
https://doi.org/10.1007/s12559-022-10050-2

C‑Loss‑Based Doubly Regularized Extreme Learning Machine

Qing Wu1 · Yan–Lin Fu1 · Dong–Shun Cui2 · En Wang3

Received: 17 August 2021 / Accepted: 14 August 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
Extreme learning machine has become a significant learning methodology due to its efficiency. However, extreme learn-
ing machine may lead to overfitting since it is highly sensitive to outliers. In this paper, a novel extreme learning machine
called the C-loss-based doubly regularized extreme learning machine is presented to handle dimensionality reduction and
overfitting problems. The proposed algorithm benefits from both L1 norm and L2 norm and replaces the square loss function
with a C-loss function. And the C-loss-based doubly regularized extreme learning machine can complete the feature selec-
tion and the training processes simultaneously. Additionally, it can also decrease noise or irrelevant information of data to
reduce dimensionality. To show the efficiency in dimension reduction, we test it on the Swiss Roll dataset and obtain high
efficiency and stable performance. The experimental results on different types of artificial datasets and benchmark data-
sets show that the proposed method achieves much better regression results and faster training speed than other compared
methods. Performance analysis also shows it significantly decreases the training time, solves the problem of overfitting, and
improves generalization ability.

Keywords Extreme learning machine · C-loss function · Feature selection · Regularization

Introduction

Processing a large quantity of data carries a high computa-
tional cost and slows the training process. To resolve these
issues, a fast and stable algorithm needs to be proposed. In
1986, Rumelhart et al. [1] proposed the back propagation
neural network (BPNN), which is a multilayer feedforward
network for error correction. Support vector regression
(SVR), used to minimize the generalization error bound so
as to achieve generalized performance, was then presented
by Vapnik et al. [2]. Single-layer feedforward neural net-
works (SLFNs) have a powerful nonlinear mapping capabil-
ity and generally use the gradient descent algorithm to deal
with the problems of classification and regression [3]. How-
ever, they have several disadvantages such as low training

efficiency and being trapped easily in a local minimum. In
2006, extreme learning machine (ELM) for SLFNs was pro-
posed by Huang et al. [4], which is still widely used in many
research fields, such as foreign accent identification [5], fault
detection [6], and emotion recognition [7]. Compared with
traditional methods, such as the gradient descent algorithm,
ELM can significantly increase training speed and improve
generalization performance [8].

In ELM, the input network weights and hidden bias
can be generated randomly. Meanwhile, the output net-
work weights can be obtained by only calculating the
Moore–Penrose inverse [9]. If the amplitude distribution
of the singular value is relatively continuous and the mini-
mum singular value is very close to 0, a large value of
output weight vector will be obtained. Therefore, basic
ELM, based on empirical risk minimization, leads to over-
fitting and affects prediction ability [10]. However, ELM
uses the traditional least squares method to compute the
output weight. As a convex function, the square loss func-
tion can cause outliers to sustain large losses because of
unboundedness [11]. When outliers exist in the dataset, the
approximation function of ELM may significantly deviate
from the optimal function, resulting in poor generalization.

 * Yan–Lin Fu
 fuyanlin@stu.xupt.edu.cn

1 School of Automation, Xi’an University of Posts
and Telecommunications, Xi’an 710121, China

2 School of Electrical and Electronic Engineering, Nanyang
Technological University, Singapore 639798, Singapore

3 School of Marxism, Xi’an Shiyou University, Xi’an 710065,
China

/ Published online: 27 August 2022

Cognitive Computation (2023) 15:496–519

1 3

http://orcid.org/0000-0003-1937-2990
http://crossmark.crossref.org/dialog/?doi=10.1007/s12559-022-10050-2&domain=pdf

To overcome the above shortcomings, researchers have
proposed several schemes. Deng et al. [12] put forward
a regularized ELM embedded L2 norm (L2–ELM). The
algorithm uses the weighted least squares method to
obtain anti–noise ability by introducing the regularization
factor � . L1–ELM with a sparse solution was proposed by
Balasundaram et al. [13]. Clearly, L1 norm is less sensi-
tive to outliers than L2 norm. The decision function of
L1–ELM uses a smaller number of hidden nodes than
ELM. Martínez et al. [14] introduced L1 norm and hybrid
penalties to solve regression problems of ELM. The pur-
pose of introducing different penalties is to moderate the
detrimental effect of outliers. Taking the importance of
features into consideration, the methods assign different
weights to different features automatically. As a result, the
smallest weight is assigned to outliers. An ELM model
based on L1 norm and L2 norm regularizations (DRELM)
is proposed to handle regression and multiple-class clas-
sification problems [15]. It is robust in both regression
and classification applications. In 2014, the C-loss func-
tion for pattern classification was presented by Abhishek
et al. [16]. The proposed loss function can improve the
performance of neural network classifiers. In fact, the
paper just introduces the C-loss function for only clas-
sification problems. Zhao et al. [17] offered an algorithm
named C-loss-based extreme learning machine (CELM).
Although CELM has good generalization performance, it
has difficulty solving the problem of overfitting.

More recently, other alternative methods were proposed
to eliminate the distraction caused by outliers. Jing et al.
[18] proposed domain-invariant feature learning framework
for partial domain adaptation. Fu et al. [19] developed a
novel model termed partial feature selection and alignment
by employing a feature selection vector based on the cor-
relation among the features of multiple sources and target
domains. Both of them show that re-weighting and feature
selection can eliminate the distraction caused by outliers.
However, they mainly tackled distribution shift and label
shift problems.

To develop a more stable, stronger anti-interference and
faster algorithm, we propose a doubly regularized ELM
based on C-loss function called CDRELM. The proposed
algorithm replaces the square loss function with C-loss
function and embeds L1 norm and L2 norm on ELM. L1
norm has the ability to reduce the feature dimension of
samples. Therefore, CDRELM can not only deal with
regression problems with strong generalization perfor-
mance but also, as a method of feature selection, can
decrease the dimension at high speed. CDRELM tends
to be more robust and achieves much better generaliza-
tion with a faster learning speed than L2–ELM, L1–ELM,
CELM, DRELM, BPNN, and SVR. To find solutions for

this mathematical model, CDRELM is transformed into
least absolute shrinkage and selection operator (Lasso)
[20]. The three main contributions in this paper are as
follows:

1. The C-loss function is used for regression problems
rather than classification problems. To overcome the
unsteadiness of the square loss function to outliers, the
square loss function used in ELM is replaced by the
C-loss function which is bounded, non-convex, and
smooth. Thus, a novel algorithm CDRELM is proposed
based on the C-loss function. In comparison with the
traditional ELM, CDRELM overcomes the problem of
overfitting and the insufficient robustness to outliers,
which greatly improve the generalization capability.

2. As a new method of feature selection which simultane-
ously allows feature selection and the training process,
CDRELM can generate sparse eigenvalues by embed-
ding the L1 norm. In addition, the L2 norm is added to
maintain the amplitude of output weight sparsity and
avoid increased sparsity. It can solve regression prob-
lems much faster with its ability of dimension reduction.
It can also reduce the computational cost and process
high-dimensional datasets efficiently.

3. The new mathematical model is transformed into a
Lasso problem for calculating the results. According
to the proximal gradient descent (PGD) algorithm [21],
an improved operator replaces the original operator to
solve the Lasso problem. Compared with PGD, the new
improved method can obtain the solution fast and effi-
ciently decrease the number of iterations. It can also
compute the solution, which is applied to various data-
sets with fast and accurate performance.

The rest of this paper is organized as follows. “Related
Work” introduces the related work, including ELM, C-loss
function, and proximal gradient descent algorithm. In
“Proposed CDRELM Method,” the novel algorithm
CDRELM, including a mathematical model, solution,
and computational complexity analysis, is presented. The
proposed algorithm can not only possess the nonconvex
and bounded loss function with robustness to outliers but
embed L1 norm and L2 norm to carry out feature selection
at high speed. CDRELM can be solved by an improved
alternating optimization method. To test the effectiveness
of the proposed CDRELM, “Experiments and Discussion”
presents the experimental results including improved solu-
tion, dimensionality reduction, and regression. “Perfor-
mance for Regression” shows four artificial datasets and
five benchmark datasets. The Friedman and Nemenyi tests
are also shown for comparative analysis. “Conclusion”
presents conclusions and future work.

497Cognitive Computation (2023) 15:496–519

1 3

Related Work

ELM

As a single-hidden-layer feedforward neural network, ELM
plays a key role in academia and industry. The development
of SLFNs has enabled ELM to reach enhanced generaliza-
tion performance for classification and regression at high
speed.

In SLFN, for Q arbitrary distinct samples
(
xi, ti

)
 , where

xi =
[
xi1, xi2,… , xim

]T
∈ Rm and ti =

[
ti1, ti2,… , tin

]T
∈ Rn ,

the relationship between input xi and output f
(
xi
)
 is given

as follows:

where �j =
[
�j1,�j2,… ,�jn

]T and bj =
[
bj1, bj2,… , bjn

]T
are the randomly generated learning parameters of hidden
nodes; �j =

[
�j1, �j2,… , �jn

]T is the weight connecting the j-
th hidden node and the output nodes; G(⋅) represents the acti-
vation function; P is number of hidden nodes; Q is the num-
ber of datasets. The output function of ELM is expressed
as follows:

Here, � =
[
�1, �2,… , �P

]T is the matrix of output weights
and y =

[
y1, y2,… , yQ

]T is the matrix of targets. The hidden-
layer output matrix is as follows:

The value of the output weights � can be determined by
calculating the linear system Eq. (2) as follows:

where H+ is the Moore–Penrose generalized inverse matrix
H [22]. ELM computes H+ in Eq. (4) based on the singular
value decomposition (SVD) of H.

C‑loss Function

There are several loss functions such as hinge loss function
[23], �− learning loss function [24], normalized sigmoid
loss function [25], and ramp loss function [26]. Compared
with square loss function, these loss functions perform better
in enhancing the robustness because of nonconvexity and
boundedness. To find a better loss function, Abhishek et al.
[16] proposed the C-loss function defined by the following:

(1)

f
(
xi
)
=

P∑
j=1

�jG
(
�j, bj, xi

)
=

P∑
j=1

�jG
(
�j ⋅ xi + bj

)
, i = 1, 2,… ,Q,

(2)H� = y

(3)H =

⎡⎢⎢⎣

G
�
�1, b1, x1

�
… G

�
�P, bP, x1

�
⋮ ⋱ ⋮

G
�
�1, b1, xQ

�
⋯ G

�
�P, bP, xQ

�
⎤⎥⎥⎦

(4)� = H+y

where � = y − f (x) is the space of errors, and � is window
width. The comparison of various loss functions is depicted
in Fig. 1.

Compared with the other loss functions, the C-loss func-
tion is bounded, nonconvex, and smooth being more stable
to outliers. C-loss can process all sizes of errors for classifi-
cation problems. In this paper, we introduce the C-loss func-
tion to a doubly regularized ELM for regression problems.

Proximal Gradient Descent Algorithm

In 2004, Boyd et al. [21] proposed PGD to solve the prob-
lems of L1 regularization. It is an effective and rapid solution
to Lasso problems in many applications.

Let ∇ be a differential operator. The optimization objec-
tive is as follows:

If g(x) is derivative and ∇g meets the condition of
L–Lipschitz,

In the neighborhood of xk , the g(x) can be approximately
calculated by second-order Taylor expansion as follows:

where const is a constant, and ⟨⋅⟩ is inner product. The mini-
mum value of Eq. (8) can be obtained from the following:

Gradient descent can be adopted to minimize g(x) . Each
step of gradient descent iteration is equivalent to minimiz-
ing the quadratic function

∧
g (x) . According to Eq. (6), each

iteration step is similarly shown as follows:

Each step of gradient descent iteration for g(x) should
consider minimizing the L1 norm at the same time.

For Eq. (10), let h = xk −
1

L
∇g

(
xk
)
 and let xi be the i-th

component of x. Then, the closed-form solution is written
as follows:

(5)lC(�) = 1 − exp

{
−

�2

2�2

}

(6)min
x

g(x) + �‖x‖1

(7)∃L ∈ R+,
‖‖‖∇g

(
x�
)
− ∇g(x)

‖‖‖
2

2
≤ L‖‖x� − x‖‖22

(
∀x, x�

)

(8)

∧
g (x) ≃ g

(
xk
)
+
⟨
∇g

(
xk
)
, x − xk

⟩
+

L

2
‖‖x − xk

‖‖
=

L

2

‖‖‖‖x −
(
xk −

1

L
∇g

(
xk
))‖‖‖‖

2

2

+ const

(9)xk+1 = xk −
1

L
∇g

(
xk
)

(10)xk+1 = argmin
x

L

2

����x −
�
xk −

1

L
∇g

�
xk
������

2

2

+�‖x‖1

498 Cognitive Computation (2023) 15:496–519

1 3

where xi
k+1

 and hi are the i-th component of xi
k+1

 and h,
respectively.

Proposed CDRELM Method

Our framework adopts bounded, nonconvex, and smooth
C-loss function, leading to processing the outliers succes-
sively. In addition, CDRELM based on L1 and L2 regulari-
zation can complete the feature selection and the training
process simultaneously, which greatly decreases the training
time. Therefore, CDRELM can be considered a new method

(11)xi
k+1

=

⎧⎪⎨⎪⎩

hi − 𝜂∕L, 𝜂∕L < hi

0, ��hi�� ≤ 𝜂∕L

hi+𝜂∕L, hi < −𝜂∕L

of embedded feature selection that is fast and offers stable
performance.

Mathematical Model

We know that the regression problems investigate the rela-
tionship between the prediction and the target. To solve these
problems, factors such as prediction accuracy, time, robust-
ness, and size of model should be considered.

A single-output regression problem is formulated as follows:

where � =
[
�1, �2,… , �P

]T is the regression weights and
� =

[
�1, �2,… , �Q

]T is the loss between prediction value and
target value. The input of the problem H is a Q × P matrix
that can be described as follows:

(12)y = H� + �

Fig. 1 Comparison of loss
functions

(a) Hinge loss, learning loss, normalized sigmoid loss, ramp loss, and square loss

(b) C–loss with different window width

-�

�

499Cognitive Computation (2023) 15:496–519

1 3

The traditional solution is estimated by square loss func-
tion and can be defined as follows:

where
∧

� =

[
∧

�1,
∧

�2,… ,
∧

�P

]T
 is the vector of estimated regres-

sion weights. Square loss function is convex and unbounded.
However, C-loss, which is smooth, bounded, and nonconvex,
can improve robustness and reduce overfitting. To overcome
the instability of square loss to outliers, the square loss func-
tion is replaced with C-loss function. Then Eq. (14) can be
transformed as follows:

It is known that large-scale datasets lead to high computa-
tional cost. As a regularization technique, L1 norm has been
proposed to sparse eigenvalue and enhance generalization
ability by shrinking some coefficients and setting others to
0. The Lasso estimate is shown as follows:

where � is a positive regularization parameter and ‖⋅‖1 is
the L1 norm. The value of � is positively associated with the
number of nonzero components of

∧

�.
Nevertheless, Zou et al. [27] noted that in the situation

of Q < P , Lasso can only select at most Q variables. For
the general situation of Q > P , Lasso cannot behave well if
there are high correlations between prediction targets. To
solve this problem, the L2 norm is added to the mathematic
model. Therefore, the amplitude of output weight

∧

� main-
tains sparsity while avoiding “over–sparsity.” The modified
system can now be expressed as follows:

where � is a L2 norm regularization parameter and ‖∙‖ is L2
norm. According to [12–15], a 2-norm regularization param-
eter is introduced to ELM, creating the model L2–ELM with
good generalization performance and strong control abil-
ity. Compared with ELM, L2–ELM realizes the limitation
of model space and avoids overfitting. ELM is embedded
with a 1-norm regularization parameter, giving the model

(13)H =

⎡
⎢⎢⎣

h11 ⋯ h1P
⋮ ⋱ ⋮

hQ1 ⋯ hQP

⎤
⎥⎥⎦

(14)
∧

� = argmin
�

‖y − H�‖2
2

2

(15)
∧

� = argmin
�

{
1 − exp

{
−
(y − H�)2

2�2

}}

(16)
∧

� = argmin
�

�
1 − exp

�
−
(y − H�)2

2�2

�
+ �‖�‖1

�

(17)

∧

� = argmin
�

�
1 − exp

�
−
(y − H�)2

2�2

�
+ �‖�‖1 + �‖�‖2

2

�

L1–ELM fast learning speed. L1–ELM can achieve sparsity
and has good optimization solution characteristics. DRELM
can control the complexity of the network and prevent over-
fitting. In our proposed mathematic model, C-loss function
increases the robustness to the outliers, L1 norm offers an
automatic variable selection through a sparse vector, and
L2 norm strengthens the control ability. All the components
of the process are performed simultaneously which signifi-
cantly decreases the time and obtains strong generalization.

It is clear that Eq. (17) is nonconvex and cannot use
the traditional optimization algorithm to solve CDRELM.
Therefore, it is necessary to develop a more efficient method
for solving CDRELM.

Solution

Based on the mathematical model of CDRELM, it can be
transformed into an equivalent Lasso problem [20]. Accord-
ing to the proximal gradient descent (PGD) algorithm [21],
an improved operator replaces the original operator to solve
the Lasso problem. In this paper, the improved PGD is used
to compute

∧

� of CDRELM.
Let ∇ be a differential operator. The optimization objec-

tive of CDRELM is as follows:

Let �k = �k +
k(�k−�k−1)

k+5
 , where �k is the k-th step of � and the

initial �0 and �1 are both equal to 0 with the size of n × 1 . Replac-
ing �k with �k , it decreases the difference between the next gradi-
ent updating direction and the current gradient direction.

g(�) is differentiable and ∇g meets the condition of
L—Lipschitz,

In the neighborhood of �k , the g(�) can be approximately
calculated by second-order Taylor expansion as follows:

(18)

J(�) = min
�

�
1 − exp

�
−
(y − H�)2

2�2

�
+ �‖�‖1 + �‖�‖2

2

�

(19)g(�) = 1 − exp

�
−
(y − H�)2

2�2

�
+ �‖�‖2

2

(20)

∇g = −
HT (y − H�)

�2
⋅

(
− exp

{
−
(y − H�)2

2�2

})
+ 2��

(21)∃L ∈ R+,
‖‖‖∇g

(
��
)
− ∇g(�)

‖‖‖
2

2
≤ L‖‖�� − �‖‖22

(
∀�, ��

)

(22)

∧
g (�) ≃ g

(
�k
)
+
⟨
∇g

(
�k
)
, � − �k

⟩
+

L

2
‖‖� − �k

‖‖2

=
L

2

‖‖‖‖� −
(
�k −

1

L
∇g

(
�k
))‖‖‖‖

2

2

+ const

500 Cognitive Computation (2023) 15:496–519

1 3

where const is a constant and ⟨⋅⟩ is inner product. The mini-
mum value of Eq. (22) can be obtained from the following:

Gradient descent can be adopted to minimize g(�) . Each
step of gradient descent iteration is equivalent to minimizing
the quadratic function

∧
g (�) . Let this method be extended to

Eq. (18). Then, each iteration step is similarly shown as follows:

Namely, each step of gradient descent iteration for g(�)
should consider minimizing the L1 norm at the same time.

For Eq. (24), let h = �k −
1

L
∇g

(
�k
)
 and let �i be the i-th

component of � . Then, compute �k+1 = argmin
x

L

2

‖� − h‖2
2
+�‖�‖

1 . The closed-form solution is written as
follows:

Here, �i
k+1

 and hi are the i-th component of �
k+1

 and h,
respectively.

The CDRELM algorithm shown below includes the pro-
cess of modeling and solving the mathematical model.

(23)�k+1 = �k −
1

L
∇g

(
�k
)

(24)�k+1 = argmin
�

L

2

����� −
�
�k −

1

L
∇g

�
�k
������

2

2

+�‖�‖1

(25)𝜆i
k+1

=

⎧⎪⎨⎪⎩

hi − 𝜂∕L, 𝜂∕L < hi

0, ��hi�� ≤ 𝜂∕L

hi+𝜂∕L, hi < −𝜂∕L

Computational Complexity Analysis

In this section, we analyze the computational complexity
of CDRELM.

For the matrix H ∈ RQ×P , where P is the number of hid-
den nodes and Q is the number of datasets, the computa-
tional complexity of SVD is O

(
4QP2 + 8P3

)
 [28]. As men-

tioned in “ELM,” ELM computes its output weights based
on the SVD of H ∈ RQ×P , so that the computational com-
plexity of ELM is approximately the same as SVD.

According to Eq. (19), the computational complexity of
each iteration step is also O

(
4QP2 + 8P3

)
 . If we assume that

the method converges after K-th iterations, the overall com-
putational time complexity is K ∗ O

(
4QP2 + 8P3

)
.

Experiments and Discussion

We conducted experiments to verify the performance of
the presented algorithm. “Performance of Improved PGD”
shows the comparison between the traditional PGD and
the improved PGD. The performance in dimensionality

Table 1 Data comparison between PGD and improved PGD

Algorithm Time(s) Iterations Optimal value

PGD 0.3243 100 − 1.412
Improved PGD 0.0925 59 − 1.574

Algorithm: CDRELM
Input: a training set: � �� �, , , 1, ,m n

i i i ix y x R y R i Q� � � K ;

related parameter: the number of hidden nodes P; activation function � �G x ;

L1 norm term � ; L2 norm term � ; parameter � �0,1� � ; window width �
Output: the output weight matrix �
1. Randomly generate learning parameters of hidden nodes ,j jb� ,1 j P� � .

2. Compute the hidden layer output matrix H based on Eq. (3).

3. Let � � � �2

2

2 2
1 exp

2

y H
g

�
� � �

�

� ��� �� � � � �
� ��

.

4. Initialize
1

n
kL R� � , 1

0 0n� 	� and 1

1 0n� 	� .

5. Let step length L: =
1kL �

while � � � � � �1

410 1k kJ kJ� � �
�� � �

set
� �1

5

k k
k k

k
k
� �

� � ��
� �

�
, � �1

k kh g
L

� �� � �

do Eq. (25)

while � � � � � � � � 2

2

T
k k k k

Lg h g g h� � � � �� �� � � �

2

+1 2 1
arg min +

2
k

L h
�

� � � �� �

update L: L��
return kL := L

501Cognitive Computation (2023) 15:496–519

1 3

reduction is given in “Performance on Dimensionality
Reduction.” “Performance for Regression” details the per-
formance for regression. We evaluated related algorithms,
including L2–ELM, L1–ELM, CELM, DRELM, BPNN, and
SVR, by using different types of datasets and two activation
functions. All experiments were performed in MATLAB
R2016a on a desktop computer with an Intel Core i7 1160G7
CPU at 2.11 GHz, 16 GB of memory, and Windows 10.

Performance of Improved PGD

The input xi =
[
xi1, xi2,… , xi500

]T
∈ R500 i = 1,… , 2500 of

CDRELM is generated randomly, where xij ∈ (0, 1) . Accord-
ing to Eq. (18), we can obtain � by using PGD and improved
PGD.

Compared with the original PGD, the improved PGD can
reach the optimal value fast and requires only 59 iterations.
Moreover, the optimal value of � , which is calculated by
improved PGD, obtains the fitter results. Table 1 shows the
data comparison between PGD and improved PGD, includ-
ing time, iterations, and optimal value. The visual results
between two methods are plotted in Fig. 2.

Performance on Dimensionality Reduction

As a new method of embedded feature selection, CDRELM
can automatically select the feature to reduce the dimension
of the sample dataset and predict samples simultaneously.
It can make eigenvalue sparse and enhance generalization
ability by shrinking some coefficients and setting others to
zero. It also reduces computational complexity and improves
computational efficiency by decreasing the number of �.

The Swiss Roll dataset was created to verify different
dimensionality reduction algorithms [29]. r and l return two
arrays of random numbers generated from the continuous
uniform distributions with lower and upper endpoints speci-
fied by 0 and 1, respectively. The data on the coordinate axis
is generated from the following:

The comparison of before and after the dimensional-
ity reduction using CDRELM is shown in Figs. 3 and 4.
Figure 3 signifies the situation of scatter which adopts

(26)

t =
3�

2(l + 2r)

⎧⎪⎨⎪⎩

x = t ∗ cos (t)

y = 2l

z = t ∗ sin (t)

Fig. 2 Comparison between PGD and improved PGD

Fig. 3 Comparison of value on z-axis before and after dimension reduction using CDRELM

502 Cognitive Computation (2023) 15:496–519

1 3

CDRELM to verify the feature selection effect of the pro-
posed method. In Fig. 4, the scatter value on the z-axis which
belongs to Fig. 3 is located on the y-axis. The x-axis denotes
the amount of scatter in Fig. 3.

From the experimental results, it is obvious that
CDRELM can achieve significant dimensionality reduction,
including reduced computational complexity and increased
efficiency. From Figs. 3 and 4, it can be seen that CDRELM
can not only narrow the range but also set some data to 0.
Obviously, the impact of dimension reduction on the z-axis
is significant.

Performance for Regression

Four artificial datasets and five benchmark datasets from
UCI machine learning repository [30] and Kaggle [31] were
used to test the proposed algorithm CDRELM. To evaluate

the performance of CDRELM, it was compared with six
algorithms: L2–ELM, L1–ELM, CELM, DRELM, BPNN,
and SVR. In the experiments, two activation functions
including sigmoid and sine were used on different datasets.
Several parameters needed to be adjusted: L1 norm term,
L2 norm term, window width � of C-loss function, and the
number of hidden layer nodes P. Taking “sinc function data-
sets” as examples, we analyzed the sensitivity of CDRELM
to the number of hidden layer nodes P. In Fig. 5, with the
number of hidden layer nodes increasing, the R2 has no obvi-
ous change. The numbers of hidden layer nodes selected
were 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, and
400. During the experiments, we fixed the number of hidden
layer nodes at 20 and combined the grid search with a cross-
validation technique to select the best parameters. Using the
best parameters, we performed the experiments 30 times and
reported the results with variability information.

Fig. 4 Performance of dimen-
sionality reduction based on
CDRELM

Fig. 5 Relationship between the number of hidden layer nodes and R2 on sinc function datasets

503Cognitive Computation (2023) 15:496–519

1 3

Two performance indices mean squared errors (MSE) and
determination coefficient (R2) are defined by the following:

(27)MSE = E
(

∧
yi −yi

)2

i = 1,… ,Q

(28)R2 =

�
l

l∑
i=1

∧
yi yi −

l∑
i=1

∧
yi

l∑
i=1

yi

�2

⎛
⎜⎜⎝
l

l∑
i=1

∧

y2
i
−

�
l∑

i=1

∧
y
i

�2⎞
⎟⎟⎠

⎛
⎜⎜⎝
l

l∑
i=1

y2
i
−

�
l∑

i=1

yi

�2⎞
⎟⎟⎠

Table 2 Functions used for generating regression datasets

Dataset Function definition

Sinc function
40 sin c(0.4x) =

{
40 sin (0.4x)

x
if x ≠ 0

40 else

Linear regression y = kx

Self-defining function y = exp {0.35x ∗ sin (x)}

Two-moon r ∼ U
(
r −

w

2
, r +

w

2

)

�1 ∼ U(0,�) �2 ∼ U(−�, 0)

Table 3 Details of artificial datasets

Dataset Number
of training
samples

Number
of testing
samples

Range of
independent
variables

Sinc function 1800 201 x ∈ (−10, 10)

Linear regression 1800 201 x ∈ (−10, 10)

Self-defining function 1800 201 x ∈ (−10, 10)

Two-moon 1800 201 x1 ∈ (0, 3)

x2 ∈ (1.5, 4.5)

1800 201

(a) Sinc function (b)Linear regression

(c) Self-defining function
Fig. 6 Regression shapes of three functions with WGN

504 Cognitive Computation (2023) 15:496–519

1 3

where
∧
yi represents the prediction of the desired yi , and

l is the number of testing samples. A smaller MSE or a
larger performance index R2 reflects better generalization
performance.

Here, we use two activation functions for comparing
L2–ELM, L1–ELM, CELM, DRELM, and CDRELM on the
same datasets.

Sigmoid function:

Sine function:

(29)F(a, b, x) =
1

1 + exp
(
−aT

i
x + bi

)

(30)F(a, x) = sin
(
aT
i
x
)

To achieve good generalization performance, the appro-
priate optimization parameter needs to be chosen. We com-
bined grid search with a cross-validation technique to choose
these parameters [32]. The regularization parameters � for
L1–ELM, � for L2–ELM, and � and � for DRELM are all
determined from the parameter set

{
2−50,… , 20,⋯ , 220

}
 . In

CELM, the window width � and the regularization param-
eter � are chosen from the candidate set

{
2−2,… , 20,⋯ , 22

}

and
{
2−50,… , 20,⋯ , 220

}
 , respectively. In CDRELM, the

regularization parameters � and � are selected from {
2−50,… , 20,⋯ , 220

}
 and

{
2−50,… , 20,⋯ , 220

}
 , and the

window width � is taken from
{
2−2,… , 20,⋯ , 22

}
 . In

BPNN, we set the goal accuracy as 1e − 3 and the maximum
iterations as 1500. The number of input layer nodes is equal
to the number of input variables. The number of output layer

(a) Sinc function

(c) Sinc function with WGN of power 5 dBW

(b) Sinc function with WGN of power 2 dBW

(d) Sinc function with WGN of power 10 dBW

-10 -8 -6 -4 -2 0 2 4 6 8 10

Inputs

-20

-10

0

10

20

30

40
O
u
tp
u
ts

True

L
2
-ELM

CELM

L
1
-ELM

DRELM

BP

SVR

CDRELM

-10 -8 -6 -4 -2 0 2 4 6 8 10

Inputs

-20

-10

0

10

20

30

40

50

O
u
tp
u
ts

True

L
2
-ELM

CELM

L
1
-ELM

DRELM

BP

SVR

CDRELM

-10 -8 -6 -4 -2 0 2 4 6 8 10

Inputs

-20

-10

0

10

20

30

40

50

O
u
tp
u
ts

True

L
2
-ELM

CELM

L
1
-ELM

DRELM

BP

SVR

CDRELM

-10 -8 -6 -4 -2 0 2 4 6 8 10

Inputs

-20

-10

0

10

20

30

40

50

O
u
tp
u
ts

True

L
2
-ELM

CELM

L
1
-ELM

DRELM

BP

SVR

CDRELM

Fig. 7 Regression results on sinc function and sinc function with WGN

505Cognitive Computation (2023) 15:496–519

1 3

nodes is set as 1. According to the MSE calculated using the
trial-and-error method, the learning rate and the number of
hidden layer nodes are selected according to different data-
sets. They are selected as 0.003 and 7 on artificial datasets.
Meanwhile, the two parameters of learning rate and the num-
ber of hidden layer nodes are set as 0.009 and 3 on the octane
number dataset, 0.008 and 7 on the Boston housing dataset,
0.008 and 11 on the life expectancy dataset, 0.005 and 7 on
the energy consumption dataset, and 0.003 and 4 on the air
quality dataset, respectively. The penalty parameter C for
error entries of SVR affects the accuracy and generalization
ability [2]. The penalty parameter C is taken from {
2−50,… , 20,⋯ , 220

}
 and the radial basis kernel function

K
�
�, �i

�
= exp

�
−
‖�−�i‖2

2�2

�
 is used in SVR where the

parameter � is selected from
{
2−2,… , 20,⋯ , 210

}
.

Performance on Artificial Datasets

Three artificial datasets with white Gaussian noise (WGN)
and two-moon datasets were generated to verify the predic-
tion accuracy and generalization ability. The power spectral
density of WGN obeys uniform distribution, and the ampli-
tude distribution obeys Gaussian distribution [33]. Based on
the traditional function, WGN with the form of 2001 × 1 was
added to the three functions whose definitions are given in
Table 1. Moreover, in WGN, the power of each function in
decibels relative to a watt is 2 dBW. In particular, to verify
the effect of outliers on the comparison of performance
and the relationship between outliers and parameters, the

performance of seven algorithms on sinc function datasets
with WGN of power 0 dBW, 2 dBW, 5 dBW, and 10 dBW is
shown in Fig. 7 and Table 4.

The details of the experiments on the four datasets are
listed in Tables 2 and 3. For artificial datasets, almost nine-
tenths of the whole dataset are used as the training set, and
the remaining one-tenth is used as the testing set. Figure 6
shows regression shapes of three functions with the WGN of
power 2 dBW. The regression results of sinc function, linear
regression function, self-defining function, and two-moon
are plotted in Figs. 7, 8, 9, and 10, respectively. Similarly,
the experimental results are given in Tables 4, 5, 6, and 7,
respectively.

It can be seen from Figs. 7, 8, 9, and 10 and Tables 4, 5,
6, and 7 that CDRELM achieves comparable performance
to other algorithms with a much higher learning speed due
to its ability in dimensionality reduction. It is clear that
CDRELM takes much less time than other algorithms. In
particular, the proposed algorithm can achieve better gener-
alization performance and more significant efficiency than
BPNN and SVR. In most cases, the proposed CDRELM
obtains the largest R2 and the smallest MSE, which shows
the most robustness and highest accuracy in terms of gen-
eralization performance. In general, it can be seen that
CDRELM has the best generalization ability and highest
learning speed. BPNN, SVR, L2–ELM, DRELM, and CELM
perform well in comparison with L1–ELM. On the basis of
linear regression datasets, L2–ELM can perform slightly
better than CDRELM in terms of robustness and accuracy.
However, when the WGN is added to the datasets, CDRELM
has the most stable performance. In Fig. 7 and Table 4, as

(a) Linear regression (b) Linear regression with WGN

-10 -8 -6 -4 -2 0 2 4 6 8 10

Inputs

-10

-5

0

5

10

15

O
u
tp
u
ts

True

L
2
-ELM

CELM

L
1
-ELM

DRELM

BP

SVR

CDRELM

-10 -8 -6 -4 -2 0 2 4 6 8 10

Inputs

-15

-10

-5

0

5

10

15

O
u
tp
u
ts

True

L
2
-ELM

CELM

L
1
-ELM

DRELM

BP

SVR

CDRELM

Fig. 8 Regression results on linear regression and linear regression with WGN

506 Cognitive Computation (2023) 15:496–519

1 3

the number of outliers increases, the determination coeffi-
cient R2 of seven algorithms decreases slightly. Meanwhile,
MSE and time are almost unaffected by outliers. It is clear
that CDRELM always maintains a high level of generaliza-
tion performance and fast efficiency.

According to the papers reported by Jing et al. [18]
and Fu et al. [19], as a feature selection method with L1
norm and L2 norm, CDRELM has strong anti-interference
capability in theory. Meanwhile, the experimental results
(Figs. 7, 8, 9, and 10 and Tables 4, 5, 6, and 7) show
that CDRELM has a low sensitivity to outliers and a

stable performance. It can be seen from Table 4 that the
selected parameters can also change as the number of
outliers increases. The larger the number of outliers,
the lower the regularization parameter � for L1 norm.
The number of outliers is positively associated with
the regularization parameter � for L2 norm. The experi-
ments also demonstrate that L1 norm offers an automatic
variable selection through a sparse vector, and L2 norm
strengthens the control ability. With the number of outli-
ers increasing, L2 norm increases to prevent overfitting
and L1 norm decreases to avoid excessive sparsity in

(a) Self–defining function (b)Self–defining function with WGN

-10 -8 -6 -4 -2 0 2 4 6 8 10

Inputs

-10

-5

0

5

10

15

20
O
u
tp
u
ts

True

L
2
-ELM

CELM

L
1
-ELM

DRELM

BP

SVR

CDRELM

-10 -8 -6 -4 -2 0 2 4 6 8 10

Inputs

-10

-5

0

5

10

15

20

O
u
tp
u
ts

True

L
2
-ELM

CELM

L
1
-ELM

DRELM

BP

SVR

CDRELM

Fig. 9 Regression results on self-defining function and self-defining function with WGN

(a) Moon1 (b) Moon2

0 0.5 1 1.5 2 2.5 3

Inputs

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

O
u
tp
u
ts

True

L
2
-ELM

CELM

L
1
-ELM

DRELM

BP

SVR

CDRELM

Fig. 10 Regression results on two-moon dataset

507Cognitive Computation (2023) 15:496–519

1 3

Table 4 Experimental results on sinc function and sinc function with WGN

Dataset Activation
function

Algorithm MSE R2 Time(s) Parameter
(�, �, �,C, �)

Sinc function Sigmoid L2–ELM 6.2265 ± 0.0023 0.9248 ± 0.0008 0.0499 ± 0.0001 –, 2–31, –, –, –
CELM 6.0988 ± 0.0011 0.9728 ± 0.0010 0.0238 ± 0.0003 –, 2–30, 2–2, –, –
L1–ELM 6.4575 ± 0.0043 0.9125 ± 0.0005 0.0295 ± 0.0003 2–10, –, –, –, –
CDRELM 4.0590 ± 0.0003 0.9992 ± 0.0005 0.0224 ± 0.0001 2–10, 2–33, 2–2, –, –
BPNN 5.3132 ± 0.0015 0.9108 ± 0.0006 1.3255 ± 0.0003 –, –, –, –, –
DRELM 6.0823 ± 0.0019 0.9730 ± 0.0008 0.0256 ± 0.0006 2–10, 2–33, –, –, –

Sine L2–ELM 6.7276 ± 0.0011 0.9304 ± 0.0009 0.0518 ± 0.0005 –, 2–30, –, –, –
CELM 6.4560 ± 0.0021 0.9756 ± 0.0023 0.0226 ± 0.0026 –, 2–30, 2–2, –, –
L1–ELM 6.4621 ± 0.0046 0.9143 ± 0.0027 0.0268 ± 0.0008 2–9, –, –, –, –
CDRELM 4.2525 ± 0.0009 1.0000 ± 0.0000 0.0220 ± 0.0001 2–8, 2–34, 2–2, –, –
BPNN 5.3219 ± 0.0031 0.9032 ± 0.0027 1.3259 ± 0.0004 –, –, –, –, –
DRELM 6.0825 ± 0.0024 0.9710 ± 0.0014 0.0231 ± 0.0002 2–8, 2–30, –, –, –

SVR 6.0327 ± 0.0020 0.9101 ± 0.0022 0.0671 ± 0.0004 –, –, –, 26, 20

Sinc function with
WGN of power 2
dBW

Sigmoid L2–ELM 6.2892 ± 0.0031 0.8677 ± 0.0032 0.0422 ± 0.0009 –, 2–23, –, –, –
CELM 6.0896 ± 0.0029 0.9689 ± 0.0057 0.0400 ± 0.0004 –, 2–23, 2–2, –, –
L1–ELM 6.5562 ± 0.0024 0.8676 ± 0.0031 0.0395 ± 0.0005 2–14, –, –, –, –
CDRELM 5.8769 ± 0.0018 0.9912 ± 0.0026 0.0318 ± 0.0002 2–16, 2–24, 2–2, –, –
BPNN 7.3872 ± 0.0049 0.8963 ± 0.0046 1.2617 ± 0.0004 –, –, –, –, –
DRELM 6.3219 ± 0.0026 0.9581 ± 0.0037 0.0345 ± 0.0004 2–14, 2–23, –, –, –

Sine L2–ELM 8.0972 ± 0.0136 0.8245 ± 0.0019 0.0421 ± 0.0004 –, 2–23, –, –, –
CELM 7.7860 ± 0.0089 0.9581 ± 0.0031 0.0370 ± 0.0002 –, 2–25, 2–2, –, –
L1–ELM 8.9091 ± 0.0056 0.8122 ± 0.0028 0.0320 ± 0.0004 2–9, –, –, –, –
CDRELM 6.1403 ± 0.0025 0.9900 ± 0.0032 0.0308 ± 0.0001 2–12, 2–24, 2–2, –, –
BPNN 7.2934 ± 0.0035 0.8003 ± 0.0037 1.2669 ± 0.0005 –, –, –, –, –
DRELM 6.8903 ± 0.0078 0.9579 ± 0.0041 0.0348 ± 0.0003 2–13, 2–24, –, –, –
SVR 7.8340 ± 0.0031 0.9059 ± 0.0044 0.0735 ± 0.0012 –, –, –, 26, 23

Sinc function with
WGN of power 5
dBW

Sigmoid L2–ELM 6.2738 ± 0.0014 0.8561 ± 0.0029 0.0453 ± 0.0002 –, 2–10, –, –, –
CELM 6.0744 ± 0.0031 0.9558 ± 0.0049 0.0401 ± 0.0009 –, 2–12, 2–2, –, –
L1–ELM 6.9655 ± 0.0053 0.7976 ± 0.0038 0.0396 ± 0.0011 2–24, –, –, –, –
CDRELM 5.7569 ± 0.0018 0.9818 ± 0.0019 0.0318 ± 0.0004 2–24, 2–10, 2–2, –, –
BPNN 7.5728 ± 0.0033 0.8932 ± 0.0039 1.2889 ± 0.0007 –, –, –, –, –
DRELM 5.9882 ± 0.0005 0.9601 ± 0.0043 0.0378 ± 0.0005 2–24, 2–11, –, –, –

Sine L2–ELM 8.0693 ± 0.0057 0.8598 ± 0.0036 0.0421 ± 0.0004 –, 2–10, –, –, –
CELM 7.7851 ± 0.0013 0.9666 ± 0.0023 0.0299 ± 0.0004 –, 2–11, 2–2, –, –
L1–ELM 8.9198 ± 0.0049 0.8604 ± 0.0019 0.0365 ± 0.0006 2–23, –, –, –, –
CDRELM 5.0401 ± 0.0027 0.9856 ± 0.0010 0.0288 ± 0.0002 2–24, 2–10, 2–2, –, –
BPNN 7.5892 ± 0.0056 0.8010 ± 0.0034 1.2897 ± 0.0007 –, –, –, –, –
DRELM 5.9866 ± 0.0035 0.9565 ± 0.0002 0.0375 ± 0.0005 2–24, 2–13, –, –, –
SVR 7.9360 ± 0.0154 0.8798 ± 0.0038 0.0750 ± 0.0004 –, –, –, 26, 22

508 Cognitive Computation (2023) 15:496–519

1 3

CDRELM. According to the situations of all the func-
tions with noises, CDRELM can maintain the accuracy
and stability required to solve regression problems with-
out interference.

Performance on Benchmark Datasets

To further verify the performance of seven algorithms,
five real-world datasets from the Kaggle datasets and UCI

Table 4 (continued)

Dataset Activation
function

Algorithm MSE R2 Time(s) Parameter
(�, �, �,C, �)

Sinc function with
WGN of power 10
dBW

Sigmoid L2–ELM 7.2980 ± 0.0051 0.8127 ± 0.0037 0.0419 ± 0.0006 –, 2–3, –, –, –

CELM 7.0489 ± 0.0045 0.9362 ± 0.0026 0.0410 ± 0.0008 –, 2–3, 2–2, –, –

L1–ELM 7.8532 ± 0.0057 0.7789 ± 0.0048 0.0392 ± 0.0003 2–34, –, –, –, –

CDRELM 6.7739 ± 0.0031 0.9408 ± 0.0069 0.0303 ± 0.0001 2–30, 2–4, 2–2, –, –

BPNN 8.2298 ± 0.0046 0.8820 ± 0.0044 1.3491 ± 0.0003 –, –, –, –, –

DRELM 7.5742 ± 0.0127 0.9318 ± 0.0031 0.0309 ± 0.0005 2–31, 2–3, –, –, –

Sine L2–ELM 8.0492 ± 0.0035 0.8190 ± 0.0090 0.0421 ± 0.0010 –, 2–3, –, –, –

CELM 7.8835 ± 0.0049 0.9358 ± 0.0045 0.0299 ± 0.0009 –, 2–5, 2–2, –, –

L1–ELM 9.1019 ± 0.0131 0.8798 ± 0.0032 0.0367 ± 0.0008 2–29, –, –, –, –

CDRELM 7.2014 ± 0.0030 0.9580 ± 0.0017 0.0298 ± 0.0003 2–32, 2–4, 2–2, –, –

BPNN 8.2388 ± 0.0074 0.8161 ± 0.0056 1.3489 ± 0.0011 –, –, –, –, –

DRELM 7.5688 ± 0.0198 0.9377 ± 0.0024 0.0309 ± 0.0005 2–31, 2–3, –, –, –

SVR 8.2706 ± 0.0215 0.8813 ± 0.0016 0.0742 ± 0.0014 –, –, –, 26, 2–1

Table 5 Experimental results on linear regression and linear regression with WGN

Dataset Activation
function

Algorithm MSE R2 Time(s) Parameter
(�, �, �,C, �)

Linear regression Sigmoid L2–ELM 1.0184 ± 0.0571 1.0000 ± 0.0000 0.0609 ± 0.0001 –, 2–36, –, –, –
CELM 1.0171 ± 0.0379 0.9983 ± 0.0003 0.0293 ± 0.0003 –, 2–35, 2–2, –, –
L1–ELM 1.2473 ± 0.0900 0.9986 ± 0.0003 0.0318 ± 0.0002 2–10, –, –, –, –
CDRELM 0.7126 ± 0.0419 0.9998 ± 0.0003 0.0279 ± 0.0002 2–10, 2–30, 2–2, –, –
BPNN 1.9875 ± 0.0814 0.9935 ± 0.0002 1.2352 ± 0.0003 –, –, –, –, –
DRELM 0.7349 ± 0.0998 0.9995 ± 0.0003 0.0301 ± 0.0004 2–10, 2–30, –, –, –

Sine L2–ELM 1.2570 ± 0.0304 1.0000 ± 0.0000 0.0483 ± 0.0012 –, 2–35, –, –, –
CELM 1.1566 ± 0.0798 0.9998 ± 0.0000 0.0212 ± 0.0009 –, 2–35, 2–2, –, –
L1–ELM 1.4813 ± 0.1023 0.9981 ± 0.0002 0.0219 ± 0.0006 2–9, –, –, –, –
CDRELM 0.6988 ± 0.0099 1.0000 ± 0.0000 0.0175 ± 0.0008 2–8, 2–30, 2–2, –, –
BPNN 1.9734 ± 0.0516 0.9992 ± 0.0000 1.2366 ± 0.0012 –, –, –, –, –
DRELM 0.7129 ± 0.0020 0.9995 ± 0.0000 0.0203 ± 0.0011 2–10, 2–30, –, –, –
SVR 1.0281 ± 0.0452 0.9997 ± 0.0000 0.0504 ± 0.0005 –, –, –, 28, 20

Linear regression
with WGN

Sigmoid L2–ELM 1.7961 ± 0.0321 0.9607 ± 0.0030 0.0419 ± 0.0009 –, 2–10, –, –, –
CELM 1.1899 ± 0.0076 0.9708 ± 0.0015 0.0267 ± 0.0007 –, 2–10, 2–2, –, –
L1–ELM 1.3040 ± 0.0085 0.9681 ± 0.0028 0.0308 ± 0.0007 2–10, –, –, –, –
CDRELM 1.1897 ± 0.0057 0.9712 ± 0.0034 0.0229 ± 0.0006 2–6, 2–8, 2–2, –, –
BPNN 1.8835 ± 0.0045 0.9438 ± 0.0025 1.2333 ± 0.0012 –, –, –, –, –
DRELM 1.5381 ± 0.0043 0.9522 ± 0.0027 0.0233 ± 0.0007 2–10, 2–7, –, –, –

Sine L2–ELM 1.7277 ± 0.0055 0.9483 ± 0.0020 0.0417 ± 0.0006 –, 2–10, –, –, –
CELM 1.5363 ± 0.0039 0.9460 ± 0.0034 0.0249 ± 0.0005 –, 2–10, 2–2, –, –
L1–ELM 1.5382 ± 0.0068 0.9604 ± 0.0059 0.0276 ± 0.0007 2–9, –, –, –, –
CDRELM 1.4973 ± 0.0093 0.9606 ± 0.0013 0.0231 ± 0.0003 2–8, 2–8, 2–2, –, –
BPNN 1.8643 ± 0.0022 0.9441 ± 0.0013 1.2572 ± 0.0005 –, –, –, –, –
DRELM 1.5381 ± 0.0110 0.9522 ± 0.0032 0.0233 ± 0.0004 2–7, 2–7, –, –, –
SVR 1.5183 ± 0.0107 0.9479 ± 0.0040 0.0897 ± 0.0007 –, –, –, 28, 23

509Cognitive Computation (2023) 15:496–519

1 3

machine learning repository were tested. The datasets were
of different types, including low, medium, and high dimen-
sions and small, medium, and large sizes.

We randomly divide the benchmark datasets into two
subsets (80% + 20%), the former for training and the latter
for testing. Table 8 shows the data descriptions of the five
datasets, which can be classified into three groups of data:

1. Datasets with relatively small size and high dimensions: the
octane number dataset which contains 60 gasoline samples.
The samples used Fourier transform near-infrared spectros-
copy to scan. Each sample has 401 features, and each fea-
ture is a wavelength point from the scanning range of 900
to 1700 nm.

2. Datasets with medium size and medium dimensions:
The Boston housing dataset has 506 samples with 13
features concerning housing prices in the suburbs of
Boston. The life expectancy dataset includes 958 sam-

ples with 18 features for analyzing the factors that affect
the average life expectancy in different countries.

3. Datasets with large size and small dimensions: The
energy consumption dataset covers 2208 instances with
five features that show the hourly energy consumption
from October 1 to December 31 during the years 2008 to
2012. The air quality dataset contains 9358 samples of
hourly averaged responses with eight reference analyz-
ers.

As can be seen from Figs. 11, 12, 13, 14, and 15, six
algorithms were compared with CDRELM on different
types of datasets. Figure 11 shows the predictive ability of
seven algorithms on the octane number dataset. The per-
formances of seven algorithms on the Boston housing, life
expectancy, energy consumption, and air quality datasets
are shown in Figs. 12, 13, 14, and 15, respectively. It is clear

Table 6 Experimental results on self-defining function and self–defining function with WGN

Dataset Activation
function

Algorithm MSE R2 Time(s) Parameter
(�, �, �,C, �)

Self-defining
function

Sigmoid L2–ELM 1.9383 ± 0.0301 0.9068 ± 0.0007 0.0559 ± 0.0005 –, 2–18, –, –, –
CELM 3.9911 ± 0.0098 0.9007 ± 0.0021 0.0237 ± 0.0001 –, 2–20, 2–2, –, –
L1–ELM 2.2779 ± 0.0104 0.8949 ± 0.0002 0.0263 ± 0.0006 2–10, –, –, –, –
CDRELM 1.1320 ± 0.0107 0.9966 ± 0.0008 0.0212 ± 0.0008 2–11, 2–16, 2–2, –, –
BPNN 3.1340 ± 0.0432 0.8564 ± 0.0032 1.4991 ± 0.0077 –, –, –, –, –
DRELM 2.0635 ± 0.0236 0.9304 ± 0.0008 0.0235 ± 0.0007 2–11, 2–17, –, –, –

Sine L2–ELM 2.1640 ± 0.0533 0.9265 ± 0.0003 0.0521 ± 0.0007 –, 2–20, –, –, –
CELM 1.5682 ± 0.0309 0.9082 ± 0.0004 0.0226 ± 0.0004 –, 2–15, 2–2, –, –
L1–ELM 1.7750 ± 0.0313 0.8751 ± 0.0003 0.0268 ± 0.0004 2–9, –, –, –, –
CDRELM 1.4828 ± 0.0114 0.9984 ± 0.0007 0.0166 ± 0.0002 2–12, 2–16, 2–2, –, –
BPNN 3.1290 ± 0.0128 0.8563 ± 0.0010 1.4998 ± 0.0008 –, –, –, –, –
DRELM 2.0729 ± 0.0336 0.9152 ± 0.0007 0.0236 ± 0.0007 2–10, 2–17, –, –, –
SVR 6.0281 ± 0.0256 0.8021 ± 0.0188 0.1060 ± 0.0018 –, –, –, 27, 20

Self-defining
function with
WGN

Sigmoid L2–ELM 3.0632 ± 0.0369 0.8092 ± 0.0006 0.0640 ± 0.0013 –, 2–12, –, –, –
CELM 3.3166 ± 0.1107 0.8219 ± 0.0005 0.0232 ± 0.0008 –, 2–13, 2–2, –, –
L1–ELM 7.8308 ± 0.1098 0.7858 ± 0.0009 0.0270 ± 0.0006 2–18, –, –, –, –
CDRELM 1.4385 ± 0.0111 0.9315 ± 0.0007 0.0207 ± 0.0004 2–20,2–14,2–2, –, –
BPNN 3.9584 ± 0.0389 0.7952 ± 0.0007 1.6511 ± 0.0004 –, –, –, –, –
DRELM 3.1968 ± 0.0422 0.8592 ± 0.0008 0.0242 ± 0.0007 2–17, 2–14, –, –, –

Sine L2–ELM 3.4683 ± 0.1429 0.7063 ± 0.0008 0.0533 ± 0.0007 –, 2–12, –, –, –
CELM 3.5432 ± 0.0966 0.7432 ± 0.0017 0.0255 ± 0.0006 –, 2–13, 2–2, –, –
L1–ELM 8.4988 ± 0.0865 0.7901 ± 0.0022 0.0302 ± 0.0003 2–19, –, –, –, –
CDRELM 1.6300 ± 0.0438 0.9314 ± 0.0013 0.0158 ± 0.0003 2–18, 2–14, 2–2, –, –
BPNN 3.9459 ± 0.0098 0.8494 ± 0.0026 1.6513 ± 0.0008 –, –, –, –, –
DRELM 3.1968 ± 0.0428 0.8592 ± 0.0032 0.0242 ± 0.0006 2–18, 2–14, –, –, –
SVR 6.0943 ± 0.0031 0.6981 ± 0.0026 0.1127 ± 0.0046 –, –, –, 27, 23

510 Cognitive Computation (2023) 15:496–519

1 3

that CDRELM has the greatest performance and can fit the
true value best. Table 9 provides the detailed comparisons of
seven algorithms on three small- or medium-sized datasets.
Table 10 lists the performance results of seven algorithms
on two large-sized datasets. It can be seen that the proposed
algorithm achieves better generalization performance in
three types of datasets at much higher learning speeds. Fig-
ures 16, 17, and 18 show the comparison of R2 , MSE, and
time among seven algorithms on each dataset and show the
performance of seven algorithms with two different activate
functions on various sizes of datasets. In Fig. 16, the histo-
gram represents the performance index R2 , including two
situations with different activate functions. The comparison
of MSE among seven algorithms on the datasets divided
into large-, small-, or medium-sized datasets is shown in
Fig. 17. Interestingly, CDRELM can solve the problems of
small- or medium-sized datasets much better than those of
large-sized datasets. L2–ELM, L1–ELM, CELM, DRELM,
and CDRELM obtain a slightly larger value of MSE than
SVR and BPNN on large datasets. Hence, CDRELM is

better at processing small datasets than other types. Fig-
ure 18 compares the overall trends in terms of the time of
all the datasets. It can be seen that CDRELM is significantly
faster than BPNN and SVR. Figure 18a is not clear to see the
advantage of CDRELM. Thus, we completed the Fig. 18b to
compare the time intuitionally. CDRELM is more efficient
than DRELM, CELM, L2–ELM, and L1–ELM. It is clear
that the proposed CDRELM obtains the fastest and the most
stable performance with the highest accuracy.

Table 7 Experimental results on two-moon dataset

Dataset Activation
function

Algorithm MSE R2 Time(s) Parameter
(�, �, �,C, �)

Moon1 Sigmoid L2–ELM 0.0109 ± 0.0003 0.8972 ± 0.0002 0.0535 ± 0.0008 –, 2–13, –, –, –
CELM 0.0108 ± 0.0002 0.8970 ± 0.0003 0.0210 ± 0.0008 –, 2–14, 2–2, –, –
L1–ELM 0.0188 ± 0.0003 0.8853 ± 0.0004 0.0243 ± 0.0008 2–10, –, –, –, –
CDRELM 0.0095 ± 0.0003 0.9068 ± 0.0002 0.0182 ± 0.0002 2–10, 2–12, 2–2, –, –
BPNN 0.0112 ± 0.0003 0.8960 ± 0.0004 1.2620 ± 0.0004 –, –, –, –, –
DRELM 0.0117 ± 0.0003 0.8992 ± 0.0003 0.0239 ± 0.0002 2–10, 2–14, –, –, –

Sine L2–ELM 0.0100 ± 0.0000 0.8937 ± 0.0003 0.0520 ± 0.0002 –, 2–12, –, –, –
CELM 0.0109 ± 0.0005 0.8887 ± 0.0002 0.0235 ± 0.0004 –, 2–9, 2–2, –, –
L1–ELM 0.0153 ± 0.0005 0.8935 ± 0.0001 0.0230 ± 0.0008 2–9, –, –, –, –
CDRELM 0.0104 ± 0.0004 0.8997 ± 0.0001 0.0104 ± 0.0001 2–8, 2–12, 2–2, –, –
BPNN 0.0110 ± 0.0008 0.8958 ± 0.0003 1.2589 ± 0.0004 –, –, –, –, –
DRELM 0.0117 ± 0.0003 0.8992 ± 0.0003 0.0239 ± 0.0004 2–8, 2–13, –, –, –
SVR 0.0281 ± 0.0005 0.8981 ± 0.0003 0.0721 ± 0.0003 –, –, –, 28, 22

Moon2 Sigmoid L2–ELM 0.0116 ± 0.0003 0.8863 ± 0.0003 0.0498 ± 0.0002 –, 2–10, –, –, –
CELM 0.0122 ± 0.0008 0.8921 ± 0.0001 0.0244 ± 0.0001 –, 2–14, 2–2, –, –
L1–ELM 0.0116 ± 0.0002 0.8864 ± 0.0003 0.0240 ± 0.0002 2–10, –, –, –, –
CDRELM 0.0115 ± 0.0003 0.9066 ± 0.0001 0.0169 ± 0.0001 2–10, 2–10, 2–2, –, –
BPNN 0.0125 ± 0.0001 0.8897 ± 0.0002 1.5250 ± 0.0001 –, –, –, –, –
DRELM 0.0120 ± 0.0001 0.8990 ± 0.0002 0.0239 ± 0.0004 2–10, 2–11, –,–, –

Sine L2–ELM 0.0117 ± 0.0001 0.8990 ± 0.0003 0.0546 ± 0.0003 –, 2–10, –, –, –
CELM 0.0116 ± 0.0003 0.8988 ± 0.0003 0.0240 ± 0.0002 –, 2–9, 2–2, –, –
L1–ELM 0.0135 ± 0.0001 0.8994 ± 0.0008 0.0239 ± 0.0002 2–9, –, –, –, –
CDRELM 0.0116 ± 0.0000 0.8998 ± 0.0004 0.0187 ± 0.0001 2–10, 2–9, 2–2, –
BPNN 0.0126 ± 0.0002 0.8881 ± 0.0003 1.5261 ± 0.0003 –, –, –, –, –
DRELM 0.0119 ± 0.0003 0.8992 ± 0.0005 0.0253 ± 0.0001 2–10, 2–10, –,–, –
SVR 0.0214 ± 0.0001 0.8702 ± 0.0003 0.0794 ± 0.0001 –, –, –, 28, 22

Table 8 Details of benchmark datasets

Dataset Number
of training
samples

Number of
testing samples

Number of
features

Octane number 48 12 401
Boston housing 405 101 13
Life expectancy 766 192 18
Energy consumption 1766 442 5
Air quality 7486 1872 8

511Cognitive Computation (2023) 15:496–519

1 3

To analyze the statistical accuracy more clearly, Table 11
lists the average ranks which are computed by the average
value of R2 in Tables 9 and 10 for each algorithm with two
activate functions. As seen in Table 11, CDRELM is ranked
first, and DRELM, CELM, BPNN, SVR, and L1–ELM are
ranked in turn. The experimental results also verify the
expected achievement of each algorithm. L1–ELM aims at
reducing the learning time. DRELM has 1-norm and 2-norm
penalties with high learning speeds and the ability to prevent
overfitting. CELM aims at improving accuracy and robust-
ness. Having the advantages of both CELM and DRELM,
CDRELM can attain better generalization ability at a faster
learning speed by introducing the C-loss function, L2 norm
and L1 norm into ELM.

To obtain various precision and credible results, the
Friedman statistical method was used to determine whether
all the algorithms have the same performance. Let N be the
number of datasets and m denotes the counts of algorithms.

Meanwhile, Ri represents the average ranks in Table 11.
Friedman statistic [34] follows the distribution of �2

F
 with

m − 1 degrees of freedom, which is defined as follows:

Based on Eq. (31), Iman et al. [35] proposed a better
statistic:

which follows the F-distribution with m − 1 and
(m − 1)(N − 1) degrees of freedom. According to Tables 9
and 10, �2

F
= 44.52 , FF ≈ 25.88 , and F0.05(6, 54) are 2.272

by referring to the F-distribution critical value table. It is
clear that FF = 25.88 > F0.05(6, 54) = 2.272 , so the null

(31)�2

F
=

12N

m(m + 1)

[∑
i

R2
i
−

m(m + 1)2

4

]

(32)FF =
(N − 1)�2

F

N(m − 1) − �2
F

Fig. 11 Regression results on octane number dataset

Fig. 12 Regression results on Boston housing dataset

512 Cognitive Computation (2023) 15:496–519

1 3

hypothesis is rejected. Hence, it is shown that the perfor-
mance of the algorithms is significantly different.

To further differentiate the algorithms, the Nemenyi test
[36] is used to pairwise compare seven algorithms. It is
defined as follows:

where q� is the critical value of Tukey distribution. When
� = 0.05 and m = 7 , q� = 2.949 according to the inspection
table of Nemenyi. The null hypothesis that two algorithms
have the same performance is rejected if the correspond-
ing average ranks differ by at least the critical difference
CD ≈ 2.8439 . Due to the average rank difference between
CDRELM and L1–ELM which is 5.9 − 1 = 4.9 and is
much larger than the critical difference 2.8439, the per-
formance of CDRELM is substantially better than that
of L1–ELM. Similarly, the performance of CDRELM is
much superior to that of SVR (5.6 − 1 = 4.1 > 2.8439).

(33)CD = q�

√
m(m + 1)

6N

As a result of 5.1 − 1 = 4.1 > 2.8439, the Nemenyi test
can detect significant difference between CDRELM and
BPNN. The result 4.6 − 1 = 3.6 > 2.8439 makes it clear that
CDRELM performs much better than CELM. It is clear
that 3.8 − 1 = 2.8 < 2.8439 and 2 − 1 = 1 < 2.8439. Thus,
CDRELM has slightly better performance than DRELM
and L2–ELM. The above comparison can be visually
shown using the Friedman test chart. In Fig. 19, the verti-
cal axis represents each algorithm. For the horizontal axis,
dot is the value of average rank, and the horizontal line
segment centered on a dot represents the value of CD. If
there are overlaps between the horizontal line segment of
two algorithms, then, there is no remarkable difference
between the two algorithms. Hence, it can be clearly seen
that CDRELM has significantly better performance than
CELM, L1–ELM, BPNN, and SVR. CDRELM is slightly
better than DRELM and L2–ELM. Of the seven algorithms,
CDRELM has the best performance and L1–ELM has the
worst accuracy.

Fig. 13 Regression results on life expectancy dataset

Fig. 14 Regression results on hourly energy consumption dataset

513Cognitive Computation (2023) 15:496–519

1 3

0 200 400 600 800 1000 1200 1400 1600 1800

Number of samples

-1000

-500

0

500

1000

1500

2000

2500

3000

3500
H

o
u
rl

y
 N

it
ro

g
en

 D
io

x
id

e
C

o
n
te

n
t

True

L
2
-ELM

CELM

L
1
-ELM

DRELM

BP

SVR

CDRELM

Fig. 15 Regression results on air quality dataset

(a)Sigmoid function

(b) Sine function

Fig. 16 Comparison of R2 on all the datasets using different activation function

514 Cognitive Computation (2023) 15:496–519

1 3

(a) Small and medium sized datasets (b) Large sized datasets

Fig. 17 Comparison of MSE on all of datasets

(a) L2–ELM, L1–ELM, CELM, DRELM, BPNN, SVR and CDRELM

(b) L2–ELM, L1–ELM, CELM, DRELM and CDRELM

Fig. 18 Comparison of time on all of datasets

515Cognitive Computation (2023) 15:496–519

1 3

Table 9 Experimental results on small samples of benchmark dataset

Dataset Activation
function

Algorithm MSE R2 Time(s) Parameter (�, �, �,C, �)

Octane
number

Sigmoid L2–ELM 0.7735 ± 0.0012 0.8519 ± 0.0006 0.0527 ± 0.0003 –, 2–34, –, –, –
CELM 0.9208 ± 0.0012 0.8201 ± 0.0004 0.0236 ± 0.0002 –, 2–34, 2–2, –, –
L1–ELM 0.5857 ± 0.0027 0.7991 ± 0.0005 0.0215 ± 0.0003 2–17, –, –, –, –
CDRELM 0.2226 ± 0.0004 0.9998 ± 0.0000 0.0160 ± 0.0001 218, 2–34, 2–2, –, –
BPNN 0.7716 ± 0.0044 0.7938 ± 0.0007 2.0541 ± 0.0003 –, –, –, –, –
DRELM 0.8476 ± 0.0009 0.9894 ± 0.0002 0.0239 ± 0.0003 2–18, 2–30, –, –, –

Sine L2–ELM 0.6140 ± 0.0022 0.9306 ± 0.0004 0.0497 ± 0.0002 –, 2–34, –, –, –
CELM 0.9239 ± 0.0013 0.8966 ± 0.0003 0.0222 ± 0.0001 –, 2–34, 2–2, –, –
L1–ELM 0.5352 ± 0.0035 0.8553 ± 0.0007 0.0213 ± 0.0001 2–17, –, –, –, –
CDRELM 0.1130 ± 0.0005 0.9997 ± 0.0000 0.0177 ± 0.0001 2–18, 2–34, 2–2, –, –
BPNN 0.5823 ± 0.0033 0.8229 ± 0.0004 2.0529 ± 0.0012 –, –, –, –, –
DRELM 0.8476 ± 0.0024 0.9875 ± 0.0001 0.0240 ± 0.0002 2–17, 2–31, –, –, –
SVR 0.6214 ± 0.0033 0.7229 ± 0.0000 0.0710 ± 0.0003 –, –, –, 27, 22

Boston
housing

Sigmoid L2–ELM 32.2671 ± 0.0305 0.8441 ± 0.0005 0.0556 ± 0.0002 –, 2–16, –, –, –
CELM 27.1208 ± 0.0543 0.7831 ± 0.0008 0.0270 ± 0.0002 –, 2–14, 2–2, –, –
L1–ELM 31.6840 ± 0.0778 0.6773 ± 0.0005 0.0240 ± 0.0001 2–10, –, –, –, –
CDRELM 18.2421 ± 0.0132 0.9894 ± 0.0004 0.0208 ± 0.0001 2–10, 2–20, 2–2, –, –
BPNN 24.6598 ± 0.0099 0.6609 ± 0.0006 1.4298 ± 0.0008 –, –, –, –, –
DRELM 35.8476 ± 0.0214 0.9194 ± 0.0003 0.0239 ± 0.0005 2–12, 2–15, –, –, –

Sine L2–ELM 34.1789 ± 0.0313 0.8588 ± 0.0005 0.0786 ± 0.0005 –, 2–16, –, –, –
CELM 33.7223 ± 0.0407 0.7901 ± 0.0004 0.0275 ± 0.0003 –, 2–9, 2–2, –, –
L1–ELM 41.7759 ± 0.0521 0.7158 ± 0.0005 0.0267 ± 0.0002 2–9, –, –, –, –
CDRELM 23.4839 ± 0.0045 0.9829 ± 0.0001 0.0223 ± 0.0000 2–10, 2–20, 2–2, –, –
BPNN 24.6477 ± 0.0022 0.6847 ± 0.0007 1.4237 ± 0.0021 –, –, –, –, –
DRELM 36.3641 ± 0.0094 0.9299 ± 0.0005 0.0226 ± 0.0002 2–12, 2–15, –, –, –
SVR 30.0214 ± 0.0005 0.6415 ± 0.0005 0.0890 ± 0.0005 –, –, –, 28, 20

Life expec-
tancy

Sigmoid L2–ELM 20.4141 ± 0.0321 0.7704 ± 0.0003 0.0541 ± 0.0003 –, 22, –, –, –
CELM 19.6719 ± 0.0425 0.7905 ± 0.0006 0.0311 ± 0.0002 –, 22, 2–2, –, –
L1–ELM 21.5021 ± 0.0578 0.6754 ± 0.0005 0.0265 ± 0.0001 2–9, –, –, –, –
CDRELM 16.2593 ± 0.0155 0.9510 ± 0.0002 0.0219 ± 0.0000 2–16, 22, 2–2, –, –
BPNN 17.2907 ± 0.0094 0.6930 ± 0.0004 1.4608 ± 0.0011 –, –, –, –, –
DRELM 26.2532 ± 0.0077 0.9299 ± 0.0002 0.0226 ± 0.0002 2–10, 22, –, –, –

Sine L2–ELM 19.9088 ± 0.0235 0.8093 ± 0.0006 0.0550 ± 0.0001 –, 22, –, –, –
CELM 25.9338 ± 0.0453 0.8742 ± 0.0006 0.0274 ± 0.0002 –, 23, 2–2, –, –
L1–ELM 31.1602 ± 0.0316 0.7963 ± 0.0004 0.0259 ± 0.0001 2–9, –, –, –, –
CDRELM 14.9626 ± 0.0046 0.9476 ± 0.0000 0.0224 ± 0.0000 2–16, 22, 2–2, –, –
BPNN 17.3802 ± 0.0065 0.8130 ± 0.0004 1.4527 ± 0.0033 –, –, –, –, –
DRELM 26.3675 ± 0.0101 0.9104 ± 0.0004 0.0230 ± 0.0001 2–12, 22, –, –, –
SVR 17.0214 ± 0.0086 0.7820 ± 0.0006 0.0610 ± 0.0003 –, –, –, 28, 21

516 Cognitive Computation (2023) 15:496–519

1 3

Table 10 Experimental results on large samples of benchmark dataset

Dataset Activation function Algorithm MSE R2 Time(s) Parameter (�, �, �,C, �)

Energy consumption Sigmoid L2–ELM 14.3000 ± 0.0135 0.8109 ± 0.0003 0.0579 ± 0.0006 –, 2–16, –, –, –
CELM 13.1000 ± 0.0096 0.8442 ± 0.0003 0.0338 ± 0.0046 –, 2–14, 2–2, –, –
L1–ELM 16.2000 ± 0.0107 0.7447 ± 0.0002 0.0291 ± 0.0004 20, –, –, –, –
CDRELM 9.9100 ± 0.0036 0.9454 ± 0.0002 0.0247 ± 0.0001 21, 2–15, 2–2, –, –
BPNN 3.9478 ± 0.0044 0.8650 ± 0.0003 1.4617 ± 0.0023 –, –, –, –, –
DRELM 8.1835 ± 0.0057 0.9285 ± 0.0006 0.0264 ± 0.0002 20, 2–15, –, –, –

Sine L2–ELM 13.1000 ± 0.0159 0.8729 ± 0.0004 0.0698 ± 0.0006 –, 2–16, –, –, –
CELM 14.8100 ± 0.0175 0.8165 ± 0.0016 0.0370 ± 0.0002 –, 2–10, 2–2, –, –
L1–ELM 14.1221 ± 0.0099 0.8140 ± 0.0005 0.0365 ± 0.0001 22, –, –, –, –
CDRELM 11.3000 ± 0.0032 0.9389 ± 0.0004 0.0302 ± 0.0001 21, 2–18, 2–2, –, –
BPNN 3.9351 ± 0.0012 0.8547 ± 0.0003 1.4510 ± 0.0003 –, –, –, –, –
DRELM 8.3629 ± 0.0033 0.9271 ± 0.0003 0.0363 ± 0.0003 21, 2–15, –, –, –
SVR 2.2591 ± 0.0031 0.8426 ± 0.0004 0.2438 ± 0.0004 –, –, –, 26, 23

Air quality Sigmoid L2–ELM 1.5230 ± 0.0031 0.9654 ± 0.0006 0.0672 ± 0.0001 –, 2–16, –, –, –
CELM 1.1018 ± 0.0026 0.7737 ± 0.0004 0.0487 ± 0.0002 –, 2–17, 2–2, –, –
L1–ELM 2.9731 ± 0.0033 0.8301 ± 0.0005 0.0483 ± 0.0003 2–3, –, –, –, –
CDRELM 1.0600 ± 0.0022 0.9805 ± 0.0007 0.0421 ± 0.0001 2–8, 2–15, 2–2, –, –
BPNN 0.6879 ± 0.0009 0.9018 ± 0.0004 2.7098 ± 0.0006 –, –, –, –, –
DRELM 1.3885 ± 0.0015 0.9705 ± 0.0003 0.0436 ± 0.0004 2–8, 2–13, –, –, –

Sine L2–ELM 1.3951 ± 0.0037 0.9457 ± 0.0006 0.06120 ± .0003 –, 2–17, –, –, –
CELM 1.4790 ± 0.0016 0.7405 ± 0.0006 0.0462 ± 0.0003 –, 2–17, 2–2, –, –
L1–ELM 2.3717 ± 0.0022 0.9077 ± 0.0004 0.0434 ± 0.0002 2–5, –, –, –, –
CDRELM 1.0561 ± 0.0018 0.9805 ± 0.0002 0.0400 ± 0.0004 2–9,2–15,2–2, –, –
BPNN 0.6513 ± 0.0010 0.9213 ± 0.0002 2.7031 ± 0.0003 –, –, –, –, –
DRELM 1.5933 ± 0.0007 0.9747 ± 0.0002 0.0423 ± 0.0003 2–8, 2–13, –, –, –
SVR 0.0512 ± 0.0006 0.9594 ± 0.0002 0.4011 ± 0.0003 –, –, –, 24, 22

Table 11 Accuracy average ranks

Dataset Activation function L2-ELM CELM L1-ELM BPNN SVR DRELM CDRELM

Octane number Sigmoid 3
3

4
4

5
5

6
6

7
7

2
2

1
1Sine

Boston housing Sigmoid 3
3

4
4

5
5

6
6

7
7

2
2

1
1Sine

Life expectancy Sigmoid 5
5

3
3

6
7

4
6

7
4

2
2

1
1Sine

Energy consumption Sigmoid 6
3

4
6

7
7

3
4

5
5

2
2

1
1Sine

Air quality Sigmoid 3
4

7
7

6
6

5
5

4
3

2
2

1
1Sine

Average rank 3.8 4.6 5.9 5.1 5.6 2 1

517Cognitive Computation (2023) 15:496–519

1 3

Conclusion

The traditional ELM with the square loss function has
the disadvantages of overfitting and high sensibility to
outliers. A new algorithm called CDRELM, which has
a nonconvex and bounded C-loss function and embeds
L1 norm and L2 norm in objective function, is proposed.
CDRELM is used to solve the problems with many out-
liers, high dimension, and small or medium samples. It
also offers a new embedded feature selection which has
a strong capability for dimensionality reduction. Further-
more, CDRELM can complete the two processes of pre-
diction and dimensionality reduction at the same time, so
that it can speed up training efficiency. The improved PGD
algorithm can also make the solving process more rapid
and more accurate. Experiments on artificial datasets and
benchmark datasets show that CDRELM has better gener-
alization ability and more robustness at a higher learning
speed than BPNN, SVR, DRELM, CELM, L2–ELM, and
L1–ELM.

It should be noted that we only verified the performance
for regression. In future work, we will attempt to verify the
classification capacity of the proposed algorithm. Based on
the comparison of MSE, it is clear that CDRELM obtains
a slightly larger value on large datasets. Therefore, how to
improve the accuracy and robustness for large sized datasets
will be another focus of our future research.

Acknowledgements The authors thank the anonymous reviewers for
their constructive comments and suggestions. This work was sup-
ported in part by the National Natural Science Foundation of China
under Grant 51875457, the Key Research Project of Shaanxi Province
(2022GY-050), the Natural Science Foundation of Shaanxi Province of
China (2022JQ-636, 2021JQ–701), and the Special Scientific Research
Plan Project of Shaanxi Province Education Department (21JK0905).

Declarations

Informed Consent Informed consent was not required as no human
beings or animals were involved.

Human and Animal Rights This article does not contain any studies
with human or animal subjects performed by any of the authors.

Conflict of Interest The authors declare no competing interests.

References

 1. Rumelhart DE, Hinton GE, Williams RJ. Learning representa-
tions by back–propagating errors. Nature. 1986;323:533–6.

 2. Vapnik V, Golowich S, Smola A. Support vector method
for function approximation, regression estimation, and
signal processing. The 9th Int Conf Neural Inform Proc
Sys. 1996;281–287.

 3. Furfaro R, Barocco R, Linares R, Topputo F, Reddy V, Simo J,
et al. Modeling irregular small bodies gravity field via extreme
learning machines and Bayesian optimization. Adv Space Res.
2020;67(1):617–38.

 4. Huang GB, Zhu QY, Siew CK. Extreme learning machine: theory
and applications. Neurocomputing. 2006;70(1–3):489–501.

 5. Kaleem K, Wu YZ, Adjeisah M. Consonant phoneme based
extreme learning machine (ELM) recognition model for foreign
accent identification. The World Symp Software Eng. 2019;68–72.

 6. Liu X, Huang H, Xiang J. A personalized diagnosis method to
detect faults in gears using numerical simulation and extreme
learning machine. Knowl Based Syst. 2020;195(1): 105653.

 7. Fellx A, Daniela G, Liviu V, Mihaela–Alexandra P. Neural net-
work approaches for children's emotion recognition in intelligent
learning applications. The 7th Int Conf Education and New Learn-
ing Technol. 2015;3229–3239.

 8. Huang GB, Zhou H, Ding X. Extreme learning machine for
regression and multiclass classification. IEEE Trans Syst Man
Cybern B. 2011;42(2):513–29.

 9. Huang S, Zhao G, Chen M. Tensor extreme learning design via
generalized Moore-Penrose inverse and triangular type–2 fuzzy
sets. Neural Comput Applical. 2018;31:5641–51.

 10. Bai Z, Huang GB, Wang D. Sparse Extreme learning machine for
classification. IEEE Trans Cybern. 2014;44(10):1858–70.

 11. Wang Y, Yang L, Yuan C. A robust outlier control framework for
classification designed with family of homotopy loss function.
Neural Netw. 2019;112:41–53.

 12. Deng WY, Zheng Q, Lin C. Regularized extreme learning
machine. IEEE symposium on computational intelligence and
data mining. 2009;2009:389–95.

 13. Balasundaram S, Gupta D. 1–Norm extreme learning machine for
regression and multiclass classification using Newton method.
Neurocomputing. 2014;128:4–14.

 14. Christine DM, Ernesto DV, Lorenzo R. Elastic–net regularization
in learning theory. J complexity. 2009;25(2):201–30.

 15. Luo X, Chang XH, Ban XJ. Regression and classification using
extreme learning machine based on L-1-norm and L-2-norm. Neu-
rocomputing. 2016;174:179–86.

 16. Abhishek S, Rosha P, Jose P. The C–loss function for pattern clas-
sification. Pattern Recognit. 2014;47(1):441–53.

 17. Zhao YP, Tan JF, Wang JJ. C–loss based extreme learning
machine for estimating power of small–scale turbojet engine.
Aerosp Sci Technol. 2019;89(6):407–19.

Fig. 19 Friedman test

518 Cognitive Computation (2023) 15:496–519

1 3

 18. Jing TT, Xia HF, and Ding ZM. Adaptively-accumulated
knowledge transfer for partial domain adaptation. In Pro-
ceedings of the 28th ACM International Conference on
Multimedia. 2020;1606–1614.

 19. Fu YY, Zhang M, Xu X, et al. Partial feature selection and
alignment for multi-source domain adaptation. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 2021;16654–16663.

 20. Khalajmehrabadi A, Gatsis N, Pack D. A joint indoor WLAN
localization and outlier detection scheme using LASSO and
Elastic-Net optimization techniques. IEEE Trans Mob Comput.
2017;16(8):1–1.

 21. Boyd S, Vandenberghe L, Faybusovich L. Convex optimization
IEEE Trans Automat Contr. 2006;51(11):1859.

 22. Huang GB, Wang DH, Lan Y. Extreme learning machines: a sur-
vey. Int J Mach Learn Cyb. 2011;2(2):107–22.

 23. Peng HY, Liu CL. Discriminative feature selection via employ-
ing smooth and robust hinge loss. IEEE T Neur Net Lear.
2019;99:1–15.

 24. Lei Z, Mammadov MA. Yearwood J. From convex to nonconvex: a
loss function analysis for binary classification. 2010 IEEE Interna-
tional Conference On Data Mining Workshops. 2010;1281–1288.

 25. Hajiabadi H, Molla D, Monsefi R, et al. Combination of loss
functions for deep text classification. Int J Mach Learn Cyb.
2019;11:751–61.

 26. Hajiabadi H, Monsefi R, Yazdi HS. RELF: robust regression
extended with ensemble loss function. Appl Intell. 2018;49:473.

 27. Zou H, Hastie T. Addendum: Regularization and variable selec-
tion via the elastic net. J Roy Stat Soc. 2010;67(5):768–768.

 28. Golub GH, Loan CFV. Matrix computations 3rd edition. Johns
Hopkins studies in mathematical sciences. 1996.

 29. Dinoj S “Swiss roll datasets”, http:// people. cs. uchic ago. edu/
~dinoj/ manif old/ swiss roll. html, accessed on 12 Apr 2021.

 30. UCI machine learning repository http:// archi ve. ics. uci. edu/ ml/
datas ets. php, accessed on 12 Apr 2021

 31. Kaggle datasets https:// www. kaggle. com/, accessed on 12
April 2021

 32. Hua XG, Ni YQ, Ko JM, et al. Modeling of temperature–
frequency correlation using combined principal component analy-
sis and support vector regression technique. J Comput Civil Eng.
2007;21(2):122–35.

 33. Frost P, Kailath T. An innovations approach to least–squares
estimation––part III: nonlinear estimation in white Gaussian
noise. IEEE Trans Automat Contr. 2003;16(3):217–26.

 34. Demšar J. Statistical comparisons of classifiers over multiple data
sets. J Mach Learn Res. 2006;7:1–30.

 35. Iman L, Davenport JM. Approximations of the critical region of
the Friedman statistic. Commun Stat–Simul C. 1998;571–595.

 36. Fei Z, Webb GI, Suraweera P, et al. Subsumption resolution: an
efficient and effective technique for semi–naive Bayesian learning.
Mach Learn. 2012;87(1):93–125.

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s);
author self-archiving of the accepted manuscript version of this article
is solely governed by the terms of such publishing agreement and
applicable law.

519Cognitive Computation (2023) 15:496–519

1 3

http://people.cs.uchicago.edu/~dinoj/manifold/swissroll.html
http://people.cs.uchicago.edu/~dinoj/manifold/swissroll.html
http://archive.ics.uci.edu/ml/datasets.php
http://archive.ics.uci.edu/ml/datasets.php
https://www.kaggle.com/

	C-Loss-Based Doubly Regularized Extreme Learning Machine
	Abstract
	Introduction
	Related Work
	ELM
	C-loss Function
	Proximal Gradient Descent Algorithm

	Proposed CDRELM Method
	Mathematical Model
	Solution

	Computational Complexity Analysis
	Experiments and Discussion
	Performance of Improved PGD
	Performance on Dimensionality Reduction
	Performance for Regression
	Performance on Artificial Datasets

	Performance on Benchmark Datasets

	Conclusion
	Acknowledgements
	References

