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Abstract

The whale optimization algorithm (WOA), a biologically inspired optimization technique, is known for its straightforward
design and effectiveness. Despite many advantages, it has certain disadvantages, such as a limited exploration capacity and
early convergence as a result of the minimal exploration of the search process. The WOA cannot bypass the local solution;
consequently, the search is unbalanced. This study introduces a new variant of WOA, namely elite-based WOA (EBWOA),
to address the inherent shortcomings of traditional WOA. Unlike the three phases used in the traditional WOA, only the
encircling prey and bubble-net attack phases are applied in the new variant. Using the local elite method, exploration will
be conducted with an encircling prey phase to ensure some exploitation during exploration. The choice between exploration
and exploitation is achieved by introducing a new choice parameter. An inertia weight (w;) is used in both phases to scour
the region. The EBWOA is used to evaluate twenty-five benchmark functions, IEEE CEC 2019 functions, and two design
problems and compared to several fundamental techniques and WOA variants. In addition, the EBWOA is used to solve the
practical cloud scheduling problem. Performance is compared against a variety of metaheuristics using real cloud workloads
by running experiments on the standard CloudSim simulator. Comparing the numerical results of benchmark functions, IEEE
CEC 2019 functions, statistical verification, and the solution generation speed of EBWOA confirmed the effectiveness of the
proposed EBWOA approach. It has also shown a great improvement over baseline algorithms in creating efficient schedul-
ing solutions by significantly reducing makespan time and energy consumption targets.

Keywords Metaheuristics - Whale optimization algorithm - Elite mechanism - Modified WOA - Cloud scheduling
problem - Real-world application
Introduction
Efficient optimization techniques are essential to tackle

countless real-world complex optimization applications
across multiple technical and academic disciplines [1].
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(DE) [3]; immune network algorithm (INA) [4]; dendritic
cell algorithm (DCA) [5]; physical sciences, such as equi-
librium optimizer (EO) [6]; Henry’s gas solubility optimi-
zation (HGSO) [7]; swarm-based behavior, e.g., Symbi-
otic Organism Search (SOS) [8] and whale optimization
algorithm (WOA) [9]; and imitating problem-solving ways
by humans such as teaching learning-based optimization
(TLBO) [10].

The development of new metaheuristic algorithms with
novel concepts is a common practice. Some of the recently
published algorithms are discussed below. Abdollahzadeh
et al. [11] designed the artificial gorilla troops optimizer
(GTO) based on the social behavior of gorillas. Azizi [12]
proposed the Atomic Orbital Search (AOS) algorithm
inspired by quantum mechanics and the quantum-based
atomic model concept. Hashim et al. [13] developed the
Honey Badger Algorithm (HBA), motivated by honey
badgers’ sophisticated foraging behavior. Hasani Zade
and Mansouri [14] used the prey-predator interaction of
animals to develop the predator—prey optimization (PPO)
algorithm, etc.

The metaheuristic algorithms demonstrate effective solu-
tions compared to the traditional optimization techniques,
especially when applied to highly nonlinear, multidimen-
sional, and large-scale problems. Apart from the different
working and inspiration mechanisms of these algorithms,
they have a common way of searching the solution space
using exploration and exploitation processes. The algorithms
efficiently explore the entire search space with the maximum
number of random moves in the exploration phase, while the
exploitation phase is responsible for finding better solutions
close to the current global best solution. Balancing the two
phases of an algorithm is the most critical task and the key
to success [15].

Besides the numerous advantages of metaheuristics, the
no-free-lunch (NFL) [16] hypothesis argues that none of
these algorithms can solve all kinds of problems. There is no
guarantee that the algorithm that provides the best solutions
to a particular set of problems will perform consistently
better than another set of functions or problems. In addi-
tion, the choice of values for various metaheuristic param-
eters influences the final solution quality. In addition, the
metaheuristic often struggles with inherent problems, such
as were already in practice.

Several researchers have improved the WOA through-
out the years to address its shortcomings. The following
are some of WOA’s recent enhancements and modifica-
tions: Kaur and Arora [17] developed the chaotic WOA
(CWOA) by using chaotic maps to change WOA’s param-
eters and speed up convergence. Sun et al. [18] proposed
the modified WOA (MWOA), which used a non-linear
dynamic strategy, Levy flight, and quadratic interpolation
to avoid local optima and make solutions more accurate.
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Chen et al. [19] employed the Levy flight and a chaotic
local search mechanism in the balanced WOA (BWOA)
to avoid early convergence by enhancing the solution
variety. Laskar et al. [20] incorporated WOA in particle
swarm optimization (PSO). They came up with the hybrid
whale—PSO algorithm (HWPSO) to avoid the stagnation
effect. The authors also added the forced whale and cap-
ping phenomenon ideas to avoid local optima and speed up
convergence. Bozorgi et al. [21] presented two WOA vari-
ations: IWOA and IWOA+. They have increased WOA’s
exploration capability by utilizing DE’s superior explora-
tion ability.

A DE-based WOA with chaotic map and opposition-
based learning (DEWCO) was proposed by Elaziz et al.
[22]. To increase the solution-finding speed of WOA,
Yildiz [23] put forward the hybrid whale—Nelder—-Mead
algorithm (HWOANM), a hybrid WOA with the aid of
the Nelder—-Mead (NM) algorithm. Chakraborty et al.
[24] devised a new version of the WOA algorithm called
WOAmMM. The authors changed the mutualism strategy of
the SOS algorithm and then used it in WOA to balance
the search process. Khadanga et al. [25] suggested a modi-
fied WOA (MWOA) by using the encircling prey phase
and a bubble-net attacking phase to avoid trapping at local
optima and used the algorithm in the load frequency con-
troller design of a power system consisting of a PV grid and
thermal generator. In the random spare reinforced WOA
(RDWOA) [26], the authors used a double adaptive weight
mechanism to improve the ability to explore at the begin-
ning of the search and the ability to exploit at the end. In
success history—based adaptive DE with WOA (SHADE-
WOA) [27], the authors merged success history—based
adaptive DE (SHADE) with updated WOA to create a
hybrid algorithm. An information-sharing mechanism was
used to assist the algorithms in efficiently exploring and
exploiting the search space.

In [28], the authors introduced an improved version of
WOA, called the Levy-flight-based WOA (LWOA); the
levy-flight mechanism was incorporated with the WOA
to enhance the ability to avoid premature convergence and
boost global searchability. The method was used to solve
the underwater image-matching problem in an unmanned
underwater vehicle vision system. Kushwah et al. [29] sug-
gested a new WOA variant with a roulette wheel selection
strategy to enhance the convergence speed of WOA and
applied it to the weight-updating technique of artificial neu-
ral networks. Fugiang et al. [30] designed a bi-level WOA
to solve the scheduling of risk management problems from
IT projects.

Anitha et al. [31] designed a modified whale optimi-
zation algorithm (MWOA). The authors controlled the
whale positions using the cosine function, and the whales’
movements were controlled by applying correction factors
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while updating their positions. The hunger search—based
WOA (HSWOA) [32] was proposed by Chakraborty et al.,
integrating the concept of hunger into the WOA to mini-
mize the demerits of WOA. An improved WOA (ImMWOA)
[33] was proposed by altering the exploration phase of the
basic WOA and incorporating a new whale hunting con-
cept, “Cooperative hunting,” in the exploration phase of the
WOA to balance the search activity. Lin et al. [34] devel-
oped the niching hybrid heuristic WOA (NHWOA); the
niching strategy was used to diversify the solutions and con-
trol early convergence. Parameters of WOA were modified
heuristically to encourage search agents’ capacity for explo-
ration during evolution. Avoidance of local solutions was
ensured by executing a perturbation to the location of all the
solutions. An enhanced WOA (EWOA) [35] was designed
by Cao et al. to introduce improved dynamic opposition-
based learning, and they converted the “Encircling Prey”
phase into an adaptive phase. The modifications struck a
balance between global and local searches in the algorithm.

Contrary to the previous research, only the local or
global elite solution is used in this work, and an elite-based
form of WOA (EBWOA) is proposed. Choosing a local elite
solution from a group of random solutions allows the search
process to shift the quest into different regions of the search
domain. Thus, the algorithm explores the local best solu-
tion, and using inertia weight, the process examines the
surrounding of the potential solution during both explora-
tion and exploitation. The algorithm’s convergence speed
is accelerated by the use of the global best solution during
the bubble-net attack phase. The following are the main
contributions of the study:

e The encircling prey or the bubble-net attack phase is
selected with the local best or the global solution, and an
inertia weight using a traversing parameter Q is utilized
to accomplish exploration or exploitation. The search
prey phase of basic WOA is eliminated to reduce run
time.

e The numerical results of benchmark functions are com-
pared with basic algorithms and WOA variants. The
evaluated results of the IEEE CEC 2019 function set are
compared with a list of modified variants.

e Performance is verified using statistical tests and a vari-
ety of analytics.

e EBWOA also solves two real engineering design prob-
lems and the classical cloud scheduling problem to
schedule bag-of-tasks applications over cloud resources.

The rest of the work is structured as follows: “Whale Opti-
mization Algorithm” presents the traditional WOA. “Proposed
Elite-Based Whale Optimization Algorithm (EBWOA)”
contains a complete discussion of the proposed algorithm.

“Discussion of Numerical Results” compares the results of
EBWOA with numerous basic and modified algorithms and
two real engineering problems. “Analysis of EBWOA’s Per-
formance with Various Metrics” examines the performance
of EBWOA using various performance measurement met-
rics. “Solving Cloud Scheduling Problem using EBWOA”
describes the cloud scheduling problem and compares the
evaluated results. “Conclusion” concludes the research car-
ried out with concluding remarks.

Whale Optimization Algorithm

The WOA was developed to pursue the behavior of hump-
back whales, and it comes under swarm-based techniques.
WOA, like other metaheuristic algorithms, begins with a set
of parameters and a set of search agents that make up the
underlying population. The search cycle alternates between
local and global search phases, with each iteration relying
on parameter selection to discover the best solution. After a
certain number of cycles, the method will be over, and the
best value for the objective function and the solution that goes
with it will be the result. The different phases of the WOA are
discussed below:

Exploration Phase

The most random motions possible are preferable during this
algorithm phase to explore the search space efficiently. The
whales move around in this phase, investigating the whole
search area. This method’s procedure can be stated numeri-
cally as follows:

Dt = |C.Sol® — Sol| 1)

Sol™*V = S0l — A’ Dt 2)

Sol represents a population solution, Sol, is selected arbi-
trarily from the present population, i is the current value of
the iteration, and Dt is the difference between Solgi) and Sol®
in Egs. (1) and (2). The (.) operator represents component-by-
component multiplication, and | | denotes the absolute value.

The following equations are used to calculate parameters
A’and C:

A =2a"xrmd-d 3)

C=2xrnd 4

With the rising iteration value, the variable a" traverses
directly from 2 to 0, and rnd is an arbitrary value between
[0, 1].
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Exploitation Phase

Two hunting tactics used in WOA to accomplish local search
are encircling the target prey and the bubble-net attacking
approach. The following is a summary of these phases:

Encircling Prey Phase

The search agent with the best objective function value is con-
sidered the target solution during this phase. Other whales in
the population are updated using the present best whale value.
The updating method can be stated mathematically as follows:
Dl =|C- Sol?  — Sol® 5)

best

Sol*V = Sol) — A" - Dt (6)

Sol,. 1s the best solution evaluated up to the present itera-
tion. Dr1is the distance between the best solution and the cur-
rent solution.

Bubble-Net Phase

The whales move in a spiral path during the attack. The pro-
cess is mathematically expressed as follows:

D2 = |Sol®

best — 5017 %

Sol™*V) = D12 - e - cos(2xl) + Soll) 8)
The spiral path is denoted by using the variable b in Eq.

(8), with b having a constant value of 1, and the value of / is a

random number calculated using the equation below:

= (a*—1)rnd +1 ©)

As the search process advances, the variable a® changes
between [-1,-2], and rnd is used to signify a random value
inside [0, 1]. Dr2 is the distance between the best solution and
the current solution.

The requirement for moving between the global and local
search stages is the absolute value of A. If |Al is less than 1,
the algorithm runs Eq. (2) and then searches the search space.
Otherwise, exploitation is done with Eq. (6) or Eq. (8). A
probability value of 0.5 is used to confirm the choice between
the exploitation strategies. The mathematical expression is as
follows:

if pr <0.5

Sol™*V = Sol;  — A’ - Dtl 0
ifpr>05 (10

Sol™V = D2 - Plcos(2xl) + Sol

best

where pr is a random positive value between 0 and 1.
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Proposed Elite-Based Whale Optimization
Algorithm (EBWOA)

A swarm-based metaheuristic optimization algorithm, the whale
optimization algorithm, was designed by Mirjalili and Lewis
[9], impersonating humpback whales” hunting behavior. WOA
employs a basic yet effective mechanism with minimal control
parameters [36]. WOA has a low convergence rate and cannot
escape the best local solution due to the insufficient study of
the search zone. This new variant is proposed as a means of
overcoming these inherent limitations of WOA. The search prey
phase and the prey circling or bubble-net attack approach have
been used in basic WOA to conduct global and local searches.
EBWOA, on the other hand, uses only modified encirclement and
bubble-net attack strategies. Basic EBWOA no longer includes
the search for prey phase of basic WOA. Modified equations
for encircling prey and bubble-net attack phases are as follows:

Modified Encircling Prey Phase

Dtl = |C-1_Sol — Sol® (11

Sol™*) = w; - 1_Sol) — A" - Drl 12)

In the above Eqns., [_Sol,, is the local best solution and
w; 1s the inertia weight calculated as

®; =034+0.3 % rnd (13)

Modified Bubble-Net Attack Phase

D2 = |SOl£2St — SOl(i)| (14)
i+1) _ bl (i)

Sol™V = D12 - " - cos2nl) + w; - Sol,) (15)

In Eqgs. (14) and (15), Sol,, is the global best solution.

EBWOA uses local and global elite solutions to update the
solutions during the search process. A group solution is chosen.
The solution with the minimum fitness value from the group is
called the local elite solution, and the solution with the minimum
fitness value in the entire population is used as the global elite
solution. Choosing a local elite solution from a group of solu-
tions allows the process to move to different regions of the search
space. While exploring the search domain, updating solutions
using the local elite value incrementally pushed the algorithm
toward the best value. The inertia weight w; allows the process
to exploit the nearby region effectively. The algorithm’s conver-
gence speed is accelerated by updating other solutions with the
global best solution during the bubble-net attack phase. In the
bubble-net phase, the area surrounding the global elite solution
is searched using the global best solution and the inertia weight
w. The selection parameter Q is implemented to move between
the phases. The parameter value progresses from 1 to 0 with the
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increase of the iteration value. A probability value is used to com-
pare the value, and if it is higher, the modified encircling prey
phase is selected. If this is not the case, a modified bubble-net
attack phase is used. Figure 1 displays the suggested EBWOA’s
pseudo-code, and Fig. 2 shows the algorithm’s flowchart.

Discussion of Numerical Results

A total of twenty-five benchmark functions are used to
assess the performance of the proposed EBWOA. The func-
tions used in the study can be found in Appendix (Table 21).
Functions F1-F13 are of the unimodal type. They have a
global optimum and are used to assess the algorithm’s local
search capacity and convergence speed. Functions F14 and
F25 are of the multimodal type. They have an abundance of
local responses that grow exponentially as the size of the
area grows. Solving these functions can test the algorithm’s
local search capacity and ability to overcome the local
optima. The results of evaluating benchmark functions are
compared with basic algorithms and modified WOA vari-
ants. EBWOA is also used to assess the capabilities of IEEE
CEC 2019. The function set contains ten multimodal, non-
separable functions. There are many local optima in most

Fig. 1 Pseudo-code of the pro-
posed EBWOA algorithm

of these functions. The definition of these functions can be
found in [1]. The results of the IEEE CEC 2019 functions
are compared against a list of modified algorithms.

The system parameters include an Intel I3 processor, 8
GB of RAM, and MATLAB 2015a software. A population
of a size of 30 with over 24,000 function evaluations is kept
as termination criteria. Most WOA variants are judged using
500 or 1000 iterations as the termination criteria. Our algo-
rithm records convergence in around 500 to 800 iterations
for most functions. For this reason, we kept the end criteria
of the program to 24,000 function evaluations, equivalent
to 800 iterations. Because metaheuristic algorithms are sto-
chastic, the comparison is based on the mean and standard
deviation of findings from 30 independent runs. All the algo-
rithms being compared have the same parameters as their
original studies.

Comparison of Optimization Results of Benchmark
Functions with Basic Algorithms

Evaluated results of the benchmark functions are compared
with the tunicate swarm algorithm (TSA) [37], bald eagle
search (BES) [38], WOA, symbiotic organisms search

1. Initialize all the required parameters of WOA

2. Initialize the whale population

3. while (nfes<max_nfes) repeat the following

4. Find the best fitness and its corresponding solution S0lj,.g¢
5. Calculate Q

6. For each solution in the whale population

7. Evaluate the weight w;

8. Select a group of random solutions

9. In the group find the random solution with minimum fitness (I_Sol},s; )
10. If (rand< Q)

11. Update the present solution with Eqn. (12)

12. Else

13. Update the present solution with Eqn. (15)

14 End If

15. Check boundary condition for the updated solution
16. End For

17. End While

18. Return best fitness and S0lp;

@ Springer



1502

Cognitive Computation (2023) 15:1497-1525

Fig.2 Flowchart of the pro-
posed EBWOA algorithm

No
_ ‘

(SOS), and teaching-learning-based optimization (TLBO).
The comparison algorithms’ parameters were set similarly
to the values provided in the studies. Table 1 shows the
mean and standard deviation (SD) values evaluated by all
algorithms. EBWOA outperformed all other comparison
algorithms on functions F1, F2, F3, F4, F6, F7, F8, F9,
F10, F11, F12, F15, F17, F18, F20, F21, F22, F23, and
F24. This shows that the algorithm can solve unimodal
and multimodal problems. This is only possible if the algo-
rithm’s global and local search phases are balanced. The
encircling prey algorithm phase is used for exploration
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using the best local solution. Choosing between explora-
tion and exploitation allows the algorithm to move ran-
domly between these phases. Since the local best value
is chosen in the encircling prey phase, the search process
gradually progresses to the optimal value.

For this reason, omitting the search prey stage does not
adequately reflect the exploratory capability of the algo-
rithm. Table 2 shows the pairwise comparison of EBWOA
with different algorithms. EBWOA outperforms TSA, BES,
WOA, SOS, and TLBO at 22, 20, 19, 21, and 22 functions.
Identical results are obtained with the algorithms on 3, 5,
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Table2 EBWOA results of pairwise comparison with the basic algo-
rithms using Table 1 data

A g g g 8 g g EBWOA TSA BES WOA SOS TLBO
70! (=) (= el el
Superior to 22 20 19 20 22
Similar to 3 5 6 4 3
Inferior to 0 0 0
g (=4 S S S S S
sle]l S S 33 S
SN (D= === i ]
6, 4, and 3 functions. The numerical results and statistical
S 88498 analysis in Table 3 show that the EBWOA outperforms all
o s A other tested algorithms.
gl —_ A o = o
Al @0 e nr
|70} N Nt N =~
Comparison of Optimization Results of Benchmark
= o o N
8888358 Functions with Modified WOAs
0 og/P@ERg
5|18 ad 8§88 . . D
I x e RS T a The modified algorithms used for comparison in this study
are ESSAWOA [39], WOAmMM, and whale optimization
algorithm modified with SOS and DE (m-SDWOA) [1],
s s888z=¢8 SHADE-WOA, and HSWOA. All comparison techniques
P ol used here are effective and recently published. All compari-
— (AN \N S =R ] . .
gl Toxt 2 son methods use the same parameter settings proposed in the
respective study. The evaluated results are shown in Table 4.
The data in the table shows that EBWOA can solve both
e . . . .
3 _% % % % % unimodal and multimodal functions. The local best solution
. E @ % 5 5 E improved the exploration ability of the algorithm during the
R ci« S oo @l > encircling prey phase. The method uses the encircling prey
phase to perform a survey using the locally best solution
while being progressively exploited during exploration. By
S 89883 choosing the Q value, the algorithm can alternate between
dadddd exploration and exploitation at random. The random inertia
= X X O =~ O . .
2la 2zs2zo weight (w) helps the search process to explore and exploit
the nearby region. Being highly balanced, the algorithm can
solve both types of functions effectively. Analyzing table
§ % % % % % data, EBWOA outperformed all other compared algorithms
B amoog in eleven unimodal functions (F1, F2, F3, F4, F6, F7, F8,
(=1 = . .
SR 22253 F9, F10, F11, and F12) out of thirteen evaluated functions.
AN I=1 I I N . : .
. In function F5, EBWOA is superior only to SHADE-WOA;
all other algorithms evaluate optimal results like EBWOA.
T sazTs EBWOA has obtained superior optimal outcomes in multi-
A modal functions F18 and F21. In functions F14, F15, F17,
— O o0 v 0 —
ale = cwvoa
wn — N~ F — A
Table 3 Statistical test results using Friedman’s rank test
gl gl gl élr <O|r <O|r Method Rank sum Average rank Rank

| |58 EE&a4¢H EBWOA 38 1.52 1

BlLIE|3 2323 T

g SA 135 5.40 6

= BES 68 272 2

Sle P WOA 99.5 3.98 5

=

= |5 o o SOS 93 3.72 4

3|5 Z 285319 TLBO 915 3.66 3

S < D E@Z o E
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Table 5 EBWOA results of pairwise comparison with the WOA vari-
ants using Table 3 data

a 8 8 8 8 8 g EBWOA ESSAWOA WOAmMM mSDWOA SHADE- HSWOA
n|ls S oS WOA
Superior 18 19 19 19 17
to
= Similar 4 6 4 3 8
<S8 88888 to
A - === == =1
= Inferior 3 0 2 3 0
to
(= —_ o = 9O O
(=} = el e =]
F T ¥FT ¥ F
oo @O o -
2 AR %ES .
a a4 = o o = F19, F20, and F25, EBWOA evaluated the optimal outcome,
though a few other algorithms also generated similar results.
S Zo==o ESSAWOA and SHADE-WOA outperformed EBWOA in
E % E E E E- three multimodal functions (F22, F23, and F24).
§ T &8L3s = Table 5 shows the pairwise comparison of numerical
Sl TS T results with the WOA variants. From Table 5, it can be seen
that EBWOA outperformed the compared algorithms in
most features. A statistical comparison of the algorithms
8 38828 iven in Table 6 al firms the i d perf
2T 93T 32 given in Table 6 also confirms the improved performance
= ZE8HES of EBWOA.
ale @ = o o x
wn —_ NN = =
S zg=z2¢8 Comparison of Optimization Results of IEEE CEC
B s e 2019 Function Set with Modified Algorithms
= I 0 n o I
3] A O = S <~
IO IR I . .
=127 0T Along with EBWOA, IEEE CEC 2019 functions are
also evaluated using the methods, namely, modified
S aggns whale optimization algorithm with population reduction
+ 1T F ¥ 1 F (mWOAPR) [40], enhanced whale optimization algorithm
EETEY imizati ithm
al® 22338 n (eWOA), enhanced whale optimization algorithm inte-
ala e aaea grated with Salp Swarm Algorithm (ESSAWOA), self-
adaptation butterfly optimization algorithm (SABOA)
_8|_ § _8’_ _8’_ _Sl_ § [41], sine cosine grey wolf optimizer (SC_GWO) [42],
slgreaga and improved sine cosine algorithm (ISCA) [43]. The
&l 228238 optimal value of each function in the IEEE 2019 func-
HZLT T T T tion set is 1. The results calculated by all algorithms are
tabulated in Table 7. The function numbers F26 to F35
T oo denote the IEEE CEC 2019 functions. Table 8 shows
[ S irwi i
B omE e a pairwise .comparlson O.f results from EBWOA and
Aale == ¢ ¢ other algorithms. According to tabular data, EBWOA
175] — AN AN AN~
S o < o0 < Table 6 Friedman’s rank test with the WOA variants
193353
§ R oooom Methods Rank sum Average rank Rank
] s = L L =0

N T o¥ Yo EBWOA 465 1.86 1

E ESSAWOA 112.5 4.50 6

= S WOAMM 93.5 3.74 3

e < <

3 |E Ss=3¢% m-SDWOA 95 3.80 4

= S =2E=2x3

k= S Z Eg g2 SHADE-WOA 107.5 430 5

-— =] 7]

3|2 - HSWOA 70 2.80 2

e = R AR 2
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Table 7 EBWOA results compared with the modified algorithms with the IEEE CEC 2019 function set

Algorithm  Fyq Fy, Fyg F, F;
Mean SD Mean SD Mean SD Mean SD Mean SD
EBWOA 1.00 0.00E+00 5.00E+00 0.00E+00 4.73E4+00 1.08E4+00 9.02E+01 1.22E4+01 8.43E+01 1.74E+401
ImWOA 1.03E407 1.05E4+07 2.94E4+03 1.50E4+03 4.89E4+00 7.71E-01 3.00E+01 1.02E4+01 8.42E+00 5.53E+00
mWOAPR  3.25E+07 2.30E+07 9.07E4+03 2.97E+03 6.64E4+00 2.50E4+00 4.33E4+01 1.66E4+01 4.02E4+00 1.85E+00
eWOA 1.00 0.00E4+00 5.13E4+00 0.00E+00 6.33E+00 1.73E400 7.75E+01 2.65E4+01 6.54E+01 2.70E+401
ESSAWOA 1.00 3.39E—14 5.00E+00 1.04E—07 1.06E+01 1.15E400 1.31E+02 3.16E4+01 1.45E+02 4.99E+01
LWOA 1.21E407 1.35E4+07 7.60E4+03 3.06E4+03 4.75E+00 2.03E400 5.86E+01 2.09E4+01 2.12E+00 5.77E-01
SABOA 1.00 0.00E4+00 5.00E+00 1.20E-02 1.25E+01 9.59E-01 [1.39E+02 1.05E+01 [1.82E+02 2.52E+01
SC_GWO 9.74E4+01 4.74E+402 1.15E4+01 2.86E4+01 6.55E+03 3.30E4+04 [1.12E+02 3.46E+01 5.05E+01 2.99E+01
ISCA 1.00 0.00E4+00 5.00E+00 0.00E+00 7.73E+00 1.46E+4+00 1.21E+02 1.13E4+01 [1.17E+02 2.61E+01
Algorithm  F;; F;, Fi3 Fs, Fss
Mean SD Mean SD Mean SD Mean SD Mean SD

EBWOA 1.04E+01 148E+00 1.87E+03 2.05E+02 4.95E+00 1.68E—01 2.15E+00 7.47E-01 2.15E+01 1.08E-01
ImWOA 1.14E401 1.13E4+00 1.97E4+03 2.85E4+02 4.96E+00 2.63E—-01 1.42E+00 1.15E-01 2.15E+01 1.10E-01
mWOAPR  1.17E4+01 1.57E4+00 1.90E4+03 2.92E+02 4.98E+00 3.42E-01 1.39E4+00 1.61E-01 2.16E+01 1.28E-01
eWOA 1.07E401  1.06E4+00 1.89E4+03 3.31E4+02 4.99E4+00 2.93E-01 2.97E+00 9.61E-01 2.15E+01 1.49E-01
ESSAWOA 1.17E+01 1.48E+4+00 2.20E+03 2.21E4+02 5.00E+00 1.34E-01 447E+00 8.66E—01 2.16E+01 1.35E-01
LWOA 1.26E4+01  1.63E4+00 1.93E4+03 2.78E4+02 4.96E4+00 3.51E-01 1.39E+00 1.52E-01 2.18E4+01 1.72E4+00
SABOA 1.21E401 9.66E-01 2.74E4+03 2.77E4+02 5.31E400 2.29E-01 5.74E+00 9.17E-01 2.16E+01 1.32E-01
SC_GWO 1.79E401 4.99E4+00 3.94E4+03 7.99E4+02 5.99E4+00 2.53E-01 3.63E+00 1.51E4+00 2.27E+01 2.68E—01
ISCA 1.22E401 8.80E-01 2.22E4+03 2.06E4+02 5.23E400 1.34E-01 4.29E4+00 5.82E-01 2.16E+01 1.13E-01

outperformed all other comparison algorithms in five
functions. In function F26, eWOA, and ISCA and function
F27, ISCA achieved similar optimal results with EBWOA.
The data from Table 8 show that mWOAPR, eWOA, and
SC-GWO can only outperform EBWOA on 3, 2, and 1
occasions, respectively. This confirms the superiority of
the proposed EBWOA in solving complex optimization
problems. The search process slowly proceeds to the opti-
mal solution by checking the surrounding area for the
local or global best solution. All these newly incorporated
properties made the algorithm efficient. The statistical
analysis results in Table 9 further support the dominance
of EBWOA.

Comparison of Design Concepts of WOA Variants
Used for Comparison and EBWOA

EBWOA is compared with a total of nine WOA variants.
ESSAWOA, WOAmM, m-SDWOA, SHADE-WOA, and
HSWOA are compared using the classical benchmark

functions, whereas LWOA, mWOAPR, eWOA, and InWOA
are compared using IEEE CEC 2019 functions. In LWOA,
the “Levy flight” mechanism was used with WOA to
increase diversity in the solution and skip the local solution.
The idea of a hybrid algorithm was used to create ESSA-
WOA. Two algorithms, the Salp Warm Algorithm (SSA) and
WOA, were merged to develop it. Firstly, SSA was modified
with a non-linear parameter to strengthen the convergence
function of SSA; then, it was merged with WOA. A lens
opposition-based learning strategy was used in the algorithm
to amplify the diversity in the solution. The mutualism phase
of symbiotic organisms search (SOS) was modified and used
in WOA to increase solution diversity; the new method was
named WOAmM. In m-SDWOA, a modified mutualism
phase and DE mutation strategy were used to enhance the
exploration capacity of WOA. The commensalism phase of
the SOS algorithm was used to increase solution accuracy.
While making SHADE-WOA, SHADE and WOA were com-
bined with a way to share information and a new way to hunt
called “cooperative hunting.”

Table 8 EBWOA results of

e k . EBWOA ImWOA mWOAPR eWOA ESSAWOA LWOA SABOA SC_GWO ISCA
pairwise comparison with the
modified algorithms using Superior to 7 7 7 10 7 10 9
Table 7 data Similarto 0 0 0 0 0 0
Inferior to 3 3 2 0 3 0 1 0

@ Springer
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Table 9 Friedman’s rank test with the modified algorithms

Methods Rank sum Average rank Rank P value Remark

EBWOA 26.5 2.65 1 0.001  P-value (0.001 < 0.01) => Ho is rejected at a 1% significance level, meaning there
ImWOA 36.5 3.65 2 is a significant difference in the performance of different algorithms at a 1%
mMWOAPR 455 455 4 significance level

eWOA 37 3.7 3

ESSAWOA 58.5 5.85 6

LWOA 46 4.6 5

SABOA 68 6.8 8

SC_GWO 73 7.3 9

ISCA 59 5.9 7

The concept of hunger from the algorithm Hunger
Games Search (HGS) was introduced in WOA to develop
HSWOA. mWOAPR was proposed by introducing random
initialization of the solution in the “Search for Prey” phase
of WOA. Moreover, the values of parameters “A” and “C”
were modified to explore in the beginning and exploit later
in the search. Population reduction was employed to make
the convergence faster. Another variant of WOA, namely
eWOA, was proposed by modifying the parameters “A” and
“C” and introducing a random movement while exploring
to lessen the computational burden. An exhaustive search
near the potential solution was confirmed by employing an
inertia weight. InWOA is a recent variant of WOA that was
designed by modifying the random solution selection process
of the “Search Prey” phase in WOA. The other modifications
in the algorithm include incorporating “cooperative hunting”
to exploit easily and dividing total iterations into two halves,
one for exploration and the other for exploitation. Unlike all
the WOA variants, EBWOA uses local and global solutions
for exploration and exploitation. The local best solution is
a randomly selected solution from the group of cluster best
solutions. In EBWOA, the “Search for Prey” phase used
in WOA for exploration is omitted; instead, exploration is
confirmed with the “Encircling Prey” phase. Exploration is
preferred in the algorithm as exploration and exploitation are
performed with either local or global solutions.

Real-World Engineering Problem

The gear train design problem, a real-world, unconstrained
engineering problem, is resolved using EBWOA. “Gear
Train Design” presents a description of the problem and an
analysis of the evaluation results.

Gear Train Design

Sandgren [44] presented this design challenge, which is uncon-

strained in nature. There are four choice variables, yl, yz, y3,
and y*, which represent the number of teeth in each gear wheel.

@ Springer

All variables fall inside the range [12—60] and are positive
integers. The angular velocity of the output shaft and the ratio
of the input shaft were used to define the gear ratio for decreas-
ing a gear train. The objective of this design challenge was to
reduce the cost of the gear ratio to as close to 1/6.931 as pos-
sible. This problem’s mathematical formulation is given below.

Objective Function

Minf(y) = [(ﬁ) - (y3y4/y1y4)2] (16)

SubjectTo
12<y"<60,p=1,2,....,4

Analysis of Outcome Calculated results from EBWOA are
compared to four basic versions of the metaheuristic and six
WOA variants. Table 10 contains the results evaluated by the
proposed algorithm and the algorithms used for comparison.
EBWOA and SHADE-WOA achieved the optimal result, and
their evaluated results are similar. The component algorithm
of EBWOA, i.e., WOA produced the worst result on this
problem. This authenticates the extension of WOA.

Table 10 Evaluated results of the gear train design problem

Method Mean SD Best

EBWOA 2.7755E-17 0 2.7755E—-17
WOA 6.2485E+02 2.3126E-13 6.2485E+02
SOS 6.3990E—06 6.4998E—06 2.7755E—-17
TLBO 9.6440E—07 2.1258E—06 2.7755E—17
TSA 4.2423E-06 4.6445E—06 1.4557E-07
LWOA 1.0709E—06 1.4947E-06 4.5467E—-08
WOAMM 5.5275E-08 1.3886E—07 5.0281E—10
m-SDWOA 4.5835E—-08 2.5084E—07 2.7755E-17
SHADE-WOA 2.7755E-17 0 2.7755E-17
HSWOA 3.0080E—05 3.3073E-05 1.9838E—-07
ImWOA 9.0754E—09 2.4560E—08 49821E—14
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Three-Bar Truss Design

The issue involves minimizing the volume of a three-bar
truss that is statically loaded while meeting three limitations
on stress, deflection, and buckling. To change the sectional
areas, this problem has to optimize two variables (x' and x?).
The search space for this topic is challenging and restricted.
The following is the mathematical formulation for this issue:

X= {xl,xz}
Objective Function

Minf(x) = L{x2 +2¢/2¢! } 17)

Subject to

hy(x) = 2P—6SO,

2
2x2x! + \/E (x')

2 2 1
o= —2FV2_p g
2x2x! + \/E(xl)
1
hy(x) = ——P -0 <0,
X+ /222
where

0<xL,x2<1, and
P=2,L=100&c =2.

Analysis of Outcome The optimal solution for this problem
is 2.6389584338E+02. Table 11 shows the evaluated results.
SOS, TLBO, m-SDWOA, SHADE-WOA, and InWOA are
the methods whose results are similar. However, among
them, the standard deviation of EBWOA is the minimum. It

Table 11 Evaluated results of three bar truss design problems

Method Mean SD Best
EBWOA 2.6389E+02 2.5824E-16 2.6389E+02
WOA NA NA NA

SOS 2.6389E+02 2.3918E-04 2.6389E+02
TLBO 2.6389E+02 1.0298E—-04 2.6389E+02
TSA 2.6390E+02 8.0176E-03 2.6389E+02
LWOA 2.6399E+02 6.1201E—02 2.6390E+02
WOAmMM 2.6401E+02 1.5084E—01 2.6389E+02
m-SDWOA 2.6389E+02 8.7416E-09 2.6389E+02
SHADE-WOA 2.6389E+02 1.0555E-14 2.6389E+02
HSWOA 2.7312E+02 5.5345E+00 2.6503E+02
ImWOA 2.6399E+02 1.8722E—-01 2.6390E+02

reflects the consistency of the algorithm. Therefore, EBWOA
has emerged as the best method among comparative methods.

Analysis of EBWOA's Performance
with Various Metrics

In this section, the solution-finding speed of the proposed
method, the time needed to search for the optimal solution,
the exploration with the exploitability of the algorithm, and
the performance index are analyzed.

Convergence Study

The algorithm’s ability to find solutions quickly is tested using
the convergence curve. This section compared the solution-
finding speed of the proposed algorithm with its segment
WOA. The curves are plotted with a population size of 30,
and the algorithms determine the best fitness value for a single
function with a termination condition of 100 iterations. Figure 3
shows the comparison curves of some randomly chosen funda-
mental functions of the unimodal type, the multimodal types,
and the IEEE CEC 2019 functions. The figure’s first six curves
(a—f) are drawn using the benchmark functions, and the curves
from (g—i) are generated using IEEE CEC 2019 functions. In
each curve in the figure, EBWOA converges much faster than
WOA. This means that WOA'’s search speed has been increased
after the modification.

Runtime Analysis

Run time is the time taken by an algorithm to execute and pro-
duce the output. Here, we have evaluated the execution time by
assessing the first function from the IEEE CEC 2019 function
set, i.e., F,4 in this study. The execution time of all the com-
pared algorithms is given in Table 12. The table data reveals
that EBWOA takes slightly greater time for execution than
WOA. Similarly, SOS and TLBO are also faster than EBWOA.
However, EBWOA takes less time than BES and TSA. Among
the seven WOA variants used for runtime comparison, only two
methods, m-SDWOA and mWOAPR, have less execution time
than WOA. But analysis of the numerical outcomes already
ensured that the performance of EBWOA is far better than the
algorithms WOA, SOS, TLBO, m-SDWOA, and mWOAPR.
Therefore, considering the high performance of EBWOA, a
slight increase in run time compared to the component algo-
rithm is acceptable.

Analysis of Exploration with Exploitation Capacity

Exploration and exploitation are the two basic phases of an
optimization algorithm. The distance between the solutions

@ Springer
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Fig.3 Comparison of convergence curves of EBWOA with WOA
rows during exploration but reduces during exploitation. L 1Ixn . i i
ETOWS | £ eXp . ng exp ) div = - Z |med1an(Sol]) —Sol’.‘ (18)
Diversity measurement is looked at and defined to determine n Ldi=1 i
how far apart search agents are getting closer or farther apart.
. 1 dim . .
div=— ) diV (19)
dim “=ij=1

Table 12 Comparison of Run time with basic and WOA variants

Method Mean run time
EBWOA 2.5264E+01
WOA 2.4611E+01
SOS 1.8875E+01
TLBO 1.6699E+01
BES 2.8735E+01
TSA 2.6177E+01
LWOA 1.4806E+02
WOAmMM 2.8518E+01
m-SDWOA 1.5963E+01
SHADE-WOA 2.5286E+01
HSWOA 6.1163E+01
mWOAPR 1.3218E+01
ImWOA 2.6653E+01

@ Springer

n and dim stand for the number of search agents and
design variables, respectively. Soli: is the dimension j of the
ith search agent, and Sof is the median of the population
for that dimension. diV/ is the diversity in each dimension,
and mathematically, it is defined as the distance between
each search agent’s jth dimension and the dimension’s
median. The variety of the entire population (div) is then
determined by averaging each div.

exploration percentage = ( -dzv > x 100 (20)
Vmaxi
e . |le - divmaxil
exploitation percentage = [ ——— | X 100 (21)
dlvmaxi



Cognitive Computation (2023) 15:1497-1525

151

where “div,,,.;” is the maximum diversity value attained over
the entire optimization process. The exploration percentage
links the diversity in each iteration to the largest variety found
during the search. The exploitation level, measured by the
exploitation percentage, is the difference between the maxi-
mum diversity and the diversity of an iteration at the moment.
The concentration of search agents causes this difference.

Figures 4 and 5 represent the exploration and exploitation
graphs showing their percentage for EBWOA and WOA,
respectively, on six random benchmark functions. In both
the figures, diagrams (a), (b), and (c) depict the explora-
tion and exploitation of unimodal functions, whereas (d),
(e), and (f) show the graphs obtained by evaluating three
multimodal functions. A comparison of diagrams in both the
figures reveals that the exploration and exploitation ability
of EBWOA is more balanced than that of WOA in function
types, unimodal and multimodal.

Performance Index Evaluation

The performance index (PI) of EBWOA is evaluated in
terms of an increase or decrease in performance. Perfor-
mance upsurge or reduction of an algorithm is calculated
using the below-given formula.

The performance of EBWOA is compared to the
modified methods using the evaluated outcomes of the
IEEE CEC 2019 function set which are given in Table 7.
Table 13 holds the function-wise comparison data. The
positive value in the table indicates an increase, and the
negative value specifies a decrease in the performance of
EBWOA on that particular function compared to the algo-
rithm concerned. The value of 0.00 designates no improve-
ment in the performance of EBWOA on that function com-
pared to the specific algorithm.

Solving Cloud Scheduling Problem using
EBWOA

In this section, the proposed EBWOA strategy is applied
to the classical NP-hard cloud scheduling problem for
executing multiple independent bag-of-tasks (BoT) appli-
cations over virtual machines (VMs) of a cloud computing
system [45, 46]. Each BoT application consists of several
independent tasks requiring an equal number of process-
ing elements for execution [47, 48]. The next sub-section
briefly describes problem objectives, fitness functions,
workloads, experimental setup, results, and analysis. In
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Fig.4 Exploration vs. exploitation percentage of EBWOA
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Fig.5 Exploration vs. exploitation percentage of WOA

this paper, we aim to optimize both makespan (users’
perspective) and energy consumption (service providers’
perspective) metrics for the scheduling problem. The next
sub-section briefly describes related work, objectives, fit-
ness function, workloads, experimental setup, results, and
analysis associated with the undertaken cloud scheduling
problem.

Related Works

Using metaheuristic algorithms, a lot of researchers have
tried to figure out how to solve the scheduling problem
in the cloud [46-49]. This is because exhaustive solu-
tions to the task scheduling problem are not feasible with
large-scale scheduling problems [49]. The most com-
mon scheduling objectives addressed in the literature
are makespan, utilization, energy efficiency, execution
cost, degree of imbalance, etc. In [49], the authors pro-
posed a fuzzy-based security-aware and energy-aware
task scheduling algorithm called SAEA by introducing
a parallel version of the squirrel search algorithm. The
SAEA resulted in significant performance improvement
over the baseline metaheuristics in terms of energy

@ Springer
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cost, makespan, degree of imbalance, and security lev-
els. The authors in [50] introduced an improved ACO
algorithm to schedule independent tasks over cloud
resources to address three objectives minimizing wait-
ing time, improving the degree of resource load bal-
ance, and reducing task completion time. On the other
hand, authors in [51] presented a hybrid task scheduling
algorithm by combining methods PSO and GA, which
resulted in a reduction in total task completion time and
improved convergence accuracy compared to the com-
pared algorithms.

In [52], a multi-objective workflow scheduling
method was presented for finding an optimal trade-off
between makespan and execution cost by combining het-
erogeneous earliest end time (HEFT) and the ACO algo-
rithm. Recently, a task scheduling approach called Paral-
lel Reinforcement Learning Caledonian Crow (PRLCC)
has been proposed by combining the New Caledonian
crow learning algorithm (NCCLA), reinforcement learn-
ing (RL), and parallel strategy with the objectives of
improving waiting time, energy consumption, security
guaranty, and resource utilization [53]. The authors in
[54] proposed a modified GA algorithm combined with a
greedy strategy (MGGS) to optimize the task scheduling
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Table 13 Performance index of EBWOA showing the percentage of increase or decrease in capacity
Algorithm Fy Fy, Fyg Fy Fs,

PI PI PI PI PI
ImWOA 1033499900.00* 58714.00* 3.41 —66.77 —-90.01
mWOAPR 3247599900.00* 181282.00* 40.56 -52.06 -95.23
eWOA 0.00 2.60 33.89 -14.14 —22.46
ESSAWOA 0.00 0.00 123.93 45.14 71.74
LWOA 1206199900.00* 151830.00* 0.48 —35.08 —97.48
SABOA 0.00 0.00 163.46 53.55 11547
SC_GWO 9644.30 130.98 138424.33% 24.34 —40.09
ISCA 0.00 0.00 63.56 7.67 39.09
Algorithm Fs; F3, Fs3 F3, F35

PI PI PI PI PI
ImWOA 9.38 5.79 0.28 —33.94 0.00
mWOAPR 11.83 2.03 0.65 -35.23 0.32
eWOA 2.30 1.30 0.77 38.49 0.00
ESSAWOA 11.77 17.82 1.07 108.21 0.29
LWOA 20.92 3.15 0.17 -35.26 1.36
SABOA 16.05 46.89 7.35 167.43 0.49
SC_GWO 71.32 111.23 20.94 69.07 5.25
ISCA 17.03 19.12 5.66 99.64 0.50

*Indicates the percentage of rising capacity is very high due to the huge difference in the evaluated optimal value of the concerned algorithm and

EBWOA

process, reduce the total completion time and average
response time, and improve QoS parameters. The authors
of [55] presented a multi-objective hybrid Fuzzy Hitch-
cock Bird-inspired approach (HBIA) with fuzzy logic
and levy flight mechanism to address makespan and
resource utilization goals. A recent research work [56]
introduced a hybrid multi-verse optimizer with a genetic
algorithm (MVO-GA) for independent scheduling tasks
in a cloud environment, solving the task scheduling
problem.

In another attempt, a hybrid metaheuristic solution was
presented by combining WOA, Henry’s gas solubility opti-
mization (HGSO), and comprehensive opposition-based
learning (COBL) for task scheduling problems to reduce
makespan [57]. The authors in [58] presented an enhanced
version of the MVO algorithm (EMVO) for improving
makespan, throughput, and utilization. Table 14 shows the
comparison of a few task-scheduling algorithms.

Problem Objectives and Fitness Function

The objectives and fitness function of the cloud scheduling
problem are described as follows:

Makespan Model

The makespan objective is the latest finish time of tasks
in a set of BoT applications, which is calculated as per the
following:

Makespan = max;cprg (FinishTimej)

i (23)

where j is a task belonging to a distinct BoT application and
PTK is the set of BoT applications. A shorter makespan is
desired since it indicates faster processing [48].

Energy Model

The energy consumption (energy consumption) of an indi-
vidual CPU core (C k) can be expressed as follows:

Crrt)

Makespan
EnergyConsumption ( Cy ) = / EnergyConsumption gy, (
0

+ EnergyConsumptionjg, (Cy, t)dr,
(24)

where EnergyConsumption,,,, and Energy Consumption;y;,
are the energy consumed during execution and during idle
time, respectively [49].
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The overall energy usage of the cloud data center, includ-
ing all CPU cores and the number of virtual machines
(Nvm), can be represented as follows:

. Nvm .
EnergyConsumption = ZC EnergyConsumption(C, )
k
(25)

Objective Function

The cloud scheduling problem is modeled as a bi-objective
combinatorial optimization problem in this research, and
the weighted-sum method is used to reduce the workload
makespan and overall energy consumption of cloud comput-
ing resources. The following is the definition of the cloud
scheduling problem’s fitness function:

Fitness function, F(X) = min(w1 X Makespan + w2
. (26)
X EnergyConsumption)

The weights of the makespan and energy consumption
objectives are wl and w2, respectively. This paper deter-
mines optimal weight values by conducting several inde-
pendent experiments with varying weights.

Experimental Setup and Workloads

This section provides the details of real benchmarking
workloads, experimental configurations, experimental
results, and observations. The proposed EBWOA and
baseline algorithms are implemented using Java and the
JMetal 5.4 metaheuristic framework (http://jmetal.github.
io/jMetal/) on the CloudSim 3.0.3 simulator. Experiments
are done on a computer with an Intel 17-8550U processor
running at 1.80-2.0 GHz (8 cores), 16 GB of RAM, and
Windows 10 installed. Each experiment is done 30 times
with the same input workload and experimental settings to
eliminate any bias.

The experimental workloads in this research were derived
from the logs of two real-supercomputing sites, CEA-Curie
and HPC2N, which can be found at http://www.cs.huji.ac.
il/labs/parallel/workload. Table 15 shows that the cloud

computing system has a single data center with five differ-
ent VMs that are already set up [59].

Results and Analysis

The evaluated result of EBWOA on cloud scheduling prob-
lem and their comparison with other algorithms is discussed
in this sub-section.

Statistical Results in Terms of Best, Average, and Worst
Values

This sub-section analyzes the performance of the pro-
posed EBWOA using a few statistical indicators against
state-of-the-art baseline algorithms, viz. WOA [10],
HSWOA [33], Gaussian cloud-whale optimization algo-
rithm (GCWOAS?2) [60], binary-enhanced WOA (BE-
WOA) [61], multi-objective particle swarm optimization
(MOPSO) [62], butterfly optimization algorithm (BOA)
[63], moth flame optimization (MFO) [64], and improved
WOA (IWOA) [22] algorithms. Three measures, e.g.,
best, average, and worst values of obtained results, have
been considered for the analysis. The best, average, and
worst values are the minimum, average, and maximum val-
ues, respectively, among 30 repeated executions of each
tested algorithm’s independent experiment for makespan
and energy consumption metrics. Before conducting final
experiments, a convergence analysis is conducted to deter-
mine the optimal values of parameters of all metaheuris-
tics involved in the cloud task scheduling problem (note:
convergence study details can be obtained from the cor-
responding author at any time).

Tables 16 and 17 present the statistical findings of makes-
pan and energy consumption for all scheduling algorithms
for CEA-Curie workloads, whereas Tables 18 and 19 show
the statistical results for HPC2N workloads. The least values
are shown in bold. It is clear from Tables 16, 17, 18, and
19 that the proposed EBWOA method yielded significantly
better minimum, average, and maximum values of makespan
and energy consumption metrics than baseline algorithms.

Table 15 Description of the VM configuration adopted for experimentation

VM instance type VM instance ID # VMs # CPU cores MIPS per core CPU model EC;y.(W/h) EC omp(W/h)
per VM

Type 1 T2.nano 20 1 3400 Xeon E5-2637 V4 23.625 33.75

Type 2 T2.xlarge 10 2600 Xeon E5-2623 V4 59.5 85

Type 3 T2.2xlarge 8 8 2100 Xeon E5-2620 V4 59.5 85

Type 4 M5 .4xlarge 6 16 2500 Xeon Plat. 8180 M 82 117.14

Type 5 M4.10xlarge 4 40 2400 Xeon E5-2686 V4 225.55 322.22
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Fig.6 Box plots for CEA-Curie
workloads. a Makespan. b
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Overall Makespan and Energy Consumption Results

The makespan and energy usage box plots of all scheduling
experiments conducted on CEA-Curie and HPC2N work-
loads are shown in Figs. 6 and 7. The proposed EBWOA
algorithm has produced a significantly better makespan and
energy consumption than each tested baseline algorithm. The
BE-WOA, GCWOAS?2, and HSWOA algorithms alterna-
tively ended up in first, second, and third runner-up positions
compared to the EBWOA approach. These findings show that

@ Springer

IWOA

T T T T 1

HSWOA GCWOAS2 BE-WOA MOPSO BOA

(b)

the EBWOA algorithm outperforms the baseline algorithms
in terms of performance, robustness, and stability.

Summarizing the Overall Cloud Scheduling Results

Finally, the overall experimental outcomes of the suggested
EBWOA strategy over baseline approaches are reported
using the overall mean, median, and percentage of per-
formance improvement rate (PIR%). PIR% helps in cal-
culating the percentage reduction in makespan and energy
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Fig.7 Box plots for HPC2N HPC2N Workloads
workloads. a Makespan. b °
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consumption achieved by the EBWOA over baseline tech-  approaches for both CEA-Curie and HPC2N workloads.
niques, and it is calculated as follows: In the case of CEA-Curie workloads, EBWOA resulted in

Performance (other Algorithm) — Performance (EBWOA)
Performance (EBWOA)

@n

PIR(%) = x 100%

Table 20 shows that the EBWOA approach significantly =~ makespan and energy consumption reductions in the range
reduces makespan and energy consumption, as indicated  of 1.44-18.96% and 1.08-13.27%, respectively, over the
by outstanding PIR% results over baseline scheduling  baseline metaheuristics. On the other hand, for HPC2N

@ Springer
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Table 20 Overall mean, median, and PIR% results

Policy WOA IWOA HSWOA  GCWOAS2 BE-WOA MOPSO BOA MFO EBWOA
CEA-Curie
Makespan (s)
Mean 11,890.95 11,639.63 11,198.02 11,095.44 10,947.80 12,838.08 11,949.63 11,307.16 10,792.22
Median 11,522.28 11,199.14 10,751.37 10,475.4 10,344.18  12,130.13  11,509.14 10,866.13  10,097.09
PIR% of EBWOA over 10.18% 7.85% 3.76% 2.81% 1.44% 18.96% 10.72% 4.77%
Energy consumption (W)
Mean 7502.48 7173.63 7175.54 7287.76 7114.42 7972.46 7418.61 7265.13 7038.24
Median 7218.97 6872.21 7032.31 7122.41 6961.81 7539.61 7028.03 7117.54 6871.73
PIR% of EBWOA over 6.60% 1.92% 1.95% 3.55% 1.08% 13.27% 5.40% 3.22%
HPC2N
Makespan (s)
Mean 13,030.95 12,846.14 12,755.14 12,026.48 11,828.76  14,670.64 13,146.14 12,149.45 11,754.63
Median 12,165.13  11,958.84 12,494.82 11,748.11 11,512.05 12,945.09 12,258.84 11,851.78 11,494.37
PIR% of EBWOA over 10.86% 9.29% 8.51% 231% 0.63% 24.81% 11.84% 3.36%
Energy consumption (W)
Mean 8328.99 7953.16 8467.48 7866.75 7611.75 9407.02 8203.16 7723.8 7413.4
Median 7568.49 7311.03 7946.03 7533.84 7320.68 8019.48 7561.03 7297.58 7086.23
PIR% of EBWOA over 12.35% 7.28% 14.22% 6.12% 2.68% 26.89% 10.65% 4.19%

workloads, EBWOA’s performance improvement in the
range of 0.63-24.81% (for makespan) and 2.68-26.89% (for
energy consumption) has been observed over the baseline
metaheuristics.

Conclusion

WOA has several advantages, such as a simple structure,
fewer parameters, and simplified implementation. Besides
the advantages, WOA also has disadvantages, such as low
exploratory ability, early convergence, and low solution
accuracy. This research features a new WOA (EBWOA)
variant with improved exploration capabilities and a balance
between exploration and exploitation. The method updates
solutions in the population using the local or global elite
solution. The distinctiveness of the newly developed method

@ Springer

is that the exploration is carried out using the encircling
prey phase, which is used in the basic WOA for exploitation.
Unlike simple WOA, it uses only two steps to circle the prey
and bubble-net methods to update solutions. In the encircling
prey phase, the locally best solution to update other solutions
promoted exploitation while exploring the quest region. The
addition of inertia weight enabled the method to conduct an
exhaustive search for the best local and global solutions. The
effectiveness of the proposed methods is evaluated using
twenty-five classic benchmark functions, IEEE CEC 2019
functions, two design problems, and a cloud task scheduling
problem. Comparisons of numerical results using various
basic and modified algorithms, statistical analysis, conver-
gence analysis, runtime analysis, exploration vs. exploitation
capability, and performance index verification all show that
the changes proposed in this document make WOA better
at finding solutions.
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Appendix
Table 21 Variable and fixed dimension unimodal and multimodal functions
Function Equation Search region D Optimal result
Sphere Fi(x)= Zle x/% [-100,100] 30
Schwefel 2.22 Fyx) =32 o] + T2, || [-10,10] 30
Schwefel 1.12 D & 2 [-100,100] 30 0

Fyf) = 2=t (Zhim)
Schwefel 2.21 Fy(x)= m?x[|xk|, 1<k< D] [-100,100] 30 0
Step F5(x)=sz:1 (|xk+0~5|)2 [-100,100] 30 0
Quartic Fy(x) = zf=l x! + random(0, 1) [-1.28,1.28] 30 0
Zakharov D D 2 D 4 [-5,10] 30 0

P = Zh (22, 05k ) + (P, 0.5kx,)
Cigar Fyx) =2 +100 Y2 10 [-100,100] 30 0
Powell 2 2 4

owe Fy(x) = szﬁ [(x4k—3 + 10x4k—2) + 5<X4k—1 + X4k) -4, 3] 30
4 4
+(x4k_2 + 2x4k_1) + 10 (g3 + 10x4k) ]
2 -

Tablet FIO(X) — 106)6] + sz_z xz [ 1,1] 30 0
Elliptic F,(x)= Zf:z (106) [-100,100] 30 0
Brown Fpox) = Z;i (xi)(afﬂﬂ) n (X%H)(xfﬂ) [-1, 4] 30 0
Matyas F5(x) = 0.26((x? +x2) — 0.48x,x, [-10,10] 2 0
Rastrigin F(x) = Zszl [x]% — 10cos(2Tx) + 1()] [-5.12,5.12] 30 0
Ackley 1yvD 2 1§D . [-32,32] 30 0

Fox) = -20exp(-0.2 V3 Dt X exp(D Diei cole'[xk)) +20+e
Griewank Fg(x) = ﬁ 2?21 x,% - Hle cos( [-600,600] 30 0
Alpine F;,= ZkD=1 ‘xksin(xk) + O.lxk‘ [-10, 10] 30 0
Csendes Fg(x) = Zszl xg(z +sind) [-1,1] 30 0

Xk
Inverted Cosine Mixture  F, x) =0.1D — (0.1 EkL’:l cos(5ITx;) — ZkD=1 xi [-1,1] 30 0
Sal -100,100 30 0
alomon 1—cos<2H\/ZkD=1xi> +0.14/30 2 : J

Fao(x) =

Kawalik 1 [ [-5,5] 4 0.0003
an —

Fyy(x) = k=t
Shekell T -1 [0,10] 04 -10.1532

P =" Zi:l [(x —a)(x—a) + ck]
Shekel2 T -1 [0,10] 04 -10.4028

P =" ZZ=1 [(x —a)(x—aq) + ck]
Shekel3 510 [(x—a )(x—a )T+C ]" [0,10] 04  -10.5363

Foy(x) = k=1 , , k
Bohachevsky1 F5(x) = x% + 2x3 — 0.3cos (3I1x; ) — 0.4cos(4I1x,) +0.7 [-100,100] 02 0

Data Availability All data generated or analyzed during this study are
included in the article.
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