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Abstract
Concepts learning is the most fundamental unit in the process of human cognition in philosophy. Granularity is one of the 
fundamental concepts of human cognition. The combination of granular computing and concept learning is critical in the 
cognitive process. Meanwhile, efficiently and accurately using the information collected from different sources is the focus 
of data mining in the contemporary. Hence, how to sufficiently learn concepts under a multi-sources context is an essential 
concern in the field of cognition. This paper offers a new thought for two-way concept-cognitive learning based on granular 
computing in multi-source fuzzy decision tables. Firstly, based on the best possible guarantee of the classification ability, 
original information from different sources is fused by conditional entropy, which is the kind of multi-source fusion method 
(i.e., CE-fusion). Secondly, we learn concepts from a given object set, attribute set, or pair of object and attribute sets in 
the fused information table, and these three types of concept learning algorithms are designed. This analysis shows that 
two-way concept learning based on multi-source information fusion is a suitable method of multi-source concept learning. 
Some examples are valuable for applying these theories to deal with practical issues. Our work will provide a convenient 
novel tool for researching concept-cognitive learning methods with multi-source fuzzy context.

Keywords Concept-cognitive learning · Two-way learning · Granular computing · Multi-source fuzzy context · Formal 
concept analysis

Introduction

The basic concept and scientific methodology of cognitive 
science are built on modern scientific analysis and engineer-
ing experiments to study cognition and intelligence. Up to 
now, cognitive computing has been viewed as the develop-
ment of computer systems modeled on the human brain. As 
is well known, concepts are the most fundamental units of 
human cognition, and concept learning is the most funda-
mental unit in the process of human cognition in philoso-
phy [1, 2]. The critical mission of conceptual knowledge 
presenting and processing is to obtain exact and accurate 
concepts from various aspects. Concept-cognitive learning 

(CCL), the idea of cognitive through concept formation and 
learning to reveal the systematic law of the human brain, 
is an effective cognitive mechanism [1, 3–5]. It should be 
noted that CCL will be an essential viewpoint for us to carry  
out cognitive science research in the current article.

As an emerging paradigm of intelligent computing meth-
odologies, cognitive computing has the characteristic of 
integrating past experiences into itself. So it is a beneficial 
idea to learn concepts from the cognitive viewpoint. Note 
that concepts can be characterized by their extent and intent, 
which can be determined by each other [6–8]. The extent of 
the concept is the scope of application, which the object set 
can express that the concept denotes. The intent of concept 
is the unique attribute reflected by the concept, which the 
attribute can express a set that a concept connotes [8–10]. 
So concepts can be learned from two aspects of intent and 
extent. As an emerging paradigm of intelligent computing 
methodologies, cognitive computing has the characteristic 
of integrating past experiences into itself [3, 11, 12]. So it 
is a good idea to learn concepts from the cognitive view-
point. Now, concept-cognitive learning, as the development 
of computer systems modeled on the human brain, is widely 
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concerned [1, 13–15]. Note that authors [5, 16] firstly inves-
tigated learning concepts from the unknown through a pair 
of cognitive operators (i.e., extent-intent and intent-extent) 
to simulate human thought processes. Hence, two-way learn-
ing has become the primary method and theory basis for 
learning the concept from the multi-source information table 
in this paper.

Currently, big data has opened up a whole new era for 
cognitive science [17, 18]. As an essential basis to sup-
port cognitive science, data and knowledge fusion driven  
is related to the formulation of man-machine intelligence. 
One of the most urgent things is how to use data from dif-
ferent sources to discover effective knowledge. The defi-
ciency of the single data can be made up via integrating data  
from different sources to achieve the mutual complement 
and confirmation of a variety of data sources. The means 
of multi-source fusion expand the application range of data 
and improve the accuracy of the analysis. Therefore, tak-
ing full advantage of multi-source information is crucial to 
learn concepts and knowledge. This paper emphasizes the 
concept-cognitive learning of multi-source fuzzy decision 
tables. It is also important to note that effective concepts 
may not be learned through existing concept learning meth-
ods in a single decision table. Thus, concept learning under 
multi-source information is worth paying attention to.

From a philosophical viewpoint, granular computing 
(GrC) is a structured way of thinking. From the applica-
tion viewpoint, GrC is a general method for solving struc-
tured problems. From the calculation viewpoint, GrC is 
a typical method of information processing. At present, 

there are many studies on granular computing in refer-
ences  [19–22]. Information granules are formalized in 
many different ways. They can be expressed in terms of 
the set, fuzzy set, rough set, formal concept, etc. Formal 
concept analysis (FCA) first proposed by Wille [8] is a 
popular human-centered tool for knowledge discovery, 
data mining, and bi-clustering and has widely been applied 
to lots of fields [14, 15, 23]. Note that these certain con-
cept structures or lattices establish rigorous mathematical 
models and provide a formal semantics for data analysis  
in practice [24, 25]. In other words, meanings of real-
world, concrete entities can be represented, and these 
certain concept structures can embody the semantics of 
abstract subjects. All in all, learning concepts (sometimes 
including their corresponding structure) have been inves-
tigated from various aspects. In addition, considering the 
computational complexity and the uncertainty of concept 
learning in multi-source decision tables, this paper focuses 
on two-way concept-cognitive learning with multi-source 
information fusion by granular computing.

We proposed a two-way concept-cognitive learning 
approach to learn fuzzy concept from multi-source fuzzy 
decision tables. The block diagram of steps of the proposed 
approach is shown in Fig. 1. The main contributions of this 
paper are as follows: 

1. We discuss a new thought of concept learning based on 
the multi-source decision table by connecting two-way 
learning, granular computing to multi-source informa-
tion fusion theory. Furthermore, it attempts to construct 

Fig. 1  Block diagram of steps 
of the proposed approach
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a new concept learning method from a multi-source 
information fusion.

2. To take full advantage of multi-source information to learn 
concepts, we build two kinds of multi-source fuzzy decision 
fusion mechanisms, including conditional entropy fusion 
and mean-fusion. Moreover, some examples are used to 
verify the effectiveness of the two fusion mechanisms.

3. Compared with other CCL models, the two-way concept-
cognitive learning method emphasizes learning concepts 
from clues. Therefore, the mechanic two-way concept-
cognitive learning for given specific tasks or cues is more 
advantageous than the current many CCL model.

The remainder of this paper is organized as follows. The “Pre-
liminaries” section briefly reviews some basic notions about 
granule computing and formal concept analysis. The “Two-
way Concept-Cognitive Learning” section discusses a cog-
nitive concept mechanism of transforming any information 
granule into a sufficient and necessary information granule. 
The definition of the multi-source fuzzy decision table and 
multi-source fusion is constructed to learn the concept based 
on entropy theory in the “Concept Learning in Multi-source 
Fuzzy Decision Tables” section. Furthermore, the “Conclu-
sions” section concluded with a discussion for further work.

Preliminaries

This section briefly reviews some basic notions related to 
(1) fuzzy set, (2) an uncertainly measure in the rough set, 
and (3) fuzzy formal context. More detailed descriptions can 
reference the literatures [6, 26–28].

Fuzzy Set

Fuzzy set first proposed by Zadeh [28] attaches great impor-
tance to the idea of partial membership, which departs from 
the dichotomy. Fuzzy set theory is a generalization of the 
classical set theory. Let U be a nonempty finite set, and a 
fuzzy set X̃ of U can be expressed as:

where 𝜇
X̃
(x) : U → [0, 1] , 𝜇

X̃
(x) is called the membership degree 

of the object x ∈ U with respect to X̃ . Let F(U) customarily 
denote all fuzzy sets in the universe U. Given two fuzzy sets X̃

1

 ,  
X̃
2

∈ F(U) , for any x ∈ U , 𝜇
X̃
1

(x) ≤ 𝜇
X̃
2

(x) if and only if 

X̃
1

⊆ X̃
2

 ; 𝜇
X̃
1

(x) = 𝜇
X̃
2

(x) if and only if X̃
1

⊆ X̃
2

 and X̃
2

⊆ X̃
1

 . 

Let ∼ X̃ represent the complement set of X̃ , X̃
1

∩ X̃
2

 represents 
the intersection of X̃

1

 and X̃2 , and X̃1 ∪ X̃2 represents the union 
of X̃1 and X̃2 , and specific expressions are as follows:

X̃ = {< x,𝜇
X̃
(x) > |x ∈ U},

A decision system is a quadruple I = (U,A,V , f ) , where 
U is a nonempty finite universe; A = C ∪ D is the union 
of condition attribute set C and decision attribute set D, 
and C ∩ D = � ; V is the union of attribute domains, i.e., 
V = ∪a∈AVa ; f ∶ U × A → V  is an information function,  
i.e., ∀a ∈ A , x ∈ U  , that f (x, a) ∈ Va , where f(x,  a) is  
the value of the object x under the attribute a. Gener-
ally, let D = {d} . Particularly, if the value range of V is  
from 0 to 1, then the decision system I = (U,A,V , f ) is 
called a fuzzy decision system which can be denoted by 
Ĩ = (U,A,V , f ).

An Uncertainty Measure in Rough Set

Rough set is one of effective mathematical tools for data 
analysis and knowledge discovery. Let U be a nonempty 
finite universe and R be an equivalence relation of U × U . 
The equivalence relation R induces a partition of U, 
denoted by U∕R = {[x]R|x ∈ U} , where [x]R represents the 
equivalence class of x with regard to R. Then, (U, R) is 
called the Pawlak approximation space. For an arbitrary 
subset X of U, the lower and upper approximations of X 
are defined as follows:

And pos(X) = R(X), neg(X) =∼ R(X), bnd(X) = R(X) − R(X) are 
called the positive region, negative region, and boundary 
region of X, respectively. Objects definitely and not defi-
nitely contained in the set X form positive region pos(X) 
and negative region neg(X). Objects that may be con- 
tained in the set X constitute boundary region bnd(X).

The uncertainty measure is an important direction in 
rough set theory. The approximation precision proposed 
by Pawlak raised the proportion of correct classification  
by a equivalence relation. Let I = (U,A,V , f ) be a decision 
system and U∕D = {D1,D2,⋯ ,Dm} be a classification of 
universe U. For an arbitrary attribute subset R of C, the 
R-lower and R-upper approximations of U/D are defined as

The approximation precision and the corresponding 
approximation roughness of U/D by R are defined as

∼ X̃ = {< x, 1 − 𝜇
X̃
(x) > |x ∈ U},

X̃
1

∩ X̃
2

= {< x,∧{𝜇
X̃
1

(x),𝜇
X̃
2

(x)} > |x ∈ U},

X̃
1

∪ X̃
2

= {< x,∨{𝜇
X̃
1

(x),𝜇
X̃
2

(x)} > |x ∈ U}.

R(X) = {x ∈ U|[x]
R
∩ X ≠ �} = ∪{[x]

R
|[x]

R
∩ X ≠ �},

R(X) = {x ∈ U|[x]
R
⊆ X} = ∪{[x]

R
|[x]

R
⊆ X}.

R(U∕D) = R(D
1

) ∪ R(D
2

) ∪⋯ ∪ R(D
m
),

R(U∕D) = R(D
1

) ∪ R(D
2

) ∪⋯ ∪ R(D
m
).
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Fuzzy Formal Context

Formal concept analysis (FCA) proposed by Wille [8] pro-
vides comprehensive knowledge about a dataset called a 
formal context. The formal context is a triplet of an object 
set, an attribute set, and an information function about 
objects and attributes whose domain consists of 0 and 1. 
The formal context is fuzzy when the domain is the natural 
interval [0, 1]. Therefore, fuzzy information systems can 
be analyzed from the perspective of formal contexts. That 
is to say, fuzzy formal context is a triple (U,A, Ĩ) , where 
U = {x1, x2,⋯ , xn} is an object set and A = {a1, a2,⋯ , am} 
is an attribute set and Ĩ is a fuzzy binary relation from U to  
A, Ĩ = {< (x, a),𝜇Ĩ(x, a) > |(x, a) ∈ U × A} , 𝜇

Ĩ
(x, a) ∶ U×

A → [0, 1].
The cognitive mechanism of forming concepts can be 

described as follows. Let X(X ⊆ U ) be an object set and 
B(B ⊆ A ) be an attribute set. A pair of operators firstly be 
defined, namely

where Ã(a) =
⋀

x∈X 𝜇Ĩ(x, a) ,  Ĩ(x, b) = 𝜇Ĩ(x, b) ∈ 𝜈  and 
𝜈 = {Ĩ(x, a), x ∈ U, a ∈ A} . Particularly, we rule �∗ = Ã =

{< a, 0 > |a ∈ A} . From the perspective of philosophy, a 
concept consists of two parts: extent Y which is a set of 
objects and intent C which is a set of attributes. In general, 
the more objects a concept denotes, the less attributes it con-
notes, and vice versa. That is to say, X1 ⊆ X2 ⇒ X∗

2
⊆ X∗

1
 and  

B̃1 ⊆ B̃2 ⇒ B̃2

∗
⊆ B̃1

∗ , where X∗
1
 and X∗

1
 denote the corre-

sponding intents of X1 and X2 and B̃1

∗ and B̃1

∗ denote the 
corresponding extents of B̃1 and B̃2 . From the perspective of 
cognitive psychology, the perception of the whole is more 
than the integration of perceptions of its parts. That is to say, 
(X1 ∪ X2)

∗ ⊇ X∗
1
∩ X∗

2
 and (B̃1 ∪ B̃2)

∗ ⊇ B̃1

∗
∩ B̃2

∗ . Moreover, 
the above two operators have the following properties: 

1. X1 ⊆ X2 ⇒ X∗
2
⊆ X∗

1
 , B̃1 ⊆ B̃2 ⇒ B̃∗

2
⊆ B̃∗

1

2. X ⊆ X∗∗, B̃ ⊆ B̃∗∗

3. X∗ = X∗∗∗, B̃∗ = B̃∗∗∗

4. X ⊆ B̃∗
⇔ B̃ ⊆ X∗

5. (X1 ∪ X2)
∗ = X∗

1
∩ X∗

2
 , (B̃1 ∪ B̃2)

∗ = B̃∗
1
∩ B̃∗

2

�R(U∕D) =

∑
Yi∈U∕D �R(Yi)�

∑
Yi∈U∕D �R(Yi)�

,

RoughnessR(U∕D) = 1 − �R(U∕D).

X∗ = Ã = {< a,𝜇Ĩ(x) > |a ∈ A},

B̃∗ = {x ∈ U|Ĩ(x, b) ≥ B̃(b), b ∈ B}.

6. (X1 ∩ X2)
∗ ⊇ X∗

1
∩ X∗

2
 , (B̃1 ∩ B̃2)

∗ ⊇ B̃∗
1
∩ B̃∗

2

A pair (X, B̃) is called a fuzzy concept, if X∗ = B̃ and 
X = B̃∗ , for X ⊆ U , B ⊆ A . X and B̃ are called the extent 
and intent of (X, B̃) , respectively. It is clear that both 
(X∗∗,X∗) and (B̃∗, B̃∗∗) are fuzzy concepts.

In order to more clearly explain the concept of learn-
ing process, we introduce a fuzzy formal context and 
detailed information is shown in Table 1. The universe is 
U = {x1, x2, x3, x4} and the attribute set is A = {a, b, c, d}.

According to intuitive perception and attention, we can  
obtain the result of the object-oriented and attribute- 
oriented operators, shown in Tables 2 and 3.

When X∗ = B̃ and X = B̃∗ , the pair (X, B̃) is called 
a fuzzy concept. According to the definition of the 
fuzzy concept and the result of two operators, con-
cepts of the formal context introduced can be obtained 
as follows: (�, {< a, 1 >,< b, 1 >,< c, 1 >,< d, 1 >}) , 
({x1}, {< a, 0.6 >,< b, 0.2 >,< c, 0.5 >,< d, 0.3 >})  , 
({x2}, {< a, 0.3 >,< b, 0.3 >,< c, 0.7 >,< d, 0.5 >})  , 
({x3}, {< a, 0.7 >,< b, 0.6 >,< c, 0.2 >,< d, 0.9 >})  , 
({x4}, {< a, 0.2 >,< b, 0.4 >,< c, 0.4 >,< d, 0.7 >})  , 
({x1, x2}, {< a, 0.3 >,< b, 0.2 >,< c, 0.5 >,< d, 0.3 >}) , 
({x1, x3}, {< a, 0.6 >,< b, 0.2 >,< c, 0.2 >,< d, 0.3 >})  , 
({x2, x3}, {< a, 0.3 >,< b, 0.3 >,< c, 0.2 >,< d, 0.5 >}) , 
({x2, x4}, {< a, 0.2 >,< b, 0.3 >,< c, 0.4 >,< d, 0.5 >})  , 
({x3, x4}, {< a, 0.2 >,< b, 0.4 >,< c, 0.2 >,< d, 0.7 >})  , 
({x1, x2, x3}, {< a, 0.3 >,< b, 0.2 >,< c, 0.2 >,< d, 0.3 >}) , 
({x1, x2, x4}, {< a, 0.2 >,< b, 0.2 >,< c, 0.4 >,< d, 0.3 >}) , 
({x2, x3, x4}, {< a, 0.2 >,< b, 0.3 >,< c, 0.2 >,< d, 0.5 >}) , 
({x

1

, x
2

, x
3

, x
4

}, {< a, 0.2 >,< b, 0.2 >,< c, 0.2 >,< d, 0.3 >}).

Two‑way Concept‑Cognitive Learning

For a fuzzy formal context (U,A, Ĩ) , 2U and 2A be the 
power sets of U and A, respectively. The F̃ ∶ 2U → 2A and 
P ∶ 2A → 2U are considered as a pair of two-way learning 
operators, and they are abbreviated as F̃  and P , respec-
tively. L1 = P(U) and L̃2 = P(A) be complete lattices and 
fuzzy complete lattices, respectively.

Let L1 and L̃2 be a pair of complete lattices, for any 
X1,X2 ∈ L1, F̃ ∶ L1 →

�L2 is an extent-intent cognitive oper-
ator if F̃  satisfies the following: 

Table 1  A fuzzy formal context U a b c d

x
1

0.6 0.2 0.5 0.3
x
2

0.3 0.3 0.7 0.5
x
3

0.7 0.6 0.2 0.9
x
4

0.2 0.4 0.4 0.7
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1. F̃(0L1) = 1�L2
, F̃(1L1) = 0�L2

,
2. F̃(X1 ∨ X2) = F̃(X1) ∧ F̃(X2).

Similarly, for any B̃1, B̃2 ∈ �L2,P ∶ L1 →
�L2 is an extent-

intent cognitive operator if 

1. P(0L1) = 1
L̃2
,P(1L1) = 0

L̃2
,

2. P(B̃1 ∨ B̃2) = P(B̃1) ∧ P(B̃2).

where O
L̃
 and 1

L̃
 are zero and the unit element, respectively.

Definition 1 Let (U,A, Ĩ) be a fuzzy formal context, 
L1 = P(U) and L̃2 = P(Ã) be two complete lattices, L and P 
be two cognitive operators (i.e., (L1,�L2, F̃,P) is a cognitive 
system). For any X ∈ L1 , B̃ ∈ �L2 , denote

1. If (X, B̃) ∈ G1 , then (X, B̃) is a necessary fuzzy informa-
tion granule and B̃ is necessary fuzzy attribute of X.

2. If (X, B̃) ∈ G2 , then (X, B̃) is a sufficient fuzzy informa-
tion granule and B̃ is sufficient fuzzy attribute of X.

3. If (X, B̃) ∈ G1 ∩ G2 , then (X, B̃) is a sufficient and neces-
sary fuzzy information granule, that is to say X = P(B̃) 
and B̃ = F̃(X) and B̃ is a sufficient necessary fuzzy 
attribute of X.

�G1 = {(X, B̃|B̃ ⩽ F̃(X),X ⩽ P(B̃)},

�G2 = {(X, B̃|F̃(X) ⩽ B̃,P(B̃) ⩽ X}.

4. If (X, B̃) ∉ G1 ∪ G2 , then (X, B̃) is an inconsistent infor-
mation granule.

From Definition 1, we only consider the situation that 
there exist three fuzzy information granule spaces in 
(L1,�L2, F̃,P) . Note that G̃1 ∩ G̃2 be a fuzzy information 
granule space. Therefore, G̃1 ∩ G̃2 is the concept space of 
(L1,�L2, F̃,P) . However, (a, B̃) ∉ �G1 ∪

�G2 is not a fuzzy infor-
mation granule of (L1,�L2, F̃,P) . Moreover, if necessary, suf-
ficient and necessary fuzzy information granules do not exist 
at the beginning of (L1,�L2, F̃,P) . The approaches of volution 
of these fuzzy information granules are as follows.

Proposition 1 Let (L1,�L2, F̃,P) be a cognitive system, G̃1 be a 
necessary fuzzy information granule space, and G̃2 be a suf-
ficient fuzzy information granule space. If X ∈ L1,B̃ ∈ �L2 , then 

1. (X ∧ P(B̃), B̃ ∨ F̃(X)) ∈ �G1

2. (X ∨ P(B̃), B̃ ∧ F̃(X)) ∈ �G1

3. (P(B̃), B̃ ∧ F̃(X)) ∈ �G1

4. (X ∧ P(B̃), F̃(X)) ∈ �G1

5. (PF̃(X), B̃ ∧ F̃(X)) ∈ �G1

6. (X ∧ P(B̃), F̃P(B̃)) ∈ �G1  
7. (X ∨ P(B̃), F̃P(B̃)) ∈ �G2  
8. (PF̃(X), B̃ ∨ F̃(X)) ∈ �G2

Proposition 2 Let (L1,�L2, F̃,P) be a cognitive system, G̃1 be 
a necessary fuzzy information granule space, and G̃2 be a 

Table 2  Object-oriented operator

�∗ = {< a, 1 >,< b, 1 >,< c, 1 >,< d, 1 >} {x
2

, x
3

}∗ = {< a, 0.3 >,< b, 0.3 >,< c, 0.2 >,< d, 0.5 >}

{x
1

}∗ = {< a, 0.6 >,< b, 0.2 >,< c, 0.5 >,< d, 0.3 >} {x
2

, x
4

}∗ = {< a, 0.2 >,< b, 0.3 >,< c, 0.4 >,< d, 0.5 >}

{x
2

}∗ = {< a, 0.3 >,< b, 0.3 >,< c, 0.7 >,< d, 0.5 >} {x
3

, x
4

}∗ = {< a, 0.2 >,< b, 0.4 >,< c, 0.2 >,< d, 0.7 >}

{x
3

}∗ = {< a, 0.7 >,< b, 0.6 >,< c, 0.2 >,< d, 0.9 >} {x
1

, x
2

, x
3

}∗ = {< a, 0.3 >,< b, 0.2 >,< c, 0.2 >,< d, 0.3 >}

{x
4

}∗ = {< a, 0.2 >,< b, 0.4 >,< c, 0.4 >,< d, 0.7 >} {x
1

, x
2

, x
4

}∗ = {< a, 0.2 >,< b, 0.2 >,< c, 0.4 >,< d, 0.3 >}

{x
1

, x
2

}∗ = {< a, 0.3 >,< b, 0.2 >,< c, 0.5 >,< d, 0.3 >} {x
1

, x
3

, x
4

}∗ = {< a, 0.2 >,< b, 0.2 >,< c, 0.2 >,< d, 0.3 >}

{x
1

, x
3

}∗ = {< a, 0.6 >,< b, 0.2 >,< c, 0.2 >,< d, 0.3 >} {x
2

, x
3

, x
4

}∗ = {< a, 0.2 >,< b, 0.3 >,< c, 0.2 >,< d, 0.5 >}

{x
1

, x
4

}∗ = {< a, 0.2 >,< b, 0.2 >,< c, 0.4 >,< d, 0.3 >} {x
1

, x
2

, x
3

, x
4

}∗ = {< a, 0.2 >,< b, 0.2 >,< c, 0.2 >,< d, 0.3 >}

Table 3  Attribute-oriented operator

{< a, 1 >,< b, 1 >,< c, 1 >,< d, 1 >}∗ = � {< a, 0.3 >,< b, 0.3 >,< c, 0.2 >,< d, 0.5 >}∗ = {x
2

, x
3

}

{< a, 0.6 >,< b, 0.2 >,< c, 0.5 >,< d, 0.3 >}∗ = {x
1

} {< a, 0.2 >,< b, 0.3 >,< c, 0.4 >,< d, 0.5 >}∗ = {x
2

, x
4

}

{< a, 0.3 >,< b, 0.3 >,< c, 0.7 >,< d, 0.5 >}∗ = {x
2

} {< a, 0.2 >,< b, 0.4 >,< c, 0.2 >,< d, 0.7 >}∗ = {x
3

, x
4

}

{< a, 0.7 >,< b, 0.6 >,< c, 0.2 >,< d, 0.9 >}∗ = {x
3

} {< a, 0.3 >,< b, 0.2 >,< c, 0.2 >,< d, 0.3 >}∗ = {x
1

, x
2

, x
3

}

{< a, 0.2 >,< b, 0.4 >,< c, 0.4 >,< d, 0.7 >}∗ = {x
4

} {< a, 0.2 >,< b, 0.2 >,< c, 0.4 >,< d, 0.3 >}∗ = {x
1

, x
2

, x
4

}

{< a, 0.3 >,< b, 0.2 >,< c, 0.5 >,< d, 0.3 >}∗ = {x
1

, x
2

} {< a, 0.2 >,< b, 0.2 >,< c, 0.2 >,< d, 0.3 >}∗ = {x
1

, x
2

, x
3

, x
4

}

{< a, 0.6 >,< b, 0.2 >,< c, 0.2 >,< d, 0.3 >}∗ = {x
1

, x
3

} {< a, 0.2 >,< b, 0.3 >,< c, 0.2 >,< d, 0.5 >}∗ = {x
2

, x
3

, x
4

}

{< a, 0.2 >,< b, 0.2 >,< c, 0.4 >,< d, 0.3 >}∗ = {x
1

, x
2

, x
4

} {< a, 0.2 >,< b, 0.2 >,< c, 0.2 >,< d, 0.3 >}∗ = {x
1

, x
2

, x
3

, x
4

}
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sufficient fuzzy information granule space. If (X1, B̃1) ∈
�G1 

and (X2, B̃2) ∈
�G2 , then 

1. (X1 ∨ P(B̃1), F̃(X1 ∨ P(B̃1)) ∈
�G1 ∩

�G2

2. (P(B̃1 ∨ F̃(X1)), B̃1 ∨ F̃(X1)) ∈
�G1 ∩

�G2

3. (X2 ∧ P(B̃2), F̃(X2 ∧ P(B̃2)) ∈
�G1 ∩

�G2

4. (P(B̃2 ∧ F̃(X2)), B̃2 ∧ F̃(X2)) ∈
�G1 ∩

�G2

Let (L1,�L2, F̃,P) be a cognitive system, G̃1 be a necessary 
fuzzy information granule space, and ̃G2 be a sufficient fuzzy 
information granule space. If “ ∨ ” and “ ∧ ” are defined opera-
tors of cognitive system, and

Proposition 3 Let (L1,�L2, F̃,P) be a cognitive system, G1 be 
a necessary information granule space, G2 be a sufficient 
information granule space, and G1 ∩ G2 be a sufficient and 
necessary information granule space. For arbitrary informa-
tion granule (X, B̃) ∈ G1 ∪ G2 , there is only one sufficient and 
necessary information granule which is itself (i.e., (X, B̃) ); 
otherwise, we have two sufficient and necessary information 
granules, that is, (PF̃(X), F̃(X) and (P(B), F̃P(B)).

Proof Because (L1,�L2, F̃,P) be a cognitive system, from 
Definition 1, we have three fuzzy information granule: G1 , 
G2 and (G1 ∩ G2)

c , where (⋅)c is the complement. Then, we 
divide it into three steps to prove it. 

1. If (X, B̃) ∈ G1 , from Definition 1, we have X ⩽ P(B̃)  
and B̃ ⩽ L(X) . Thus, X ∨ P(B̃) = P(B̃) , F̃((X ∨ P(B̃)) =

F̃P(B̃) , B̃ ∨ F̃(X) = F̃(X) , P(B̃ ∨ F̃(X)) = PF̃(a) ; hence, 
two sufficient and necessary information granules are 
(PF̃(X), F̃(X)) and (P(B̃), F̃P(B̃)).

2. If (X, B̃) ∈ G2 , from Definition 1, we have F̃(X) ⩽ B̃ and  
P(B̃) ⩽ X . Thus, X ∧ P(B̃) = P(B̃) , F̃((X ∧ P(B̃)) = F̃P(B̃) , 
B̃ ∧ F̃(X) = P(B̃) , P(B̃ ∧ F̃(X)) = PF̃(X) ; hence, two suf-
ficient and necessary information granules are (PF̃(X),
F̃(X)) and (P(B̃), F̃P(B̃)).

3. If (X, B̃) ∉ G1 ∪ G2 , it is immediate from Definition 1 and 
Proposition 2.

By combining 1), 2), and 3), this theorem is proven. #
Intuitively, Proposition  3 shows that (PF̃(X), F̃(X)) 

and (P(B), F̃P(B)) is a sufficient and necessary infor-
mation granule in the two-way learning system. 
(X, B̃) = (PF̃(X), F̃(X)) = (P(B), F̃P(B)) , if any X ∈ L1 and 
B̃ ∈ L2 , (X, B̃) is a sufficient and necessary information granule.

(X1, B̃1) ∧ (X2, B̃2) = (X1 ∧ X2, F̃P(B̃1 ∨ B̃2))

(X1, B̃1) ∨ (X2, B̃2) = (PF̃(X1 ∨ X2), B̃1 ∧ B̃2)

From the above discussion, we put forward a cognitive 
mechanism of transforming any information granule into suf-
ficient and necessary fuzzy information granules as follows:

• Case 1: For any information granule (X, B̃) , its sufficient, 
necessary, and sufficient and necessary fuzzy informa-
tion granules can be obtained with the two-way concept-
cognitive learning method, and the detailed conversion 
process is provided in Propositions 1 and 2.

• Case 2: From the definition of the sufficient and necessary 
fuzzy information granule and cognitive operators, it is true 
that (PF̃(X), F̃(X)) is a fuzzy concept about a. So when one 
just knows the information from an object set X, a fuzzy 
concept can be obtained by computing PF̃(X) and PF̃(X).

• Case 3: From the definition of the sufficient and neces-
sary fuzzy information granule and cognitive operators, 
it is obvious that (P(B̃), F̃P(B̃)) is a fuzzy concept about 
B̃ . So when one just knows the information from a fuzzy 
attribute set B̃ , a fuzzy concept can be obtained by com-
puting P(B̃) and F̃P(B̃).

Concept Learning in Multi‑source Fuzzy 
Decision Tables

It is well known that information about the same subject 
can be collected by different means with the development 
of technology. How to take full advantage of multi-source 
information to learn concepts is an imperative task during 
data processing. Considering the complexity of concept 
learning, we can divide the concept learning process of 
multi-source fuzzy decision tables into two steps. Firstly, 
multi-source information is fused based on some uncertainty 
measures. Secondly, fuzzy concepts are learned from the 
fused decision table.

Information from different sources is called multi-source 
information. In order to further deal with multi-source infor-
mation, we first introduce a multi-source fuzzy decision 
table. The MFI = {Ĩi{i∈N}|Ĩi = {U,Ai,Vi, fi}} can be called 
a multi-source fuzzy decision table with |N| single fuzzy 
decision tables, where U is a finite non-empty set of object, 
Ai , Vi and fi are the finite non-empty set of attributes, the 
domain of all objects under all attributes, and the informa-
tion function in the ith fuzzy decision table, respectively.

In each fuzzy information table Ĩk = (U,A,Vk, fk)

(k ∈ N ), for an arbitrary attribute a ∈ A , Ĩa
k
(x

i
)(k = 1, 2,⋯ ,

s, i = 1, 2,⋯ , n) represents the value of xi with respect to the 
attribute a in the kth fuzzy decision table. And for any x ∈ U , 
a similarity class of x with respect to a in the Ĩk is defined 
as Tk

a
(x) = {xi||Ĩak (xi) − Ĩa

k
(x)| ⩽ b}, where the threshold b 

is a given real number. It is obvious that xi ∈ Tk
a
(xi) and 

xi ∈ Tk
a
(xj) ⇔ xj ∈ Tk

a
(xi).
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For convenience, let |N| = s . MFI = {Ĩ
i{i∈N}|Ĩi = {U,

A
i
,V

i
, f
i
}} is composed of s single fuzzy decision table. In 

particular, if it is true that Ai = Aj for all the i ≠ j , then all 
the fuzzy decision tables have the same structure. Because 
the more information you have on the same thing learned 
knowledge should be more accurate. For the multi-source 
decision table, which has different structures, we may only 
need to find the ultimate goal as a middle bridge to establish 
the relationship between different information sources. How-
ever, the multi-source decision table, which has the same 
structure, will be required to achieve a higher goal in addi-
tion to the abovementioned middle bridge. So the research 
background of this paper is based on the multi-source fuzzy 
decision table which has the same structure and different 
information functions, namely, MFI = {Ĩ

i

s

{i=N}
|Ĩ
i
= {U,

A,V
i
, f
i
}} . For convenience, the multi-source decision table 

MFI = {Ĩi
s

{i=N}
|Ĩi = {U,A,Vi, fi}} is denoted as MFI =

{Ĩ
1

, Ĩ
2

,⋯ , Ĩ
s
} . Unless otherwise specified, all multi-source 

fuzzy decision tables in this paper are defined as above 
shown, namely, MFI = {Ĩ1, Ĩ2,⋯ , Ĩs}.

Multi‑source Fuzzy Decision Fusion

By integrating data from different sources, the deficiency of 
single data can be made up. In order to make full use of multi-
source information to realize the mutual complement and 
mutual confirmation of different information sources, all the 
signal fuzzy decision tables are fused based on the uncertainty 
measure. The detailed fusion process is shown in the following.

Conditional Entropy Fusion Mechanism

First of all, a critical issue is the reliability of information 
from different sources, namely the importance of informa-
tion sources. In this paper, we select conditional entropy 
to measure the importance of information sources. A novel 
conditional entropy proposed by Dai et al. [26] is a great 
uncertainty measure that has monotonicity. The reason for 
selecting it is that the thinner the partition, the smaller the 

conditional entropy. That is to say, with the decrease of 
conditional entropy, available knowledge may be increased. 
Therefore, the smaller the conditional entropy is, the more 
critical the source will be. In general, other uncertainty 
measures can also be used to determine the importance of 
information sources according to different decision goals.

According to the paper  [26], this proposed condi-
tional entropy can be used to evaluate the importance of 
attributes. Let I = (U,A,V , f ) be a decision table, where 
U = {x1, x2,⋯ , xn} and U∕D = {Y1, Y2,⋯ , Ym} . The condi-
tional entropy (CE) of D regarding the attribute a in the I 
is defined as

where Ta(xi) is the similarity class of xi with respect to a in 
the decision table I.

For the attribute a, the smaller the conditional entropy is, 
the more important the information source will be. So the 
following definitions in a fuzzy decision table are proposed.

Definition 2 Let MFI = {Ĩ1, Ĩ2,⋯ , Ĩs} be a multi-source 
fuzzy decision table, U = {x1, x2,⋯ , xn} be the universe, 
and U∕D = {Y1, Y2,⋯ , Ym} be a classification of universe 
U. For any a ∈ A , the CE of D with respect to the attribute 
a in the Ĩk of MFI is defined as

where Tk
a
(xi) is the similarity class of xi with respect to a in 

the Ĩk.

The smaller the conditional entropy, the less uncertainty 
there is. Thus, we could select the best attribute among all 
multi-source according to the minimum principle and defini-
tion 2, as follows:

H(D|a) = −

n∑

i=1

m∑

j=1

|Ta(xi) ∩ Yj|
|U|

log
|Ta(xi) ∩ Yj|
|Ta(xi)|

.

Ha(D|Ĩk) = −

|U|∑

i=1

m∑

j=1

|Tk
a
(xi) ∩ Yj|
|U|

log
|Tk

a
(xi) ∩ Yj|
|Tk

a
(xi)|

.

ka = argmin
k∈{1,2,⋯,s}

(Ha(D|Ĩk)).

Fig. 2  Multi-source fuzzy infor-
mation fusion
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Then, the column of the attribute a in the kath table is extracted 
as the column of the attribute a in the fused table. After this 
operation is performed on all the attributes, a new decision 
table can be obtained. Let NI(a) = Ĩa

ka
, a ∈ A denote the opera-

tion on the attribute a and NI = (Ĩ
a1
ka1
, Ĩ

a2
ka2
,⋯ , Ĩ

am
kam

) denote the 
new decision table, where m is the number of attribute.

The process of fusion is visually displayed in Fig. 2. There 
is a multi-source fuzzy decision table MFI = {Ĩ1, Ĩ2,⋯ , Ĩs} 
with s fuzzy decision table, and there are n objects and m 
attributes for each fuzzy decision table Ĩi, (i = 1, 2,⋯ , s) . For 
each fuzzy decision table, we can calculate the conditional 
entropy of the decision attribute set with respect to each condi-
tion attribute by Definition 2. For example, there are s condi-
tional entropy of the attribute a calculated in the MFI, namely, 
Ha(D|Ĩ1),Ha(D|Ĩ2)⋯ ,Ha(D|Ĩs) . According to Definition 2, 
the attribute a in the kath table is extracted as the column of the 
attribute a in the fused table. In order to describe the results 
more vividly, we use different colors of rough lines to express 
the corresponding column extracted. These extracted columns 
construct a new fuzzy decision table. A more detailed presen-
tation is shown in Fig. 2. Next, the proposed fusion theory is 
described by a specific example.

Example 1 This is a case study about the medical diag-
nosis. There are 10 patients who were suspected to be 

infected with the H1N1. In order to diagnose, four hospi-
tals examined the following six indicators, respectively. 
The results of testing in four hospitals are shown in 
Tables 4, 5, 6, and 7, where A={a1, a2,⋯ , a6} represent 
“White Blood Cell,” “Creatine Kinase,” “Aspartate Ami-
notransferase,” “Alanine Transaminase,” “Temperature,” 
and “Cough,” respectively. And U={x1, x2,⋯ , x10} denotes 
10 those suspected patients. These tables obtain a multi-
source fuzzy decision table, and their similarity classes 
can be get by Definition 2.

Given the partition of the universe is U/D={{x1,x4,x7} , 
{x2 , x5,x8},{x3 , x6,x9,x10}} and the value of b is 0.1, namely 
b = 0.1 . The results of the conditional entropy of each attrib-
ute are shown in Table 8.

The smaller the conditional entropy, the more impor-
tant the information source. According to the result of 
Table 8, the reliable source of attributes a1 , a3 , a5 is all 
Ĩ4 . Moreover, the reliable source of attributes a2 and 
a4 is all Ĩ2 and the reliable source of attribute a6 is Ĩ3 . 
Then, a new fuzzy decision table can be established by 
extracting the corresponding column of each attribute. 
The detailed information of the new table is displayed 
in Table 9.

According to the theory of CE-fusion, an algorithm is 
designed for multi-source fuzzy information fusion. Detailed 
information is shown in Algorithm 1.

Table 4  Information source Ĩ
1 U a

1

a
2

a
3

a
4

a
5

a
6

x
1

0.51 0.30 0.68 0.42 0.89 0.33
x
2

0.63 0.70 0.23 0.72 0.22 0.71
x
3

0.34 0.37 0.54 0.29 0.88 0.65
x
4

0.52 0.58 0.97 0.73 0.19 0.45
x
5

0.39 0.20 0.89 0.80 0.40 0.62
x
6

0.28 0.38 0.76 0.54 0.20 0.76
x
7

0.20 0.43 0.82 0.76 0.94 0.50
x
8

0.20 0.89 0.20 0.78 0.26 0.24
x
9

0.70 0.81 0.73 0.92 0.43 0.46
x
10

0.36 0.99 0.65 0.20 0.66 0.47

Table 5  Information source Ĩ
2 U a

1

a
2

a
3

a
4

a
5

a
6

x
1

0.75 0.46 0.52 0.77 0.42 0.35
x
2

0.62 0.24 0.36 0.62 0.41 0.59
x
3

0.72 0.85 0.33 0.11 0.49 0.53
x
4

0.48 0.61 0.75 0.12 0.35 0.96
x
5

0.36 0.57 0.19 0.75 0.34 0.56
x
6

0.52 0.77 0.72 0.16 0.24 0.76
x
7

0.31 0.79 0.82 0.77 0.22 0.37
x
8

0.22 0.79 0.72 0.65 0.25 0.30
x
9

0.70 0.65 0.34 0.73 0.18 0.75
x
10

0.26 0.27 0.81 0.33 0.75 0.47



1534 Cognitive Computation (2023) 15:1526–1548

1 3

In Algorithm 1, we first calculate all the similarity class 
Tk
a
(x) of any x ∈ U under attribute a in the kth fuzzy decision 

table. Then, the conditional entropy Ha(D|Ĩk) be calculated 
in the kth fuzzy decision table. Finally, the fuzzy decision 
table in which the conditional entropy of D with respect to 
a is minimal is selected as the reliable source of the attribute 
a. Then, a new fuzzy decision table can be established by 
extracting the corresponding column of each attribute, 
namely NI = (Ĩ

a1
ka1
, Ĩ

a2
ka2
,⋯ , Ĩ

a|A|
ka|A|

) . Taking into account the 

efficiency of the algorithm, we analyze the complexity of 
Algorithm 1, which is shown in Table 10.

In Algorithm 1, we compute all Tk
a
(x) , for any x ∈ U 

under attribute a in steps 4–5. Steps 6–14 calculate the 

conditional entropy for any attribute a ∈ A in the kth infor-
mation source. Steps 17–26 find the minimum conditional 
entropy of each attribute as their reliable sources. At last, 
return the results.

Uncertainty Measure of CE‑Fusion

In order to show the advantages of the CE-fusion method, 
approximate precision and approximate quality are intro-
duced to measure our methods. First, the definition of 
approximate precision is proposed in the following.

Table 6  Information source Ĩ
3

U a
1

a
2

a
3

a
4

a
5

a
6

x
1

0.66 0.75 0.17 0.43 0.62 0.58
x
2

0.71 0.65 0.99 0.73 0.40 0.85
x
3

0.70 0.43 0.58 0.14 0.46 0.51
x
4

0.77 0.10 0.88 0.73 0.56 0.29
x
5

0.43 0.44 0.30 0.79 0.41 0.65
x
6

0.22 0.27 0.36 0.59 0.31 0.84
x
7

0.20 0.72 0.81 0.33 0.30 0.44
x
8

0.09 0.46 0.27 0.63 0.26 0.37
x
9

0.70 0.54 0.44 0.57 0.34 0.56
x
10

0.17 0.84 0.53 0.76 0.85 0.47

Table 7  Information source Ĩ
4

U a
1

a
2

a
3

a
4

a
5

a
6

x
1

0.06 0.69 0.37 0.69 0.23 0.49
x
2

0.72 0.38 0.34 0.20 0.89 0.55
x
3

0.28 0.35 0.78 0.10 0.69 0.66
x
4

0.54 0.12 0.60 0.59 0.92 0.48
x
5

0.45 0.78 0.76 0.20 0.75 0.73
x
6

0.15 0.68 0.37 0.96 0.20 0.85
x
7

0.34 0.88 0.23 0.80 0.33 0.48
x
8

0.27 0.58 0.89 0.13 0.26 0.31
x
9

0.58 0.55 0.89 0.20 0.99 0.32
x
10

0.43 0.74 0.39 0.65 0.67 0.56
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Definition 3 Let Ĩ = (U,AT) be a fuzzy information sys-
tem, where U∕D = {Y1, Y2,⋯ , Ym} , Ĩa(xj)(j = 1, 2,⋯ , n) is  
the value of xj with respect to a in the Ĩ . Given the constant 
� , for any Yi ∈ U∕D(j = 1, 2,⋯ ,m) , the lower and upper 
approximations of Yj are respectively defined as

where T𝜃(x) = {xi�
∑

a∈AT

�Ĩa(xi) − Ĩa(x)� ⩽ 𝜃} is the similarity 

class of x with respect to a in the Ĩ . The lower approximation 
and upper approximation of U/D are Apr(U∕D) = Apr(Y

1

)

∪Apr(Y
2

) ∪⋯ ∪ Apr(Y
m
) and Apr(U∕D) = Apr(Y

1

) ∪ Apr

∪⋯ ∪ Apr(Y
m
) , respectively.

The approximation precision (AP) and approximation 
quality (AQ) of U/D and in the Ĩ can be defined as follows:

Then, the above theory is expounded by specific examples. 
Followed by example 1 and example 2, the approximation 
precision of U/D in the new tables of CE-fusion is calcu-
lated. Due to different science fields may require different  
similarity class thresholds, in this paper, the similarity class  

Apr(Yi) = {x ∈ U|T𝜃(x) ⊆ Yi},

Apr(Yi) = {x ∈ U|T𝜃(x) ∩ Yi ≠ 𝜙}

APR(U∕D) =

∑
Yi∈U∕D �Apr(Yi)�

∑
Yi∈U∕D �Apr(Yi)�

.

AQR(U∕D) =

∑
Yi∈U∕D �Apr(Yi)�

�U�
.

threshold � varies from 0.3 to 1.4 with an increase of 0.1. 
The experimental results of CE-fusion are shown in Table 11.

Two‑way Concept‑Cognitive Learning of MFI

Concept learning is an important part of human cognition. 
People from different science fields have different means 
of information cognition. There are different approaches to 
learning concepts. Let (U,A, Ĩ) be a fuzzy formal context, 
X ⊆ U be an object set, and B̃ be a fuzzy attribute set. There 
are 3 cases about concept learning from different perspectives.

• Case 1’: For any information granule (X, B̃) , its suf-
ficient, necessary, and sufficient and necessary fuzzy 
information granules can be obtained with the two-way 
concept-cognitive learning method, and the detailed con-
version process is provided in the “Two-way Concept-
Cognitive Learning” section.

• Case 2’: From the definition of the fuzzy concept and 
the property (3) of cognitive operators, it is true that 
(PF̃(X), F̃(X)) is a fuzzy concept about X. So when one 
just knows the information from an object set X, a fuzzy 
concept can be obtained by computing PF̃(X) and F̃(X) . 
The corresponding calculation process is realized by 
Algorithm 2.

• Case 3’: According to the definition of the fuzzy concept 
and the property (3) of cognitive operators, it is obvious 
that (P(B), F̃P(B)) is a fuzzy concept about B̃ . So when 
one just knows the information from a fuzzy attribute 
set B̃ , a fuzzy concept can be obtained by computing 
P(B) and F̃P(B) . The corresponding calculation process 
is realized by Algorithm 3.

When we only know the extent of a concept, it is our 
primary task to learn the intent of concept. The process of 
object-oriented concept learning is realized by Algorithm 2.

In Algorithm 2, step 2 initializes the intent and extent of 
the concept to be � , steps 5–7 seek attribute of the intent of 
the concept which we will learn, step 8 records the intent 
of the target concept to B, steps 11–17 search object of the 
extent of the target concept, and steps 18–20 add the object 
that is searched in steps 11–17 to Y. At last, return the result.

Table 8  Conditional entropy of each attribute in the MFI 

Ĩ a
1

a
2

a
3

a
4

a
5

a
6

Ĩ
1

0.6502 0.5257 0.8476 1.0549 0.5885 0.8553

Ĩ
2

0.5649 0.3452 1.0095 0.9303 1.1399 0.8318

Ĩ
3

0.8808 0.5493 0.7337 0.9332 1.1747 0.7487

Ĩ
4

0.0863 0.4122 0.3452 1.1596 0.4970 0.9020

Table 9  The new decision table after CE-fusion

U a
1

a
2

a
3

a
4

a
5

a
6

x
1

0.06 0.46 0.37 0.77 0.23 0.58
x
2

0.72 0.24 0.34 0.62 0.89 0.85
x
3

0.28 0.85 0.78 0.11 0.69 0.51
x
4

0.54 0.61 0.60 0.12 0.92 0.29
x
5

0.45 0.57 0.76 0.75 0.75 0.65
x
6

0.15 0.77 0.37 0.16 0.20 0.84
x
7

0.34 0.79 0.23 0.77 0.33 0.44
x
8

0.27 0.79 0.89 0.65 0.26 0.37
x
9

0.58 0.65 0.89 0.73 0.99 0.56
x
1

0 0.43 0.27 0.39 0.33 0.67 0.47

Table 10  The computational complexity of Algorithm 1

Steps 4–5 O(|U|2)
Steps 6–14 O(|U| × m

2)

Steps 1–16 O(s × |A| × (|U|2 + |U| × m
2))

Steps 17–25 O(|A| × s)

Step 26 O(|U| × |A|)
Total O(s × |A| × (|U|2 + |U| × m

2) + |A| × s + |U| × |A|)
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Moreover, the computational complexity of Algorithm 2 
is analyzed, which is shown in Table 12.

When we only know the intent of a concept, it is our 
main task to learn the extent of the concept. The process 

of attribute-oriented concept learning is realized by Algo-
rithm 3. By Algorithm 3, we know how to learn a fuzzy 
concept by an attribute set.

Table 11  AP and AQ of CE-fusion method

� 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

AP 1.0000 1.0000 1.0000 1.0000 1.0000 0.6667 0.6667 0.6667 0.4286 0.4286 0.2500 0.0000
AQ 1.0000 1.0000 1.0000 1.0000 1.0000 0.8000 0.8000 0.8000 0.6000 0.6000 0.4000 0.0000
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According to the discussion of Algorithm 3, we also 
analyze its complexity, which is shown in Table 13.

From the computation steps and the computational 
complexity, Algorithm 3 is similar to Algorithm 2. Step 2 
initializes intent and extent of the concept, which we will 
learn to be � , steps 4–10 search the object of the extent of 
the target concept, and steps 11–13 record the object of 
the extent to Y. Steps 16–19 seek attribute of the intent of 
the target concept, and step 20 records the attribute of the 
intent to B. At last, return the result.

Currently, there is no unified standard in the multi-
source fuzzy decision table. Based on the uncertainty 
measure in the rough set, we defined AP and AQ of con-
cept as follows.

Definition 4 Let (U,A, Ĩ) be a fuzzy formal context, 
and (X, B̃) be a fuzzy concept. The AP and AQ of extent of 
(X, B̃) are defined as:

where Apr(X, B̃) = {x ∈ U|T𝜃(x) ⊆ X} and Apr(X, B̃) =

{x ∈ U|T�(x) ∩ X ≠ �} are the lower and upper approxima-
tions of extent X  of concept (X, B̃) and T�(x) =
{x

i
�
∑

a∈AT

�Ĩa(x
i
) − Ĩa(x)� ⩽ 𝜃} is the similarity class of x about 

a in the Ĩ.
In order to display the advantage of concept learn-

ing based on CE-fusion in a multi-source fuzzy decision 
table, the AP and AQ of the extent of concepts are com-
pared in a specific instance. The detailed process is shown 
in the following.

Example 2 According to the result of CE-fusion shown in 
Table 9 and the method of concept learning described in the 
“Two-way Concept-Cognitive Learning” section, the concepts 
related to the decision classes can be learned, which are

APT𝜃
(X, B̃) =

|Apr(X, B̃)|

|Apr(X, B̃)|
,

AQT𝜃
(X, B̃) =

|Apr(X, B̃)|
|U|

Given � = 1.4, the lower and upper approximations of 
extents of above concepts can be calculated as follows:

Then according to the above discussion, the approxi-
mation precision of extents of the above concepts can be 
obtained, namely APT𝜃

(X1, Ã1)=2/5, APT𝜃
(X2, Ã2)=1/3, 

APT𝜃
(X3, Ã3)=1/3; AQT𝜃

(X1, Ã1)=1/5, AQT𝜃
(X2, Ã2)=1/5, 

AQT𝜃
(X3, Ã3)=1/5.

According to the results of concept learning, we can find 
that concepts are different for the same decision class in 
the new tables of CE-fusion. From the perspective of the 
approximation precision of the extent of concepts, CE-fusion 
in the multi-source fuzzy decision table is, to some extent, 
a suitable fusion method. Therefore, CE-fusion can be used 
as an effective technique in multiple cognition. Concept 
learning based on CE-fusion is a suitable concept learning 
method in the multi-source fuzzy decision table.

Experiment Evaluations

In this section, we first introduce the experimental setting 
and multi-source fuzzy context in the “Experimental Set-
tings” subsection. In the “Outcome Evolution” subsection, 
we evaluate the outcome of the presented CE-fusion way for 
concept learning. Finally, we also reveal the effectiveness of 
CE-fusion with other methods on the public dataset.

 Experimental Settings

In order to evaluate the effectiveness of our method for 
concept-cognitive learning in a multi-source fuzzy context, 
we conduct a series of experiments on public datasets from 
Keel and UCI Repository, namely, “User Knowledge Mod-
eling,” “Balance,” “Pima,” “Vehicle,” “Winequality_red,” 

(X
1

, Ã
1

)
Δ
=({x

1

, x
4

, x
7

}, {< a
1

, 0.19 >,< a
2

, 0.26 >,< a
3

, 0.71 >,

< a
4

, 0.20 >,< a
5

, 0.46 >,< a
6

, 0.08 >}),

(X
2

, Ã
2

)
Δ
=({x

2

, x
5

, x
8

}, {< a
1

, 0.13 >,< a
2

, 0.19 >,< a
3

, 0.20 >,

< a
4

, 0.59 >,< a
5

, 0.26 >,< a
6

, 0.37 >}),

(X
3

, Ã
3

)
Δ
=({x

3

, x
6

, x
9

, x
10

}, {< a
1

, 0.28 >,< a
2

, 0.34 >,< a
3

, 0.16 >,

< a
4

, 0.18 >,< a
5

, 0.20 >,< a
6

, 0.47 >}).

Apr(X1, Ã1) = {x4, x7},Apr(X1, Ã1) = {x1, x3, x4, x5, x7},

Apr(X2, Ã2) = {x8, x9},Apr(X2, Ã2) = {x1, x2, x5, x6, x8, x9},

Apr(X3, Ã3) = {x9, x10},Apr(X3, Ã3) = {x1, x2, x3, x6, x9, x10}.

Table 13  The computational complexity of Algorithm 3

Steps 1–14 O(|U| × |AT|)
Steps 15–21 O(|AT| × |A∗|)
Total O(|U| × |AT| + |AT| × |A∗|)

Table 12  The computational complexity of Algorithm 2

Steps 1–9 O(|AT| × |X|)
Steps 10–21 O(|U| × |AT|)
Total O(|AT| × |X| + |U| × |AT|)
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and “Wifi_localization_ok Objects.” Note that ten sources 
for each dataset are generated by blurring the original dataset 
and adding random noise to the original dataset. Detailed 
information about multi-source fuzzy context is shown in 
Table 14. This experimental program runs on a personal 
computer with hardware and software parameters, as shown 
in Table 15.

The method of generating multi-source fuzzy decision 
context is proposed in the following. Firstly, to obtain a 
fuzzy decision context, each column of data is divided by the 
maximum value of the column in the original context. Then, 
a multi-source fuzzy decision context is constructed by add-
ing Gauss and random noise to the fuzzy decision context.

Let MFI = {Ĩ1, Ĩ2,⋯ , Ĩs} be a multi-source fuzzy decision 
context constructed by a fuzzy decision context Ĩ . Firstly, s 
numbers (g1, g2,⋯ , gs) which obey the N(0, �) distribution 
are generated, where � is the standard deviation. The method 
of adding Gauss noise is defined as follows:

where Ĩ(x, a) is the value of object x under attribute a in 
fuzzy decision context, and Ĩi(x, a) is the value of object x 
under attribute a in the ith fuzzy decision context Ĩi.

Then, s random numbers (e1, e2,⋯ , es) are generated and 
these numbers are between −e and e, where e is random error 
threshold. The method of adding random noise is given in 
the following.

Ĩi(x, a) =

{
Ĩ(x, a) + gi if (0 ≤ Ĩ(x, a) + gi ≤ 1)

Ĩ(x, a) else

Ĩi(x, a) =

{
Ĩ(x, a) + ei if (0 ≤ Ĩ(x, a) + ei ≤ 1)

Ĩ(x, a) else

where Ĩ(x, a) represents value of object x under attribute a 
in fuzzy decision table, and Ĩi(x, a) represents object x under 
attribute a in the ith fuzzy information source Ĩi.

Next, 35% objects are randomly selected from the fuzzy 
decision context Ĩ , and then Gauss noise is added to these 
objects. Thirty percent of objects are randomly selected from 
the rest of the context, and random noise is added. Finally, 
MFI = {Ĩ1, Ĩ2,⋯ , Ĩs} can be obtained.

Outcome Evolution

In order to test the validity of fuzzy decision context after 
the CE-fusion method and concept learning mechanism, 
we select nine fuzzy set membership functions to conduct 
a series of experiments. Gauss form, Cauchy form, and Γ 
form membership function are selected as the representa-
tion of fuzzy membership functions, which are divided into 
small, middle, and large types. In this process, drop half 
Cauchy form, Cauchy form, and L half Cauchy form are 
small type, middle, and large type, respectively. These nine 
different membership functions considered in this paper 
are small, middle, and large fuzzy membership functions 
of Gaussian, Cauchy, and Γ . For convenience, symbols 
SG, MG, LG, SC, MC, LC, SΓ, MΓ , and LΓ denote the 
nine membership functions. Corresponding graphics are 
shown in Fig. 3.

Based on the fuzzy membership functions and Algo-
rithm 3, evaluate our methods’ approximation precision 
and approximation quality on six datasets (i.e., datasets 
1–6). The details are shown in Tables 16, 17, 18, 19, 20, 
and 21. In different science fields, the standard devia-
tion of Gauss noise and random error threshold of ran-
dom noise may be different. In this paper, experiments 
are carried out five times for each dataset and let the 
standard deviation � and random error threshold e vary 
from 0.005 to 0.03 with an increase of 0.005 every time, 
denoted as noises 1–5. In this experiment, the thresholds 
b and � are (0.1, 0.4).

Tables 16, 17, 18, 19, 20, and 21 record the measures 
values of five noises under nine membership functions, 
where AP and AQ represent the value of approximation 
precision and approximation quality. From these tables, 
we could find that all the measures (approximation preci-
sion and approximation quality) are higher than those of 
M-fusion methods on different datasets. All in all, based 
on the concept extension’s approximate precision and 
approximate precision, the conditional entropy fusion 
method (CE-fusion) and the mean value fusion method 
are compared in the experiment. The results show that 
the CE-fusion method is good in the concept learning of 
multi-source fuzzy decision tables.

Table 14  The basic information of multi-source fuzzy context

ID Dataset name Instance Feature Class

1 User Knowledge Modeling 4030 6 4
2 Balance 6250 4 3
3 Pima 7680 8 2
4 Vehicle 8460 18 4
5 Winequality_red 15,990 11 11
6 Wifi_localization_ok Objects 20,000 7 4

Table 15  The description of experiment environment

Name Model Parameters

CPU Intel i7 – 10750H 2.60GHz
Memory Lenovo DDR4 32GB
Hard disk Lexar Data 1TB
System Windows 10 64 bit
Platform Python 3.7
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Parameters Analysis

In order to verify the effectiveness of the CE-Fusion method, 
in this subsection, we also compare and record the approxi-
mation precision and approximation quality of four fusion 
methods under different noises. Figures 4, 5, 6, 7, 8, and 9 
show the approximation accuracy of four fusion methods, 
where the dark blue, light blue, orange, and red lines rep-
resent the approximation accuracy on six datasets under 
different noises of M-fusion, min-fusion, max-fusion, and 
CE-fusion. According to these pictures, we find that in most 
noises cases, the height of the yellow bar is higher than or 
equal to the other three bars, and the red line is higher than 
those of other colors, which illustrates the effectiveness of 
the CE-fusion method than the other three compared meth-
ods under different noises.

In addition, we also take the approximation quality to 
analyze the advantage of the proposed method under dif-
ferent noises. The experimental results of approximation 
quality on six datasets are shown in Figs. 10, 11, 12, 13, 
14, and 15 under nine membership functions. The graphic 
parameters are the same as those above. In these figures, we 
could find that the approximation quality is mostly higher 
than that of the other three compared methods except some 
cases. For Balance and Wifi_localization_ok Objects, the 
approximation quality of CE-fusion is all higher than that 
of the other three compared methods. Meanwhile, for User 
Knowledge Modeling, Pima, Vehicle, and Winequality_red, 
respectively, the CE-fusion method is higher than other 
M-fusions for 6, 6, 8, and 7 times in 9 experiments. All the 
experimental results verify the superiority of the CE-fusion 
method under different noises.

Fig. 3  The nine kinds of membership functions

Table 16  The average value of 
AP and AQ on User Knowledge 
Modeling Dataset

Method M-fusion Min-fusion Max-fusion CE-fusion

AP AQ AP AQ AP AQ AP AQ

SG 0.4946 0.1395 0.4570 0.1116 0.4967 0.1589 0.6808 0.1628
MG 0.5265 0.3620 0.5376 0.3395 0.5505 0.4008 0.7551 0.4465
LG 0.4008 0.1674 0.3833 0.1349 0.4700 0.2349 0.6520 0.2349
SC 0.3650 0.0891 0.2494 0.0512 0.4243 0.1186 0.5579 0.1124
MC 0.4782 0.3147 0.4756 0.2891 0.5217 0.3667 0.7332 0.4031
LC 0.7064 0.1062 0.8998 0.0961 0.6272 0.1093 0.9147 0.1124
SΓ 0.4338 0.1194 0.4041 0.0938 0.4889 0.1566 0.6674 0.1527
MΓ 0.5104 0.3620 0.5150 0.3395 0.5316 0.4008 0.7315 0.4465
LΓ 0.4766 0.2450 0.4100 0.1907 0.4932 0.2977 0.6992 0.3225
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Table 17  The average value of 
AP and AQ on Balance Dataset

Method M-fusion Min-fusion Max-fusion CE-fusion

AP AQ AP AQ AP AQ AP AQ

SG 0.2151 0.1536 0.3543 0.2083 0.3719 0.2480 0.5552 0.2915
MG 0.2650 0.2442 0.3696 0.2826 0.4371 0.3600 0.5747 0.3994
LG 0.2411 0.2160 0.3592 0.2749 0.3821 0.2925 0.5745 0.3754
SC 0.1350 0.0864 0.2706 0.1405 0.2522 0.1453 0.4542 0.2003
MC 0.1582 0.1296 0.2887 0.1923 0.3090 0.2256 0.4740 0.2730
LC 0.2411 0.2160 0.3594 0.2806 0.3828 0.2931 0.5720 0.3757
SΓ 0.1350 0.0864 0.2706 0.1405 0.2707 0.1616 0.4617 0.2058
MΓ 0.1582 0.1299 0.2877 0.1923 0.3362 0.2544 0.4787 0.2829
LΓ 0.2411 0.2160 0.3592 0.2790 0.3821 0.2925 0.5725 0.3754

Table 18  The average value of 
AP and AQ on Pima Dataset

Method M-fusion Min-fusion Max-fusion CE-fusion

AP AQ AP AQ AP AQ AP AQ

SG 0.6184 0.3469 0.6174 0.3315 0.6468 0.3768 0.7356 0.3758
MG 0.6184 0.3469 0.6174 0.3315 0.6468 0.3768 0.7356 0.3758
LG 0.8986 0.0276 0.8575 0.0201 0.8637 0.0297 1.0000 0.0393
SC 0.5208 0.1341 0.5065 0.1250 0.4854 0.1495 0.6350 0.2247
MC 0.5208 0.1341 0.5065 0.1250 0.4854 0.1495 0.6350 0.2247
LC 0.8710 0.0352 0.8594 0.0253 0.8182 0.0466 0.9640 0.0346
SΓ 0.4998 0.1635 0.4895 0.1289 0.4760 0.1625 0.6050 0.2445
SΓ 0.4998 0.1635 0.4871 0.1289 0.4665 0.1625 0.6050 0.2469
SΓ 0.8786 0.0300 0.8290 0.0203 0.8650 0.0398 1.0000 0.0305

Table 19  The average value of 
AP and AQ on Vehicle dataset

Method M-fusion Min-fusion Max-fusion CE-fusion

AP AQ AP AQ AP AQ AP AQ

SG 0.9898 0.7539 0.9936 0.6955 0.9881 0.7875 0.9965 0.7475
MG 0.9878 0.7487 0.9936 0.6955 0.9881 0.7442 0.9965 0.7870
LG 0.9831 0.1929 0.9970 0.1187 0.9847 0.1979 0.9977 0.3296
SC 0.9868 0.6570 0.9946 0.5667 0.9870 0.6381 0.9959 0.7201
MC 0.9868 0.6570 0.9946 0.5667 0.9870 0.6381 0.9959 0.7201
LC 0.9714 0.2087 0.9576 0.1286 0.9705 0.2149 0.9881 0.3444
SΓ 0.9897 0.7504 0.9936 0.6863 0.9881 0.7447 0.9965 0.7863
SΓ 0.9897 0.7511 0.9936 0.6891 0.9879 0.7896 0.9965 0.7485
SΓ 0.9747 0.1995 0.9745 0.1236 0.9765 0.2050 0.9977 0.3345

Table 20  The average value of 
AP and AQ on Winequality_
red dataset

Method M-fusion Min-fusion Max-fusion CE-fusion

AP AQ AP AQ AP AQ AP AQ

SG 0.7672 0.6519 0.6999 0.5611 0.8298 0.7001 0.8568 0.7406
MG 0.7671 0.6519 0.6977 0.5582 0.8290 0.6987 0.8557 0.7398
LG 0.3719 0.0949 0.3454 0.0505 0.4742 0.1152 0.6045 0.2059
SC 0.6965 0.5548 0.5909 0.4148 0.7653 0.6494 0.8311 0.6029
MC 0.6965 0.5548 0.5909 0.4148 0.7653 0.6029 0.8311 0.6494
LC 0.4077 0.5548 0.3601 0.4148 0.4889 0.6494 0.6204 0.6029
SΓ 0.7526 0.6231 0.6784 0.5221 0.7919 0.6655 0.8526 0.6944
MΓ 0.7589 0.6324 0.6805 0.5246 0.7918 0.6690 0.8533 0.6974
LΓ 0.3930 0.1107 0.3438 0.0537 0.4813 0.1253 0.5997 0.2221
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Table 21  The average value 
of AP and AQ on Wifi_
localization_ok Objects dataset

Method M-fusion Min-fusion Max-fusion CE-fusion

AP AQ AP AQ AP AQ AP AQ

SG 0.5439 0.5219 0.5325 0.5009 0.5666 0.5539 0.6250 0.5740
MG 0.5439 0.5219 0.5325 0.5009 0.5666 0.5539 0.6250 0.5740
LG 0.4809 0.4579 0.4389 0.4099 0.5353 0.5176 0.5904 0.5356
SC 0.5446 0.5215 0.5325 0.5009 0.5665 0.5536 0.6251 0.5739
MC 0.5446 0.5215 0.5325 0.5009 0.5665 0.5536 0.6251 0.5739
LC 0.5212 0.5067 0.4672 0.4437 0.5780 0.5652 0.6212 0.5797
SΓ 0.5437 0.5215 0.5325 0.5009 0.5665 0.5537 0.6250 0.5740
MΓ 0.5437 0.5222 0.5335 0.5023 0.5690 0.5565 0.6311 0.5805
LΓ 0.4894 0.4698 0.4495 0.4242 0.5566 0.5403 0.6041 0.5574

Fig. 4  The approximation accuracy of User Knowledge Modeling under nine noises
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Fig. 5  The approximation accuracy of Balance under nine noises

Fig. 6  The approximation accuracy of Pima under nine noises
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Fig. 7  The approximation accuracy of Vehicle under nine noises

Fig. 8  The approximation accuracy of Winequality_red nine noises



1544 Cognitive Computation (2023) 15:1526–1548

1 3

Fig. 9  The approximation accuracy of Wifi_localization_ok Objects under nine noises

Fig. 10  The approximation quality of User Knowledge Modeling under nine noises
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Fig. 12  The approximation quality of Pima under nine noises

Fig. 11  The approximation quality of Balance under nine noises
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Fig. 13  The approximation quality of Vehicle under nine noises

Fig. 14  The approximation quality of Winequality_red nine noises
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Conclusions

To sum up, concept learning is a challenging, engaging, 
and promising research direction. Moreover, concept 
learning deserves to be studied based on granular com-
puting from the perspective of cognitive computing, which 
may be beneficial to describing and understanding human 
cognitive processes in a conceptual knowledge way. In 
order to improve the efficiency and flexibility of concept 
learning, this paper mainly focuses on concept learning 
via granular computing from multi-source fuzzy decision 
tables. It is well known that different fusion methods will 
have different results when facing some multi-source fuzzy 
information. The article analyzes the cognitive mechanism 
of forming concepts from philosophy and cognitive psy-
chology in multi-source fuzzy decision tables. We have 
considered a novel fusion method based on conditional 
entropy to fuse multi-source decision tables to describe 
the cognitive process. Then, granular computing has been 
combined with the cognitive concept to improve the effi-
ciency of concept learning. The obtained results in this 
paper may be beneficial to simulating brain intelligence 
behaviors, including perception, attention, and learning.

Nevertheless, learning cognitive concepts from multi-
source information is a challenging task. Although our 

work has put forward theoretical frameworks and meth-
ods to solve this problem, it is not enough in the applica-
tion, for example, how to describe approximation of the 
intent of a cognitive concept in multi-source information 
tables. It includes the logical and semantic explanation 
of approximate cognitive concepts, theories, and methods 
of concept learning from an incomplete or multi-source 
information table and how to apply these theories in the 
real world. Some in-depth studies like these issues will be 
investigated in our future work.
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