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Abstract
With the development of data collection technologies, multi-view clustering (MVC) has become an emerging research 
topic. The traditional MVC method cannot process incomplete views. In recent years, although many incomplete multi-
view clustering methods have been proposed by many researchers, these methods still suffer from some limitations. For 
example, these methods all have parameters that need to be adjusted, or have high computational complexity and are not 
suitable for processing large-scale data. To make matters worse, these methods are not suitable for cases where there are 
no paired samples among multiple views. The above limitations make existing methods difficult to apply in practice. This 
paper proposes a Fast and General Incomplete Multi-view Adaptive Clustering (FGPMAC) method. The FGPMAC adopts 
an adaptive neighbor assignment strategy to independently construct the similarity matrix of each view, thereby it can handle 
the cases where there are no paired samples among multiple views, and eliminating the necessary to adjust the parameters. 
Moreover, by adopting a non-iterative approach, FGPMAC has low computational complexity and is suitable for large-scale 
datasets. Results of experiments on multiple real datasets fully demonstrate the advantages of FGPMAC, such as simplicity, 
effectiveness and superiority.
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Introduction

With the development of information collection technology, 
data are often described by multiple views [1, 2]. A typi-
cal example is the classification of webpages, which can be 
described by two views of text and its linked information [3]. 
Generally speaking, different views provide complementary 
information to describe the data, which makes multiview 
learning can get better performance than single view learning 
[4]. As one of the most representative methods of multi-view 
data learning, multi-view clustering has been widely applied 
in many fields, such as data analysis, information retrieval and 
image classification [5–8]. Many advanced methods have been 
proposed for multi-view clustering. However, due to noise, fail-
ure of data-collecting equipment and many other unforeseen 
factors, data can be lost randomly in a single view or multiple 
views, making incomplete multi-view data widely exist [9].

Figure 1 shows two cases of incomplete multi-view data. In 
the first case, part of samples contain the features of all views. 

In the second case, no samples contain features of all views. 
That is, there is no complete common samples among mul-
tiple views. For the first case, many methods have been pro-
posed, such as PVC (Partial multi-view clustering) [9], PMH 
(Learning to hash on partial multi-modal data) [10] and IMG 
(Incomplete multi-modal visual data grouping) [11] based on 
matrix factorization, and APMC (Anchors Bring Ease: An 
Embarrassingly Simple Approach to Partial Multi-view Clus-
tering) [12]. However, these methods cannot handle the second 
case, because they need to rely on common parts of multiple 
views. Furthermore, neither the PVC nor the IMG approach 
can handle multi-view data with more than two views. To 
our knowledge, currently only the newly proposed methods 
IMSC_AGL (Incomplete Multiview Spectral Clustering with 
Adaptive Graph Learning) [13] and AGC_IMC (Incomplete 
Multiview Clustering with Adaptive Graph) [14] can handle 
the second case of incomplete multi-view data. However, both 
methods are computationally complex and require many itera-
tions to converge. In addition, in order to achieve the optimal 
clustering effect, they each contain three parameters that need 
to be adjusted. Therefore, they are difficult to use in practice.

To address the above problems, we propose a novel 
method called Fast and General Incomplete Multi-View 
Adaptive Clustering (FGPMAC). FGPMAC adopts an 
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adaptive neighbor assignment strategy to calculate the simi-
larity matrix of each view independently and non-iteratively, 
without relying on the common part of multiple views, so 
FGPMAC can handle the second case of the incomplete 
multi-view data. Experimental results on many real datasets 
fully demonstrate the effectiveness and efficiency of FGP-
MAC. In general, FGPMAC has the following contributions.

1. FGPMAC can independently calculate the similarity 
matrix of each view without requiring complete common 
samples among multiple views. It can handle both cases of 
incomplete multi-view data at the same time, so FGPMAC 
is a general incomplete multi-view clustering method.

2. FGPMAC adopts an adaptive neighbor assignment 
strategy to calculate similarity, thus tedious parameter 
adjustment is avoided.

3. FGPMAC has a non-iterative structure with low computa-
tional complexity and is suitable for large-scale datasets.

  The rest of this paper is organized as follows. Related 
works are introduced in "Related Works". "The Pro-
posed Method" describes FGPMAC in detail. "Spectral 
Clustering On Fused Similarities" presents the experi-
mental resulst and the analysis. "Method Framework" is 
the conclusion of this paper.

Related Works

For the first case of incomplete multi-view data, many meth-
ods have been proposed. BSV (Best Single View) is the sim-
plest and the most direct way to deal with incomplete multi-
view clustering. BSV first complete the missing values with 
the average value of each view, and then clusters each view 
separately to select the best result. However, BSV does not 
take full use of the information of multiple views. SC[C] is a 
simple splicing method. SC[C] connect the features of multi-
ple views into a long single vector, and then obtain a unified 

similarity matrix and perform spectral clustering. SC[A] is a 
simple fusion method. SC[A] generate a similarity matrix for 
each view, then fuse these similarity matrices equally, and 
finally perform spectral clustering. MultiNMF is a cluster-
ing method that processes complete multi-view data. We 
first complete all missing values like BSV, and then perform 
MultiNMF. PVC [9] is a pioneering approach that uses non-
negative matrix factorization with l1 sparse regularization to 
determine the optimal low-dimensional subspace. Meanwhile, 
MIC (Multiple incomplete views clustering via weighted 
NMF with l2,1 regularization) [15] extends MultiNMF (Multi-
view clustering via joint nonnegative matrix factorization) 
[16] with weighted non-negative matrix factorization and 
l2,1 regularization to obtain highly reliable results. IMG [11] 
integrates PVC and manifold learning to adaptively capture 
the global structure of all instances, but such integration 
requires additional parameters. In addition, neither PVC nor 
IMG can process more than two views. Trivedi et al. [17] and 
Gao et al. [18] proposed an incomplete multi view clustering 
method based on kernel regular correlation analysis respec-
tively. However, both methods require at least one complete 
view as a reference. APMC [12] demonstrates a significantly 
improved computational efficiency, but it must ensure that 
there are some samples that contain all the view features.

The PVC, MIC, IMG, MultiNMF, APMC mentioned 
above cannot handle the second incomplete case. The 
newly proposed IMSC_AGL [13] and AGC_IMC [14] can 
handle the second case. IMSC_AGL [13] and AGC_IMC 
[14] can perform clustering when no samples contain 
all the view features. However, they have high computa-
tional complexity, respectively O

�
�
�
kn3 + n3 +

∑
vn

3
v

��
 and 

O
((
�cn2

))
 , where � represents the number of iterations, 

k represents the number of views, n represents the num-
ber of samples, and c represents the number of clusters. 
Due to the high computational complexity, IMSC_AGL 
and AGC_IMC are unsuitable for large-scale datasets. In 
addition, the three parameters of IMSC_AGL and those of 

Fig. 1  Two types of the incomplete multi-view data
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AGC_IMC are not easy to adjust in practice. The choice of 
parameters depends on experience and is adjusted accord-
ing to the results. Inappropriate parameter selection will 
directly affect the accuracy of clustering. Different datasets 
require different optimal values for the parameters. This 
greatly affects the usefulness of both algorithms. Due to 
the limitations of previous methods, it is very necessary to 
do further research on incomplete multi-view clustering.

The Proposed Method

Notations

Cons ide r  da t a se t  X = {X(1),X(2), ...,X(v)} ,  where 
X(v) =

{
xv
1
, xv

2
,… , xv

n
,
}
∈ Rdv×n is the data matrix of the 

v-th view. v is the number of views, n is the total number of 

samples, and dv is the feature dimension of the v-th view. 
Incomplete multi-view clustering divides all of the above 
samples into c clusters, where c is predefined by users. The 
notations used in this paper are summarized in Table 1.

Method Framework

The proposed FGPMAC involves two stages, shown in 
Fig. 2. At the first stage, FGPMAC adopts an adap-tive 
neighbor assignment strategy to construct the similarity 
matrix of each view indepandently, thereby eliminating the 
necessary to adjust the parameters. Then, FGPMAC quanti-
fies the contribution of each view, and generates a consistent 
similarity matrix by fusing the similarity matrixes of multi-
ple views. At the second stage, FGPMAC performs spectral 
clustering [19] on the consistent similarity matrix to obtain 
clustering results.

Consistent Representation Learning

Let X(v) =
{
x
(v)

1
, x

(v)

2
,… , x(v)

n

}
∈ Rdv×n denotes the samples 

of the v-th view (including the missing samples). We use 
Y (v) =

[
y
(v)

1
, y

(v)

2
,… ., y(v)

nv

]
∈ Rdv×nv(nv < n) to represent the 

samples that are not lost in the v-th view, where dv and nv 
are the feature dimensions and the number of unmissed 
samples in the v-th view, respectively. We use Y (v) to con-
struct the similarity matrix Z(v) of the unmissed samples.

We learn similarity matrix by adaptively assigning the 
optimal neighbors for each sample. Nearby points have 
similar properties [20]. Samples with a shorter distance 
should have a higher probability to be neighbors. The 
neighbors of xi ∈ Rd×1 can be defined as the k-nearest 

Table 1  Summary of the notations

n Total number of instances

v Total number of views
c Number of clusters
d
v

Dimension of features in view-v
X
(v) Data matrix of the v-th view

Y
(v) No missing sample sets in view-v

n
v

Number of instances that appear in view-v
Z
(v) The similarity between samples is not missing in view-v

Z
(v) The similarity between all samples in view-v

G
(v) The index matrix of view-v

S Consistency similarity matrix of multi view
W

(v) Fusion weight of view-v

Fig. 2  The framework of the proposed incomplete multi-view clustering method 
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samples to xi . We use the Euclidean distance to meas-
ure the distance between two samples. For the i-th sam-
ple xi , all the samples 

{
x1, x2,… , xn

}
 can be the neigh-

bors of xi with probability zij . Usually, a shorter distance 
dij = ‖xi − xj‖22 should be assigned a higher probability zij.

The similarity z(v)
ij

 stands for the probability that y(v)
j

 is 
the neighbor of y(v)

i
 . Thereby, a good way to obtain neigh-

bor probabilities of the i-th sample is to solve the follow-
ing problem:

However, there is a trivial solution in (1), i.e., only the near-
est sample can be the neighbor of xi with probability 1, and the 
probability of all the other samples being the neighbors of xi is 
0. This solution is obviously Pointless. To solve the problem, 
a regularization term is added to (1), then we have

The second term in Eq. (2) is a regularization and γ is 
the regularization parameter. z(v)

ij
 is the j-th value of z(v)

i

T
 , 

nv represents the number of samples appearing in view-v. 
Let d(v)

ij
= ‖y(v)

i
− y

(v)

j
‖2
2
 , and (2) can be rewritten as

Considering the equality and inequality constraints in 
(3), we use the Lagrangian function with KKT condition 
(Convex optimization) [21] to solve the equation. The 
Lagrangian function of (3) is

where � and �i are the Lagrangian multipliers, � is the equal-
ity constraint coefficient, and �i is the inequality constraint 
coefficient. According to the KKT condition, the follow-
ing conditions (5) must be met in order to get the optimal 
solution.
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Z
(v)
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i
 is the optimal solution and γ can be set as 

� =
k

2
d
(v)

i,k+1
−

1

2

∑k

j=1
d
(v)

ij
 [22] in order to obtain the optimal 

solution of (4):

It is preferred to learn a sparse zi which has exactly k 
nonzero values. The study [23] revealed that sparse rep-
resentation is robust to noise and outliers. Because the 
learned Z is sparse, the computation burden of subsequent 
spectral clustering can be largely reduced. In addition, the 
number of neighbors k is much easier to adjust than the 
regularization parameter γ since k is an integer with an 
explicit meaning.

After obtaining the similarity matrix Z(v) among the non-
missing instances in the v-th view, the similarity matrix 
Z
(v) of all samples (including the missing and non-missing 

samples) in the v-th view can be obtained by the following 
formula:

where G(v) ∈ Rnv×n is the index matrix, in which the value 
associated with the missing sample is forced to 0. The defini-
tion of matrix G(v) is as follows:

Similar to the previous analysis, deleting those samples 
that suffer from missing information or filling in the missing 
views with the average is unreasonable. However, setting 
the value to 0 in the similarity of the corresponding view 
is reasonable. In this way, the uncertain information in the 
incomplete view will not play a negative role in learning 
the data cluster representation. By contrast, only the avail-
able information is used to guide the representation learning, 
which is conducive to obtaining a highly reliable data cluster 
representation and reducing the negative impact of missing 
information.

After obtaining the similarity Z
(v) of each view, we fuse 

all the similarity matrices into a unified matrix, which is 
also our key matrix. We use S =

∑v

1
W (v)Z

(v)
 to represent the 

unified matrix to make full use of the information.
The non-missing samples represent the information that 

we can use. The more information a view provides, the 
greater the weight of this view is. Moreover, the view with 
more missing samples should be assigned a smaller weight 
to achieve a highly reliable and consistent representation 
and to reduce the negative influence of incomplete views. If 
the missing rates of multiple views are quite different and 

(6)z
(v)

ij
=

d
(v)

i,k+1
− d

(v)

ij

kd
(v)

i,k+1
−
∑k

j=1
d
(v)

ij

(7)Z
(v)

= G(v)TZ(v)G(v)

(8)G(v) =

{
1

0

ify(v) is the original instance x(v)

otherwise
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the weights are equally assigned, then those views with high 
missing rates may provide too much inaccurate information 
and affect the final clustering results. Therefore, W (v) can be 
expressed as

Spectral Clustering On Fused Similarities

After obtaining the fused similarity matrix S, spectral clus-
tering is performed to gain the final clustering result. In 
comparison with the traditional k-means algorithm, spectral 
clustering is more adaptable to different data distribution. 
Spectral clustering learns a low-dimensional representation 
F ∈ Rn×c  according to the fusion matrix S. Spectral clus-
tering solves the problem (10) by eigendecomposition of L 
to obtain the corresponding c minimum eigenvectors, and 
then K-means clustering is performed to get the clustering 
results.

where Tr(.) is the trace of the matrix, L = D-S is a Lapla-
cian matrix [24], D ∈ Rn×n is a diagonal matrix with 
Dii ∈

∑n

j=1
Sij , and I is the identity matrix.

Algorithm  1 summarizes the calculation process 
described above.

Computational Complexity Analysis

At the first consistent similarity learning stage, the time com-
plexity of generating the similarity matrix S is O

�
n2
v

∑
vdv

�
 , 

where nv represents the number of instances that appear in 
view-v, and dv represents the feature dimension of view-v. 
With the increase of missing samples, nv  will decrease and 
the algorithm complexity will be greatly reduced. The com-
plexity of the algorithm increases approximately linearly as 
the number of views increases. Because every time a view is 
added, the similarity matrix of a view needs to be calculated 
accordingly.

At the second stage, spectral clustering is performed 
on the fused similarity matrix S, and we only need the c 
largest singular values. In addition, given the properties 
of the similarity matrix S, performing SVD (Fast svd for 
large-scale matrices) [25] can reduce the time complexity 
to O

(
nc2

)
.

(9)W (v) = nv∕
∑v

1
nvs.t

∑v

1
Wv = 1

(10)min
F
T
F=I

Tr(FT�� )
Experiments

In this section, we conduct extensive experiments to demon-
strate the effectiveness and efficiency of FGPMAC.

Datasets

Table 2 briefly describes the datasets used in the experiment. 
The datasets Flowers17 and USPS-MNIST with two views 
are used in the first incomplete case. The other datasets are 
used for the second incomplete case.

Table 2  Description of the used datasets

Dataset Sample Class View

Flowers17 1360 17 2
USPS-MNIST 500 10 2
3Sources 169 6 3
100leaves 1600 100 3
ORL 400 40 4
NUS 1200 12 6
Caltech101 9144 102 6
NUSWIDEOBJ 30,000 31 6
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The Flowers17 Dataset [26] is composed of 17 flower 
classes, described by color, shape, and textures. Following 
[12], we take the X2 distance matrix of color and shape fea-
tures as the two views.

The USPS‑MNIST Dataset is the combination of two famous 
handwritten datasets, namely, USPS [27] and MNIST [28]. 
We follow [12] and randomly select 50 images from each 
number category from each dataset.

The 3Sources Dataset [29] contains 948 news articles col-
lected from 3 online news sources, namely, BBC, Reuters, 
and The Guardian. In our experiments, we select a subset 
containing 169 stories reported in all 3 sources.

The 100leaves Dataset [30] contains three views with a total 
of 1600 samples divided into 100 categories.

The ORL Dataset [31] contains 40 categories and a total of 
400 images. For each image, we generate 4 feature vectors, 
including GIST (512), LBP (59), HOG (864), and CENT 
(254).

The NUS Dataset [32] is a subset of NUS-WIDE, which 
contains a total of 1200 images, divided into 12 categories.

The Caltech101 Dataset [33] contains 101 objects and a 
background category, and each object provides 40 to 800 
images.

NUS‑WIDE‑Object [32] is a dataset for object recognition 
which consists of 30,000 images in 31 classes. We use 5 
features provided by the website, i.e., 65-dimension color 
Histogram (CH), 226-dimension color moments (CM), 
145-dimension color correlation (CORR), 74-dimension 
edge distribution and 129 wavelet texture.

Comparison methods

 1. BSV [11] BSV (Best Single View) first fills in the 
missing values with the average value of each view, 
and then clusters each view separately to select the best 
result.

 2. SC[C] It connects the features of multiple views into a 
long single vector, and then obtain a unified similarity 
matrix and perform spectral clustering.

 3. SC[A] It generates a similarity matrix for each view, 
then fuse these similarity matrices equally, and finally 
perform spectral clustering.

 4. MultiNMF It first fill in all missing values like BSV, 
and then perform MultiNMF.

 5. PVC [9] establishes a latent subspace where the same 
sample described by different views are close to each 
other.

 6. MIC [15] extended MultiNMF by weighted NMF to 
obtain better results.

 7. IMG [11] integrates the global structure of data into 
subspace learning.

 8. APMC [12] utilizes anchors to reconstruct instance to 
instance relationships for clustering.

 9. IMSC_AGL [13] exploits the graph learning and spec-
tral clustering techniques to learn the common repre-
sentation for incomplete multi-view clustering.

 10. AGC_IMC [14] develops a joint framework for graph 
completion and consensus representation learning.

Experimental Settings

We construct two types of incomplete multi-view data in 
our experiments.

There are paired samples among multi views, i.e., some 
samples contain the features of all views. We set the partial 
data ratio (IDR) from 10 to 90% with a 20% interval, where 
0% means that all views are complete. The lost samples are 
evenly distributed across all views, and each sample is avail-
able in at least one view.

There are no paired samples among multi views, i.e., no sam‑
ple contain the features of all views. We randomly delete 
approximately 30%, 50%, and 70% of the samples from the 
multi-view dataset and then evaluate clustering performance 
under different missing rates.

In order to evaluate the clustering performance, two clas-
sic clustering evaluation indicators are adopted, namely, 

Table 3  Running time (seconds) 
on different datasets with a 
missing rate of approximately 
50%

Method 3Sources 100leaves ORL NUS Caltech101 NUSWIDEOBJ

BSV 1.59 10.21 1.39 23 307.14 1137.34
SC[C] 1.17 1.54 1.26 3.01 134.35 572.43
SC[A] 1.12 1.47 0.97 3.56 137.74 594.887
AGC_IMC 5.09 200.97 65.02 713.61 1278.09 8505.6
IMSC_AGL 10.86 410.89 79.06 1002.3 3041.25 14,487.13
OURS 0.18 1.31 0.35 3.78 173.07 911.7
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clustering accuracy (ACC) and standardized mutual infor-
mation (NMI). The values of these indicators range from 
0 to 1, and a larger value indicates a better performance 
of the clustering algorithm. For fairness, we perform all 
comparison methods 10 times on each dataset and report 
the average clustering results to eliminate the uncertainty 
caused by randomness. The parameters involved in the com-
parison method are set according to author's suggestion or 
default value. For the purpose of reproducibility, the code 
and datasets are released at: https:// github. com/ leiya ng617/ 
code_ for_ FGIMAC.

Results and Analysis

Figures 3 and 4 report the ACC and MNI at different missing 
rates in the first incomplete case, whereas Figs. 5–7 report 
the indicators in the second incomplete case. Table 3 shows 
the run time of different methods on various datasets with 
a missing rate of approximately 50%. Due to the limit of 

space, we only report the results obtained when the missing 
rate is 50% given that similar trends can be observed in the 
other missing rates.  

The clustering performance of all methods declines along 
with an increasing missing rate. Figures 3 and 4 show that 
BSV, SC[C], SC[A], MultiNMF and MIC are unsatisfactory 
in most cases, indicating that filling the missing samples 
with the average is not good enough to solve the incom-
plete multi-view clustering problem. BSV only uses a sin-
gle view to obtain the clustering results and is unable to 
use the complementary information among multiple views. 
SC[C] connects all views into a single long view and ignores 
the differences in the distributions of various views. SC[A] 
treats all views equally without considering their integri-ty 
or credibility, which is unreasonable for incomplete multi-
view clustering. PVC, IMG, APMC, IMSC_AGL and AGC_
IMC demonstrate an acceptable performance, suggesting 
that using the complementary information among views is 
an effective approach.

Fig. 3  Experiment results on the Flowers17 dataset in the first incomplete case.

Fig. 4  Experiment results on the USPS-MNIST dataset in the first incomplete case
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Fig. 5  Experiment results on 
different datasets with 30% 
missing rate in the second 
incomplete case

Fig. 6  Experiment results on 
different datasets with 50% 
missing rate in the second 
incomplete case

Fig. 7  Experiment results on 
different datasets with 70% 
missing rate in the second 
incomplete case
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Fig. 8  Running time on Caltech101 dataset with different missing 
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Fig. 9  Running time on Caltech101 dataset with different numbers of 
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In the first incomplete case, Fig. 3 show that FGPMAC 
obtains better results than other methods on the Flowers17 
dataset. Figure 4 show that on the USPS-MNIST dataset, 
FGIMAC obtains better results than other methods except 
when the PDR is 90%.

In the second incomplete case, Fig. 5 shows that FGI-
MAC outperforms the other methods in all datasets when the 
missing rate is 30%. Figure 6 shows that when the missing 
rate is 50%, FGIMAC achieves the best results on all data-
sets except the ORL dataset and the NUS dataset. Figure 7 
shows that when the missing rate is 70%, FGPMAC obtains 
the best results on all datasets except the 3Sources dataset. 
When FGPMAC fails to obtain the optimal result, the gap 
between its results and the optimal ones is very small.

Although IMSC_AGL and AGC_IMC have suboptimal 
clustering performance, but their computational complexity 
is unsatisfied.

It can be seen from Table 3 that the run time of IMSC_
AGL and AGC_IMC is much higher than that of other 
methods. Our method has absolute advantages in terms 
of run time. For instance, on the 3Sources dataset, it takes 
IMSC_AGL 10.86 s to run, 5.09 s for AGC_IMC, while our 
method only use 0.18 s. On the Caltech101 dataset, the run 
time of IMSC_AGL is 3041.25 s, and that of AGC_IMC 
is 1278.09 s, while ours is just 173.07 s, especially on the 
dataset 100leaves, the run time of method AGC_IMC and 
IMSC_AGL is about hundreds of times longer than ours. In 
addition, the experimental results on Cal-tech101 and NUS-
WIDEOBJ datasets show that the run time of IMSC_AGL 
and AGC_IMC increases rapidly with the enlargement of 
the dataset scale. For large-scale datasets, this is clearly 
unacceptable.

In order to further explore how the time complexity 
of the algorithm proposed in this paper changes with the 
number of views and sample missing rate, we conducted 
experiments on the Caltech101 dataset. The results are 

shown in Figs. 8 and 9, and it can be seen from the results 
that as the sample missing rate increases, the clustering 
accuracy decreases and the running time reduces signifi-
cantly. In addition, ACC and NMI decrease dramatically 
when the missing rate reaches 70%, because the missing 
rate is so large that we have little information to use. Data 
with a missing rate of more than 70% are rare in practical 
applications. As the number of views increases, the accu-
racy increases and the runtime increases accordingly. The 
change in running time is consistent with what we analyzed 
in "Consistent Representation Learning". Furthermore, it 
can be seen that as the number of views increases, the ACC 
and NMI also increase, which indicates that combining fea-
tures from multiple views helps to improve the clustering 
performance.

We test the sensitivity of parameters to further evaluate 
the performance of FGIMAC, which only needs to adjust 
pa-rameter k . We evaluate the clustering performance of 
k in the range of {4, 6, …, 14}. Due to the limited space, 
we only report the results on the ORL dataset given that 
similar trends can be observed in the other datasets. As 
shown in Fig. 10, under the same PDR, the fluctuation of 
ACC and NMI is very small when different k are selected, 
so it has little influence on the final clustering result. In 
other words, FGIMAC has low sensitivity to k in a rela-
tively wide range.

Conclusion

We propose FGIMAC, a simple and effective method for 
incomplete multi-view clustering that can overcome many 
shortcomings of the existing methods. Compared to tradi-
tional methods, FGIMAC demonstrates greater flexibility as 
it is able to cluster in two imcomplete cases of multi-view 
data. We perform experiments on multi-view datasets with 

Fig. 10  Influence of the number 
of nearest k on the ORL dataset 
with different PDR settings
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different missing rates, and experimental results show that 
FGIMAC achieves higher clustering performance with less 
run time.

However, most of the existing incomplete multi-view 
clustering methods (including our method) must take the 
number of clusters into consideration. As for future work, 
we plan to refer to COMIC (COMIC: Multi-view Clustering 
Without Parameter Selection) [34] and adjust our method 
so that clustering can be performed without knowing the 
number of clusters.
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