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Abstract
Facial landmarks detection is an essential step in many face analysis applications for ambient understanding (people, scenes) 
and for dynamically adapting the interaction with humans and environment. The current methods have difficulties with 
real-world images. This paper proposes a simple and effective method to detect the essential points in human faces. The 
proposed method comprises a two-stage coordinated regression deep convolutional neural network (CR-CNN) with a heatmap 
coupling module to convert the detected facial landmarks of the first stage into a Gaussian heatmap. To take advantage of 
the prior stage knowledge, the generated heatmap is concatenated with the original image of the input face and entered into 
the network in the second stage. The two-stage implementation based on CR-CNN has same layers structure to simplify the 
design and complexity. The L

1
 loss function is used for each stage and the total loss equals the sum of the two loss functions 

from both stages. Comprehensive experiments are conducted to evaluate the proposed method on three common challeng-
ing facial landmark datasets, namely AFLW, 300W, and WFLW. The proposed method achieves normalized mean error 
(NME) of 1.56% on the AFLW, 4.20% on the 300W, and 5.53% on the WFLW datasets. Moreover, the execution time of the 
proposed two-stage CR-HC is calculated as 3.33 ms. The obtained results show the robustness and outstanding performance 
of the proposed method over some of the state-of-the-art methods. The source code is provided as an open repository to the 
community for further research activities.

Keywords Face analysis · Facial landmarks detection · Pose estimation · Deep learning · Coordinates regression · 
Heatmaps regression

Introduction

In recent years1, intelligent surveillance systems have been 
widely studied [1, 2]. The combination of robotics and arti-
ficial intelligence arose outstanding developments in the 
fields of cognitive robotics and human-robot interaction 
[3]. Nowadays, several academic and industrial research 
groups are engaged in the design of intelligent robots able 

to act autonomously using deep learning-based algorithms 
[4, 5] for the analysis of data acquired from heterogeneous 
sensors, such as camera, 3D camera, stereo camera, micro-
phone, and LIDAR [6], for ambient understanding (scenes, 
objects, people) and for dynamically adapting the interaction 
with humans and environment [7, 8]. Object detection or 
recognition is one of the most fundamental and challeng-
ing problem in computer vision [9, 10]. As a longstanding, 
challenging problem in object detection, facial landmarks 
detection (FLD) has been an active area of research for sev-
eral decades [11]

Facial landmarks detection, also known as face align-
ment, is the process of locating a specified unique key-point 
such as the eyes corner, mouth, brows, and tip of the nose 
[12]. As it is used as a prerequisite for other computer vision 
applications, detection of these facial points must be robust 
and reliable. For example, the facial landmarks localization 
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are required for many applications like head pose [13], face 
recognition [14–16], face emotion recognition [17, 18], gen-
der recognition [19, 20], facial beautification [21], as well 
as facial expression recognition [22]. To ensure the success 
of these applications, extremely accurate and exceptional 
detection accuracy is a must. Due to the practical relevance 
of FLD, the efforts of both industry and academics have been 
attracted, which in recent years led to significant development. 
Although the findings have been accomplished, the exact 
location of facial points in uncontrolled settings remains an 
exceedingly difficult issue [23, 24]. Besides, a large number 
of the existing methods are designed based on capturing the 
local spatial relationship among sets of facial points ignoring 
that these spatial relationships are high order and global [25].

Cascaded regression is regarded as one of the potential 
state-of-the-art approaches for refining the prediction of the 
related predecessor, but the loss of information during the 
cascading stages makes it fall in complicated cases in the 
real world [26]. The cascaded deep convolutional neural nets 
are able to learn a large number of essential filters and com-
bine them in a hierarchical manner to describe latent con-
cepts for features discrimination efficiently, they can with-
stand high deformations in a human face and extreme pose 
changes. Considering these capabilities of the cascaded deep 
convolutional neural nets, they can successfully detect facial 
landmarks. On the other hand, the loss of spatial informa-
tion due to resolution, as well as the difficulty of imposing a 
proper facial form on the collection of estimated landmarks, 
reduces its accuracy [27]. To solve this issue, we propose 
using heatmap coupling to prevent the loss of crucial feature 
information related to the input and transmit this feature to 
the cascaded layers, where it can be used as variable initiali-
zation for the cascaded CNN regressors.

In this regard, the shape S can be progressively refined 
through estimating the incremental in the shape ΔS , which 
is needed to be learned within the stage-by-stage methodol-
ogy [28]. By providing the facial image I and the initial face 
shape S0 or even the previous face shape St−1 , the regressor 
Rt can compute ΔSt using the image features at each t stage. 
The main aim of the cascaded regression is to produce the 
sequence of updates ( ΔS0 , ..., ΔSt−1 ) starting from the ini-
tial shape S0 and converges to S∗ (i.e., S0 + 

∑T−1

t=0
ΔSt ≈ S∗ ). 

Based on that the new face shape St is updated in a cascade 
way using

where t = 1,… , T  and Rt is a linear regressor that can be 
formulated by

(1)St = St−1 + Rt
(
I, St−1

)

(2)Rt = arg minRt

N�

i=1

‖(S∗
i
− St−1

i
) − Rt(�(Ii, S

t−1
i

))‖

where t refers to the current iteration and Rt is employed 
to map the feature of the shape indexed �(Ii, St−1i

) to the 
shape residual ( S∗

i
− St−1

i
 ) and M is the samples number of 

the training images.
To overcome the drawbacks and limitations of the exist-

ing techniques, in this work, we present an accurate and 
efficient FLD detection method based on a two-stage coor-
dinate regression that is coupled with a heatmap module. 
The proposed method is called coordinate regression with 
heatmap coupling (CR-HC). The regression model attempts 
to extract the shape of the facial landmark as a coarse-to-fine 
coordinating vector. The input to the first stage is regressed 
using simple CNN and generates a number of N landmarks. 
The generated landmarks are transformed using the heatmap 
module to a Gaussian heatmap with the same dimension 
as the input image. The second stage is employed to refine 
the first estimation, which regresses the combination of the 
input and heatmap images. Figure 1 shows the face images, 
outputs of the heatmap modules, and the final landmarks 
estimation with different annotation schemes.

In brief, the main contributions of the work can be sum-
marized as follows. 

1. Design a robust deep convolutional neural network 
model from scratch for facial landmarks detection.

2. Unlike conventional methods based on cascade coordinate 
regression, we propose a new stage coupling scheme based 
on a heatmap module to benefit from the input feature for 
the next stage, which reduces the network complexity.

Fig. 1  The first column shows the face images from the datasets with 
different landmarks annotation. The second column is the output of 
the heatmap conversion module. The final estimate of the landmarks 
is shown in the third column
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3. The proposed network is adaptable to be applied on dif-
ferent resolutions images and can achieve comparative  
results with 128 × 128 resolution despite that it is hard 
to discriminate the key facial points in case of low- 
resolution images.

4. Experiments on three challenging benchmark datasets 
are conducted to evaluate the proposed method, which 
achieves top performance results in the three datasets 
compared to state-of-the-art methods.

5. The proposed method’s execution time is better for reli-
able applications than other FLD methods with low 
execution time but high normalized mean error.

6. Finally, we provide an open repository of the source 
code to the community for further research activities.

The rest of the paper is organized as follows. The “Related 
Works’’ section introduces a brief discussion about the FLD 
methods in the literature. The “The Proposed Method’’ sec-
tion describes the proposed FLD method. The evaluated 
datasets and experiments are presented in the “Experiments 
and Results’’ section. The ablation study was conducted to 
evaluate the effectiveness of the proposed two-stage CR-HC 
in the “Ablation Study’’ section. Finally, the conclusions and 
future works are given in the “Conclusion’’ section.

Related Works

Facial landmarks detection has made large strides in the last 
two decades, thanks to technological advancements. It is 
important that the FLD be more resistant to the static and 
non-static face deformations caused by occlusion, facial 
expression, and head motions, notwithstanding the posi-
tive results gained [29]. The FLD is nevertheless affected 
by these conditions, making it unreliable in real-world set-
tings. Generally, the traditional landmark detection meth-
ods can be broken down into template-based approaches and 
regression-based methods [30]. In recent years, deep learn-
ing models such as convolution neural networks achieve an 
enhancement in facial landmarks detection [31], and they 
can be categorized into coordinate regression and heat-
map regression models. The following part presents a brief 
review of the state-of-the-art methods in the field of facial 
landmarks detection.

Conventional FLD Approaches

Template fitting models depend on generating a parametric 
shape from the training dataset and fitting the testing image 
to this shape during the testing phase. The most popular 
template-based method is the active shape model (ASM) 
[32], in which the face shape is represented by a linear com-
bination of fundamental shapes that are learned so that it 

can use the principal component analysis (PCA). The output 
shape of the linear model of the shape description S of an 
object can be formulated as follows

where S̄ is an average example of the object described, wi 
is the weighting factor of the model, and S̃ is the i-th object 
mode. The model is based on the pre-aligned point cloud 
S̃1...m from the training set, each sample m from the training 
set represents a point cloud that describes the shape of an 
object. The average variable S̄ is the average point cloud 
in S̃1...m , and the model S̃1...n is the result of the PCA. In 
addition, the PCA can describe the variation in the appear-
ance of the face shape. The appearance of ASM is mod-
eled by a variety of pre-trained template models, which are 
the active appearance model (AAM) [33] and PCA models. 
The appearance in a regular coordinate system eliminates 
shape alterations and the shape representation is identical 
to that of ASM and AAM. In [34], a matching approach 
was proposed for generating a collection of area template 
detectors using a combined shape and texture appearance 
model. Despite that these traditional approaches give good 
results in constrained condition, they are failed on the wild 
condition as these methods are sensitive to large head pose 
and occlusion problems. Moreover, both AAM and ASM can 
not handle the nonlinearity in faces with large head poses as 
these methods are considered linear in nature; in addition, 
the irregularity of face shape can lead to self occlusion.

Approaches based on regression immediately learn the 
mapping from the image to landmarks. It can be a direct 
regression that can predict the location of the landmark 
directly without any initialization or cascade regression, 
which locates the landmarks in a cascade manner depend-
ing on the initial shape estimation. The structure information 
and shape constraints can be learned during the prediction 
process. The loss function L2 is usually adopted to calculate 
the difference between the predicted ( Sk ) and ground truth 
( S∗

k
 ) landmarks in a point-wise way as

where K is the number of landmarks set.
For sequential faces, a discriminative response map fitting 

(DRMF) has been proposed using discriminative regression 
to estimate model parameters depending on the part-based 
model in [35]. In [36], the regression forest has been used 
to estimate the face shape depending on helper facial char-
acteristics such as head pose, gender, etc. [37] proposed an 
ensemble of regression trees, in which a gradient boost-
ing algorithm is employed to learn each regressor, and it 

(3)S = S̄ +

n∑

i=1

wiS̃i,

(4)L2 =
1

K

K�

k=1

‖Sk − S∗
k
‖2



1967Cognitive Computation (2024) 16:1964–1978 

1 3

is added to the trees in a cascade manner. Authors of [38] 
proposed a cascade regression method that utilizes the L2,1 
normalization factor instead of the least-squares regressor, 
and multi-initialization is required to increase the regressor 
robustness for the poor initialization case. In the supervised 
descent method (SDM), a SIFT of features extracted around 
the present landmarks is employed to solve a sequence of 
linear least-squares problems iteratively [39]. A local binary 
feature is also used to learn a set of local binary features for a 
cascade regression, as local binary extraction and regressing 
features are relatively inexpensive computationally [40]. In 
fact, cascade regression can improve the final facial land-
mark locations, but it depends on the accuracy of the ini-
tial estimation [30]. However, these traditional approaches 
depend on the handcrafted feature extraction so that some 
important information in the image is lost and in turn leads 
to low efficiency in the detection.

Deep Learning‑Based Approaches

This type of facial landmarks detection directly maps the 
face image into the landmark coordinates using deep learn-
ing models [41]. In the early work [42], a cascaded CNN is 
proposed in which the face image is divided into different 
parts and each part is processed individually using separate 
deep CNNs. Then, the outputs from each CNN are combined 
and entered into the final deep CNN to generate final facial 
coordinates. A Task-constrained deep convolutional network 
(TCDCN) is proposed for simultaneously optimizing facial 
landmarks detection with correlated auxiliary tasks such as 
head pose, gender, and expression [43]. Inspired by knowl-
edge distillation, [25] suggested a loss function for training 
a lightweight model consisting of two networks, which are 
the backbone network to regress the coordinates of the facial 
landmarks and an auxiliary network to estimate the Euler 
angles of roll, pitch, and yaw. It is worth mentioning that the 
latter network is used only during the training phase to make 
the model more practical from the point of model size and 
processing time. One of the drawbacks of previous methods 
is that they need special annotated dataset with landmarks 
and other task annotation to train the model, which is not 
supported in most of FLD datasets. A recurrent neural net-
work and deep neural network are utilized to estimate the 
facial coordinates in [44]. This model consists of two net-
works, a global network with long short-term memory to 
estimate the initial shape, while the other network utilizes a 
component-based search method to generate the final shape. 
In [45], a two-stage branched convolutional neural network 
(BCNN-JDR) combined with Jacobian deep regression was 
proposed. The initialization consists of a branched CNN 
to estimate the face parts individually and the refinement 
stage to refine the result in a cascade manner. The work of 
[46] pays more attention to the loss function that is used to 

train the facial landmark detection model by designing a 
new loss function named rectified wing loss (Rwing). The 
developed loss function can handle small-medium error in 
a good manner compared to the conventional loss function. 
Although the coordinate regression is simple and fast, but it 
is not accurate and needs to be handled in a cascade manner 
to give high accuracy and this sometimes leads to the loss 
of information during the cascading.

Heatmap regression is the process of finding the likeli-
hood of specific key points residing in the ground truth 
heatmaps. This type of method usually uses the fully con-
volutional framework so that it can regress multiple heat-
maps keeping the same size as the input image. To address  
the facial landmarks detection problem, [47] presented a 
multi-order multi-constraint deep network (MMDN) based 
on the consolidation of an implicit multi-order correlated 
geometry aware model and the explicit probability-based 
boundary-adaptive regression (EPBR) method. Moreover, 
authors in [48] proposed a style aggregated network (SAN) 
by generating a new styles training dataset with the help of  
generative adversarial module and then using the gener-
ated data with the original to train a heatmap regression  
network. In [49], a heatmap regression network is pro-
posed based on the strong stacked hourglass network by  
stacking four of them and improving the stacked hourglass  
network with hierarchical, parallel, and multiscale residual 
blocks. Yin et al. [50] try to solve the problem of �� heat-
map regression complexity by designing an attentive ��  
heatmap regression model through generating two groups  
of �� heatmaps to represent the marginal distributions of  
x and y coordinates. The real and fake localization are 
discriminated by using the geometric priors on the face 
landmarks based on the conditional generative adversar-
ial network (CGAN). The CNN-based face localization  
is introduced using a coarse and robust heatmap estima-
tion followed by a subsequent regression-based refine-
ment [51]. In such method, there are two sub-networks,  
the first one tries to estimate the heatmap-based encodings 
of the location of the facial landmarks. The second sub- 
network receives the outputs of the heatmap estimation 
unit as inputs and refines them by applying the regression. 
Despite that the heatmap regression provides a good accu-
racy, it suffers from the complexity, high execution time,  
and sensitivity to outliers.

The Proposed Method

In this work, we introduce a new facial landmark detec-
tion method called CR-HC based on a two-stage coordinate 
regression model with a heatmap coupling. The proposed 
method aims to predict N points represented by a shape vec-
tor S, where
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where Pn = (xn, yn) represents the nth landmark in the face 
images I ∈ ℝ h×w×c , where h and w are the height and width 
of the face image, respectively, while c denotes the color 
channels (e.g., for RGB image, c = 3).

The CR-HC method consists of a base regression model 
and a heatmap coupling module. The regression model aims 
to extract the shape of the facial landmark as a coordinat-
ing vector in a coarse-to-fine manner by stacking the base 
model to refine the output results with the strong use of the 
heatmap coupling module. The overall architecture of the 
proposed model is shown in Fig. 2. A detailed description 
for each part of the proposed method is discussed in the fol-
lowing subsections.

The Based Model Structure

The backbone network in the proposed model is a custom-
built convolution neural network. The design of CNN is 
intended to be simple and effective to provide flexibility 
when layered in a multi-stage architecture. It is better to 
mention here that the number of layers in the proposed two-
stage CR-HC is determined by trying a lot of layer configu-
ration and hyperparameters values and choosing those that 
have the best results. It is made up of stacked convolution 

(5)S = [x0, y0, x1, y1,… , xn, yn] = [P0,P1,… ,PN]
blocks, each of them is built with a 3 × 3 convolution layer, 
followed by batch normalization, and activated with the Relu 
function. Each stage has seven convolutional blocks, a 2 × 2 
pooling layer, and two fully connected (FC) layers.

For a 2D image, the convolution operation can be 
expressed as in (6) in which k(x, y) is the function of each 
kernel.

In the fully connected layer, the input and output images 
have the same size to reduce the matrix-vector multipli-
cation, while the pooling layer is employed to acquire the 
invariance against image deformation. It divides the input 
image into b × b blocks and chooses the maximum value of 
each block such that

The size of the output feature map is defined according to the 
number of stride s and padding p of each layer as

(6)(I × k)(x, y) =
∑

u,v

I(x, y) × k(x − u, y − v)

(7)poolb(Ih×w×c) = max
0≤x<b,0≤y<b I(h×b+x)×(w×b+y)×c.

(8)
hl+1 =

hl−hĺ+p

s
+ 1

wl+1 =
wl−wĺ+p

s
+ 1

cl+1 = ml

Fig. 2  Structure of the proposed 
method based on two-stage of 
coordinate regression neural 
networks with a heatmap cou-
pling module
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where l is the number of layer, m denotes the number of 
kernel unit in a layer l, h́ and ẃ are the height and width of 
the layer’s kernel, respectively.

As the proposed method uses the deep convolution 
model, training such a model can be difficult because they 
are sensitive to the initial random weights and learning algo-
rithm configuration. This issue is solved by using the batch 
normalization, which standardizes the inputs to a layer for 
each mini-batch and reduces generalization error. Table 1 
describes the CNN layers in detail.

Let  I1 ∈ ℝh×w×c be the input face to the first stage with 3 
color channels (e.g., c = 3 ), where h × w equals 128×128. 
The number of channels c in the first convolution block is 64, 
and the number of channels is doubled in each convolution 
block, but it is halved in the last two blocks in each stage, as 
shown in Table 1. The output shape vector of the first stage 
is S ∈ ℝ2×N , where N is the number of detected landmarks. 
The output S coordinates vector is converted into a �D heat-
map � ∈ ℝh×w by using the heatmap coupling module. Then, 
the generated heatmap from the first stage is concatenated 
with the input face image to be the new features map  I2 ∈ 
ℝ

h×w×4 that will enter to the second stage. It is noteworthy 
that the two stages are identical in their structure, but they 
have different input and output characteristics. Moreover, 
the coupling point is not the last layer of each stage, but it is 
approximately located at half of each stage.

The Heatmap Coupling Module

When cascading more levels and making the model 
deeper, the cascading deep convolution network has 
lately demonstrated remarkable results in FLD tasks. 
On the other hand, it suffers from several issues, such as 
When the processed images are obtained under uncon-
strained circumstances. Two variables reduce the accu-
racy of the cascaded model, first, the loss of spatial 
information reduces the resolution of feature maps in 
the concatenation of multiple convolutions and pooling 
layers. In addition, there is an initialization problem, in 
which the refining process depends on the starting face 
shape. By providing information to the cascaded stage, 
the heatmap coupling module is able to resolve the first 
issue and serve as an initialization layer for the second 
stage as well. The heatmap conversion module converts 
the initial detected �� vector shape to �� heatmap by 
applying a Gaussian kernel as,

where xp and yp are the coordinates predicted landmark and 
represent the center of the blob, and � is the spread of the 
blob.

The concatenation of the face image and the generated 
�� heatmap from the first stage is used as the input to the 
next stage as in (10). These concatenated feature patches 
encode sufficient information about the local appearance 
around the current �� landmarks and allow the second 
stage to fine-tune the detected landmarks. The conversion  
details are illustrated in Algorithm 1.

(9)
H = exp

(
−

(X − xp)
2 + (Y − yp)

2

(2 × �2)

)

(10)Is2 = I ⊕ H.

Table 1  Structure of each stage in the proposed method

Input size Operation No. ch. S

128×128×3 Conv,BatchNorm,Relu 64 1
128×128×64 Conv,BatchNorm,Relu 64 1
128×128×64 Max Pooling 64 -
64×64×64 Conv,BatchNorm,Relu 128 1
64×64×128 Conv,BatchNorm,Relu 128 1
64×64×128 Max Pooling 128 -
32×32×128 Conv,BatchNorm,Relu 256 1
32×32×256 Conv,BatchNorm,Relu 256 1
32×32×256 Max Pooling 256 -
16×16×256 Conv,BatchNorm,Relu 512 1
16×16×512 Conv,BatchNorm,Relu 512 1
16×16×512 Max Pooling 512 -
8×8×512 Conv,BatchNorm,Relu 1024 1
8×8×1024 Conv,BatchNorm,Relu 1024 1
8×8×1024 Max Pooling 1024 -
4×4×1024 Conv,BatchNorm,Relu 512 1
4×4×512 Conv,BatchNorm,Relu 512 1
4×4×512 Max Pooling 512 -
2×2×512 Conv,BatchNorm,Relu 256 1
2×2×256 Conv,BatchNorm,Relu 256 1
2×2×256 Full Connection 1024 -
1024 Full Connection 136 -
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CR‑HC Loss Function

To train the CR-HC model, we used the mean absolute error 
(MAE) loss function LMAE , which represents the sum of L1 
loss functions between the predicted landmarks and the 
ground truth landmarks of the model stage. LMAE can be 
defined as

where s represents the stage number, K is the number of 
inputs, N is the number of landmarks, Pi,j and Gi,j are the 
detected and ground truth landmarks. Steps of the training 
process of the CR-HC model are provided in Algorithm 2.

Experiments and Results

To assess the proposed method, several experiments are 
carried out on a variety of hard benchmarks with varying 
annotation schema including the Annotated Facial Land-
marks in the Wild (AFLW) dataset [52], the 300 Faces 
in the Wild (300W) dataset [53], and the Wider Facial 
Landmarks in the Wild (WFLW) dataset [54]. All experi-
ments are implemented using the Keras library on two 
NVIDIA Tesla K80 GPUs. Also, the training images are 
cropped and resized to 128 × 128 according to the pro-
vided bounding boxes and represented using RGB values. 
All the training dataset images are normalized by sub-
tracting the mean image from the training set and divid-
ing by its standard deviation. For 300W dataset image 
rotation, flipping and pixel shifting is applied. For AFLW 
and WFLW, we have used the provided training images 
without any data augmentation. The CR-HC model is 
trained from scratch using Adaptive Moment Estimation 

(11)LMAE =

s�

1

1

K

K�

i=1

N�

j=1

‖Pi,j − Gi,j‖

(Adam) optimization algorithm with a fixed learning rate 
of 0.0001 and a batch size of 32 with L1 loss function. The 
number of epochs is 100, 150, and 120 for the dataset of 
300W, WFLW, and AFLW, respectively. It is clear that 
the number of epochs is different as the challenge in each 
dataset is different.

Datasets

AFLW It has a large collection of images gathered from 
flicker, where it contains 21,997 in wild images with 
25,993 faces in total. The collected images have a wide 
range of variety in facial appearances like pose, expres-
sion, occlusion, illumination as well as general imaging 
and environmental conditions. The dataset is annotated 
with 21 landmark coordinates. We follow the same set-
ting used in [55] by dropping the landmarks of the ears 
and using only 19 landmarks. The dataset is divided into 
two subsets: AFLW-Full with 20,000 faces for the training 
phase and AFLW-Frontal with 4386 for the testing phase 
using the same training samples, but using only 1165 fron-
tal faces for testing.

300W It is the most popular facial landmarks dataset, it con-
tains five different datasets with 68 points annotation schema 
as LFPW, XM2VTS, AFW, IBUG, and HELEN. The same 
setting of [48] is applied in the current study, which is based 
on 3148 training images from LFPW, AFLW, and HELEN. 
The testing set contains all IBUg images and the test sub-
set of HELEN and LFPW. The 135 images from IBUG are 
considered as the challenging test subset and 554 images 
from the HELEN and LFPW as the common test subset. 
The combination of challenge and common subsets is used 
as the full test set.

WFLW It is a very challenging facial landmark dataset 
that is introduced by [54]. It has 10,000 faces in total, 
7500 for training, and 2500 for testing annotated with 98 
facial points. The testing set is divided into six subsets 
such as occlusion, illumination, make-up, pose, expres-
sion, and blur.

Evaluation Metrics

To evaluate the proposed method and conduct a fair com-
parison with the state-of-the-art methods, a standard nor-
malized mean error (NME) is considered as an evaluation 
metric, where

(12)NME =
1

M

M�

i=1

1

N

∑N

j=1
(Pi,j − Gi,j)

di
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where M is the number of all tested images, and di is the 
normalization distance for 300W and WFLW. We have 
used an inter-ocular distance as the normalization factor, 
and the face size is used as the normalization factor for 
AFLW dataset. In addition, we used another evaluation 
metrics based on the failure rate at 0.1 threshold value 
and the area under the curve (AUC) as

where e is the normalized error, f(e) denotes the cumulative 
error distribution function, and th denotes the upper limit of 
the integration for calculating the AUC .

Results

To prove the robustness of the proposed method, we conduct 
experiments on the three datasets using different annotated 
schema. Each dataset has a different number of annotated 
landmarks, as 19 points for AFLW, 64 points for 300W, and 
98 points for WFLW. We compared the proposed method on 
each dataset with SDM [39], CFSS [57], ERT [37], Wing 
[67], LAB [54], SAN [48], TCDCN [43], 3FabRec [65], 
ODN [68], RCN [70], RDR [71], RCN+ [72], SHN-GCN 
[62], HB+SRT [60], DCNN [73], and more. The proposed 
CR-HC model achieves competitive results compared to these 
methods on the three datasets as reported in the next sections.

Performance on the AFLW Dataset

Table 2 summarizes the normalized mean error compared 
to the state-of-the-art methods. It is clear that the proposed 
method achieves a NME of 1.56% in the frontal subset, 
which represents about 3.70% improvement from the best 
previous method in [69]. The cumulative error curve 
(CED) is drawn in Fig. 3 for the proposed method and 
other methods. The proposed method achieved the highest 
CED curve, which differs significantly from the previous 
methods. The experimental results on the AFLW datasets 
prove that the proposed method outperforms the state-of-
the-art methods by a large margin.

Performance on the 300W Dataset

To thoroughly assess the robustness of the proposed method, 
we conducted other experiments on the 300W three sub-
sets (Full, Common, and Challenge). The results reported 
in Table 3 describe the NME of the proposed method com-
pared to the state of the arts on the three categories. The 
cumulative error curve is shown in Fig. 4. It is clear that the 
CR-CH method achieves competitive results on the three 
300W categories.

(13)AUC = ∫
th

0

f (e)de

Performance on the WFLW Dataset

The performance of the proposed method is also evaluated 
on the WFLW datasets of 98-point annotation schema. Nor-
malized mean error, AUC at 0.1, and failure rate on the test 
set and six subsets are summarized in Table 4. Our approach 
achieves the best NME values in the test set and all subsets 
except the pose subset.

Table 2  Normalized mean error (%) on the AFLW dataset for 19 
facial landmarks

Methods Year AFLW-Full AFLW-Frontal

ERT [37] 2014 4.35 2.75
LBF [56] 2016 4.24 2.74
SDM [39] 2013 4.05 2.94
CFSS [57] 2015 3.92 2.69
PCPR [58] 2013 3.73 2.87
CCL [55] 2016 2.72 2.17
DAC-CSR [59] 2017 2.27 1.81
HB+SRT [60] 2021 2.26 1.64
TSR [61] 2017 2.17 -
SHN-GCN [62] 2020 2.15 -
CPM+SBR [63] 2018 2.14 -
SAN [48] 2018 1.91 1.85
DSRN [64] 2018 1.86 -
3FabRec [65] 2020 1.84 1.59
HR-LD [66] 2021 1.75 -
Wing [67] 2018 1.65 -
ODN [68] 2019 1.63 1.38
SA [69] 2019 1.62 -
Our method CR-CH 2022 1.56 1.48

Table 3  Performance of the proposed method compared to other 
methods on the 300W test subsets for 68 facial landmarks

Methods Year Full Common Challenge Type

PCD-CNN [74] 2018 4.44 3.67 7.62 Inter-ocular
CPM+SBR [63] 2018 4.10 3.28 7.58 Inter-ocular
RCN [70] 2016 5.41 4.67 8.44 Inter-ocular
DSRN [64] 2018 5.21 4.12 9.68 Inter-ocular
TSR [61] 2017 4.99 4.36 7.56 Inter-ocular
RCN+ [72] 2018 4.90 4.20 7.78 Inter-ocular
Two-Stage [61] 2017 4.96 4.36 7.42 Inter-ocular
Pose-Invariant 

[75]
2017 6.30 5.43 9.88 Inter-ocular

ODN [68] 2019 4.17 3.56 6.67 Inter-ocular
RAR [76] 2016 4.94 4.12 8.35 Inter-ocular
RDR [71] 2017 5.80 5.03 8.95 Inter-ocular
HR-LD [66] 2021 4.33 3.60 7.30 inter-ocular
Our method 2022 4.20 3.40 7.48 Inter-ocular
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Ablation Study

The proposed method consists of two main parts, the back-
bone convolutional neural network and the heatmap cou-
pling module. It does not follow the same strategy of the 
conventional cascade coordinate regression methods. In this 
section, we investigate the effectiveness of the heatmap cou-
pling module by evaluating the dataset with and without the 
coupling module. Figure 5 shows that the validation loss 
for the three datasets is decreased in the case of using the 
coupling module. The AFLW validation loss is decreased 

by 9.10% due to the use of the coupling module as shown 
in Fig. 5a. In the same way, the validation loss decreased 
for the 300W and WFLW datasets by 13.20% and 9.50% as 
shown in Fig. 5b, c, respectively.

The evaluated datasets have faces in uncontrolled condi-
tions and challenge images. Figures 6, 7, and 8 show the 
detection results of the proposed model on the dataset of 
AFLW, 300W, and WFLW, respectively. The displayed 
images have a wide range of factors influencing the effi-
ciency of landmarks detection, such as occlusion, head pose, 
illumination, and expression. The results prove the success 

Fig. 3  Performance comparison 
of the cumulative error distri-
bution curves on the AFLW 
dataset

Fig. 4  Performance comparison 
of the cumulative error distribu-
tion curves on the 300W dataset
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(a)

(b)

(c)

Fig. 5  The validation loss with and without the coupling module versus the epoch number for the dataset of: a AFLW, b 300W, and c WFLW
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of the proposed model to detect facial landmarks in difficult 
cases.

For further illustration, Fig. 9 presents a landmarks 
detection in the three used datasets, where row1, row2, and 
row3 represent the detection result in AFLW, 300W, and 
WFLW datasets, respectively. The results illustrate why 
the proposed approach might lead to inaccurate estimates 
in some situations. Referring to the images with indices 
ranging from 1 to 21, beginning in the top-left corner and 
going line wise, it is noticeable that when there is more 
than one factor affecting the distortion in the image, such 
as occlusion and head position as in images 1, 8, 15, and 
16. The detection efficiency is affected when the color is 

absent from the image, leading to the overlapping of facial 
details, as shown in images 11, 9, and 19. Furthermore, 
the results are significantly impacted because only eyes 
are visible in images 2 and 18.

To measure the feasibility and usability of the proposed 
CR-HC method, the execution time is calculated and com-
pared to other FLD methods. The execution time is cal-
culated by computing the average execution time of 1000 
images. In addition, all the compared methods are available 
online data source. Table 5 shows that the execution time 
of the proposed method is better for reliable applications 
compared to other FLD methods that have low execution 
time but have high normalized mean error on the other side.

Table 4  Evaluation of the 
proposed method on the WFLW 
dataset compared to literature 
work

Metrics Methods All Pose Expr. Illum. Make-up Occlusion Blur

NME(%)(↓ ) ESR [77] 11.13 25.88 11.47 10.49 11.05 13.75 12.20
SDM [39] 10.29 24.10 11.45 9.32 9.38 13.03 11.28
CFSS [57] 9.07 21.36 10.09 8.30 8.74 11.76 9.96
DCNN [73] 6.08 11.54 6.78 5.73 5.98 7.33 6.88
3FabRec [65] 5.62 10.23 6.09 5.55 5.68 6.92 6.38
RWing [46] 5.60 9.79 6.16 5.54 6.65 7.05 6.41
Ours  5.53 11.50 5.80 5.37 6.05  6.95  6.28

AUC @0.1(↑ ) ESR [77] 0.2774 0.0177 0.1981 0.2953 0.2485 0.1946 0.2204
SDM [39] 0.3002 0.0226 0.2293 0.3237 0.3125 0.2060 0.2398
CFSS [57] 0.3659 0.0632 0.3157 0.3854 0.3691 0.2688 0.3037
DCNN [73] 0.4551 0.1474 0.3889 0.4743 0.4494 0.3794 0.3973
3FabRec [65] 0.4840 0.1920 0.4480 0.4960 0.4730 0.3980 0.4340
RWing [46] 0.5182 0.2895 0.4648 0.5183 0.5102 0.4555 0.4562
Ours 0.5153 0.1990 0.4778 0.5310 0.4941 0.4378 0.4674

FR@0.1(%)(↓ ) ESR [77] 35.24 90.18 42.04 30.80 38.84 47.28 41.40
SDM [39] 29.40 84.36 33.44 26.22 27.67 41.85 35.32
CFSS [57] 20.56 66.26 23.25 17.34 21.84 32.88 23.67
DCNN [73] 10.84 46.93 11.15 7.31 11.65 16.30 13.71
3FabRec [65] 8.28 34.35 8.28 6.73 10.19 15.08 9.44
RWing [46] 8.24 34.36 9.87 7.16 9.71 15.22 10.61
Ours 8.77 35.93 8.86 7.44  13.02 14.80 10.54

Fig. 6  Sample results of the 
proposed (CR-HC) method for 
AFLW (19 points) dataset
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Conclusion

In this paper, we have presented a deep learning-based 
method using cascaded regression for coarse-to-fine detec-
tion of facial landmarks. The method is composed of two-
stage cascaded CNNs that are coupled with a heatmap mod-
ule. The first stage regresses the coordinates of landmarks 
of an input face image, and then it is transferred to the heat-
map coupling module to convert the estimated shape to a 

Fig. 7  Sample results of the 
proposed (CR-HC) model for 
300W (68 points) dataset

Fig. 8  Sample results of the 
proposed (CR-HC) method for 
WFLW (98 points) dataset

Fig. 9  Failure sample results of 
the proposed (CR-HC) method

Table 5  Execution time of the proposed CR-HC method compared to 
some other FLD methods

Method Execution time Device type

ERT [37] 4.18 s CPU Intel I3-2310M
TCDCN [43] 0.12 s CPU Intel I3-2310M
SAN [48] 26.72 s CPU Intel I3-2310M
FAN [49] 2.68 s Google Colab
Ours CR-HC 3.33 s Google Colab
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Gaussian heatmap. The second stage is used to refine the 
output by regressing the concatenation of face images and a 
heatmap of the estimated shape vector. The obtained results 
revealed that the proposed method achieved approximately 
1.57% NME on the AFLW dataset, 4.30% on the 300W 
dataset, and 5.53% on the WFLW dataset. Thus, using the 
coupling heatmap module improves the detection perfor-
mance distinctly. In future studies, it is possible to suggest 
two paths, which can increase the accuracy of FLD. First, 
a combination of coordinate regression as the first stage of 
the CR-HC model and heatmap regression network as the 
second stage can be done. Secondly, other large datasets can  
be used to train the model specifically on the WFLW dataset,  
which has a wide range of styling.
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datasets are available free for public download.
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