2):99–127. 
https:// doi. org/ 10. 1162/ 10636 56023 20169 811.

https://doi.org/10.1162/ARTL_a_00228
https://doi.org/10.1162/ARTL_a_00228
https://doi.org/10.1038/s41467-019-13239-6
https://doi.org/10.1038/s41467-019-13239-6
https://doi.org/10.1016/j.tics.2019.02.006
https://doi.org/10.1186/1742-4682-7-6
https://doi.org/10.1073/pnas.95.15.8420
http://arxiv.org/abs/hep-th/2206.05056
https://doi.org/10.48550/arXiv.2206.05056
https://doi.org/10.48550/arXiv.2206.05056
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922
http://arxiv.org/abs/hep-th/2008.07772
https://www.technologyreview.com/2020/07/20/1005454/openai-machine-learning-language-generator-gpt-3-nlp/
https://www.technologyreview.com/2020/07/20/1005454/openai-machine-learning-language-generator-gpt-3-nlp/
https://doi.org/10.1038/nature16961
https://doi.org/10.1038/nature16961
https://doi.org/10.1038/nature24270
https://openai.com/blog/chatgpt/
https://arxiv.org/abs/2102.12092v2
https://arxiv.org/abs/2102.12092v2
https://arxiv.org/abs/q-bio/0410009
https://doi-org.uc.idm.oclc.org/10.3389/fnsys.2021.735406
https://doi-org.uc.idm.oclc.org/10.3389/fnsys.2021.735406
https://doi.org/10.1123/mcj.14.3.294
https://doi.org/10.1051/sm/2011117
https://doi.org/10.1051/sm/2011117
https://doi.org/10.1093/icb/4.4.443
https://doi.org/10.1162/106365602320169811


2402 Cognitive Computation (2024) 16:2389–2404

1 3

 72. Stanley K, Miikkulainen R. A taxonomy for artificial embryog-
eny. Artif Life. 2003;9(2):93–130.

 73. Clune J, Beckmann BE, Ofria C, Pennock RT. Evolving coordi-
nated quadruped gaits with the HyperNEAT generative encoding. 
Proc IEEE Cong Evol Comp. 2009;2764–2771.

 74. Sims K. Evolving virtual creatures. Proceedings of SIGGRAPH 
'94. 1994;15–22.

 75. Sims K. Evolving 3D morphology and behavior by competition. Artif 
Life. 1994;1:353–72. https:// doi. org/ 10. 1162/ artl. 1994.1. 4. 353.

 76. Rieffel J, Pollack J. An endosymbiotic model for modular acqui-
sition in stochastic developmental systems. Proceedings of the 
Tenth International Conference on the Simulation and Synthesis 
of Living Systems (ALIFE X). 2006.

 77. Kirschner MW, Gerhart JC. The plausibility of life: resolving 
Darwin’s dilemma. Yale University Press; 2005.

 78. Gerhart J, Kirschner M. The theory of facilitated variation. 
PNAS. 2007;104(Supp. 1):8582–9.

 79. Kimura M. The neutral theory of molecular evolution. Press: 
Cambridge Univ; 1983.

 80. Huneman P. Neutral spaces and topological explanations in evo-
lutionary biology: lessons from some landscapes and mappings. 
Philosophy of Science. 2018;85(5):969–83. https:// doi. org/ 10. 
1086/ 699759.

 81. Kauffman SA. The origins of order: self-organization and selec-
tion in evolution. Oxford University Press; 1993.

 82. Siebert BA, Hall CL, Gleeson JP, Asllani M. Role of modularity 
in self-organization dynamics in biological networks. Phys Rev E. 
2020;102:052306. https:// doi. org/ 10. 1103/ PhysR evE. 102. 052306.

 83. Mountcastle VB. The columnar organization of the neocortex. 
Brain. 1997;120:701–22.

 84. Bressler SL, Tognoli E. Operational principles of neurocognitive 
networks. Int J Psychophysiol. 2006;60(2):139–48. https:// doi. 
org/ 10. 1016/j. ijpsy cho. 2005. 12. 008.

 85. Abeles M. Local cortical circuits: an electrophysiological study. 
Springer; 1982.

 86. Buzsáki G. Neural syntax: cell assemblies, synapsembles, and 
readers. Neuron. 2010;68:362–85.

 87. Grillner S. The motor infrastructure: from ion channels to neu-
ronal networks. Nat Rev Neurosci. 2003;4:673–86.

 88. Grillner S. Biological pattern generation: the cellular and com-
putational logic of networks in motion. Neuron. 2006;52:751–66.

 89. Grillner S, Deliagina T, Ekeberg O, El Manira A, Hill RH, 
Lansner A, Orlovsky GN, Wallén P. Neural networks that co-
ordinate locomotion and body orientation in lamprey. Trends 
Neurosci. 1995;18:270–9.

 90. Grillner S, Hellgren J, Ménard A, Saitoh K, Wikström MA. 
Mechanisms for selection of basic motor programs – roles for 
the striatum and pallidum. Trends Neurosci. 2005;28:364–70.

 91. Ijspeert AJ, Crespi A, Ryczko D, Cabelguen JM. From swim-
ming to walking with a salamander robot driven by a spinal cord 
model. Science. 2007;315:1416–20.

 92. Simon HA. Near decomposability and complexity: how a mind 
resides in a brain, In Morowitz, H.J. and Singer, J.L. (eds). The 
Mind, the Brain, and Complex Systems, Addison-Wesley. 1995.

 93. Simon HA. Near decomposability and the speed of evolution. Ind 
Corp Chang. 2002;11:587–99.

 94. Cheung VCK, Seki K. Approaches to revealing the neural basis 
of muscle synergies: a review and a critique. J Neurophysiol. 
2021;125:1580–97. https:// doi. org/ 10. 1152/ jn. 00625. 2019.

 95. Heess NM, Wayne G, Tassa Y, Lillicrap TP, Riedmiller MA, 
Silver D. Learning and transfer of modulated locomotor con-
trollers. 2016. https:// arxiv. org/ abs/ 1610. 05182.

 96. Elman JL. Learning and development in neural networks: the 
importance of starting small. Cognition. 1993;48:71–99.

 97. Bengio Y, Louradour J, Collobert R, Weston J. Curriculum 
learning. In Proceedings of the 26th Annual International 

Conference on Machine Learning (ICML ‘09). 2009;41–48. 
https:// doi. org/ 10. 1145/ 15533 74. 15533 80.

 98. Wang X, Chen Y, Zhu W. A survey on curriculum learning. 
IEEE Trans Pattern Anal Mach Intell. 2020. https:// doi. org/ 10. 
1109/ TPAMI. 2021. 30699 08.

 99. Soviany P, Ionescu RT, Rota P, Sebe N. Curriculum learning: 
a survey. Int J Comput Vision. 2022;130:1526–65. https:// doi. 
org/ 10. 1007/ s11263- 022- 01611-x.

 100. Weng J. Developmental robotics: theory and experiments. Int 
J Humanoid Rob. 2004;1:199–236.

 101. Deshpande A, Kumar R, Minai AA, Kumar M. Developmental 
reinforcement learning of control policy of a quadcopter UAV 
with thrust vectoring rotors. Proc 2020 Dyn Syst Contr Confer. 
5–7 Oct. 2020. https:// arxiv. org/ abs/ 2007. 07793.

 102. Nguyen SM, Duminy N, Manoury A, Duhaut D, Bouche C. 
Robots learn increasingly complex tasks with intrinsic motiva-
tion and automatic curriculum learning. Künstlische Intelligenz. 
2021;35:81–90. https:// doi. org/ 10. 1007/ s13218- 021- 00708-8.

 103. Chiel HJ, Beer RD. The brain has a body: Adaptive behavior 
emerges from interactions of nervous system, body and environ-
ment. Trends Neurosci. 1997;20:553–7.

 104. Chemero A. Radical embodied cognitive science. Bradford 
Books; 2011.

 105. Pfeifer R, Lungarella M, Iida F. Self-organization, embodiment, 
and biologically inspired robotics. Science. 2007;318:1088–93.

 106. Schöner G. The dynamics of neural populations capture the laws 
of the mind. Top Cogn Sci. 2020;12:1257–71.

 107. Smolensky P. On the proper treatment of connectionism. Behav 
Brain Sci. 1988;11(1):1–23.

 108. Descartes R. Meditations on first philosophy. in The Philo-
sophical Writings of René Descartes 2 (1984), translated by J. 
Cottingham, R. Stoothoff, and D. Murdoch. Cambridge: Camb 
Univ Press. 1641;1–62.

 109. Hart WD. Dualism. In: Guttenplan S, editor. A companion to the 
philosophy of mind. Oxford: Blackwell; 1996. p. 265–7.

 110. Eliasmith C. How to build a brain: a neural architecture for bio-
logical cognition. Oxford University Press; 2013.

 111. Smolensky P. Symbolic functions from neural computation. Phil-
osophical Transactions of the Royal Society A: Mathematical, 
Physical and Engineering Sciences. 2012;370(1971):3543–69.

 112. Besold TR, Garcez ADA, Bader S, Bowman H, Domingos PM, 
Hitzler P, Kühnberger K, Lamb LC, Lowd D, Lima PMV, de 
Penning L. Neural-symbolic learning and reasoning: a survey 
and interpretation. CoRR abs/1711.03902. 2017. arXiv preprint 
arXiv: 1711. 03902.

 113. Schlag, and Schmidhuber, J. Learning to reason with 
third order tensor products. Adv Neural Inf Process Syst. 
2018;2018:9981–93.

 114. Huang Q, Deng L, Wu D, Liu C, He X. Attentive tensor product 
learning. Proceedings of the 33rd AAAI Conference on Artificial 
Intelligence. 2019;1344–1351.

 115. D’Avila Garcez A, Lamb LC. Neurosymbolic AI: the 3rd 
wave. 2020. arXiv 2012.05876. https:// arxiv. org/ abs/ 2012. 05876.

 116. Smolensky P, McCoy RT, Fernadez R, Goldrick M, Gao J. 
Neurocompositional computing: from the Central Paradox of 
Cognition to a new generation of AI systems. 2022. arXiv: 
2205. 01128 v1 [cs.AI].

 117. Cohen L, Dehaene S, Naccache L, Lehéricy S, Dehaene-Lambertz 
G, Hénaff MA, Michel F. The visual word form area: spatial and 
temporal characterization of an initial stage of reading in normal 
subjects and posterior split-brain patients. Brain. 2000;123(Pt 
2):291–307. https:// doi. org/ 10. 1093/ brain/ 123.2. 291.

 118. Harvey BM, Klein BP, Petridou N, Dumoulin SO. Topo-
graphic representation of numerosity in the human parietal 
cortex. Science. 2013;341:1123–6. https:// doi. org/ 10. 1126/ 
scien ce. 12390 52.

https://doi.org/10.1162/artl.1994.1.4.353
https://doi.org/10.1086/699759
https://doi.org/10.1086/699759
https://doi.org/10.1103/PhysRevE.102.052306
https://doi.org/10.1016/j.ijpsycho.2005.12.008
https://doi.org/10.1016/j.ijpsycho.2005.12.008
https://doi.org/10.1152/jn.00625.2019
https://arxiv.org/abs/1610.05182
https://doi.org/10.1145/1553374.1553380
https://doi.org/10.1109/TPAMI.2021.3069908
https://doi.org/10.1109/TPAMI.2021.3069908
https://doi.org/10.1007/s11263-022-01611-x
https://doi.org/10.1007/s11263-022-01611-x
https://arxiv.org/abs/2007.07793
https://doi.org/10.1007/s13218-021-00708-8
http://arxiv.org/abs/1711.03902
https://arxiv.org/abs/2012.05876
http://arxiv.org/abs/hep-th/2205.01128v1
http://arxiv.org/abs/hep-th/2205.01128v1
https://doi.org/10.1093/brain/123.2.291
https://doi.org/10.1126/science.1239052
https://doi.org/10.1126/science.1239052


2403Cognitive Computation (2024) 16:2389–2404 

1 3

 119. Amalric M, Dehaene S. Origins of the brain networks for 
advanced mathematics in expert mathematicians. PNAS. 
2016;113:4909–17. https:// doi. org/ 10. 1073/ pnas. 16032 05113.

 120. Huth AG, de Heer WA, Griffiths TL, Theunissen FE, Gallant 
JL. Natural speech reveals the semantic maps that tile human 
cerebral cortex. Nature. 2016;532:453–8.

 121. García AM, Moguilner S, Torquati K, García-Marco E, Herrera 
E, Muñoz E, Castillo EM, Kleineschay T, Sedeño L, Ibáñez 
A. How meaning unfolds in neural time: Embodied reactiva-
tions can precede multimodal semantic effects during language 
processing. Neuroimage. 2019;197:439–49. https:// doi. org/ 10. 
1016/j. neuro image. 2019. 05. 002.

 122. Leminen A, Smolka A, Duñabeitia JA, Pliatsikas C. Morpho-
logical processing in the brain: The good (inflection), the bad 
(derivation) and the ugly (compounding). Cortex. 2019;116:4–
44. https:// doi. org/ 10. 1016/j. cortex. 2018. 08. 016.

 123. Rugani R, Vallortigara G, Priftis K, Regolin L. Number-space 
mapping in the newborn chick resembles humans’ mental num-
ber line. Science. 2015;347:534–6.

 124. Vallortigara G. Comparative cognition of number and space: 
the case of geometry and of the mental number line. Philo-
sophical Transactions of the Royal Society (London) B. 
2017;373:20170120. https:// doi. org/ 10. 1098/ rstb. 2017. 0120.

 125. Hawkins J, Lewis M, Klukas M, Purdy S, Ahmad S. A frame-
work for intelligence and cortical function based on grid cells 
in the neocortex. Frontiers in Neural Circuits. 2019;12:121. 
https:// doi. org/ 10. 3389/ fncir. 2018. 00121.

 126. Kelly MA, Arora N, West RL, Reitter D. Holographic declara-
tive memory: distributional semantics as the architecture of 
memory. Cogn Sci. 2020;44:e12904. https:// doi. org/ 10. 1111/ 
cogs. 12904.

 127. Smith R, Schwartenbeck P, Parr T, Friston KJ. An active infer-
ence approach to modeling structure learning: concept learning 
as an example. Front Comput Neurosci. 2020;14:41. https:// 
doi. org/ 10. 3389/ fncom. 2020. 00041.

 128. Bruffaerts R, De Deyne S, Meersmans K, Liuzzi AG, Storms 
G, Vandenberghe R. Redefining the resolution of semantic 
knowledge in the brain: advances made by the introduction 
of models of semantics in neuroimaging. Neuroscience and 
Behavioral Reviews. 2019;103:3–13.

 129. Zeithamova D, Mack ML, Braunlich K, Davis T, Seger CA, 
van Kesteren MTR, Wutz A. Brain mechanisms of concept 
learning. J Neurosci. 2019;39(42):8259–66.

 130. Zhang Y, Han K, Worth R, Liu Z. Connecting concepts in 
the brain by mapping cortical representations of semantic 
relations. Nat Comm. 2020;11:1877. https:// doi. org/ 10. 1038/ 
s41467- 020- 15804-w.

 131. Fernandino L, Tong JQ, Conant LL, Humphries CJ, Binder 
JR. Decoding the information structure underlying the neural 
representation of concepts. PNAS. 2022;119:e2108091119. 
https:// doi. org/ 10. 1073/ pnas. 21080 91119.

 132. Friston K. The free-energy principle: a unified brain theory. Nat 
Rev Neurosci. 2010;11:127–38. https:// doi. org/ 10. 1038/ nrn27 87.

 133. Clark A. Whatever next? Predictive brains, situated agents, 
and the future of cognitive science.  Behav Brain Sci. 
2013;36:181–253.

 134. Butz MV. Towards a unified sub-symbolic computational the-
ory of cognition. Front Psychol. 2016;7:925. https:// doi. org/ 
10. 3389/ fpsyg. 2016. 00925.

 135. Butz MV. Event-predictive cognition: a root for conceptual 
human thought. Top Cogn Sci. 2021;13:10–24. https:// doi. org/ 
10. 1111/ tops. 12522.

 136. Butz MV. Towards strong AI. Künstlische Intelligenz. 2021. 
https:// doi. org/ 10. 1007/ s13218- 021- 00705-x.

 137. Tresch MC, Saltiel P, Bizzi E. The construction of movement 
by the spinal cord. Nat Neurosci. 1999;2:162–7.

 138. d’Avella A, Saltiel P, Bizzi E. Combinations of muscle syner-
gies in the construction of a natural motor behavior. Nat Neu-
rosci. 2003;6:300–8.

 139. Latash ML, Scholz JP, Schöner G. Toward a new theory of 
motor synergies. Mot Control. 2007;11:276–308.

 140. Byadarhaly KV, Perdoor MC, Minai AA. A modular neural 
model of motor synergies. Neural Netw. 2012;32:96–108.

 141. Bernstein N. The coordination and regulation of movements. 
Pergamon Press; 1967.

 142. Kuppuswamy N, Harris CM. Do muscle synergies reduce the 
dimensionality of behavior?. Front Comp Neurosci. 2014;8. 
https:// doi. org/ 10. 3389/ fncom. 2014. 00063.

 143. Brooks R. Intelligence without representation. Artif Intell. 1991;47(1–
3):139–59. https:// doi. org/ 10. 1016/ 0004- 3702(91) 90053-M.

 144. Brooks R. Cambrian intelligence: the early history of the new 
AI. MIT Press; 1999.

 145. Schaal S, Peters J, Nakanishi J, Ijspeert A. Control, planning, 
learning, and imitation with dynamic movement primitives. In: 
Workshop on bilateral paradigms on humans and humanoids. 
IEEE International Conference on Intelligent Robots and Sys-
tems (IROS 2003). Las Vegas, NV, Oct. 27–31. 2003.

 146. Schaal S, Mohajerian P, Ijspeert A. Dynamics systems vs. opti-
mal control – a unifying view. In: P. Cisek, T. Drew and J.F. 
Kalaska (Eds.). Prog Brain Res. 2007;165:425–445.

 147. Kelso JAS. Synergies: atoms of brain and behavior, In: Pro-
gress in motor control – a multidisciplinary perspective, 
Sternad D. (ed), Springer. 2007.

 148. Amit DJ. Modeling brain function. New York: Cambridge Uni-
versity Press; 1989.

 149. Yuste R, MacLean JN, Smith J, Lansner A. The cortex as a 
central pattern generator. Nat Rev Neurosci. 2005;6:477–83.

 150. Bassett DS, Greenfield DL, Meyer-Lindenberg A, Weinberger 
DR, Moore SW, Bullmore ET. Efficient physical embedding 
of topologically complex information processing networks in 
brains and computer circuits, PLoS computational biology, 
04/2010. 2010;6(4).

 151. Hawkins J, Ahmad S, Cui Y. A theory of how columns in the 
neocortex enable learning the structure of the world. Frontiers 
in Neural Circuits. 2017;11:81. https:// doi. org/ 10. 3389/ fncir. 
2017. 00081.

 152. Hawkins J. A thousand brains: a new theory of intelligence. 
Basic Books; 2021.

 153. Yufik YM. Understanding, consciousness and thermodynamics 
of cognition. Chaos, Solitons Fractals. 2013;55:44–59. https:// 
doi. org/ 10. 1016/j. chaos. 2013. 04. 010.

 154. Yufik YM. The understanding capacity and information 
dynamics in the human brain. Entropy. 2019;21:308. https:// 
doi. org/ 10. 3390/ e2103 0308.

 155. Yufik YM, Friston K. Life and understanding: the origins of 
“understanding” in self-organizing nervous systems. Front Syst 
Neurosci. 2016;10. https:// doi. org/ 10. 3389/ fnsys. 2016. 00098.

 156. Tsuda I. Towards an interpretation of dynamic neural activity in 
terms of chaotic dynamical systems. Behavioral and Brain Sci-
ences. 2001;24:793–847.

 157. Rabinovich MI, Huerta R, Varona P, Afraimovich VS. Tran-
sient cognitive dynamics, metastability, and decision making. 
PLoS Comp Biol. 2008;4(5):e1000072. https:// doi. org/ 10. 
1371/ journ al. pcbi. 10000 72.

 158. Gros C. Cognitive computation with autonomously active neu-
ral networks: an emerging field. Cogn Comput. 2009;1:77–90. 
https:// doi. org/ 10. 1007/ s12559- 008- 9000-9.

 159. Marupaka N, Iyer LR, Minai AA. Connectivity and thought: the 
influence of semantic network structure in a neurodynamical 
model of thinking. Neural Netw. 2012;32:147–58.

 160. Mattia M, Pani P, Mirabella G, Costa S, Del Giudice P, Ferraina 
S. Heterogeneous attractor cell assemblies for motor planning in 

https://doi.org/10.1073/pnas.1603205113
https://doi.org/10.1016/j.neuroimage.2019.05.002
https://doi.org/10.1016/j.neuroimage.2019.05.002
https://doi.org/10.1016/j.cortex.2018.08.016
https://doi.org/10.1098/rstb.2017.0120
https://doi.org/10.3389/fncir.2018.00121
https://doi.org/10.1111/cogs.12904
https://doi.org/10.1111/cogs.12904
https://doi.org/10.3389/fncom.2020.00041
https://doi.org/10.3389/fncom.2020.00041
https://doi.org/10.1038/s41467-020-15804-w
https://doi.org/10.1038/s41467-020-15804-w
https://doi.org/10.1073/pnas.2108091119
https://doi.org/10.1038/nrn2787
https://doi.org/10.3389/fpsyg.2016.00925
https://doi.org/10.3389/fpsyg.2016.00925
https://doi.org/10.1111/tops.12522
https://doi.org/10.1111/tops.12522
https://doi.org/10.1007/s13218-021-00705-x
https://doi.org/10.3389/fncom.2014.00063
https://doi.org/10.1016/0004-3702(91)90053-M
https://doi.org/10.3389/fncir.2017.00081
https://doi.org/10.3389/fncir.2017.00081
https://doi.org/10.1016/j.chaos.2013.04.010
https://doi.org/10.1016/j.chaos.2013.04.010
https://doi.org/10.3390/e21030308
https://doi.org/10.3390/e21030308
https://doi.org/10.3389/fnsys.2016.00098
https://doi.org/10.1371/journal.pcbi.1000072
https://doi.org/10.1371/journal.pcbi.1000072
https://doi.org/10.1007/s12559-008-9000-9


2404 Cognitive Computation (2024) 16:2389–2404

1 3

premotor cortex. J Neurosci. 2013;33(27):11155–68. https:// doi. 
org/ 10. 1523/ JNEUR OSCI. 4664- 12. 2013.

 161. Minai AA, Iyer LR, Doumit S, et al. IDEA—itinerant dynamics 
with emergent attractors: a neural model for conceptual combi-
nation. In: Doboli S, et al., editors. Creativity and Innovation: 
Cognitive, Social, and Computational Approaches. Springer; 
2021. p. 195–227.

 162. Fukushima K. Neocognitron: a self-organizing neural network 
model for a mechanism of pattern recognition unaffected by shift 
in position. Biol Cybern. 1980;36(4):193–202. https:// doi. org/ 10. 
1007/ bf003 44251.

 163. Sperber D. Modularity and relevance: how can a massively mod-
ular mind be flexible and context‐sensitive? In The Innate Mind: 
Structure and Contents, Carruthers, P., Laurence, S. and Stich, 
S. (eds). Oxford University Press. 2005. https:// doi. org/ 10. 1093/ 
acprof: oso/ 97801 95179 675. 003. 0004.

 164. Iyer L, Doboli S, Minai A, Brown V, Levine D, Paulus P. Neural 
dynamics of idea generation and the effects of priming. Neural 
Netw. 2009;22:674–86.

 165. Rinkus GJ. A cortical sparse distributed coding model linking 
mini- and macrocolumn-scale functionality. Front Neuroanat. 
2010;4:17. https:// doi. org/ 10. 3389/ fnana. 2010. 00017.

 166. Iyer LR, Minai AA. CANDID: A neurodynamical model for 
ddaptive context-dependent idea generation. In: Creativity 
and innovation. Understanding Complex Systems, Doboli, S., 
Kenworthy, J.B., Minai, A.A., Paulus, P.B. (eds), Springer, 
Cham. 2021. https:// doi. org/ 10. 1007/ 978-3- 030- 77198-0_7.

 167. Hinton GE. How to represent part-whole hierarchies in a neural 
network. 2021. arXiv: 2102. 12627 [cs.CV]. https:// doi. org/ 10. 
48550/ arXiv. 2102. 12627.

 168. Pouget A, Snyder LH. Computational approaches to sensorimotor 
transformations. Nature Neuroscience Supp. 2000;3:1192–8.

 169. Morse AF, de Greeff J, Belpeame T, Cangelosi A. Epigenetic 
robotics architecture (ERA). IEEE Trans On Autonomous Mental 
Development. 2010;2:325–39.

 170. Niv Y. Learning task-state representations. Nat Neuro-
sci. 2019;22:1544–1553. https:// doi- org. uc. idm. oclc. org/ 10. 
1038/ s41593- 019- 0470-8.

 171. Müller GB. Evo-devo: extending the evolutionary synthesis. Nat 
Rev Genet. 2007;8:943–9.

 172. Carroll SB. Evo-devo and an expanding evolutionary syn-
thesis: a genetic theory of morphological evolution. Cell. 
2008;134:25–36.

 173. Gilbert SF, Bosch TCG, Ledón-Retting C. Eco-evo-devo: devel-
opmental symbiosis and developmental plasticity as evolutionary 
agents. 2015.

 174. Marcus G. Kluge: the haphazard evolution of the human mind. 
Mariner Books. 2009.

 175. Alabi A, Vanderelst D, Minai AA (in press). Rapid learning of spa-
tial representations for goal-directed navigation based on a novel 
model of hippocampal place fields, Neural Networks (in press).

 176. Hinton GE, Salakhutdinov RR. Reducing the dimensionality of 
data with neural networks. Science. 2006;313:504–7.

 177. Zhuang F, Zhiyuan Q, Duan K, Xi D, Zhu Y, Zhu H, Xiong H, 
He Q. A comprehensive survey on transfer learning. Proc IEEE. 
2021;109:43–76.

 178. Carr MF, Jadhav SP, Frank LM. Hippocampal replay in the 
awake state: a potential substrate for memory consolidation and 
retrieval. Nat Neurosci. 2011;14:147.

 179. Carpenter GA, Grossberg S. ART 2: Self-organization of stable 
category recognition codes for analog input patterns. Appl Opt. 
1987;26:4919–30.

 180. Aguera y Arcas B. Do large language models understand 
us?. 2021. https:// medium. com/@ blais ea/ do- large- langu age- 
models- under stand- us- 6f881 d6d8e 75.

 181. Marcus G. Does AI really need a paradigm shift?. 2022. https:// 
garym arcus. subst ack. com/p/ does- ai- really- need-a- parad igm-  
shift?s=r.

 182. Li A. Google engineer claims that its LaMDA conversation AI 
is ‘sentient,’ industry disagrees, 9TO5Google. 12 June 2022. 
https:// 9to5g oogle. com/ 2022/ 06/ 12/ google- ai- lamda- senti ent/.

 183. Minai A. Between golem and god, 3 Quarks Daily. 2020. https:// 
3quar ksdai ly. com/ 3quar ksdai ly/ 2021/ 06/ betwe en- golem- and- 
god- the- future- of- ai. html.

Publisher's Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds 
exclusive rights to this article under a publishing agreement with the 
author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of 
such publishing agreement and applicable law.

https://doi.org/10.1523/JNEUROSCI.4664-12.2013
https://doi.org/10.1523/JNEUROSCI.4664-12.2013
https://doi.org/10.1007/bf00344251
https://doi.org/10.1007/bf00344251
https://doi.org/10.1093/acprof:oso/9780195179675.003.0004
https://doi.org/10.1093/acprof:oso/9780195179675.003.0004
https://doi.org/10.3389/fnana.2010.00017
https://doi.org/10.1007/978-3-030-77198-0_7
http://arxiv.org/abs/hep-th/2102.12627
https://doi.org/10.48550/arXiv.2102.12627
https://doi.org/10.48550/arXiv.2102.12627
https://doi-org.uc.idm.oclc.org/10.1038/s41593-019-0470-8
https://doi-org.uc.idm.oclc.org/10.1038/s41593-019-0470-8
https://medium.com/@blaisea/do-large-language-models-understand-us-6f881d6d8e75
https://medium.com/@blaisea/do-large-language-models-understand-us-6f881d6d8e75
https://garymarcus.substack.com/p/does-ai-really-need-a-paradigm-shift?s=r
https://garymarcus.substack.com/p/does-ai-really-need-a-paradigm-shift?s=r
https://garymarcus.substack.com/p/does-ai-really-need-a-paradigm-shift?s=r
https://9to5google.com/2022/06/12/google-ai-lamda-sentient/
https://3quarksdaily.com/3quarksdaily/2021/06/between-golem-and-god-the-future-of-ai.html
https://3quarksdaily.com/3quarksdaily/2021/06/between-golem-and-god-the-future-of-ai.html
https://3quarksdaily.com/3quarksdaily/2021/06/between-golem-and-god-the-future-of-ai.html

	Deep Intelligence: What AI Should Learn from Nature’s Imagination
	Abstract
	Introduction
	Natural Intelligence
	Critique of Current AI Methods
	Deep Learning and Natural Intelligence
	Why Is a New Framework Needed?

	The Deep Intelligence View
	Background
	The Significance of Depth
	The Role of Evolution
	The Role of Development

	The Importance of Inherent Integration
	The Importance of Embodiment
	The Significance of Modularity

	Engineering Deep Intelligence
	Defining a Feasible Framework
	Role of Supervised Learning

	Conclusion
	References


