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Abstract
Extreme learning machine has become a significant learning methodology due to its efficiency. However, extreme learn-
ing machine may lead to overfitting since it is highly sensitive to outliers. In this paper, a novel extreme learning machine 
called the C-loss-based doubly regularized extreme learning machine is presented to handle dimensionality reduction and 
overfitting problems. The proposed algorithm benefits from both L1 norm and L2 norm and replaces the square loss function 
with a C-loss function. And the C-loss-based doubly regularized extreme learning machine can complete the feature selec-
tion and the training processes simultaneously. Additionally, it can also decrease noise or irrelevant information of data to 
reduce dimensionality. To show the efficiency in dimension reduction, we test it on the Swiss Roll dataset and obtain high 
efficiency and stable performance. The experimental results on different types of artificial datasets and benchmark data-
sets show that the proposed method achieves much better regression results and faster training speed than other compared 
methods. Performance analysis also shows it significantly decreases the training time, solves the problem of overfitting, and 
improves generalization ability.
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Introduction

Processing a large quantity of data carries a high computa-
tional cost and slows the training process. To resolve these 
issues, a fast and stable algorithm needs to be proposed. In 
1986, Rumelhart et al. [1] proposed the back propagation 
neural network (BPNN), which is a multilayer feedforward 
network for error correction. Support vector regression 
(SVR), used to minimize the generalization error bound so 
as to achieve generalized performance, was then presented 
by Vapnik et al. [2]. Single-layer feedforward neural net-
works (SLFNs) have a powerful nonlinear mapping capabil-
ity and generally use the gradient descent algorithm to deal 
with the problems of classification and regression [3]. How-
ever, they have several disadvantages such as low training 

efficiency and being trapped easily in a local minimum. In 
2006, extreme learning machine (ELM) for SLFNs was pro-
posed by Huang et al. [4], which is still widely used in many 
research fields, such as foreign accent identification [5], fault 
detection [6], and emotion recognition [7]. Compared with 
traditional methods, such as the gradient descent algorithm, 
ELM can significantly increase training speed and improve 
generalization performance [8].

In ELM, the input network weights and hidden bias 
can be generated randomly. Meanwhile, the output net-
work weights can be obtained by only calculating the 
Moore–Penrose inverse [9]. If the amplitude distribution 
of the singular value is relatively continuous and the mini-
mum singular value is very close to 0, a large value of 
output weight vector will be obtained. Therefore, basic 
ELM, based on empirical risk minimization, leads to over-
fitting and affects prediction ability [10]. However, ELM 
uses the traditional least squares method to compute the 
output weight. As a convex function, the square loss func-
tion can cause outliers to sustain large losses because of 
unboundedness [11]. When outliers exist in the dataset, the 
approximation function of ELM may significantly deviate 
from the optimal function, resulting in poor generalization.
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To overcome the above shortcomings, researchers have 
proposed several schemes. Deng et al. [12] put forward 
a regularized ELM embedded L2 norm (L2–ELM). The 
algorithm uses the weighted least squares method to 
obtain anti–noise ability by introducing the regularization 
factor � . L1–ELM with a sparse solution was proposed by 
Balasundaram et al. [13]. Clearly, L1 norm is less sensi-
tive to outliers than L2 norm. The decision function of 
L1–ELM uses a smaller number of hidden nodes than 
ELM. Martínez et al. [14] introduced L1 norm and hybrid 
penalties to solve regression problems of ELM. The pur-
pose of introducing different penalties is to moderate the 
detrimental effect of outliers. Taking the importance of 
features into consideration, the methods assign different 
weights to different features automatically. As a result, the 
smallest weight is assigned to outliers. An ELM model 
based on L1 norm and L2 norm regularizations (DRELM) 
is proposed to handle regression and multiple-class clas-
sification problems [15]. It is robust in both regression 
and classification applications. In 2014, the C-loss func-
tion for pattern classification was presented by Abhishek 
et al. [16]. The proposed loss function can improve the 
performance of neural network classifiers. In fact, the 
paper just introduces the C-loss function for only clas-
sification problems. Zhao et al. [17] offered an algorithm 
named C-loss-based extreme learning machine (CELM). 
Although CELM has good generalization performance, it 
has difficulty solving the problem of overfitting.

More recently, other alternative methods were proposed 
to eliminate the distraction caused by outliers. Jing et al. 
[18] proposed domain-invariant feature learning framework 
for partial domain adaptation. Fu et al. [19] developed a 
novel model termed partial feature selection and alignment 
by employing a feature selection vector based on the cor-
relation among the features of multiple sources and target 
domains. Both of them show that re-weighting and feature 
selection can eliminate the distraction caused by outliers. 
However, they mainly tackled distribution shift and label 
shift problems.

To develop a more stable, stronger anti-interference and 
faster algorithm, we propose a doubly regularized ELM 
based on C-loss function called CDRELM. The proposed 
algorithm replaces the square loss function with C-loss 
function and embeds L1 norm and L2 norm on ELM. L1 
norm has the ability to reduce the feature dimension of 
samples. Therefore, CDRELM can not only deal with 
regression problems with strong generalization perfor-
mance but also, as a method of feature selection, can 
decrease the dimension at high speed. CDRELM tends 
to be more robust and achieves much better generaliza-
tion with a faster learning speed than L2–ELM, L1–ELM, 
CELM, DRELM, BPNN, and SVR. To find solutions for 

this mathematical model, CDRELM is transformed into 
least absolute shrinkage and selection operator (Lasso) 
[20]. The three main contributions in this paper are as 
follows:

1.	 The C-loss function is used for regression problems 
rather than classification problems. To overcome the 
unsteadiness of the square loss function to outliers, the 
square loss function used in ELM is replaced by the 
C-loss function which is bounded, non-convex, and 
smooth. Thus, a novel algorithm CDRELM is proposed 
based on the C-loss function. In comparison with the 
traditional ELM, CDRELM overcomes the problem of 
overfitting and the insufficient robustness to outliers, 
which greatly improve the generalization capability.

2.	 As a new method of feature selection which simultane-
ously allows feature selection and the training process, 
CDRELM can generate sparse eigenvalues by embed-
ding the L1 norm. In addition, the L2 norm is added to 
maintain the amplitude of output weight sparsity and 
avoid increased sparsity. It can solve regression prob-
lems much faster with its ability of dimension reduction. 
It can also reduce the computational cost and process 
high-dimensional datasets efficiently.

3.	 The new mathematical model is transformed into a 
Lasso problem for calculating the results. According 
to the proximal gradient descent (PGD) algorithm [21], 
an improved operator replaces the original operator to 
solve the Lasso problem. Compared with PGD, the new 
improved method can obtain the solution fast and effi-
ciently decrease the number of iterations. It can also 
compute the solution, which is applied to various data-
sets with fast and accurate performance.

The rest of this paper is organized as follows. “Related 
Work” introduces the related work, including ELM, C-loss 
function, and proximal gradient descent algorithm. In 
“Proposed CDRELM Method,” the novel algorithm 
CDRELM, including a mathematical model, solution, 
and computational complexity analysis, is presented. The 
proposed algorithm can not only possess the nonconvex 
and bounded loss function with robustness to outliers but 
embed L1 norm and L2 norm to carry out feature selection 
at high speed. CDRELM can be solved by an improved 
alternating optimization method. To test the effectiveness 
of the proposed CDRELM, “Experiments and Discussion” 
presents the experimental results including improved solu-
tion, dimensionality reduction, and regression. “Perfor-
mance for Regression” shows four artificial datasets and 
five benchmark datasets. The Friedman and Nemenyi tests 
are also shown for comparative analysis. “Conclusion” 
presents conclusions and future work.
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Related Work

ELM

As a single-hidden-layer feedforward neural network, ELM 
plays a key role in academia and industry. The development 
of SLFNs has enabled ELM to reach enhanced generaliza-
tion performance for classification and regression at high 
speed.

In SLFN, for Q arbitrary distinct samples 
(
xi, ti

)
 , where 

xi =
[
xi1, xi2,… , xim

]T
∈ Rm and ti =

[
ti1, ti2,… , tin

]T
∈ Rn , 

the relationship between input xi and output f
(
xi
)
 is given 

as follows:

where �j =
[
�j1,�j2,… ,�jn

]T and bj =
[
bj1, bj2,… , bjn

]T 
are the randomly generated learning parameters of hidden 
nodes; �j =

[
�j1, �j2,… , �jn

]T is the weight connecting the j-
th hidden node and the output nodes; G(⋅) represents the acti-
vation function; P is number of hidden nodes; Q is the num-
ber of datasets. The output function of ELM is expressed 
as follows:

Here, � =
[
�1, �2,… , �P

]T is the matrix of output weights 
and y =

[
y1, y2,… , yQ

]T is the matrix of targets. The hidden-
layer output matrix is as follows:

The value of the output weights � can be determined by 
calculating the linear system Eq. (2) as follows:

where H+ is the Moore–Penrose generalized inverse matrix 
H [22]. ELM computes H+ in Eq. (4) based on the singular 
value decomposition (SVD) of H.

C‑loss Function

There are several loss functions such as hinge loss function 
[23], �− learning loss function [24], normalized sigmoid 
loss function [25], and ramp loss function [26]. Compared 
with square loss function, these loss functions perform better 
in enhancing the robustness because of nonconvexity and 
boundedness. To find a better loss function, Abhishek et al. 
[16] proposed the C-loss function defined by the following:

(1)

f
(
xi
)
=

P∑
j=1

�jG
(
�j, bj, xi

)
=

P∑
j=1

�jG
(
�j ⋅ xi + bj

)
, i = 1, 2,… ,Q,

(2)H� = y

(3)H =

⎡⎢⎢⎣

G
�
�1, b1, x1

�
… G

�
�P, bP, x1

�
⋮ ⋱ ⋮

G
�
�1, b1, xQ

�
⋯ G

�
�P, bP, xQ

�
⎤⎥⎥⎦

(4)� = H+y

where � = y − f (x) is the space of errors, and � is window 
width. The comparison of various loss functions is depicted 
in Fig. 1.

Compared with the other loss functions, the C-loss func-
tion is bounded, nonconvex, and smooth being more stable 
to outliers. C-loss can process all sizes of errors for classifi-
cation problems. In this paper, we introduce the C-loss func-
tion to a doubly regularized ELM for regression problems.

Proximal Gradient Descent Algorithm

In 2004, Boyd et al. [21] proposed PGD to solve the prob-
lems of L1 regularization. It is an effective and rapid solution 
to Lasso problems in many applications.

Let ∇ be a differential operator. The optimization objec-
tive is as follows:

If g(x) is derivative and ∇g meets the condition of 
L–Lipschitz,

In the neighborhood of xk , the g(x) can be approximately 
calculated by second-order Taylor expansion as follows:

where const is a constant, and ⟨⋅⟩ is inner product. The mini-
mum value of Eq. (8) can be obtained from the following:

Gradient descent can be adopted to minimize g(x) . Each 
step of gradient descent iteration is equivalent to minimiz-
ing the quadratic function 

∧
g (x) . According to Eq. (6), each 

iteration step is similarly shown as follows:

Each step of gradient descent iteration for g(x) should 
consider minimizing the L1 norm at the same time.

For Eq. (10), let h = xk −
1

L
∇g

(
xk
)
 and let xi be the i-th 

component of x. Then, the closed-form solution is written 
as follows:

(5)lC(�) = 1 − exp

{
−

�2

2�2

}

(6)min
x

g(x) + �‖x‖1

(7)∃L ∈ R+,
‖‖‖∇g

(
x�
)
− ∇g(x)

‖‖‖
2

2
≤ L‖‖x� − x‖‖22

(
∀x, x�

)

(8)

∧
g (x) ≃ g

(
xk
)
+
⟨
∇g

(
xk
)
, x − xk

⟩
+

L

2
‖‖x − xk

‖‖
=

L

2

‖‖‖‖x −
(
xk −

1

L
∇g

(
xk
))‖‖‖‖

2

2

+ const

(9)xk+1 = xk −
1

L
∇g

(
xk
)

(10)xk+1 = argmin
x

L

2

����x −
�
xk −

1

L
∇g

�
xk
������

2

2

+�‖x‖1
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where xi
k+1

 and hi are the i-th component of xi
k+1

 and h, 
respectively.

Proposed CDRELM Method

Our framework adopts bounded, nonconvex, and smooth 
C-loss function, leading to processing the outliers succes-
sively. In addition, CDRELM based on L1 and L2 regulari-
zation can complete the feature selection and the training 
process simultaneously, which greatly decreases the training 
time. Therefore, CDRELM can be considered a new method 

(11)xi
k+1

=

⎧⎪⎨⎪⎩

hi − 𝜂∕L, 𝜂∕L < hi

0, ��hi�� ≤ 𝜂∕L

hi+𝜂∕L, hi < −𝜂∕L

of embedded feature selection that is fast and offers stable 
performance.

Mathematical Model

We know that the regression problems investigate the rela-
tionship between the prediction and the target. To solve these 
problems, factors such as prediction accuracy, time, robust-
ness, and size of model should be considered.

A single-output regression problem is formulated as follows:

where � =
[
�1, �2,… , �P

]T  is the regression weights and 
� =

[
�1, �2,… , �Q

]T is the loss between prediction value and 
target value. The input of the problem H is a Q × P matrix 
that can be described as follows:

(12)y = H� + �

Fig. 1   Comparison of loss 
functions

(a)  Hinge loss, learning loss, normalized sigmoid loss, ramp loss, and square loss

(b)  C–loss with different window width

-�

�
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The traditional solution is estimated by square loss func-
tion and can be defined as follows:

where 
∧

� =

[
∧

�1,
∧

�2,… ,
∧

�P

]T
 is the vector of estimated regres-

sion weights. Square loss function is convex and unbounded. 
However, C-loss, which is smooth, bounded, and nonconvex, 
can improve robustness and reduce overfitting. To overcome 
the instability of square loss to outliers, the square loss func-
tion is replaced with C-loss function. Then Eq. (14) can be 
transformed as follows:

It is known that large-scale datasets lead to high computa-
tional cost. As a regularization technique, L1 norm has been 
proposed to sparse eigenvalue and enhance generalization 
ability by shrinking some coefficients and setting others to 
0. The Lasso estimate is shown as follows:

where � is a positive regularization parameter and ‖⋅‖1 is 
the L1 norm. The value of � is positively associated with the 
number of nonzero components of 

∧

�.
Nevertheless, Zou et al. [27] noted that in the situation 

of Q < P , Lasso can only select at most Q variables. For 
the general situation of Q > P , Lasso cannot behave well if 
there are high correlations between prediction targets. To 
solve this problem, the L2 norm is added to the mathematic 
model. Therefore, the amplitude of output weight 

∧

� main-
tains sparsity while avoiding “over–sparsity.” The modified 
system can now be expressed as follows:

where � is a L2 norm regularization parameter and ‖∙‖ is L2 
norm. According to [12–15], a 2-norm regularization param-
eter is introduced to ELM, creating the model L2–ELM with 
good generalization performance and strong control abil-
ity. Compared with ELM, L2–ELM realizes the limitation 
of model space and avoids overfitting. ELM is embedded 
with a 1-norm regularization parameter, giving the model 

(13)H =

⎡
⎢⎢⎣

h11 ⋯ h1P
⋮ ⋱ ⋮

hQ1 ⋯ hQP

⎤
⎥⎥⎦

(14)
∧

� = argmin
�

‖y − H�‖2
2

2

(15)
∧

� = argmin
�

{
1 − exp

{
−
(y − H�)2

2�2

}}

(16)
∧

� = argmin
�

�
1 − exp

�
−
(y − H�)2

2�2

�
+ �‖�‖1

�

(17)

∧

� = argmin
�

�
1 − exp

�
−
(y − H�)2

2�2

�
+ �‖�‖1 + �‖�‖2

2

�

L1–ELM fast learning speed. L1–ELM can achieve sparsity 
and has good optimization solution characteristics. DRELM 
can control the complexity of the network and prevent over-
fitting. In our proposed mathematic model, C-loss function 
increases the robustness to the outliers, L1 norm offers an 
automatic variable selection through a sparse vector, and 
L2 norm strengthens the control ability. All the components 
of the process are performed simultaneously which signifi-
cantly decreases the time and obtains strong generalization.

It is clear that Eq.  (17) is nonconvex and cannot use 
the traditional optimization algorithm to solve CDRELM. 
Therefore, it is necessary to develop a more efficient method 
for solving CDRELM.

Solution

Based on the mathematical model of CDRELM, it can be 
transformed into an equivalent Lasso problem [20]. Accord-
ing to the proximal gradient descent (PGD) algorithm [21], 
an improved operator replaces the original operator to solve 
the Lasso problem. In this paper, the improved PGD is used 
to compute 

∧

� of CDRELM.
Let ∇ be a differential operator. The optimization objec-

tive of CDRELM is as follows:

Let �k = �k +
k(�k−�k−1)

k+5
 , where �k is the k-th step of � and the 

initial �0 and �1 are both equal to 0 with the size of n × 1 . Replac-
ing �k with �k , it decreases the difference between the next gradi-
ent updating direction and the current gradient direction.

g(�) is differentiable and ∇g meets the condition of 
L—Lipschitz,

In the neighborhood of �k , the g(�) can be approximately 
calculated by second-order Taylor expansion as follows:

(18)

J(�) = min
�

�
1 − exp

�
−
(y − H�)2

2�2

�
+ �‖�‖1 + �‖�‖2

2

�

(19)g(�) = 1 − exp

�
−
(y − H�)2

2�2

�
+ �‖�‖2

2

(20)

∇g = −
HT (y − H�)

�2
⋅

(
− exp

{
−
(y − H�)2

2�2

})
+ 2��

(21)∃L ∈ R+,
‖‖‖∇g

(
��
)
− ∇g(�)

‖‖‖
2

2
≤ L‖‖�� − �‖‖22

(
∀�, ��

)

(22)

∧
g (�) ≃ g

(
�k
)
+
⟨
∇g

(
�k
)
, � − �k

⟩
+

L

2
‖‖� − �k

‖‖2

=
L

2

‖‖‖‖� −
(
�k −

1

L
∇g

(
�k
))‖‖‖‖

2

2

+ const

500 Cognitive Computation  (2023) 15:496–519

1 3



where const is a constant and ⟨⋅⟩ is inner product. The mini-
mum value of Eq. (22) can be obtained from the following:

Gradient descent can be adopted to minimize g(�) . Each 
step of gradient descent iteration is equivalent to minimizing 
the quadratic function 

∧
g (�) . Let this method be extended to 

Eq. (18). Then, each iteration step is similarly shown as follows:

Namely, each step of gradient descent iteration for g(�) 
should consider minimizing the L1 norm at the same time.

For Eq. (24), let h = �k −
1

L
∇g

(
�k
)
 and let �i be the i-th 

component of � .  Then, compute �k+1 = argmin
x

L

2

‖� − h‖2
2
+�‖�‖

1 . The closed-form solution is written as 
follows:

Here, �i
k+1

 and hi are the i-th component of �
k+1

 and h, 
respectively.

The CDRELM algorithm shown below includes the pro-
cess of modeling and solving the mathematical model.

(23)�k+1 = �k −
1

L
∇g

(
�k
)

(24)�k+1 = argmin
�

L

2

����� −
�
�k −

1

L
∇g

�
�k
������

2

2

+�‖�‖1

(25)𝜆i
k+1

=

⎧⎪⎨⎪⎩

hi − 𝜂∕L, 𝜂∕L < hi

0, ��hi�� ≤ 𝜂∕L

hi+𝜂∕L, hi < −𝜂∕L

Computational Complexity Analysis

In this section, we analyze the computational complexity 
of CDRELM.

For the matrix H ∈ RQ×P , where P is the number of hid-
den nodes and Q is the number of datasets, the computa-
tional complexity of SVD is O

(
4QP2 + 8P3

)
 [28]. As men-

tioned in “ELM,” ELM computes its output weights based 
on the SVD of H ∈ RQ×P , so that the computational com-
plexity of ELM is approximately the same as SVD.

According to Eq. (19), the computational complexity of 
each iteration step is also O

(
4QP2 + 8P3

)
 . If we assume that 

the method converges after K-th iterations, the overall com-
putational time complexity is K ∗ O

(
4QP2 + 8P3

)
.

Experiments and Discussion

We conducted experiments to verify the performance of 
the presented algorithm. “Performance of Improved PGD” 
shows the comparison between the traditional PGD and 
the improved PGD. The performance in dimensionality 

Table 1   Data comparison between PGD and improved PGD

Algorithm Time(s) Iterations Optimal value

PGD 0.3243 100  − 1.412
Improved PGD 0.0925 59  − 1.574

Algorithm: CDRELM
Input: a training set: � �� �, , , 1, ,m n

i i i ix y x R y R i Q� � � K ;  

related parameter: the number of hidden nodes P; activation function � �G x ; 

L1 norm term � ; L2 norm term � ; parameter � �0,1� � ; window width �
Output: the output weight matrix �
1. Randomly generate learning parameters of hidden nodes ,j jb� ,1 j P� � . 

2. Compute the hidden layer output matrix H based on Eq. (3). 

3. Let � � � �2

2

2 2
1 exp

2

y H
g

�
� � �

�

� ��� �� � � �
 �
� �� 


. 

4. Initialize 
1

n
kL R� � , 1

0 0n� 	� and 1

1 0n� 	� . 

5. Let step length L: =
1kL �

while � � � � � �1

410 1k kJ kJ� � �
�� � �

set 
� �1

5

k k
k k

k
k
� �

� � ��
� �

�
, � �1

k kh g
L

� �� � �

do Eq. (25)

while � � � � � � � � 2

2

T
k k k k

Lg h g g h� � � � �� �� � � �

2

+1 2 1
arg min +

2
k

L h
�

� � � �� �

update L: L��
return kL := L
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reduction is given in “Performance on Dimensionality 
Reduction.” “Performance for Regression” details the per-
formance for regression. We evaluated related algorithms, 
including L2–ELM, L1–ELM, CELM, DRELM, BPNN, and 
SVR, by using different types of datasets and two activation 
functions. All experiments were performed in MATLAB 
R2016a on a desktop computer with an Intel Core i7 1160G7 
CPU at 2.11 GHz, 16 GB of memory, and Windows 10.

Performance of Improved PGD

The input xi =
[
xi1, xi2,… , xi500

]T
∈ R500 i = 1,… , 2500 of 

CDRELM is generated randomly, where xij ∈ (0, 1) . Accord-
ing to Eq. (18), we can obtain � by using PGD and improved 
PGD.

Compared with the original PGD, the improved PGD can 
reach the optimal value fast and requires only 59 iterations. 
Moreover, the optimal value of � , which is calculated by 
improved PGD, obtains the fitter results. Table 1 shows the 
data comparison between PGD and improved PGD, includ-
ing time, iterations, and optimal value. The visual results 
between two methods are plotted in Fig. 2.

Performance on Dimensionality Reduction

As a new method of embedded feature selection, CDRELM 
can automatically select the feature to reduce the dimension 
of the sample dataset and predict samples simultaneously. 
It can make eigenvalue sparse and enhance generalization 
ability by shrinking some coefficients and setting others to 
zero. It also reduces computational complexity and improves 
computational efficiency by decreasing the number of �.

The Swiss Roll dataset was created to verify different 
dimensionality reduction algorithms [29]. r and l return two 
arrays of random numbers generated from the continuous 
uniform distributions with lower and upper endpoints speci-
fied by 0 and 1, respectively. The data on the coordinate axis 
is generated from the following:

The comparison of before and after the dimensional-
ity reduction using CDRELM is shown in Figs. 3 and 4. 
Figure 3 signifies the situation of scatter which adopts 

(26)

t =
3�

2(l + 2r)

⎧⎪⎨⎪⎩

x = t ∗ cos (t)

y = 2l

z = t ∗ sin (t)

Fig. 2   Comparison between PGD and improved PGD

Fig. 3   Comparison of value on z-axis before and after dimension reduction using CDRELM
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CDRELM to verify the feature selection effect of the pro-
posed method. In Fig. 4, the scatter value on the z-axis which 
belongs to Fig. 3 is located on the y-axis. The x-axis denotes 
the amount of scatter in Fig. 3.

From the experimental results, it is obvious that 
CDRELM can achieve significant dimensionality reduction, 
including reduced computational complexity and increased 
efficiency. From Figs. 3 and 4, it can be seen that CDRELM 
can not only narrow the range but also set some data to 0. 
Obviously, the impact of dimension reduction on the z-axis 
is significant.

Performance for Regression

Four artificial datasets and five benchmark datasets from 
UCI machine learning repository [30] and Kaggle [31] were 
used to test the proposed algorithm CDRELM. To evaluate 

the performance of CDRELM, it was compared with six 
algorithms: L2–ELM, L1–ELM, CELM, DRELM, BPNN, 
and SVR. In the experiments, two activation functions 
including sigmoid and sine were used on different datasets. 
Several parameters needed to be adjusted: L1 norm term, 
L2 norm term, window width � of C-loss function, and the 
number of hidden layer nodes P. Taking “sinc function data-
sets” as examples, we analyzed the sensitivity of CDRELM 
to the number of hidden layer nodes P. In Fig. 5, with the 
number of hidden layer nodes increasing, the R2 has no obvi-
ous change. The numbers of hidden layer nodes selected 
were 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, and 
400. During the experiments, we fixed the number of hidden 
layer nodes at 20 and combined the grid search with a cross-
validation technique to select the best parameters. Using the 
best parameters, we performed the experiments 30 times and 
reported the results with variability information.

Fig. 4   Performance of dimen-
sionality reduction based on 
CDRELM

Fig. 5   Relationship between the number of hidden layer nodes and R2 on sinc function datasets
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Two performance indices mean squared errors (MSE) and 
determination coefficient ( R2 ) are defined by the following:

(27)MSE = E
(

∧
yi −yi

)2

i = 1,… ,Q

(28)R2 =

�
l

l∑
i=1

∧
yi yi −

l∑
i=1

∧
yi

l∑
i=1

yi

�2

⎛
⎜⎜⎝
l

l∑
i=1

∧

y2
i
−

�
l∑

i=1

∧
y
i

�2⎞
⎟⎟⎠

⎛
⎜⎜⎝
l

l∑
i=1

y2
i
−

�
l∑

i=1

yi

�2⎞
⎟⎟⎠

Table 2   Functions used for generating regression datasets

Dataset Function definition

Sinc function
40 sin c(0.4x) =

{
40 sin (0.4x)

x
if x ≠ 0

40 else

Linear regression y = kx

Self-defining function y = exp {0.35x ∗ sin (x)}

Two-moon r ∼ U
(
r −

w

2
, r +

w

2

)

�1 ∼ U(0,�) �2 ∼ U(−�, 0)

Table 3   Details of artificial datasets

Dataset Number 
of training 
samples

Number 
of testing 
samples

Range of 
independent 
variables

Sinc function 1800 201 x ∈ (−10, 10)

Linear regression 1800 201 x ∈ (−10, 10)

Self-defining function 1800 201 x ∈ (−10, 10)

Two-moon 1800 201 x1 ∈ (0, 3)

x2 ∈ (1.5, 4.5)

1800 201

(a) Sinc function (b)Linear regression

(c) Self-defining function
Fig. 6   Regression shapes of three functions with WGN
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where 
∧
yi represents the prediction of the desired yi , and 

l is the number of testing samples. A smaller MSE or a 
larger performance index R2 reflects better generalization 
performance.

Here, we use two activation functions for comparing 
L2–ELM, L1–ELM, CELM, DRELM, and CDRELM on the 
same datasets.

Sigmoid function:

Sine function:

(29)F(a, b, x) =
1

1 + exp
(
−aT

i
x + bi

)

(30)F(a, x) = sin
(
aT
i
x
)

To achieve good generalization performance, the appro-
priate optimization parameter needs to be chosen. We com-
bined grid search with a cross-validation technique to choose 
these parameters [32]. The regularization parameters � for 
L1–ELM, � for L2–ELM, and � and � for DRELM are all 
determined from the parameter set 

{
2−50,… , 20,⋯ , 220

}
 . In 

CELM, the window width � and the regularization param-
eter � are chosen from the candidate set 

{
2−2,… , 20,⋯ , 22

}
 

and 
{
2−50,… , 20,⋯ , 220

}
 , respectively. In CDRELM, the 

regularization parameters � and � are selected from {
2−50,… , 20,⋯ , 220

}
 and 

{
2−50,… , 20,⋯ , 220

}
 , and the 

window width � is taken from 
{
2−2,… , 20,⋯ , 22

}
 . In 

BPNN, we set the goal accuracy as 1e − 3 and the maximum 
iterations as 1500. The number of input layer nodes is equal 
to the number of input variables. The number of output layer 

(a) Sinc function

(c) Sinc function with WGN of power 5 dBW

(b) Sinc function with WGN of power 2 dBW

(d) Sinc function with WGN of power 10 dBW
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Fig. 7   Regression results on sinc function and sinc function with WGN
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nodes is set as 1. According to the MSE calculated using the 
trial-and-error method, the learning rate and the number of 
hidden layer nodes are selected according to different data-
sets. They are selected as 0.003 and 7 on artificial datasets. 
Meanwhile, the two parameters of learning rate and the num-
ber of hidden layer nodes are set as 0.009 and 3 on the octane 
number dataset, 0.008 and 7 on the Boston housing dataset, 
0.008 and 11 on the life expectancy dataset, 0.005 and 7 on 
the energy consumption dataset, and 0.003 and 4 on the air 
quality dataset, respectively. The penalty parameter C for 
error entries of SVR affects the accuracy and generalization 
ability [2]. The penalty parameter C is taken from {
2−50,… , 20,⋯ , 220

}
 and the radial basis kernel function 

K
�
�, �i

�
= exp

�
−
‖�−�i‖2

2�2

�
 is used in SVR where the 

parameter � is selected from 
{
2−2,… , 20,⋯ , 210

}
.

Performance on Artificial Datasets

Three artificial datasets with white Gaussian noise (WGN) 
and two-moon datasets were generated to verify the predic-
tion accuracy and generalization ability. The power spectral 
density of WGN obeys uniform distribution, and the ampli-
tude distribution obeys Gaussian distribution [33]. Based on 
the traditional function, WGN with the form of 2001 × 1 was 
added to the three functions whose definitions are given in 
Table 1. Moreover, in WGN, the power of each function in 
decibels relative to a watt is 2 dBW. In particular, to verify 
the effect of outliers on the comparison of performance 
and the relationship between outliers and parameters, the 

performance of seven algorithms on sinc function datasets 
with WGN of power 0 dBW, 2 dBW, 5 dBW, and 10 dBW is 
shown in Fig. 7 and Table 4.

The details of the experiments on the four datasets are 
listed in Tables 2 and 3. For artificial datasets, almost nine-
tenths of the whole dataset are used as the training set, and 
the remaining one-tenth is used as the testing set. Figure 6 
shows regression shapes of three functions with the WGN of 
power 2 dBW. The regression results of sinc function, linear 
regression function, self-defining function, and two-moon 
are plotted in Figs. 7, 8, 9, and 10, respectively. Similarly, 
the experimental results are given in Tables 4, 5, 6, and 7, 
respectively.

It can be seen from Figs. 7, 8, 9, and 10 and Tables 4, 5, 
6, and 7 that CDRELM achieves comparable performance 
to other algorithms with a much higher learning speed due 
to its ability in dimensionality reduction. It is clear that 
CDRELM takes much less time than other algorithms. In 
particular, the proposed algorithm can achieve better gener-
alization performance and more significant efficiency than 
BPNN and SVR. In most cases, the proposed CDRELM 
obtains the largest R2 and the smallest MSE, which shows 
the most robustness and highest accuracy in terms of gen-
eralization performance. In general, it can be seen that 
CDRELM has the best generalization ability and highest 
learning speed. BPNN, SVR, L2–ELM, DRELM, and CELM 
perform well in comparison with L1–ELM. On the basis of 
linear regression datasets, L2–ELM can perform slightly 
better than CDRELM in terms of robustness and accuracy. 
However, when the WGN is added to the datasets, CDRELM 
has the most stable performance. In Fig. 7 and Table 4, as 

(a) Linear regression (b) Linear regression with WGN

-10 -8 -6 -4 -2 0 2 4 6 8 10

Inputs

-10

-5

0

5

10

15

O
u
tp
u
ts

True

L
2
-ELM

CELM

L
1
-ELM

DRELM

BP

SVR

CDRELM

-10 -8 -6 -4 -2 0 2 4 6 8 10

Inputs

-15

-10

-5

0

5

10

15

O
u
tp
u
ts

True

L
2
-ELM

CELM

L
1
-ELM

DRELM

BP

SVR

CDRELM

Fig. 8   Regression results on linear regression and linear regression with WGN
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the number of outliers increases, the determination coeffi-
cient R2 of seven algorithms decreases slightly. Meanwhile, 
MSE and time are almost unaffected by outliers. It is clear 
that CDRELM always maintains a high level of generaliza-
tion performance and fast efficiency.

According to the papers reported by Jing et al. [18] 
and Fu et al. [19], as a feature selection method with L1 
norm and L2 norm, CDRELM has strong anti-interference  
capability in theory. Meanwhile, the experimental results 
(Figs. 7, 8, 9, and 10 and Tables 4, 5, 6, and 7) show 
that CDRELM has a low sensitivity to outliers and a 

stable performance. It can be seen from Table 4 that the 
selected parameters can also change as the number of 
outliers increases. The larger the number of outliers, 
the lower the regularization parameter � for L1 norm. 
The number of outliers is positively associated with 
the regularization parameter � for L2 norm. The experi-
ments also demonstrate that L1 norm offers an automatic 
variable selection through a sparse vector, and L2 norm 
strengthens the control ability. With the number of outli-
ers increasing, L2 norm increases to prevent overfitting 
and L1 norm decreases to avoid excessive sparsity in 

(a) Self–defining function (b)Self–defining function with WGN
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Fig. 9   Regression results on self-defining function and self-defining function with WGN

(a) Moon1 (b) Moon2
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Fig. 10   Regression results on two-moon dataset
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Table 4   Experimental results on sinc function and sinc function with WGN

Dataset Activation  
function

Algorithm MSE R2 Time(s) Parameter 
( �, �, �,C, �)

Sinc function Sigmoid L2–ELM 6.2265 ± 0.0023 0.9248 ± 0.0008 0.0499 ± 0.0001 –, 2–31, –, –, –
CELM 6.0988 ± 0.0011 0.9728 ± 0.0010 0.0238 ± 0.0003 –, 2–30, 2–2, –, –
L1–ELM 6.4575 ± 0.0043 0.9125 ± 0.0005 0.0295 ± 0.0003 2–10, –, –, –, –
CDRELM 4.0590 ± 0.0003 0.9992 ± 0.0005 0.0224 ± 0.0001 2–10, 2–33, 2–2, –, –
BPNN 5.3132 ± 0.0015 0.9108 ± 0.0006 1.3255 ± 0.0003 –, –, –, –, –
DRELM 6.0823 ± 0.0019 0.9730 ± 0.0008 0.0256 ± 0.0006 2–10, 2–33, –, –, –

Sine L2–ELM 6.7276 ± 0.0011 0.9304 ± 0.0009 0.0518 ± 0.0005 –, 2–30, –, –, –
CELM 6.4560 ± 0.0021 0.9756 ± 0.0023 0.0226 ± 0.0026 –, 2–30, 2–2, –, –
L1–ELM 6.4621 ± 0.0046 0.9143 ± 0.0027 0.0268 ± 0.0008 2–9, –, –, –, –
CDRELM 4.2525 ± 0.0009 1.0000 ± 0.0000 0.0220 ± 0.0001 2–8, 2–34, 2–2, –, –
BPNN 5.3219 ± 0.0031 0.9032 ± 0.0027 1.3259 ± 0.0004 –, –, –, –, –
DRELM 6.0825 ± 0.0024 0.9710 ± 0.0014 0.0231 ± 0.0002 2–8, 2–30, –, –, –

SVR 6.0327 ± 0.0020 0.9101 ± 0.0022 0.0671 ± 0.0004 –, –, –, 26, 20

Sinc function with 
WGN of power 2 
dBW

Sigmoid L2–ELM 6.2892 ± 0.0031 0.8677 ± 0.0032 0.0422 ± 0.0009 –, 2–23, –, –, –
CELM 6.0896 ± 0.0029 0.9689 ± 0.0057 0.0400 ± 0.0004 –, 2–23, 2–2, –, –
L1–ELM 6.5562 ± 0.0024 0.8676 ± 0.0031 0.0395 ± 0.0005 2–14, –, –, –, –
CDRELM 5.8769 ± 0.0018 0.9912 ± 0.0026 0.0318 ± 0.0002 2–16, 2–24, 2–2, –, –
BPNN 7.3872 ± 0.0049 0.8963 ± 0.0046 1.2617 ± 0.0004 –, –, –, –, –
DRELM 6.3219 ± 0.0026 0.9581 ± 0.0037 0.0345 ± 0.0004 2–14, 2–23, –, –, –

Sine L2–ELM 8.0972 ± 0.0136 0.8245 ± 0.0019 0.0421 ± 0.0004 –, 2–23, –, –, –
CELM 7.7860 ± 0.0089 0.9581 ± 0.0031 0.0370 ± 0.0002 –, 2–25, 2–2, –, –
L1–ELM 8.9091 ± 0.0056 0.8122 ± 0.0028 0.0320 ± 0.0004 2–9, –, –, –, –
CDRELM 6.1403 ± 0.0025 0.9900 ± 0.0032 0.0308 ± 0.0001 2–12, 2–24, 2–2, –, –
BPNN 7.2934 ± 0.0035 0.8003 ± 0.0037 1.2669 ± 0.0005 –, –, –, –, –
DRELM 6.8903 ± 0.0078 0.9579 ± 0.0041 0.0348 ± 0.0003 2–13, 2–24, –, –, –
SVR 7.8340 ± 0.0031 0.9059 ± 0.0044 0.0735 ± 0.0012 –, –, –, 26, 23

Sinc function with 
WGN of power 5 
dBW

Sigmoid L2–ELM 6.2738 ± 0.0014 0.8561 ± 0.0029 0.0453 ± 0.0002 –, 2–10, –, –, –
CELM 6.0744 ± 0.0031 0.9558 ± 0.0049 0.0401 ± 0.0009 –, 2–12, 2–2, –, –
L1–ELM 6.9655 ± 0.0053 0.7976 ± 0.0038 0.0396 ± 0.0011 2–24, –, –, –, –
CDRELM 5.7569 ± 0.0018 0.9818 ± 0.0019 0.0318 ± 0.0004 2–24, 2–10, 2–2, –, –
BPNN 7.5728 ± 0.0033 0.8932 ± 0.0039 1.2889 ± 0.0007 –, –, –, –, –
DRELM 5.9882 ± 0.0005 0.9601 ± 0.0043 0.0378 ± 0.0005 2–24, 2–11, –, –, –

Sine L2–ELM 8.0693 ± 0.0057 0.8598 ± 0.0036 0.0421 ± 0.0004 –, 2–10, –, –, –
CELM 7.7851 ± 0.0013 0.9666 ± 0.0023 0.0299 ± 0.0004 –, 2–11, 2–2, –, –
L1–ELM 8.9198 ± 0.0049 0.8604 ± 0.0019 0.0365 ± 0.0006 2–23, –, –, –, –
CDRELM 5.0401 ± 0.0027 0.9856 ± 0.0010 0.0288 ± 0.0002 2–24, 2–10, 2–2, –, –
BPNN 7.5892 ± 0.0056 0.8010 ± 0.0034 1.2897 ± 0.0007 –, –, –, –, –
DRELM 5.9866 ± 0.0035 0.9565 ± 0.0002 0.0375 ± 0.0005 2–24, 2–13, –, –, –
SVR 7.9360 ± 0.0154 0.8798 ± 0.0038 0.0750 ± 0.0004 –, –, –, 26, 22
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CDRELM. According to the situations of all the func-
tions with noises, CDRELM can maintain the accuracy 
and stability required to solve regression problems with-
out interference.

Performance on Benchmark Datasets

To further verify the performance of seven algorithms, 
five real-world datasets from the Kaggle datasets and UCI 

Table 4   (continued)

Dataset Activation  
function

Algorithm MSE R2 Time(s) Parameter 
( �, �, �,C, �)

Sinc function with 
WGN of power 10 
dBW

Sigmoid L2–ELM 7.2980 ± 0.0051 0.8127 ± 0.0037 0.0419 ± 0.0006 –, 2–3, –, –, –

CELM 7.0489 ± 0.0045 0.9362 ± 0.0026 0.0410 ± 0.0008 –, 2–3, 2–2, –, –

L1–ELM 7.8532 ± 0.0057 0.7789 ± 0.0048 0.0392 ± 0.0003 2–34, –, –, –, –

CDRELM 6.7739 ± 0.0031 0.9408 ± 0.0069 0.0303 ± 0.0001 2–30, 2–4, 2–2, –, –

BPNN 8.2298 ± 0.0046 0.8820 ± 0.0044 1.3491 ± 0.0003 –, –, –, –, –

DRELM 7.5742 ± 0.0127 0.9318 ± 0.0031 0.0309 ± 0.0005 2–31, 2–3, –, –, –

Sine L2–ELM 8.0492 ± 0.0035 0.8190 ± 0.0090 0.0421 ± 0.0010 –, 2–3, –, –, –

CELM 7.8835 ± 0.0049 0.9358 ± 0.0045 0.0299 ± 0.0009 –, 2–5, 2–2, –, –

L1–ELM 9.1019 ± 0.0131 0.8798 ± 0.0032 0.0367 ± 0.0008 2–29, –, –, –, –

CDRELM 7.2014 ± 0.0030 0.9580 ± 0.0017 0.0298 ± 0.0003 2–32, 2–4, 2–2, –, –

BPNN 8.2388 ± 0.0074 0.8161 ± 0.0056 1.3489 ± 0.0011 –, –, –, –, –

DRELM 7.5688 ± 0.0198 0.9377 ± 0.0024 0.0309 ± 0.0005 2–31, 2–3, –, –, –

SVR 8.2706 ± 0.0215 0.8813 ± 0.0016 0.0742 ± 0.0014 –, –, –, 26, 2–1

Table 5   Experimental results on linear regression and linear regression with WGN

Dataset Activation 
function

Algorithm MSE R2 Time(s) Parameter 
( �, �, �,C, �)

Linear regression Sigmoid L2–ELM 1.0184 ± 0.0571 1.0000 ± 0.0000 0.0609 ± 0.0001 –, 2–36, –, –, –
CELM 1.0171 ± 0.0379 0.9983 ± 0.0003 0.0293 ± 0.0003 –, 2–35, 2–2, –, –
L1–ELM 1.2473 ± 0.0900 0.9986 ± 0.0003 0.0318 ± 0.0002 2–10, –, –, –, –
CDRELM 0.7126 ± 0.0419 0.9998 ± 0.0003 0.0279 ± 0.0002 2–10, 2–30, 2–2, –, –
BPNN 1.9875 ± 0.0814 0.9935 ± 0.0002 1.2352 ± 0.0003 –, –, –, –, –
DRELM 0.7349 ± 0.0998 0.9995 ± 0.0003 0.0301 ± 0.0004 2–10, 2–30, –, –, –

Sine L2–ELM 1.2570 ± 0.0304 1.0000 ± 0.0000 0.0483 ± 0.0012 –, 2–35, –, –, –
CELM 1.1566 ± 0.0798 0.9998 ± 0.0000 0.0212 ± 0.0009 –, 2–35, 2–2, –, –
L1–ELM 1.4813 ± 0.1023 0.9981 ± 0.0002 0.0219 ± 0.0006 2–9, –, –, –, –
CDRELM 0.6988 ± 0.0099 1.0000 ± 0.0000 0.0175 ± 0.0008 2–8, 2–30, 2–2, –, –
BPNN 1.9734 ± 0.0516 0.9992 ± 0.0000 1.2366 ± 0.0012 –, –, –, –, –
DRELM 0.7129 ± 0.0020 0.9995 ± 0.0000 0.0203 ± 0.0011 2–10, 2–30, –, –, –
SVR 1.0281 ± 0.0452 0.9997 ± 0.0000 0.0504 ± 0.0005 –, –, –, 28, 20

Linear regression 
with WGN

Sigmoid L2–ELM 1.7961 ± 0.0321 0.9607 ± 0.0030 0.0419 ± 0.0009 –, 2–10, –, –, –
CELM 1.1899 ± 0.0076 0.9708 ± 0.0015 0.0267 ± 0.0007 –, 2–10, 2–2, –, –
L1–ELM 1.3040 ± 0.0085 0.9681 ± 0.0028 0.0308 ± 0.0007 2–10, –, –, –, –
CDRELM 1.1897 ± 0.0057 0.9712 ± 0.0034 0.0229 ± 0.0006 2–6, 2–8, 2–2, –, –
BPNN 1.8835 ± 0.0045 0.9438 ± 0.0025 1.2333 ± 0.0012 –, –, –, –, –
DRELM 1.5381 ± 0.0043 0.9522 ± 0.0027 0.0233 ± 0.0007 2–10, 2–7, –, –, –

Sine L2–ELM 1.7277 ± 0.0055 0.9483 ± 0.0020 0.0417 ± 0.0006 –, 2–10, –, –, –
CELM 1.5363 ± 0.0039 0.9460 ± 0.0034 0.0249 ± 0.0005 –, 2–10, 2–2, –, –
L1–ELM 1.5382 ± 0.0068 0.9604 ± 0.0059 0.0276 ± 0.0007 2–9, –, –, –, –
CDRELM 1.4973 ± 0.0093 0.9606 ± 0.0013 0.0231 ± 0.0003 2–8, 2–8, 2–2, –, –
BPNN 1.8643 ± 0.0022 0.9441 ± 0.0013 1.2572 ± 0.0005 –, –, –, –, –
DRELM 1.5381 ± 0.0110 0.9522 ± 0.0032 0.0233 ± 0.0004 2–7, 2–7, –, –, –
SVR 1.5183 ± 0.0107 0.9479 ± 0.0040 0.0897 ± 0.0007 –, –, –, 28, 23
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machine learning repository were tested. The datasets were 
of different types, including low, medium, and high dimen-
sions and small, medium, and large sizes.

We randomly divide the benchmark datasets into two 
subsets (80% + 20%), the former for training and the latter 
for testing. Table 8 shows the data descriptions of the five 
datasets, which can be classified into three groups of data:

1.	 Datasets with relatively small size and high dimensions: the 
octane number dataset which contains 60 gasoline samples. 
The samples used Fourier transform near-infrared spectros-
copy to scan. Each sample has 401 features, and each fea-
ture is a wavelength point from the scanning range of 900 
to 1700 nm.

2.	 Datasets with medium size and medium dimensions: 
The Boston housing dataset has 506 samples with 13 
features concerning housing prices in the suburbs of 
Boston. The life expectancy dataset includes 958 sam-

ples with 18 features for analyzing the factors that affect 
the average life expectancy in different countries.

3.	 Datasets with large size and small dimensions: The 
energy consumption dataset covers 2208 instances with 
five features that show the hourly energy consumption 
from October 1 to December 31 during the years 2008 to 
2012. The air quality dataset contains 9358 samples of 
hourly averaged responses with eight reference analyz-
ers.

As can be seen from Figs. 11, 12, 13, 14, and 15, six 
algorithms were compared with CDRELM on different 
types of datasets. Figure 11 shows the predictive ability of 
seven algorithms on the octane number dataset. The per-
formances of seven algorithms on the Boston housing, life 
expectancy, energy consumption, and air quality datasets 
are shown in Figs. 12, 13, 14, and 15, respectively. It is clear 

Table 6   Experimental results on self-defining function and self–defining function with WGN

Dataset Activation 
function

Algorithm MSE R2 Time(s) Parameter 
( �, �, �,C, �)

Self-defining 
function

Sigmoid L2–ELM 1.9383 ± 0.0301 0.9068 ± 0.0007 0.0559 ± 0.0005 –, 2–18, –, –, –
CELM 3.9911 ± 0.0098 0.9007 ± 0.0021 0.0237 ± 0.0001 –, 2–20, 2–2, –, –
L1–ELM 2.2779 ± 0.0104 0.8949 ± 0.0002 0.0263 ± 0.0006 2–10, –, –, –, –
CDRELM 1.1320 ± 0.0107 0.9966 ± 0.0008 0.0212 ± 0.0008 2–11, 2–16, 2–2, –, –
BPNN 3.1340 ± 0.0432 0.8564 ± 0.0032 1.4991 ± 0.0077 –, –, –, –, –
DRELM 2.0635 ± 0.0236 0.9304 ± 0.0008 0.0235 ± 0.0007 2–11, 2–17, –, –, –

Sine L2–ELM 2.1640 ± 0.0533 0.9265 ± 0.0003 0.0521 ± 0.0007 –, 2–20, –, –, –
CELM 1.5682 ± 0.0309 0.9082 ± 0.0004 0.0226 ± 0.0004 –, 2–15, 2–2, –, –
L1–ELM 1.7750 ± 0.0313 0.8751 ± 0.0003 0.0268 ± 0.0004 2–9, –, –, –, –
CDRELM 1.4828 ± 0.0114 0.9984 ± 0.0007 0.0166 ± 0.0002 2–12, 2–16, 2–2, –, –
BPNN 3.1290 ± 0.0128 0.8563 ± 0.0010 1.4998 ± 0.0008 –, –, –, –, –
DRELM 2.0729 ± 0.0336 0.9152 ± 0.0007 0.0236 ± 0.0007 2–10, 2–17, –, –, –
SVR 6.0281 ± 0.0256 0.8021 ± 0.0188 0.1060 ± 0.0018 –, –, –, 27, 20

Self-defining 
function with 
WGN

Sigmoid L2–ELM 3.0632 ± 0.0369 0.8092 ± 0.0006 0.0640 ± 0.0013 –, 2–12, –, –, –
CELM 3.3166 ± 0.1107 0.8219 ± 0.0005 0.0232 ± 0.0008 –, 2–13, 2–2, –, –
L1–ELM 7.8308 ± 0.1098 0.7858 ± 0.0009 0.0270 ± 0.0006 2–18, –, –, –, –
CDRELM 1.4385 ± 0.0111 0.9315 ± 0.0007 0.0207 ± 0.0004 2–20,2–14,2–2, –, –
BPNN 3.9584 ± 0.0389 0.7952 ± 0.0007 1.6511 ± 0.0004 –, –, –, –, –
DRELM 3.1968 ± 0.0422 0.8592 ± 0.0008 0.0242 ± 0.0007 2–17, 2–14, –, –, –

Sine L2–ELM 3.4683 ± 0.1429 0.7063 ± 0.0008 0.0533 ± 0.0007 –, 2–12, –, –, –
CELM 3.5432 ± 0.0966 0.7432 ± 0.0017 0.0255 ± 0.0006 –, 2–13, 2–2, –, –
L1–ELM 8.4988 ± 0.0865 0.7901 ± 0.0022 0.0302 ± 0.0003 2–19, –, –, –, –
CDRELM 1.6300 ± 0.0438 0.9314 ± 0.0013 0.0158 ± 0.0003 2–18, 2–14, 2–2, –, –
BPNN 3.9459 ± 0.0098 0.8494 ± 0.0026 1.6513 ± 0.0008 –, –, –, –, –
DRELM 3.1968 ± 0.0428 0.8592 ± 0.0032 0.0242 ± 0.0006 2–18, 2–14, –, –, –
SVR 6.0943 ± 0.0031 0.6981 ± 0.0026 0.1127 ± 0.0046 –, –, –, 27, 23
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that CDRELM has the greatest performance and can fit the 
true value best. Table 9 provides the detailed comparisons of 
seven algorithms on three small- or medium-sized datasets. 
Table 10 lists the performance results of seven algorithms 
on two large-sized datasets. It can be seen that the proposed 
algorithm achieves better generalization performance in 
three types of datasets at much higher learning speeds. Fig-
ures 16, 17, and 18 show the comparison of R2 , MSE, and 
time among seven algorithms on each dataset and show the 
performance of seven algorithms with two different activate 
functions on various sizes of datasets. In Fig. 16, the histo-
gram represents the performance index R2 , including two 
situations with different activate functions. The comparison 
of MSE among seven algorithms on the datasets divided 
into large-, small-, or medium-sized datasets is shown in 
Fig. 17. Interestingly, CDRELM can solve the problems of 
small- or medium-sized datasets much better than those of 
large-sized datasets. L2–ELM, L1–ELM, CELM, DRELM, 
and CDRELM obtain a slightly larger value of MSE than 
SVR and BPNN on large datasets. Hence, CDRELM is 

better at processing small datasets than other types. Fig-
ure 18 compares the overall trends in terms of the time of 
all the datasets. It can be seen that CDRELM is significantly 
faster than BPNN and SVR. Figure 18a is not clear to see the 
advantage of CDRELM. Thus, we completed the Fig. 18b to 
compare the time intuitionally. CDRELM is more efficient 
than DRELM, CELM, L2–ELM, and L1–ELM. It is clear 
that the proposed CDRELM obtains the fastest and the most 
stable performance with the highest accuracy.

Table 7   Experimental results on two-moon dataset

Dataset Activation 
function

Algorithm MSE R2 Time(s) Parameter 
( �, �, �,C, �)

Moon1 Sigmoid L2–ELM 0.0109 ± 0.0003 0.8972 ± 0.0002 0.0535 ± 0.0008 –, 2–13, –, –, –
CELM 0.0108 ± 0.0002 0.8970 ± 0.0003 0.0210 ± 0.0008 –, 2–14, 2–2, –, –
L1–ELM 0.0188 ± 0.0003 0.8853 ± 0.0004 0.0243 ± 0.0008 2–10, –, –, –, –
CDRELM 0.0095 ± 0.0003 0.9068 ± 0.0002 0.0182 ± 0.0002 2–10, 2–12, 2–2, –, –
BPNN 0.0112 ± 0.0003 0.8960 ± 0.0004 1.2620 ± 0.0004 –, –, –, –, –
DRELM 0.0117 ± 0.0003 0.8992 ± 0.0003 0.0239 ± 0.0002 2–10, 2–14, –, –, –

Sine L2–ELM 0.0100 ± 0.0000 0.8937 ± 0.0003 0.0520 ± 0.0002 –, 2–12, –, –, –
CELM 0.0109 ± 0.0005 0.8887 ± 0.0002 0.0235 ± 0.0004 –, 2–9, 2–2, –, –
L1–ELM 0.0153 ± 0.0005 0.8935 ± 0.0001 0.0230 ± 0.0008 2–9, –, –, –, –
CDRELM 0.0104 ± 0.0004 0.8997 ± 0.0001 0.0104 ± 0.0001 2–8, 2–12, 2–2, –, –
BPNN 0.0110 ± 0.0008 0.8958 ± 0.0003 1.2589 ± 0.0004 –, –, –, –, –
DRELM 0.0117 ± 0.0003 0.8992 ± 0.0003 0.0239 ± 0.0004 2–8, 2–13, –, –, –
SVR 0.0281 ± 0.0005 0.8981 ± 0.0003 0.0721 ± 0.0003 –, –, –, 28, 22

Moon2 Sigmoid L2–ELM 0.0116 ± 0.0003 0.8863 ± 0.0003 0.0498 ± 0.0002 –, 2–10, –, –, –
CELM 0.0122 ± 0.0008 0.8921 ± 0.0001 0.0244 ± 0.0001 –, 2–14, 2–2, –, –
L1–ELM 0.0116 ± 0.0002 0.8864 ± 0.0003 0.0240 ± 0.0002 2–10, –, –, –, –
CDRELM 0.0115 ± 0.0003 0.9066 ± 0.0001 0.0169 ± 0.0001 2–10, 2–10, 2–2, –, –
BPNN 0.0125 ± 0.0001 0.8897 ± 0.0002 1.5250 ± 0.0001 –, –, –, –, –
DRELM 0.0120 ± 0.0001 0.8990 ± 0.0002 0.0239 ± 0.0004 2–10, 2–11, –,–, –

Sine L2–ELM 0.0117 ± 0.0001 0.8990 ± 0.0003 0.0546 ± 0.0003 –, 2–10, –, –, –
CELM 0.0116 ± 0.0003 0.8988 ± 0.0003 0.0240 ± 0.0002 –, 2–9, 2–2, –, –
L1–ELM 0.0135 ± 0.0001 0.8994 ± 0.0008 0.0239 ± 0.0002 2–9, –, –, –, –
CDRELM 0.0116 ± 0.0000 0.8998 ± 0.0004 0.0187 ± 0.0001 2–10, 2–9, 2–2, –
BPNN 0.0126 ± 0.0002 0.8881 ± 0.0003 1.5261 ± 0.0003 –, –, –, –, –
DRELM 0.0119 ± 0.0003 0.8992 ± 0.0005 0.0253 ± 0.0001 2–10, 2–10, –,–, –
SVR 0.0214 ± 0.0001 0.8702 ± 0.0003 0.0794 ± 0.0001 –, –, –, 28, 22

Table 8   Details of benchmark datasets

Dataset Number 
of training 
samples

Number of 
testing samples

Number of 
features

Octane number 48 12 401
Boston housing 405 101 13
Life expectancy 766 192 18
Energy consumption 1766 442 5
Air quality 7486 1872 8
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To analyze the statistical accuracy more clearly, Table 11 
lists the average ranks which are computed by the average 
value of R2 in Tables 9 and 10 for each algorithm with two 
activate functions. As seen in Table 11, CDRELM is ranked 
first, and DRELM, CELM, BPNN, SVR, and L1–ELM are 
ranked in turn. The experimental results also verify the 
expected achievement of each algorithm. L1–ELM aims at 
reducing the learning time. DRELM has 1-norm and 2-norm 
penalties with high learning speeds and the ability to prevent 
overfitting. CELM aims at improving accuracy and robust-
ness. Having the advantages of both CELM and DRELM, 
CDRELM can attain better generalization ability at a faster 
learning speed by introducing the C-loss function, L2 norm 
and L1 norm into ELM.

To obtain various precision and credible results, the 
Friedman statistical method was used to determine whether 
all the algorithms have the same performance. Let N be the 
number of datasets and m denotes the counts of algorithms. 

Meanwhile, Ri represents the average ranks in Table 11. 
Friedman statistic [34] follows the distribution of �2

F
 with 

m − 1 degrees of freedom, which is defined as follows:

Based on Eq. (31), Iman et al. [35] proposed a better 
statistic:

which follows the F-distribution with m − 1 and 
(m − 1)(N − 1) degrees of freedom. According to Tables 9 
and 10, �2

F
= 44.52 , FF ≈ 25.88 , and F0.05(6, 54) are 2.272 

by referring to the F-distribution critical value table. It is 
clear that FF = 25.88 > F0.05(6, 54) = 2.272 , so the null 

(31)�2

F
=

12N

m(m + 1)

[∑
i

R2
i
−

m(m + 1)2

4

]

(32)FF =
(N − 1)�2

F

N(m − 1) − �2
F

Fig. 11   Regression results on octane number dataset

Fig. 12   Regression results on Boston housing dataset
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hypothesis is rejected. Hence, it is shown that the perfor-
mance of the algorithms is significantly different.

To further differentiate the algorithms, the Nemenyi test 
[36] is used to pairwise compare seven algorithms. It is 
defined as follows:

where q� is the critical value of Tukey distribution. When 
� = 0.05 and m = 7 , q� = 2.949 according to the inspection 
table of Nemenyi. The null hypothesis that two algorithms 
have the same performance is rejected if the correspond-
ing average ranks differ by at least the critical difference 
CD ≈ 2.8439 . Due to the average rank difference between 
CDRELM and L1–ELM which is 5.9 − 1 = 4.9 and is  
much larger than the critical difference 2.8439, the per-
formance of CDRELM is substantially better than that  
of L1–ELM. Similarly, the performance of CDRELM is 
much superior to that of SVR (5.6 − 1 = 4.1 > 2.8439). 

(33)CD = q�

√
m(m + 1)

6N

As a result of 5.1 − 1 = 4.1 > 2.8439, the Nemenyi test 
can detect significant difference between CDRELM and 
BPNN. The result 4.6 − 1 = 3.6 > 2.8439 makes it clear that 
CDRELM performs much better than CELM. It is clear 
that 3.8 − 1 = 2.8 < 2.8439 and 2 − 1 = 1 < 2.8439. Thus, 
CDRELM has slightly better performance than DRELM 
and L2–ELM. The above comparison can be visually  
shown using the Friedman test chart. In Fig. 19, the verti-
cal axis represents each algorithm. For the horizontal axis,  
dot is the value of average rank, and the horizontal line 
segment centered on a dot represents the value of CD. If 
there are overlaps between the horizontal line segment of 
two algorithms, then, there is no remarkable difference 
between the two algorithms. Hence, it can be clearly seen 
that CDRELM has significantly better performance than 
CELM, L1–ELM, BPNN, and SVR. CDRELM is slightly 
better than DRELM and L2–ELM. Of the seven algorithms, 
CDRELM has the best performance and L1–ELM has the 
worst accuracy.

Fig. 13   Regression results on life expectancy dataset

Fig. 14   Regression results on hourly energy consumption dataset
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Fig. 15   Regression results on air quality dataset

(a)Sigmoid function
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Fig. 16   Comparison of R2 on all the datasets using different activation function
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(a) Small and medium sized datasets (b) Large sized datasets

Fig. 17   Comparison of MSE on all of datasets

(a) L2–ELM, L1–ELM, CELM, DRELM, BPNN, SVR and CDRELM

(b) L2–ELM, L1–ELM, CELM, DRELM and CDRELM

Fig. 18   Comparison of time on all of datasets
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Table 9   Experimental results on small samples of benchmark dataset

Dataset Activation 
function

Algorithm MSE R2 Time(s) Parameter ( �, �, �,C, �)

Octane 
number

Sigmoid L2–ELM 0.7735 ± 0.0012 0.8519 ± 0.0006 0.0527 ± 0.0003 –, 2–34, –, –, –
CELM 0.9208 ± 0.0012 0.8201 ± 0.0004 0.0236 ± 0.0002 –, 2–34, 2–2, –, –
L1–ELM 0.5857 ± 0.0027 0.7991 ± 0.0005 0.0215 ± 0.0003 2–17, –, –, –, –
CDRELM 0.2226 ± 0.0004 0.9998 ± 0.0000 0.0160 ± 0.0001 218, 2–34, 2–2, –, –
BPNN 0.7716 ± 0.0044 0.7938 ± 0.0007 2.0541 ± 0.0003 –, –, –, –, –
DRELM 0.8476 ± 0.0009 0.9894 ± 0.0002 0.0239 ± 0.0003 2–18, 2–30, –, –, –

Sine L2–ELM 0.6140 ± 0.0022 0.9306 ± 0.0004 0.0497 ± 0.0002 –, 2–34, –, –, –
CELM 0.9239 ± 0.0013 0.8966 ± 0.0003 0.0222 ± 0.0001 –, 2–34, 2–2, –, –
L1–ELM 0.5352 ± 0.0035 0.8553 ± 0.0007 0.0213 ± 0.0001 2–17, –, –, –, –
CDRELM 0.1130 ± 0.0005 0.9997 ± 0.0000 0.0177 ± 0.0001 2–18, 2–34, 2–2, –, –
BPNN 0.5823 ± 0.0033 0.8229 ± 0.0004 2.0529 ± 0.0012 –, –, –, –, –
DRELM 0.8476 ± 0.0024 0.9875 ± 0.0001 0.0240 ± 0.0002 2–17, 2–31, –, –, –
SVR 0.6214 ± 0.0033 0.7229 ± 0.0000 0.0710 ± 0.0003 –, –, –, 27, 22

Boston 
housing

Sigmoid L2–ELM 32.2671 ± 0.0305 0.8441 ± 0.0005 0.0556 ± 0.0002 –, 2–16, –, –, –
CELM 27.1208 ± 0.0543 0.7831 ± 0.0008 0.0270 ± 0.0002 –, 2–14, 2–2, –, –
L1–ELM 31.6840 ± 0.0778 0.6773 ± 0.0005 0.0240 ± 0.0001 2–10, –, –, –, –
CDRELM 18.2421 ± 0.0132 0.9894 ± 0.0004 0.0208 ± 0.0001 2–10, 2–20, 2–2, –, –
BPNN 24.6598 ± 0.0099 0.6609 ± 0.0006 1.4298 ± 0.0008 –, –, –, –, –
DRELM 35.8476 ± 0.0214 0.9194 ± 0.0003 0.0239 ± 0.0005 2–12, 2–15, –, –, –

Sine L2–ELM 34.1789 ± 0.0313 0.8588 ± 0.0005 0.0786 ± 0.0005 –, 2–16, –, –, –
CELM 33.7223 ± 0.0407 0.7901 ± 0.0004 0.0275 ± 0.0003 –, 2–9, 2–2, –, –
L1–ELM 41.7759 ± 0.0521 0.7158 ± 0.0005 0.0267 ± 0.0002 2–9, –, –, –, –
CDRELM 23.4839 ± 0.0045 0.9829 ± 0.0001 0.0223 ± 0.0000 2–10, 2–20, 2–2, –, –
BPNN 24.6477 ± 0.0022 0.6847 ± 0.0007 1.4237 ± 0.0021 –, –, –, –, –
DRELM 36.3641 ± 0.0094 0.9299 ± 0.0005 0.0226 ± 0.0002 2–12, 2–15, –, –, –
SVR 30.0214 ± 0.0005 0.6415 ± 0.0005 0.0890 ± 0.0005 –, –, –, 28, 20

Life expec-
tancy

Sigmoid L2–ELM 20.4141 ± 0.0321 0.7704 ± 0.0003 0.0541 ± 0.0003 –, 22, –, –, –
CELM 19.6719 ± 0.0425 0.7905 ± 0.0006 0.0311 ± 0.0002 –, 22, 2–2, –, –
L1–ELM 21.5021 ± 0.0578 0.6754 ± 0.0005 0.0265 ± 0.0001 2–9, –, –, –, –
CDRELM 16.2593 ± 0.0155 0.9510 ± 0.0002 0.0219 ± 0.0000 2–16, 22, 2–2, –, –
BPNN 17.2907 ± 0.0094 0.6930 ± 0.0004 1.4608 ± 0.0011 –, –, –, –, –
DRELM 26.2532 ± 0.0077 0.9299 ± 0.0002 0.0226 ± 0.0002 2–10, 22, –, –, –

Sine L2–ELM 19.9088 ± 0.0235 0.8093 ± 0.0006 0.0550 ± 0.0001 –, 22, –, –, –
CELM 25.9338 ± 0.0453 0.8742 ± 0.0006 0.0274 ± 0.0002 –, 23, 2–2, –, –
L1–ELM 31.1602 ± 0.0316 0.7963 ± 0.0004 0.0259 ± 0.0001 2–9, –, –, –, –
CDRELM 14.9626 ± 0.0046 0.9476 ± 0.0000 0.0224 ± 0.0000 2–16, 22, 2–2, –, –
BPNN 17.3802 ± 0.0065 0.8130 ± 0.0004 1.4527 ± 0.0033 –, –, –, –, –
DRELM 26.3675 ± 0.0101 0.9104 ± 0.0004 0.0230 ± 0.0001 2–12, 22, –, –, –
SVR 17.0214 ± 0.0086 0.7820 ± 0.0006 0.0610 ± 0.0003 –, –, –, 28, 21
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Table 10   Experimental results on large samples of benchmark dataset

Dataset Activation function Algorithm MSE R2 Time(s) Parameter ( �, �, �,C, �)

Energy consumption Sigmoid L2–ELM 14.3000 ± 0.0135 0.8109 ± 0.0003 0.0579 ± 0.0006 –, 2–16, –, –, –
CELM 13.1000 ± 0.0096 0.8442 ± 0.0003 0.0338 ± 0.0046 –, 2–14, 2–2, –, –
L1–ELM 16.2000 ± 0.0107 0.7447 ± 0.0002 0.0291 ± 0.0004 20, –, –, –, –
CDRELM 9.9100 ± 0.0036 0.9454 ± 0.0002 0.0247 ± 0.0001 21, 2–15, 2–2, –, –
BPNN 3.9478 ± 0.0044 0.8650 ± 0.0003 1.4617 ± 0.0023 –, –, –, –, –
DRELM 8.1835 ± 0.0057 0.9285 ± 0.0006 0.0264 ± 0.0002 20, 2–15, –, –, –

Sine L2–ELM 13.1000 ± 0.0159 0.8729 ± 0.0004 0.0698 ± 0.0006 –, 2–16, –, –, –
CELM 14.8100 ± 0.0175 0.8165 ± 0.0016 0.0370 ± 0.0002 –, 2–10, 2–2, –, –
L1–ELM 14.1221 ± 0.0099 0.8140 ± 0.0005 0.0365 ± 0.0001 22, –, –, –, –
CDRELM 11.3000 ± 0.0032 0.9389 ± 0.0004 0.0302 ± 0.0001 21, 2–18, 2–2, –, –
BPNN 3.9351 ± 0.0012 0.8547 ± 0.0003 1.4510 ± 0.0003 –, –, –, –, –
DRELM 8.3629 ± 0.0033 0.9271 ± 0.0003 0.0363 ± 0.0003 21, 2–15, –, –, –
SVR 2.2591 ± 0.0031 0.8426 ± 0.0004 0.2438 ± 0.0004 –, –, –, 26, 23

Air quality Sigmoid L2–ELM 1.5230 ± 0.0031 0.9654 ± 0.0006 0.0672 ± 0.0001 –, 2–16, –, –, –
CELM 1.1018 ± 0.0026 0.7737 ± 0.0004 0.0487 ± 0.0002 –, 2–17, 2–2, –, –
L1–ELM 2.9731 ± 0.0033 0.8301 ± 0.0005 0.0483 ± 0.0003 2–3, –, –, –, –
CDRELM 1.0600 ± 0.0022 0.9805 ± 0.0007 0.0421 ± 0.0001 2–8, 2–15, 2–2, –, –
BPNN 0.6879 ± 0.0009 0.9018 ± 0.0004 2.7098 ± 0.0006 –, –, –, –, –
DRELM 1.3885 ± 0.0015 0.9705 ± 0.0003 0.0436 ± 0.0004 2–8, 2–13, –, –, –

Sine L2–ELM 1.3951 ± 0.0037 0.9457 ± 0.0006 0.06120 ± .0003 –, 2–17, –, –, –
CELM 1.4790 ± 0.0016 0.7405 ± 0.0006 0.0462 ± 0.0003 –, 2–17, 2–2, –, –
L1–ELM 2.3717 ± 0.0022 0.9077 ± 0.0004 0.0434 ± 0.0002 2–5, –, –, –, –
CDRELM 1.0561 ± 0.0018 0.9805 ± 0.0002 0.0400 ± 0.0004 2–9,2–15,2–2, –, –
BPNN 0.6513 ± 0.0010 0.9213 ± 0.0002 2.7031 ± 0.0003 –, –, –, –, –
DRELM 1.5933 ± 0.0007 0.9747 ± 0.0002 0.0423 ± 0.0003 2–8, 2–13, –, –, –
SVR 0.0512 ± 0.0006 0.9594 ± 0.0002 0.4011 ± 0.0003 –, –, –, 24, 22

Table 11   Accuracy average ranks

Dataset Activation function L2-ELM CELM L1-ELM BPNN SVR DRELM CDRELM

Octane number Sigmoid 3
3

4
4

5
5

6
6

7
7

2
2

1
1Sine

Boston housing Sigmoid 3
3

4
4

5
5

6
6

7
7

2
2

1
1Sine

Life expectancy Sigmoid 5
5

3
3

6
7

4
6

7
4

2
2

1
1Sine

Energy consumption Sigmoid 6
3

4
6

7
7

3
4

5
5

2
2

1
1Sine

Air quality Sigmoid 3
4

7
7

6
6

5
5

4
3

2
2

1
1Sine

Average rank 3.8 4.6 5.9 5.1 5.6 2 1
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Conclusion

The traditional ELM with the square loss function has 
the disadvantages of overfitting and high sensibility to 
outliers. A new algorithm called CDRELM, which has 
a nonconvex and bounded C-loss function and embeds 
L1 norm and L2 norm in objective function, is proposed. 
CDRELM is used to solve the problems with many out-
liers, high dimension, and small or medium samples. It 
also offers a new embedded feature selection which has 
a strong capability for dimensionality reduction. Further-
more, CDRELM can complete the two processes of pre-
diction and dimensionality reduction at the same time, so 
that it can speed up training efficiency. The improved PGD 
algorithm can also make the solving process more rapid 
and more accurate. Experiments on artificial datasets and 
benchmark datasets show that CDRELM has better gener-
alization ability and more robustness at a higher learning 
speed than BPNN, SVR, DRELM, CELM, L2–ELM, and 
L1–ELM.

It should be noted that we only verified the performance 
for regression. In future work, we will attempt to verify the 
classification capacity of the proposed algorithm. Based on 
the comparison of MSE, it is clear that CDRELM obtains 
a slightly larger value on large datasets. Therefore, how to 
improve the accuracy and robustness for large sized datasets 
will be another focus of our future research.
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