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Abstract
The Universum data, which indicates a sample that does not belong to any of the classes, has been proved to be useful in 
supervised learning. The researchers have explored the support vector machine (SVM) and its twin variants by embedding 
them with Universum data for classifying the electroencephalogram (EEG) signal. To improve generalization performance 
even further, this paper presents a novel twin parametric margin SVM based on Universum data (UTPMSVM) for clas-
sifying EEG signals. The proposed UTPMSVM forms a pair of non-parallel parametric hyperplanes that solves two small 
SVM-type problems. The addition of prior information, i.e., the Universum data, boosts the performance of the model. The 
dimensionality of the EEG datasets is reduced using principal component analysis (PCA), independent component analysis 
(ICA), and wavelet analysis. Experimental simulations have been carried out on 14 EEG datasets as well as 30 real-world 
datasets. The classification performance of the proposed model is compared with Universum-based SVM (USVM), Uni-
versum non-parallel hyperplane-based SVM (UNHSVM), TPMSVM, and angle-based Universum least squares twin SVM 
(AULSTSVM) models. Further two different statistical tests are performed to evaluate the performance of the proposed 
model. For EEG datasets, the UTPMSVM showed the highest accuracy of 78% and the highest F1-score of 0.78658. Moreo-
ver, for the real-world datasets, the proposed UTPMSVM showed the highest accuracy of 100%. In addition to that, it is 
observed that the mean accuracy and F1-score of UTPMSVM are comparatively better than USVM, UNHSVM TPMSVM, 
and AULSTSVM. The results demonstrate the applicability of UTPMSVM for EEG signal classification problems as well 
as real-world data classification problems.
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Introduction

Electroencephalogram (EEG) signals are generally used in 
the medical field to detect brain-related problems. Based 
on the results given by EEG signals, necessary actions are 
taken to resolve those brain-related problems. Our brain 

cells interconnect with one another via electrical signals, 
and these cells always remain active. EEG signals record 
the electrical changes in brain activity which is very use-
ful in the diagnosis of brain-related problems. In EEG, a 
small-sized metal device called electrodes is placed over 
the scalp of the subject which records the electrical activ-
ity of the brain and passes it to the computer to store those 
records. The placement of the electrodes over the scalp plays 
an important role in fruitful diagnoses. Specialists like brain 
surgeons, psychiatrists, and neurologists realize that EEG is 
a beneficial diagnostic and can be helpful to predict certain 
clinical issues. EEG was fundamentally developed for the 
diagnosis of epilepsy. Epilepsy is one of the baleful neu-
rological disorders in which the brain activity of a human 
becomes abnormal which causes seizures, sensation, and 
loss of cognizance as well. Caton disclosed the electrical 
activity of the brain for monkeys and rabbits in 1875 [1]. 
Then, Beck [2] studied the electrical signals of the mind 
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for dogs and rabbits in 1890. Finally, Berger, the German 
psychologist and scientist recorded the EEG of a human 
for the very first time in 1924 [3, 4]. One of the most sig-
nificant advantages of EEG is the ability to observe brain 
activity in real-time, at the millisecond level, which is not 
probable with other high-resolution imaging techniques [5]. 
EEG measures both amplitude and frequency [6]. Due to 
this advantage, EEG is very popular in the researcher’s com-
munity to deal with brain-related problems and ameliorate 
the diagnoses of different mental issues. But EEG data con-
tains an enormous amount of noise whose effect should be 
avoided during modeling. After the removal of noisy data, 
many different machine learning approaches could be imple-
mented on the processed data to detect brain-related prob-
lems. To select the most important features of EEG signals, 
several feature extraction techniques, namely, principal com-
ponent analysis (PCA) [7], independent component analysis 
(ICA) [8], wavelet-transform, and others, are be performed.

EEG signals are extremely complex for a non-professional 
observer to interpret and draw conclusions about various 
brain-related issues. For this reason, there is a need for auto-
matic EEG signal interpretation that can help in the early 
prediction of brain-related problems. In these days, the selec-
tion of a proper ML model is one of the most difficult tasks 
as there are many models available. Support vector machine 
(SVM) [9] is one such legendary algorithm which is based 
on the principle of structural risk minimization (SRM). SVM 
can be used for performing various tasks related to both clas-
sification and regression. SVM constructs a hyperplane that 
separates the data points based on the maximal margin hyper-
plane. One of the most important advantages of SVM is that 
it does not suffer from the problem of local minima unlike 
artificial neural networks (ANN). SVM can also work with 
very high dimensional data efficiently and does not suffer 
from the curse of dimensionality. Hence, SVM is used by 
researchers to solve an extensive range of real-world prob-
lems. Yeo et al. [10] applied SVM to detect the car driver’s 
drowsiness while driving a car using EEG data. Subasi and 
Gursoy [11] used ICA, PCA, and linear discriminant analysis 
(LDA) to extract the important features from the EEG data 
and then applied SVM to detect epileptic seizures. Recently, 
Afifi et al. [12], performed melanoma detection, using the 
SVM model. Although SVM has several advantages, the key 
demerit of SVM is that it takes high computational time for 
large-scale size datasets as it solves a large quadratic pro-
gramming problem (QPP) [13].

To solve the problem of SVM and to improve the generali-
zation performance, several variations of SVM have been sug-
gested in the literature. Twin SVM (TWSVM) [14] is one such 
work which is influenced by generalized eigenvalue proximal 
SVM (GEPSVM) [15]. TWSVM searches for two non-parallel 
hyperplanes where each of the hyperplanes is close to one class 
and as far as possible from the other class. Whereas SVM solves 

a large QPP, TWSVM solves a pair of small QPPs. As a result, 
it lowers the computational cost and makes TWSVM nearly 
four times faster than conventional SVM. Several extensions 
of TWSVM are proposed by researchers such as least square 
TWSVM (LSTWSVM) [16], improved TWSVM [17], robust 
TWSVM [18], robust twin bounded SVM [19], and density-
weighted TWSVM [20]. Peng developed a twin parametric mar-
gin SVM (TPMSVM) [21] in which two non-parallel parametric-
margin (PM) hyperplanes are generated, which are solved by 
two smaller size SVM-type problems. TPMSVM constructs two 
PM hyperplanes so that each one decides the positive or nega-
tive PM, whereas this is not the case in TWSVM as discussed 
above, and the QPPs for these two methods are completely dif-
ferent. Peng et al. [22] proposed another variant of TPMSVM 
called structural TPMSVM (STPMSVM) where the structural 
information of data was taken into consideration. Furthermore, 
Peng et al. [23] found out that the decision function of traditional 
TPMSVM losses the sparsity, and hence, they developed another 
method, i.e., centroid-based TPMSVM (CTPMSVM) where the 
decision hyperplane becomes sparse as it optimizes the projec-
tion values of the centroid points of the target classes. Shao et al. 
[24] suggested another variant of TPMSVM termed least squares 
TPMSVM (LSTPMSVM). Recently, Gupta et al. [25] suggested 
a novel classifier which is based on TPMSVM and FSVM called 
fuzzy-based Lagrangian TPMSVM to analyze biomedical data.

Several studies in the literature prove that incorporating 
prior information about the data distribution to the classifier 
drastically improves the performance of the same. Universum 
data, along with the SVM classifier, serves as prior information 
about the data distribution in USVM [26]. It is believed that 
the Universum data should not belong to any of the concerned 
classes and must fall in between the target classes. The concept 
of Universum data is used to solve many real-world problems 
due to its higher generalization performance [27, 28]. But it 
cannot be concluded that the Universum data will always lead 
to a high generalization performance. Motivated by TWSVM 
and USVM, Qi et al. [29] developed a new methodology utiliz-
ing the benefits of both TWSVM and USVM called Universum 
TWSVM (UTWSVM). Richhariya and Gupta [30] used itera-
tive UTWSVM to classify the facial expressions automatically. 
Recently, Zhao et al. [31] proposed an efficient non-parallel 
hyperplane-based USVM (UNHSVM) for classification. Fur-
thermore, a fuzzy USVM has been proposed to enhance prior 
information by assigning weights to Universum points based 
on information entropy [32]. A reduced Universum TWSVM 
is implemented to address the class imbalance problems [33]. 
Recently Kumar and Gupta [34] proposed a novel Universum-
based Lagrangian twin bounded SVM for EEG signal classifi-
cation. Moosaei et al. [35] suggested an Universum parametric 
margin v-SVM for classification. Richhariya et al. [36] diag-
nosed disease using a new USVM based on recursive feature 
elimination (USVM-RFE). For solving the same problem, 
Richhariya and Tanveer [37] suggested a fuzzy Universum least  
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squares TWSVM (FULSTSVM). Moosaei and Hladik [38] 
suggested a Lagrangian-based method for Universum twin 
bounded SVM. Ricchariya and Tanveer [39] suggested a 
novel angle-based Universum LSTSVM (AULSTSVM) for 
classification. Ganaie et al. [40] proposed a k-nearest neigh-
bor weighted reduced UTWSVM for imbalanced data clas-
sification problems (KWRUTSVM-CIL). To take advan-
tage of the interclass information, weight vectors are used  
in the KWRUTSVM-CIL’s corresponding constraints of the 
objective functions.

Inspired by the previous works of Qi et al. [29], Moosaei 
et al. [35], Richhariya et al. [36], and Peng [21] and to utilize 
the benefit of Universum data, a new variant of TPMSVM 
has been proposed in this paper called Universum-based 
TPMSVM (UTPMSVM). In UTPMSVM, the slack vari-
ables are taken in 2-norm rather than 1-norm which for-
mulates a strongly convex problem; hence, it always leads 
to unique solutions. The proposed method contains regu-
larization terms which prevent it from the problem of over-
fitting. The proposed UTPMSVM intends to generate two 
nonparallel hyperplanes, each of which decides whether the 
separating hyperplane has a positive or negative parametric 
margin. Like the UTWSVM, the UTPMSVM also solves 
two smaller-sized QPPs for this purpose rather than solv-
ing a larger one, unlike traditional SVM or USVM. In this 
paper, seizure EEG signals and healthy EEG signals are con-
sidered for the classification. Interictal data falls between 
the seizure and healthy signals. So, interictal data has been 
utilized as Universum data. As stated above EEG data 
contains lots of noise and outliers, to get rid of those prob-
lems, many feature extraction methods have been applied, 
namely, PCA, ICA, and wavelet transform. To prove the 
acceptability of the proposed classifier, it is applied to sev-
eral well-known real-world datasets. The results of the pro-
posed UTPMSVM are compared with USVM, UNHSVM, 
TPMSVM, and AULSTSVM. The Universum points used in 
our UTPMSVM method come directly from the EEG data-
set. As the Universum, we use the interictal or seizure-free 
signals from the EEG dataset. This more effectively provides 
the necessary prior information to the TPMSVM classifier 
since the variation of the seizure-free state signal occurs 
between the variation of the healthy and epileptic EEG sig-
nals. Since our Universum data is not derived from training 
data, there are no outliers in the Universum data, and no 
noise from training data is present [26]. The main contribu-
tions of the work are as follows:

•	 A novel UTPMSVM is proposed to classify seizures and 
healthy EEG signals.

•	 UTPMSVM incorporates prior knowledge regarding the 
data distribution from interictal EEG signals.

•	 Three different feature extractors have been applied to 
extract the most important features.

•	 Statistical analysis is performed to reveal the superiority 
of the proposed method over other related models.

Related Work

In this section, we have discussed a few related models. 
They are USVM and TPMSVM. Moreover, the proposed 
UTPMSVM is also elaborated.

Universum Support Vector Machine (USVM)

Weston et al. [41] proposed a variant of classical SVM named 
Universum SVM (USVM) for binary classification problem 
by incorporating Universum data. Universum data are treated 
as non-examples that do not belong to any of the concerned 
classes. The idea of Universum is somewhat similar to the 
Bayesian idea. However, there is an important applied distinc-
tion between these two concepts. If there should arise an occur-
rence of Bayesian deduction, the earlier information is about 
the information on choice guidelines, whereas Universum data 
is the information about the collection of examples. The kernel 
function used here is k(zp, za) = �(zp)

t�(za) where � is the 
mapping function. The QPP of USVM can be expressed as,

subject to,

where m is the total number of data-points; � , � are the slack 
variables; C,Ck are the penalty terms; k is the total number of 
Universum data-points; and tolerance value of Universum is �.

Now, the dual primal problem is obtained using 
Lagrangian multipliers (LMs) and further implementing 
Karush–Kuhn–Tucker (KKT), is shown as,
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Now, let us suppose z ∈ Rm is a new test instance. The func-
tion that will determine the class label of that instance as,

Twin Parametric‑Margin Support Vector  
Machine (TPMSVM)

TPMSVM determines its non-parallel margin hyperplanes by 
solving a pair of QPPs. Let us suppose we have a binary clas-
sification problem where we have two different classes of data 
i.e.,  +1 and -1 respectively. Let us assume that the number of 
datapoints belonging to +1 class is k1 and the number of data-
points belonging to −1 class is k2 . Let, D1 and D2 be two matri-
ces represents the datapoints belonging to +1 and -1 class.

For the linear case, TPMSVM constructs two hyperplanes:

By introducing the positive and negative parametric-margin 
hyperplanes, data will be separated by TPMSVM if:

To find out the margins, we need to solve the following 
optimization problem:

subject to,

and

subject to,

where � and � are slack variables; d1, d2 ≥ 0, �1, �2 are the 
regularization terms; and e1 and e2 are the vectors of 1 s of 
appropriate dimension.

The dual QPPs of (6) and (7) is as follows:
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where � and � are LMs. After solving Eqs. (16) and (17), 
we will get the vector of LMs, and then, we can compute 
w1,w2, g1 , and g2 . Finally, we use the following function to 
determine the class label of a new test instance z ∈ Rm:

Proposed Universum‑Based Twin Parametric Margin 
Support Vector Machine

In this paper, we have proposed an efficient classifier called 
Universum-based twin parametric margin SVM (UTPMSVM) 
for classifying EEG signals. In the formulation of the proposed 
classifier, we have used the L2-norm instead of the L1-norm. 
Here, K(xt,Mt)w1 + g1 = 0 and K(xt,Mt)w2 + g2 = 0 are the 
two non-parallel hyperplanes which are measured by the pri-
mal problems of UTPMSVM,
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After substituting the above assumptions in Eqs. (14) and 
(15), it become,

subject to,

and

subject to,

The Lagrangian of Eqs. (13) and (14) is as follows:

and

where �1 and �2 are the LMs.
From Eq. (15) we get,

After substituting the values of (17), (18), and (19) in 
Eq. (15), we achieve,
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After putting the values of (21), (22), and (23) in Eq. (16), 
we get

where Z2 =
[
G

V

]
.

After finding the values of the Lagrangian parameters, we 
can find the values of the parameters w1,w2, g1, g2 using the 
following expressions:

and

Experimental Setup, Results, and Analysis

Experimental simulations have been performed on a 64-bit 
windows OS based computer with 4 GB RAM and i5 pro-
cessor. We have non-linear (NL) kernel for the experi-
ments. The Gaussian kernel which may be expressed as 
k(xh, xj) = −exp(−�||xh − xj||2) , where xh, xj represents 
the samples, is used as the non-linear kernel. The C and � 
parameters of USVM, UNHSVM, TPMSVM, AULST-
SVM, and UTPMSVM are selected from 
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}
 . Also, the c7 parameter of AULST-
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eter for the proposed UTPMSVM classifier is chosen from 
{0.1, 0.3, 0.5, 0.7, 0.9} . The classification performance, as  
well as the optimal parameters, is computed using a fivefold 
cross-validation method. The MOSEK optimization tool-
box is utilized to solve the QPPs of USVM, UNHVM, and 
UTPMSVM [42]. The performance of the classifiers is evalu-
ated using accuracy and F1-score which can be determined as
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EEG Signal Classification

We have considered the classification between the healthy 
and seizure signals in this work. The EEG signal dataset 
is collected from [43] which consists of Z, N, O, F, and 
S signals. Each set consists of 100 single-channel EEG 
signals that were each collected for 23.6 s at a sampling 
rate of 173.61 Hz. Five healthy participants’ surface EEG 
recordings are shown in sets Z and O, with their eyes open 
and closed, respectively. In sets N and F, the hippocampal 
formation of the opposing hemisphere of the brain and the 
epileptogenic zone, respectively, were the recording sites 
for five patients in the interictal stage. Seizure recordings 
from all the recording sites exhibiting ictal activity make 
up the set S for the ictal state. For N, F, and S, intra-cranial 
EEG recording is the mode used. N is used as Universum 

Precision =
True Positive

True Positive + False Positive

F1 − score =
2(precison × recall)

precision + recall

data that appears between seizure and healthy signals. The 
dataset S was compiled from seizure recording destinations 
with physiological movement. Each training and testing 
session contains 100 samples. One of the main reasons for 
the model’s poor performance is its high dimensionality. 
To solve this issue, we used common feature extraction 
techniques such as PCA, ICA, and wavelet transform (WT). 
NL kernels are used to reduce the dimensions in PCA. Few 
wavelet families are used to implement the discrete wavelet 
transform (DWT) [44] at various stages of decomposition. 
The approximation and decomposition coefficients are com-
bined to form the function vector. The degree of decomposi-
tion for Daubechies wavelets db1, db2, db4, and db6 is set to 
level-3. Figures 1, 2, 3, 4 shows the decomposition of db1 
and db2 at level 3 for N and S signals. Here, Figs. 1 and 2 
indicate decomposition using db1 at level 3 for signals N and 
S respectively. Moreover, Figs. 3 and 4 indicate decomposi-
tion using db2 at level 3 for signals N and S respectively. 

PCA is used to reduce dimensionality in the case of ICA 
and WT. ICA is used in the same manner as in [34, 45]. The 
class discriminatory ratio (CDR) is used to filter the PCA 
components and select the most appropriate PCA compo-
nents. The proposed framework is presented in Fig. 5. The 

Fig. 1   Decomposition of N signal using db1 at level 3
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EEG signal is passed as an input, and the features of the EEG 
signal are extracted using PCA, ICA, and wavelet transform. 
The extracted features are provided as input to the proposed 
UTPMSVM model. The classification performance is meas-
ured using accuracy and F1-score. Table 1 shows the classi-
fication accuracies of the USVM, UNHSVM, AULSTSVM, 
and proposed UTPMSVM, for different EEG signals with non-
linear kernels. It is observed that our proposed UTPMSVM 
showed the best results in 15 cases out of 28 which indicate 
the supremacy of the UTPMSVM model compared to USVM, 
UNHSVM, and AULSTSVM to classify seizure and non- 
seizure signals. One can also notice that the mean accuracy 
of proposed UTPMSVM (74.2142) is increased by 9.599%, 
0.629%, and 0.1929% compared to USVM (67.7142), 
UNHSVM (73.75), and AULSTSVM (74.07) models. Moreo-
ver, the mean F1-score of proposed UTPMSVM (0.7042) 
is increased by 2.578%, 2.176%, and 2.0156% compared to 
USVM (0.6865), UNHSVM (0.6892), and AULSTSVM 
(0.6903) models. Additionally, we have also shown the rank 
of the reported classifiers on different EEG signals in Table 2. 
Moreover, the mean ranks of the classifiers are exhibited 
in Fig. 6. It can be observed that the proposed UTPMSVM 

showed the lowest mean rank based on both, F1-score and accu-
racy, which reveals the effectiveness of the proposed model.

Experiment on Real‑World Datasets

Experiments have been performed on 30 real-world bench-
mark datasets to see the efficiency of the proposed UTPMSVM 
model. These datasets are taken from the UCI ML data reposi-
tory [46] and KEEL imbalanced data repository [47]. The clas-
sification performance of UTPMSVM is compared with USVM, 
UNHSVM, TPMSVM, and AULSTSVM. The classification 
accuracies of USVM, UNHSVM, TPMSVM, AULSTSVM, and 
UTPMSVM with the optimal parameters and training time are 
shown in Table 3. It can be noticed that the proposed UTPMSVM 
shows comparable or better classification performance compared 
to other reported models. The mean accuracies of the models 
are also shown in the last row. It is observed that the proposed 
UTPMSVM shows the highest mean accuracy (87.5887%) com-
pared to USVM (83.8189%), UNHSVM (85.2132%), TPMSVM 
(86.0933%), and AULSTSVM (85.384%). Further, the ranks 
based on their classification accuracies are shown in Table 4. 
One can notice that the proposed UTPMSVM shows the best 

Fig. 2   Decomposition of S signal using db1 at level 3
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Fig. 3   Decomposition of N signal using db2 at level 3

Fig. 4   Decomposition of S signal using db2 at level 3
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performance in 17 cases out of 30 which shows the efficiency 
of the proposed UTPMSVM model. Moreover, the mean rank 
is presented in the last row of Table 4. It can be observed that 
UTPMSVM shows the lowest mean rank compared to USVM, 
UNHSVM, TPMSVM, and AULSTSVM.

Figure 7 shows the parameter insensitivity performance 
of UTPMSVM on Autism, Led7digit-02-4-5-6-7-8-9_vs_1, 
Vowel, and WDBC. It is possible to confirm that our sug-
gested UTPMSVM’s performance is not dependent on the 
values of its parameters ε and µ. Extensive simulations 
reveal that the user-specified parameter µ does not signifi-
cantly affect the performance of UTPMSVM.

Friedman Test for Statistical Comparison

The ranks of each classifier for the real-world datasets are 
shown in Table 4. It can be noted that the proposed method 
achieves the best average rank. To prove this argument statis-
tically, the Friedman test [48] has been performed. Initially, 
we assume that all the methods are identical under the null 
hypothesis. Then, the Friedman statistic is computed using 
the given formula:

where X represents the total number of datasets and p is the 
number of classifiers. Here, X = 30 and p = 5.

After that, FF value is computed as given below:

The critical value (CV) of F (4, 116) is 2.45 for the sig-
nificance level � = 0.05 . The value FF is greater than the 
CV. So, we reject the null hypothesis. As the null hypothesis 

�2

F
=

12 × X

p × (p + 1)

[
p∑
i=1

R2

i
−

p(p + 1)2

4

]

�2

F

12 × 30

5 × (5 + 1)
[(3.5162 + 3, 216

2 + 3.266
2 + 32 + 22) −

5(5 + 1)2

4
] ≅ 16.62

FF =
(X − 1)�2

F

X(p − 1) − �2

F

=
(30 − 1) × 16.62

30 × (5 − 1) − 16.62
≅ 4.662

Table 1   Accuracy and F1-score of USVM, UNHSVM, AULSTSVM, 
and proposed UTPMSVM on EEG datasets

Dataset Indicator USVM UNHSVM AULSTSVM UTPMSVM

zs_pcas Accuracy (%) 72 75.5 72.5 74
F1-score 0.683 0.71 0.669 0.688

os_pcas Accuracy (%) 72 78 79.5 78
F1-score 0.736 0.737 0.779 0.766

zs_ica30 Accuracy (%) 69.5 76 77 73.5
F1-score 0.745 0.7 0.717 0.677

os_ica30 Accuracy (%) 71 76 77.5 74
F1-score 0.71 0.723 0.732 0.699

zs_db1 Accuracy 
(%)

69.5 75 76.5 76.5

F1-score 0.684 0.708 0.723 0.699
os_db1 Accuracy 

(%)
65 70.5 68.5 71.5

F1-score 0.679 0.663 0.643 0.707
zs_db2 Accuracy 

(%)
64.5 73 75.5 70

F1-score 0.679 0.686 0.706 0.673
os_db2 Accuracy 

(%)
67.5 73.5 74.5 74.5

F1-score 0.703 0.683 0.687 0.694
zs_db4 Accuracy 

(%)
68 74 75 75.5

F1-score 0.653 0.683 0.701 0.754
os_db4 Accuracy 

(%)
70.5 72 71.5 75

F1-score 0.692 0.689 0.681 0.63
zs_db6 Accuracy 

(%)
64 73 72.5 74

F1-score 0.644 0.674 0.669 0.711
os_db6 Accuracy 

(%)
64.5 71.5 71.5 75.5

F1-score 0.664 0.662 0.625 0.719
zs_haar Accuracy 

(%)
60 70 71 72.5

F1-score 0.612 0.621 0.638 0.697
os_haar Accuracy 

(%)
70 74.5 74 74.5

F1-score 0.726 0.708 0.692 0.743
Mean Accuracy 

(%)
67.714 73.75 74.071 74.214

F1-score 0.687 0.689 0.69 0.704

Fig. 5   Block diagram of the 
proposed framework for clas-
sifying EEG signal
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got rejected, we can proceed with post-hoc test and for that 
Nemenyi post hoc test is used. Further, the critical difference 
(CD) is calculated as follows:

The pair-wise difference of USVM, UNHSVM, and TPMSVM 
with UTPMSVM are 3.516 - 2 = 1.516, 3.2146 - 2 = 1.2146 , 
and 3.2666 - 2 = 1.266 which is higher than the CD. We can 
conclude that UTPMSVM shows statistically better perfor-
mance compared to USVM, UNHSVM, and TPMSVM. But, 
the pair-wise difference of AULSTSVM with UTPMSVM is 1, 
and therefore, it cannot be concluded that UTPMSVM shows 
statistically better performance than AULSTSVM. However, it 
can be observed from Table 4 that UTPMSVM shows low aver-
age rank than AULSTSVM.

Figure 8 shows the comparative results of the Nemenyi 
statistics among all reported classifiers based on mean ranks. 
The classifiers with higher and lower ranks are plotted on the 
right and the left, respectively. The classifiers within a hori-
zontal line with a length less than or equal to the CD (1.1137) 
perform statistically identically.

CD = q�

√
p(p + 1)

6X
= 2.728

√
5(5 + 1)

6 × 30
≅ 1.1137

Table 2   Ranks based on 
Accuracy and F1-score 
of USVM, UNHSVM, 
AULSTSVM, and proposed 
UTPMSVM on EEG datasets

Dataset Indicator USVM UNHSVM AULSTSVM UTPMSVM

zs_pcas Accuracy (%) 4 1 3 2
F1-score 3 1 4 2

os_pcas Accuracy (%) 4 2.5 1 2.5
F1-score 4 3 1 2

zs_ica30 Accuracy (%) 4 2 1 3
F1-score 1 3 2 4

os_ica30 Accuracy (%) 4 2 1 3
F1-score 3 2 1 4

zs_db1 Accuracy (%) 4 3 1.5 1.5
F1-score 4 2 1 3

os_db1 Accuracy (%) 4 2 3 1
F1-score 2 3 4 1

zs_db2 Accuracy (%) 4 2 1 3
F1-score 3 2 1 4

os_db2 Accuracy (%) 4 3 1.5 1.5
F1-score 1 4 3 2

zs_db4 Accuracy (%) 4 3 2 1
F1-score 4 3 2 1

os_db4 Accuracy (%) 4 2 3 1
F1-score 1 2 3 4

zs_db6 Accuracy (%) 4 2 3 1
F1-score 4 2 3 1

os_db6 Accuracy (%) 4 2.5 2.5 1
F1-score 2 3 4 1

zs_haar Accuracy (%) 4 3 2 1
F1-score 4 3 2 1

os_haar Accuracy (%) 4 1.5 3 1.5
F1-score 2 3 4 1

Mean rank Accuracy (%) 4 2.25 2.03571 1.71429
F1-score 2.71429 2.57143 2.5 2.21429

0

1

2

3

4

M
ea
n
ra
n
k

Accuracy F1-score

Fig. 6   Mean rank comparison among the reported models based on 
the experiments on EEG datasets
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Table 3   USVM, UNHSVM, TPMSVM, AULSTSVM, and proposed UTPMSVM results for real-world datasets

Dataset
(Size)

USVM 
(c1, �,�)  
Time (Sec.)

UNHSVM (
c1, c2, �,�

)
  

Time (Sec.)

TPMSVM (
c1, c2,�

)
Time (Sec.)

AULSTSVM (
c1, c2, c7,�

)
Time (Sec.)

UTPMSVM (
c1, c, c3, �,�

)
Time (Sec.)

Australian Credit
(690X14)

87.2
(101,0.1,20)
0.71671

86.5
(103,101,0.7,21)
0.39916

86.6
(102,10−3,22)
0.76824

86.5
(103,101,0.7,22)
0.11391

87.7
(10−3,103,10−3,0.1,25)
0.88898

Heart-stat
(270X13)

84.8
(100,0.7,21)
0.06788

83.7
(103,10−1,0.7,2−1)
0.04059

82.9
(10−1,10−1,22)
0.10334

83.7
(102,10−1,1, 23)
0.02074

83.7
(103,101,103,0.1,21)
0.16783

Indian Liver Patient Dataset (ILPD)
(579X10)

48.9
(10−3,0.1,2−2)
0.38393

56.5
(102,102,0.7,21)
0.28451

67.9
(100,100,23)
0.52477

56.5
(10−2,103,0.3,25)
0.10886

61.7
(100,101,100,0.7,20)
0.81664

Iris
(150X4)

100
(10−2,0.7,2−2)
0.02714

100
(10−2,10−3,0.1,2−2)
0.02108

100
(10−3,10−3,2−2)
0.04055

100
(10−3,10−3, 0.1,2−2)
0.0095

100
(10−3,10−3,10−3,0.1,2−2)
0.06099

Lymphography
(148X18)

89.1
(100,0.5,21)
0.02194

87.1
(102,101,0.1,21)
0.01903

86.4
(10−2,10−2,22)
0.09893

87.1
(10−3,100, 0.1, 23)
0.0099

88.5
(10−3,100,10−3,0.1,20)
0.04998

Seeds
(210X7)

95.7
(101,0.7,2−1)
0.04137

96.7
(103,102,0.7,2−1)
0.03725

91.9
(10−2,10−2,2−1)
0.07996

96.7
(10−2,10−1, 0.9,21)
0.01413

93.8
(103,102,103,0.5,20)
0.10340

Transfusion
(748X4)

58.3
(10−2,0.9,2−3)
0.80047

62.8
(103,102,0.9,2−3)
0.53957

61.5
(100,100,22)
1.23414

62.8
(10−2,102, 0.3,22)
0.2724

75.7
(10−1,101,10−1,0.9,2−3)
1.48682

Ecoli3
(336X7)

87.5
(100,0.9,2−2)
0.28505

87.5
(103,103,0.7,2−1)
0.09843

88.7
(10−3,10−3,2−2)
0.24835

87.5
(103,101, 1,2−2)
0.09843

87.8
(10−3,10−2,10−3,0.1,2−2)
0.22788

Ecoli0137vs26
(311X7)

93.2
(100,0.7,2−2)
0.14478

94.9
(102,102,0.3,2−1)
0.06901

93.9
(10−3,10−3,2−1)
0.17731

94.9
(101,100, 0.3, 2−1)
0.06901

96.1
(10−1,10−1,10−1,0.9,2−1)
0.17433

Glass-0-1-4-6_vs_2
(205X9)

75.1
(101,0.5,2−3)
0.04802

89.8
(103,100,0.9,2−1)
0.02726

84.9
(10−1,10−1,2−2)
0.10341

68.3
(103,10−1, 0.9,2−2)
0.02726

85.4
(103,103,103,0.3,20)
0.09486

Glass-0-1-5_vs_2
(172X9)

68.1
(100,0.9,2−2)
0.04527

78.6
(103,103,0.9,2−2)
0.03074

86.1
(10−2,10−2,2−2)
0.06882

64.7
(101,10−1,0.7, 2−1)
0.03074

88.4
(103,103,103,0.9,2−1)
0.07893

Led7digit-0-2-4-5-6-7-8-9_vs_1
(443X7)

93.7
(10−1,0.9,2−1)
0.29490

93
(100,10−2,0.9,2−1)
0.14014

89.8
(10−3,10−3,20)
0.39518

95.3
(100,10−1, 0.5,23)
0.14014

95.3
(10−1,100,10−1,0.9,20)
0.36798

New-thyroid1
(215X5)

99.1
(10−3,0.1,2−1)
0.06812

99.6
(102,10−3,0.1,20)
0.02519

99.1
(10−2,10−2,2−1)
0.08421

98.6
(101,10−1,1,2−1)
0.02519

99.6
(103,103,103,0.7,20)
0.08161

Vowel
(988X10)

92.3
(101,0.9,2−2)
1.69117

94.8
(103,102,0.7,2−1)
0.86685

92
(10−3,10−3,2−1)
2.13776

90.4
(100,10−1,0.9,2−1)
0.33203

96.3
(103,102,103,0.3,22)
4.16783

WDBC
(569X30)

97.9
(100,0.7,21)
0.37899

97.9
(103,102,0.5,20)
0.32452

96.3
(100,100,25)
0.62298

98.2
(10−1,10−1,0.7,20)
0.0955

97.9
(101,101,101,0.9,21)
0.94994

Wine quality
(178X13)

98.9
(100,0.7,21)
0.02599

98.9
(102,100,0.5,2−2)
0.02288

98.9
(10−3,10−3,2−2)
0.07527

98.9
(10−1,10−1,0.5,2−1)
0.0088

98.9
(103,101,103,0.1,20)
0.05610

WPBC
(194X33)

55.8
(102,0.7,2−1)
0.04496

66.1
(101,100,0.7,20)
0.03412

71.2
(10−2,10−2,20)
0.09322

77.3
(100,10−1,0.1,22)
0.01412

69.1
(103,103,103,0.5,22)
0.07929

Ecoli-0-1_vs_5
(240X6)

95.8
(101,0.7,2−3)
0.04733

97.1
(102,101,0.7,2−2)
0.03960

97.5
(10−1,10−1,2−1)
0.14137

95.4
(100,10−1,0.9,2−1)
0.0173

97.9
(100,10−1,100,0.9,2−2)
0.09020
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It is noticeable that UTPMSVM, AULSTSVM, and 
UNHSVM are on the right side of the graph which indicates 
the efficiency of these models. Moreover, while comparing the 
UTPMSVM and UNHSVM, it is observed that the horizontal 
line does not connect these two models. This indicates that the 
proposed UTPMSVM shows significantly better performance 
than UNHSVM. It can be further noted that UTPMSVM shows 
significantly better performance than USVM, TPMSVM, and 
UNHSVM. Moreover, the solid line connects UTPMSVM and 
AULSTSVM; hence, they are not significantly different.

Wilcoxon Test for Statistical Comparison

Additionally, to show the substantial difference between 
UTPMSVM and the other implemented classifiers, we further 
performed the two-tailed Wilcoxon signed-rank test (WST) 
[49]. The test outcomes are shown in Table 5. The second col-
umn of Table 5 shows the difference between UTPMSVM and 
USVM based on WST, where “x” denotes that the accuracy 
(ACC) of UTPMSVM is more than that of USVM, “y” indi-
cates that the ACC of UTPMSVM is less than that of USVM, 

Table 3   (continued)

Dataset
(Size)

USVM 
(c1, �,�)  
Time (Sec.)

UNHSVM (
c1, c2, �,�

)
  

Time (Sec.)

TPMSVM (
c1, c2,�

)
Time (Sec.)

AULSTSVM (
c1, c2, c7,�

)
Time (Sec.)

UTPMSVM (
c1, c, c3, �,�

)
Time (Sec.)

Haberman
(306X3)

74.2
(100,0.9,2−2)
0.06862

54.6
(10−3,101,0.7,20)
0.08278

66.4
(10−1,10−1,20)
0.20192

73.2
(101,10−1,1,23)
0.0261

70.6
(103,101,103,0.7,2−1)
0.17099

Dermatology
(358X34)

100
(10−2,0.9,20)
0.13792

100
(10−2,10−3,0.1,20)
0.11118

100
(10−3,10−3,20)
0.28500

100
(10−3,10−1,0.3,20)
0.0357

100
(10–3,10−1,10−3,0.1,21)
0.25872

Cleveland
(297X13)

84.2
(102,0.9,25)
0.07983

82.4
(103,10−1,0.1,2−1)
0.06232

82.8
(10−1,10−1,25)
0.18098

84.5
(102,10−1,0.7,21)
0.0193

83.5
(102,101,102,0.1,22)
0.18088

Breast tissue
(106X9)

98.1
(102,0.7,20)
0.00983

99
(103,101,0.5,22)
0.01033

97.1
(10−2,10−2,20)
0.03842

97.1
(10−3,10−1,0.3,20)
0.0029

98.1
(100,100,100,0.5,2−1)
0.02587

Bupa or liver-disorders
(345X6)

67.2
(101,0.9,2−2)
0.08222

65.5
(103,102,0.1,2−1)
0.07199

72.2
(10−1,10−1,2−1)
0.24196

73.6
(100,10−1,0.1,20)
0.0022

71.6
(10−3,101,10−3,0.5,2−1)
0.31955

Breast-cancer-wisconsin
(683X9)

97.4
(10−3,0.1,2−2)
0.40374

97.7
(10−3,10−3,0.7,20)
0.38303

97.1
(10−2,10−2,20)
0.90881

97.5
(102,10−1,0.9,25)
0.1045

97.8
(103,101,103,0.1,23)
1.17417

Breast_cancer_coimbra
(116X9)

75.1
(100,0.9,2−1)
0.01487

76.8
(102,101,0.1,20)
0.01204

76.1
(10−2,10−2,2−1)
0.04255

81.2
(101,10−1,0.7,20)
0.0054

79.5
(103,102,103,0.7,20)
0.04745

Autism-Adolescent-Data
(98X20)

95.8
(10−3,0.1,20)
0.01201

96.9
(100,10−2,0.9,20)
0.01036

98
(10−2,10−2,21)
0.03643

96.9
(102,10−1,0.5,25)
0.0031

99
(10−3,101,10−3,0.1,21)
0.04198

03subcl5-600-5-50-BI (98X20) 74.2
(10−1,0.1,2−3)
1.4717

74
(103,101,0.9,2−2)
0.3733

76.8
(10−2,10−3,2−1)
0.0601

76.5
(103,103,0.3,2−2)
0.1063

77
(103, 103,102,0.9,2−2)
0.2312

03subcl5-600-5-60-BI (98X20) 72.5
(100,0.7,2−3)
0.3504

74.8
(103,102,0.9,2−2)
0.3573

76
(10−2,10−3,2−3)
0.0603

76
(102,102,0.1,2−5)
0.1104

76.5
(103, 103,102,0.9,2−1)
0.2392

04clover5z-600-5-30-BI (98X20) 78.5
(100,0.9,2−3)
0.3397

82.3
(103,103,0.1,2−3)
0.4217

83.7
(10−2,10−3,2−3)
0.0584

82
(100,100,0.3,2−5)
0.1118

86
(102,103,100,0.3,2−3)
0.1974

04clover5z-600-5-50-BI (98X20) 76
(10−1,0.9,2−3)
0.3692

80.8
(101,100,0.1,2−3)
0.3226

81
(10−2,10−3,2−3)
0.0594

79.5
(102,102,0.1,2−5)
0.1307

84.3
(103,103,100,0.3,2−2)
0.1826

Mean Accuracy 83.8 85.2 86.1 85.4 87.6
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and “z” indicates that the ACC of UTPMSVM is similar that 
of USVM. The level of significance is taken as 0.05. The mean 
differences between UTPMSVM and USVM are also shown. 
It can also be noticed that the “p” value is less than the level of 
significance, which indicates the dominance of UTPMSVM 
over USVM. Similar conclusions can be derived from the 
third and fourth columns. As a result, it can be concluded 

that UTPMSVM’s accuracy distribution drastically differs 
from USVM, UNHSVM, and TPMSVM, demonstrating that 
UTPMSVM is significantly different from USVM, UNHSVM, 
and TPMSVM. However, it cannot be concluded that the accu-
racy distribution of UTPMSVM differs from AULSTSVM 
which is due to the “p” value being greater than the level of 
significance.

Table 4   Specific ranks and 
average ranks of USVM, 
UNHSVM, TPMSVM, 
AULSTSVM, and UTPMSVM 
for real-world datasets

Dataset USVM UNHSVM TPMSVM AULSTSVM UTPMSVM

Australian Credit 2 5 4 3 1
Heart-stat 1 3.5 5 2 3.5
Indian Liver Patient Dataset (ILPD) 5 4 1 3 2
Iris 3 3 3 3 3
Lymphography 1.5 4 5 1.5 3
Seeds 2.5 1 5 2.5 4
Transfusion 4 2 3 5 1
Ecoli3 3.5 3.5 1 5 2
Ecoli0137vs26 5 3 4 2 1
Glass-0-1-4-6_vs_2 4 1 3 5 2
Glass-0-1-5_vs_2 4 3 2 5 1
Led7digit-0-2-4–5-6-7-8-9_vs_1 3 4 5 1.5 1.5
New-thyroid1 3.5 1.5 3.5 5 1.5
Vowel 3 2 4 5 1
WDBC 3 3 5 1 3
Wine quality 3 3 3 3 3
WPBC 5 4 2 1 3
Ecoli-0-1_vs_5 4 3 2 5 1
Haberman 1 5 4 2 3
Dermatology 3 3 3 3 3
Cleveland 2 5 4 1 3
Breast tissue 2.5 1 5 4 2.5
Bupa or liver-disorders 4 5 2 1 3
Breast-cancer-wisconsin 4 2 5 3 1
Breast_cancer_coimbra 5 3 4 1 2
Autism-Adolescent-Data 5 4 2 3 1
03subcl5-600-5-50-BI 4 5 2 3 1
03subcl5-600-5-60-BI 5 4 2.5 2.5 1
04clover5z-600-5-30-BI 5 3 2 4 1
04clover5z-600-5-50-BI 5 3 2 4 1
Mean rank 3.517 3.217 1.267 3 2
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CD

5 4 3 2 1

2 UTPMSVM
3 AULSTSVM

3.2167 UNHSVM

3.2667TPMSVM

3.5167USVM

Fig. 8   Graphical visualization of the Nemenyi test. The CD is 1.1137

Fig. 7   ε and µ parameter insensitivity of UTPMSVM on a autism, b Led7digit-0-2-4-5-6-7-8-9_vs_1, c vowel, and d WDBC
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Conclusion

We suggest a new Universum-based twin parametric margin 
SVM (UTPMSVM) for EEG signal classification problems. 
The suggested model shows an improvement in generaliza-
tion performance over the already existing TPMSVM model 
for real-world as well as EEG signal classification problems. 
It is well known that the Universum samples work as prior 
information about the distribution of data. Hence, Universum-
based models are suggested for classifying the EEG signals. 
In addition, to diminish the influence of noise from the EEG 
signals, we have used several feature reduction algorithms as a 
pre-processing step. To validate the efficiency of the proposed 
UTPMSVM, and its classification performance with USVM, 
UNHSVM, and TPMSVM. The results portray the efficacy of 
the proposed models for both EEG and other real-world data-
sets. Further, statistical analyses confirm the dominance of the 
proposed UTPMSVM over other models. The basic drawback 
of the UTPMSVM is that due to the incorporation of 2-norm, 
its sparsity is lost. Improving the sparsity of the UTPMSVM 
could be an interesting aspect of future work. Moreover, one 
can remodel the UTPMSVM for solving the multiclass clas-
sification problem in future. In addition to that, taking inspira-
tion from the recent works of Tanveer et al. [50] and Ganaie 
et al. [51], we can improve the model to deal with large-scale 
as well as noisy datasets. Also, deep learning-based strategies 
can be embedded with our proposed model for the multiclass 
classification of EEG signals.
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Declarations 

Research Involving Human Participants and/or Animals  Not applicable.

Consent to Participate  Not applicable.

Conflict of Interest  The authors declare no competing interests.

References

	 1.	 Caton R. Electrical currents of the brain. J Nerv Ment Dis. 1875;2(4):610.
	 2.	 Beck A. Die Bestimmung der Localisation der Gehirn-und Ruck-

enmarksfunctionen vermittelst der elektrischen Erscheinungen. 
Centralblatt fur Physiologie. 1890;4:473–6.

	 3.	 Berger H. Über das elektroenkephalogramm des menschen. Arch 
Psychiatr Nervenkr. 1929;87(1):527–70.

	 4.	 Tudor M, Tudor L, Tudor KI. Hans Berger (1873–1941)–the his-
tory of electroencephalography. Acta medica Croatica: casopis 
Hravatske akademije medicinskih znanosti. 2005;59(4):307–13.

	 5.	 Vecchiato G, Astolfi L, Tabarrini A, Salinari S, Mattia D, Cincotti 
F, Babiloni F. EEG analysis of the brain activity during the obser-
vation of commercial, political, or public service announcements. 
Comput Intell Neurosci. 2010;2010.

	 6.	 Light GA, Williams LE, Minow F, Sprock J, Rissling A, Sharp 
R, Swerdlow NR, Braff DL. Electroencephalography (EEG) and 
event‐related potentials (ERPs) with human participants. Curr 
Protoc Neurosci. 2010;52(1):6-25.

	 7.	 Pearson K. Principal components analysis. The London, Edin-
burgh, and Dublin Philosophical Magazine and Journal of Sci-
ence. 1901;6(2):559.

	 8.	 Jutten C, Herault J. Space or time adaptive signal processing by 
neural models. In Proceeding AIP Conference on Neural Networks 
for Computing 1986 (p. 206211).

	 9.	 Cortes C, Vapnik V. Support-vector networks Machine learning. 
1995;20(3):273–97.

	10.	 Yeo MV, Li X, Shen K, Wilder-Smith EP. Can SVM be used for 
automatic EEG detection of drowsiness during car driving? Saf Sci. 
2009;47(1):115–24.

	11.	 Subasi A, Gursoy MI. EEG signal classification using PCA, ICA, LDA 
and support vector machines. Expert Syst Appl. 2010;37(12):8659–66.

	12.	 Afifi S, GholamHosseini H, Sinha R. A system on chip for mela-
noma detection using FPGA-based SVM classifier. Microprocess 
Microsyst. 2019;65:57–68.

	13.	 Gupta D, Borah P, Prasad M. A fuzzy based Lagrangian twin  
parametric-margin support vector machine (FLTPMSVM). In 2017 
IEEE symposium series on computational intelligence (SSCI) 2017 
(pp. 1-7). IEEE.

	14.	 Jayadeva K, R., & Chandra, S. Twin support vector machines 
for pattern classification. IEEE Trans Pattern Anal Mach Intell. 
2007;29(5):905–10.

	15.	 Mangasarian OL, Wild EW. Multisurface proximal support vector 
machine classification via generalized eigenvalues. IEEE Trans 
Pattern Anal Mach Intell. 2005;28(1):69–74.

	16.	 Kumar MA, Gopal M. Least squares twin support vector machines 
for pattern classification. Expert Syst Appl. 2009;36(4):7535–43.

Table 5   Wilcoxon sign-rank test comparison

UTPMSVM vs USVM UTPMSVM vs 
UNHSVM

UTPMSVM vs 
TPMSVM

UTPMSVM vs 
AULSTSVM

N Positive rank (PR) 20x 21x 23x 17x

Negative rank (NR) 5y 3y 4y 9y

Tie (T) 5z 6z 3z 4z

Mean differences 3.35 4.86 5.21 4.06
Sum of PRs 284 263 319.5 241
Sum of NRs 41 37 58.5 110
z value −3.2692 −3.2286 −3.1353 −1.6636
p value 0.0011 < 0.05 0.0012 < 0.05 0.0039 < 0.05 0.097 > 0.05



2062	 Cognitive Computation (2024) 16:2047–2062

1 3

	17.	 Shao YH, Zhang CH, Wang XB, Deng NY. Improvements on twin sup-
port vector machines. IEEE Trans Neural Networks. 2011;22(6):962–8.

	18.	 Qi Z, Tian Y, Shi Y. Robust twin support vector machine for pat-
tern classification. Pattern Recogn. 2013;46(1):305–16.

	19.	 Borah P, Gupta D. Robust twin bounded support vector machines 
for outliers and imbalanced data. Appl Intell. 2021;51(8):5314–43.

	20.	 Hazarika BB, Gupta D. Density weighted twin support vector 
machines for binary class imbalance learning. Neural Process Lett. 
2022;54(2):1091–130.

	21.	 Peng X. TPMSVM: a novel twin parametric-margin sup-
port vector machine for pattern recognition. Pattern Recogn. 
2011;44(10–11):2678–92.

	22.	 Peng X, Wang Y, Xu D. Structural twin parametric-margin sup-
port vector machine for binary classification. Knowl-Based Syst. 
2013;49:63–72.

	23.	 Peng X, Kong L, Chen D. Improvements on twin parametric-margin 
support vector machine. Neurocomputing. 2015;151:857–63.

	24.	 Shao YH, Wang Z, Chen WJ, Deng NY. Least squares twin par-
ametric-margin support vector machine for classification. Appl 
Intell. 2013;39(3):451–64.

	25.	 Gupta D, Borah P, Sharma UM, Prasad M. Data-driven mechanism 
based on fuzzy Lagrangian twin parametric-margin support vec-
tor machine for biomedical data analysis. Neural Comput Appl. 
2022;1–11.

	26.	 Richhariya B, Tanveer M. EEG signal classification using Univer-
sum support vector machine. Expert Syst Appl. 2018;106:169–82.

	27.	 Long W, Tang YR, Tian YJ. Investor sentiment identification based 
on the Universum SVM. Neural Comput Appl. 2018;30(2):661–70.

	28.	 Richhariya B, Tanveer M, Rashid AH, Alzheimer’s Disease Neu-
roimaging Initiative. Diagnosis of Alzheimer’s disease using Uni-
versum support vector machine based recursive feature elimination 
(USVM-RFE). Biomed Signal Process Control. 2020;59:101903.

	29.	 Qi Z, Tian Y, Shi Y. Twin support vector machine with Universum 
data. Neural Netw. 2012;36:112–9.

	30.	 Richhariya B, Gupta D. Facial expression recognition using itera-
tive Universum twin support vector machine. Appl Soft Comput. 
2019;76:53–67.

	31.	 Zhao J, Xu Y, Fujita H. An improved non-parallel Universum 
support vector machine and its safe sample screening rule. Knowl-
Based Syst. 2019;170:79–88.

	32.	 Richhariya B, Tanveer M. A fuzzy universum support vector machine 
based on information entropy. In Machine Intelligence and Signal 
Analysis 2019 (pp. 569-582). Springer, Singapore.

	33.	 Richhariya B, Tanveer M. A reduced Universum twin support 
vector machine for class imbalance learning. Pattern Recogn. 
2020;102: 107150.

	34.	 Kumar B, Gupta D. Universum based Lagrangian twin bounded 
support vector machine to classify EEG signals. Comput Methods 
Programs Biomed. 2021;208: 106244.

	35.	 Moosaei H, Bazikar F, Ketabchi S, Hladík M. Universum paramet-
ric-margin ν-support vector machine for classification using the 
difference of convex functions algorithm. Appl Intell. 2021;1–21.

	36.	 Richhariya B, Tanveer M, Rashid AH, Alzheimer’s Disease Neu-
roimaging Initiative. Diagnosis of Alzheimer’s disease using Uni-
versum support vector machine based recursive feature elimination 
(USVM-RFE). Biomed Signal Process Control. 2020;59:101903.

	37.	 Richhariya B, Tanveer M. A fuzzy universum least squares twin sup-
port vector machine (FULSTSVM). Neural Comput Appl. 2021;1–2.

	38.	 Moosaei H, Hladík M. A lagrangian-based approach for univer-
sum twin bounded support vector machine with its applications. 
Ann Math Artif Intell. 2022;1-23.

	39.	 Richhariya B, Tanveer M, Alzheimer’s Disease Neuroimaging Ini-
tiative Discipline of Mathematics, Indian Institute of Technology 
Indore, Simrol, Indore, India Program. An efficient angle-based Uni-
versum least squares twin support vector machine for classification. 
ACM Transactions on Internet Technology (TOIT). 2021;21(3):1–24.

	40.	 Ganaie MA, Tanveer M, Alzheimer’s Disease Neuroimaging Ini-
tiative. KNN weighted reduced Universum twin SVM for class 
imbalance learning. Knowl-Based Syst. 2022;245:108578.

	41.	 Weston J, Collobert R, Sinz F, Bottou L, Vapnik V. Inference with 
the universum. In Proceedings of the 23rd international confer-
ence on Machine learning 2006 (pp. 1009-1016).

	42.	 Mosek APS. The MOSEK optimization software. Online at http://​
www.​mosek.​com. 2010;54(2–1), p.5.

	43.	 Andrzejak RG, Lehnertz K, Mormann F, Rieke C, David P, Elger 
CE. Indications of nonlinear deterministic and finite-dimensional 
structures in time series of brain electrical activity: Dependence on 
recording region and brain state. Phys Rev E. 2001;64(6):061907.

	44.	 Hazarika BB, Gupta D. Modelling and forecasting of COVID-
19 spread using wavelet-coupled random vector functional link 
networks. Appl Soft Comput. 2020;96:106626.

	45.	 Bartlett MS, Movellan JR, Sejnowski TJ. Face recognition by 
independent component analysis. IEEE Trans Neural Networks. 
2002;13(6):1450–64.

	46.	 Dua D, Graff C. UCI Machine Learning Repository [http://​ 
archi​ve.​ics.​uci.​edu/​ml]. Irvine, CA: University of California, School 
of Information and Computer Science. 2019. [Accessed 25 April, 
2019]

	47.	 Alcalá-Fdez J, Fernández A, Luengo J, Derrac J, Garcia S, Sanchez 
L, Herrera F. (2011). Keel data-mining software tool: Data set 
repository, integration of algorithms and experimental analysis 
framework. J. Mult. Valued Logic Soft Comput. 2015;17.

	48.	 Demšar J. Statistical comparisons of classifiers over multiple data 
sets. J Mach Learn Res. 2006;7:1–30.

	49.	 Woolson RF. Wilcoxon signed‐rank test. Wiley encyclopedia of 
clinical trials. 2007;1-3.

	50.	 Tanveer M, Ganaie MA, Bhattacharjee A, Lin CT. Intuitionistic Fuzzy 
Weighted Least Squares Twin SVMs. IEEE Trans Cybern. 2022.

	51.	 Ganaie MA, Tanveer M, Lin CT. Large-Scale Fuzzy Least Squares 
Twin SVMs for Class Imbalance Learning. IEEE Trans Fuzzy 
Syst. 2022.

Publisher's Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds 
exclusive rights to this article under a publishing agreement with the 
author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of 
such publishing agreement and applicable law.

http://www.mosek.com
http://www.mosek.com
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

	EEG Signal Classification Using a Novel Universum-Based Twin Parametric-Margin Support Vector Machine
	Abstract
	Introduction
	Related Work
	Universum Support Vector Machine (USVM)
	Twin Parametric-Margin Support Vector Machine (TPMSVM)
	Proposed Universum-Based Twin Parametric Margin Support Vector Machine
	Experimental Setup, Results, and Analysis
	EEG Signal Classification
	Experiment on Real-World Datasets
	Friedman Test for Statistical Comparison
	Wilcoxon Test for Statistical Comparison

	Conclusion
	References


