
Vol.:(0123456789)1 3

https://doi.org/10.1007/s12559-022-10046-y

DLW‑NAS: Differentiable Light‑Weight Neural Architecture Search

Shu Li1 · Yuxu Mao1 · Fuchang Zhang1 · Dong Wang1 · Guoqiang Zhong1 

Received: 26 May 2022 / Accepted: 13 July 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
In recent years, the method of automatically constructing convolutional neural networks based on neural architecture search
has attracted wide attention, and greatly reduces the manual intervention and the cost of manual design of neural networks.
However, most neural architecture search methods focus on the performance of the model, but ignore the complexity of the
model, which makes it difficult to deploy this method on devices with limited resources. In this paper, a novel differentiable
light-weight architecture search method named DLW-NAS is proposed, which aims to search convolutional neural networks
(CNNs) with remarkable performance as well as a small amount of parameters and floating point operations (FLOPs). Con-
cretely, in order to limit the parameters and FLOPs from the source of neural architecture search (NAS), we build a light-
weight search space containing effective light-weight operations. Moreover, we design a differentiable NAS strategy with
computation complexity constraints. In addition, we propose a neural architecture optimization method, which makes the
topology of the searched architecture sparse. The experimental results show that DLW-NAS achieves 2.73% error rate on
CIFAR-10, which is comparable to the state-of-the-art (SOTA) methods. However, it only needs 2.3M parameters and 334M
FLOPs, which reduces that of the SOTA DARTS by 30% and 36% in parameters and FLOPs, respectively. The searched
model on CIFAR-100 uses only 2.47M parameters and 376M FLOPs with an error rate of only 17.12%. On ImageNet, com-
pared with the SOTA MobileNet, DLW-NAS achieves 3.3% better top-1 accuracy with much fewer parameters and FLOPs.

Keywords  Neural architecture search · Light-weight search space · Differentiable architecture search

Introduction

Convolutional neural networks (CNNs) inspired by the
cognitive mechanism of biological natural vision have been
successfully applied to many fields in recent years, such as
object recognition [1, 2], image segmentation [3, 4] and
information retrieval [5, 6]. Generally, CNNs are manually
designed for the specific applications. However, manual
design methods are heavily dependent upon the knowledge

of domain experts, and the design process requires lots of
time and efforts.

To automatically design CNNs, Zoph and Le propose the
first neural architecture search (NAS) algorithm [7]. Since
then, the research on NAS has attracted more and more atten-
tion [8, 9]. As one of the most popular NAS algorithms, differ-
entiable architecture search (DARTS) [8] is usually taken as
a benchmark framework. DARTS searches CNNs based on a
cell structure. Each cell can be seen as a directed acyclic graph
(DAG) and has N nodes and E edges. Then, the searched cell
is stacked in sequence to form a complete deep CNNs. In the
search stage, DARTS assigns a learnable parameter � to each
edge via the softmax function, where the value of � represents
the contribution of the edge in the cell. Nevertheless, there
exist two shortcomings in the DARTS algorithm. On the one
hand, the operations in the cell have a major number of param-
eters and FLOPs. On the other hand, based on the architecture
parameters, DARTS simply retains the two operations cor-
responding to the two largest � at each node, which results in
relatively redundant connections in the cell. These two issues
cause that DARTS can only search for CNNs with complex

 *	 Dong Wang
	 wangdong@ouc.edu.cn

 *	 Guoqiang Zhong
	 gqzhong@ouc.edu.cn

	 Shu Li
	 15689930257@163.com

	 Yuxu Mao
	 1369627028@qq.com

	 Fuchang Zhang
	 zfc_1527@163.com

1	 Ocean University of China, Qingdao 266100, China

/ Published online: 8 August 2022

Cognitive Computation (2023) 15:429–439

http://orcid.org/0000-0002-2952-6642
http://crossmark.crossref.org/dialog/?doi=10.1007/s12559-022-10046-y&domain=pdf

1 3

architectures. However, the amount of model parameters and
FLOPs is crucial for the deployment of CNNs on devices with
limited memory and computing resources.

This paper puts forward a differentiable light-weight archi-
tecture search method, named DLW-NAS, to automatically
build high-performance and light-weight CNNs. Specifically,
the core ideas of this work include three aspects. First, as the
search space can directly affect the accuracy and complex-
ity of the searched model, we rebuild a new search space
involving several effective light-weight operations. Second,
we design a novel differentiable architecture search strategy
with computation complexity constraints. Last but not the
least, we propose a neural architecture optimization strategy,
with which we can keep as few operations as possible in the
cell while maintaining the model performance.

We have conducted extensive experiments on the CIFAR-
10, CIFAR-100 and ImageNet datasets to evaluate DLW-NAS.
DLW-NAS obtains 2.73% test error rate on CIFAR-10 with
only 2.3M parameters and 334M FLOPs. On CIFAR-100, it
uses only 2.47M parameters and 376M FLOPs with an error
rate of 17.12%. When transferred from CIFAR-10 to ImageNet
for mobile settings, using 3.8M parameters and 397M FLOPs,
DLW-NAS produces top-1 and top-5 error rates of 26.1% and
8.3%, respectively, which are the state-of-the-art (SOTA) results
but with fewer parameters and FLOPs than SOTA approaches.

Our major contributions can be summarized as below:

–	 We present a differentiable light-weight neural architec-
ture search algorithm called DLW-NAS. Especially, we
rebuild a light-weight search space to limit the amount of
parameters and calculations of the searched model from
the source of NAS.

–	 We design a differentiable NAS strategy with computa-
tion complexity constraints, which can be used to search
for light-weight architectures.

–	 We propose a novel and effective neural architecture opti-
mization strategy to greatly sparsify the cell structure.

–	 On standard image classification datasets, including CIFAR-
10, CIFAR-100 and ImageNet, we obtain the SOTA results
with the searched light-weight models.

This paper is extended based on our conference version [10]
with significant improvements. Firstly, we conduct a more
comprehensive review of related approaches on the basis of
our conference version. Secondly, we design a new differ-
entiable search strategy with computation complexity con-
straints to automatically search light-weight CNNs. Thirdly,
we have added more comparisons on the CIFAR-10 and
ImageNet datasets, and performed more experiments on the
CIFAR-100 dataset. Experiments show that the proposed
DLW-NAS in this paper outperforms its previous version.
Additionally, we have conducted ablation study to verify the
effect of each component of DLW-NAS.

The rest of this paper is organized as follows. In “Related
Work”, we briefly review some related work. In “The Pro-
posed DLW-NAS”, we describe the proposed method,
including the design of the search space, the new search
strategy, the neural architecture optimization strategy and
computational complexity analysis. The experimental results
are reported and analyzed in “Experiments and Results”.
The conclusion of this paper is presented in “Conclusion”.

Related Work

There are mainly two ways for the construction of light-
weight CNNs, namely handcrafted and automatic design. We
briefly review these two kinds of approaches in the following.

Handcrafted  Handcrafted methods usually change traditional
convolutional operations or model construction rules to com-
press the amount of parameters and FLOPs. For instance,
SqueezeNet [11] adjusts the number of feature channels via
expanding and squeezing convolutional layers. To reduce
the computational complexity of convolutional operations,
Howard et al. propose the depthwise separable convolution
to perform convolutional operations channel by channel [12].
ShuffleNet [13] achieves the reduction of computation com-
plexity using group convolution and channel shuffle. Recently,
based on a set of original feature maps, Han et al. have gener-
ated numerous “ghost” feature maps by using a serial of linear
transformations, which is effective in digging out the required
information from original features [1]. Although manually
designed CNNs show extraordinarily considerable perfor-
mance, the design methods are heavily dependent upon the
knowledge of domain experts.

Automatic Design  The auto-design of convolutinal networks
usually refers to learning the optimal network structure based
on NAS algorithms. As one of the most popular NAS algo-
rithms, DARTS converts the discrete operations search into
a differentiable optimization problem through the Softmax
function, which effectively reduces the search time. Recently,
some differentiable NAS methods used for automatically
designing light-weight models on embedded devices are
proposed [14, 15]. For example, Cai et al. propose a latency
regularization loss to reduce inference latency [16] in the
search process. Wu et al. present an algorithm for search-
ing a continuous structure with sparsity constraints, which is
known as the mixed-path NAS algorithm. These hardware-
aware NAS methods are effective in reducing the inference
delay of deep neural networks. However, they do not specifi-
cally explore how to limit model parameters and FLOPs. To
search for CNNs with low computational complexity, quite a
few methods are proposed by either constraining the number
of transformation operations or redesigning the search space.

430 Cognitive Computation (2023) 15:429–439

1 3

For example, both BayesNAS [17] and DSO-NAS [18] use
the �1-norm to enforce the connections sparse in the cell topol-
ogy. In CNAS [19], Weng et al. build a new search space by
exploring some light-weight operations. In this work, we syn-
thetically consider the differentiable light-weight architecture
search problem. In particular, we design a novel search space
containing only light-weight operations and propose a new
strategy to optimize the neural architectures.

The Proposed DLW‑NAS

This section describes our proposed differentiable light-
weight neural structure search (DLW-NAS) method in detail.
Specifically, the new light-weight search space is first pre-
sented in “Light-Weight Search Space”, followed by the
neural architecture search algorithm in “The Architecture
Search Algorithm”. Section “Neural Architecture Optimi-
zation” shows our proposed effective neural architecture
optimization strategy. Finally, we quantitatively analyze the
complexity of DLW-NAS in “Complexity Analysis”.

Light‑Weight Search Space

Search space determines the accuracy and complexity of
the constructed CNNs to a great extent. It is the foundation
of neural architecture search. To rebuild a new light-weight
search space, we comprehensively consider candidate opera-
tions in the cell topology from three aspects, namely accu-
racy, parameters and FLOPs. Our target is to construct deep
architectures with as high accuracy and as few parameters
and FLOPs as possible. Hence, we mainly improve the search
space of DARTS [8]. Except for five light-weight operations in
DARTS search space, i.e., max pooling, depthwise separable
convolution, identity, dilated convolution and zero, we explore
three more awesome light-weight operations (i.e., GhostConv,
SKConv and ShuConv). Therefore, there are eight light-weight
operations in the search space of DLW-NAS. In the following,
we briefly introduce the new three light-weight operations.

	 (i)	 GhostConv [1] is a plug-and-play light-weight opera-
tion. It can generate the same number of feature maps
as traditional convolution through a series of simple
linear transformation operations (e.g., depthwise sepa-
rable convolution and 1 × 1 convolution). However, dif-
ferent from conventional convolution, the number of
parameters and FLOPs of GhostConv is only 1/r of that
of conventional convolution operation, where r repre-
sents the number of the used convolutional kernels.

	 (ii)	 SKConv [20] makes the input feature maps segmented
into several branches along the channel dimension
and uses convolutional kernels to procure features of
different sizes of receptive fields.

	 (iii)	 ShuConv [13] adopts the point-wise group convo-
lutions as well as channel shuffle, so that they can
significantly reduce the computational overhead.

Besides, we constrain the light-weight search space of DLW-
NAS from the following two aspects:

1.	 Limiting the size of convolutional kernels to 3×3. Previ-
ous methods usually include convolution kernels of size
5 × 5 or even 7 × 7. Whereas, these convolutional kernels
retain larger receptive field with a quantity of parameters
and FLOPs. Therefore, we abandon convolutional opera-
tions with receptive field larger than 3 × 3. In addition, it
is desirable to replace stacked convolutional layers and
have large receptive field with dilated convolution. For
example, with the dilation rate 2, a 3 × 3 dilated convolu-
tion can be regarded as a 5 × 5 convolutional operation.

2.	 Droping redundant operations. In [21], Li et al. prove
the existence of the multi-collinearity problem among
the candidate operations of previous differentiable NAS
approaches [8]. That is, some operations (such as average
pooling and max pooling) have high linear correlation,
which may split the contributions of the candidate opera-
tions during the model searching. To avoid this problem,
we preserve only one operation with multi-collinearity in
the search space of DLW-NAS. This guarantees that the
candidate operations are not redundant.

The Architecture Search Algorithm

This subsection introduces the proposed differentiable neu-
ral architecture search strategy. Following previous work [8],
we search a cell and stack it to build the deep architecture.
The structure of the initial cell is shown in Fig. 1a. It can be
abstracted as a directed acyclic graph (DAG). In the cell, the
nodes represent layers of the network, while each directional
edge E(i,j) represents the information flow which is from node
i to node j. During the search process, information flows that
input into a node are summarized to:

where x(i) represents the output of the i-th node, and o(i,j)
is a set of candidate operations performed between node
i and node j (e.g., 3 × 3 dilated convolution and max pool-
ing). For changing the discrete search to a continuous and
differentiable optimization problem, like DARTS [8], we
utilize the softmax function to compute the contribution of
each operation.

(1)x(j) =
∑
i<j

o
(i,j)

(x(i)),

(2)o
(i,j)

=
�
o∈O

exp(𝛼
(i,j)
o)

∑
o
�
∈O exp(𝛼

(i,j

o
�)
o(x), i < j,

431Cognitive Computation (2023) 15:429–439

1 3

where O denotes the set of candidate light-weight operations
in the search space, and o represents an operation between
node i and node j with its architecture weight �(i,j)

o  . Specifi-
cally, we apply a vector �(i,j) with dimension |O| to param-
eterize the candidate operations between node i and node j.
In addition, the value of �(i,j)

o measures how much a candidate
operation has contributed in the feature map transformation.

To learn light-weight architectures, we add computational
complexity constraints on the differentiable optimization
algorithm. We use P(o(i,j)) and F(o(i,j)) to compute the num-
ber of parameters and FLOPs of operation o(i,j) , respectively.
To maintain the differentiability of the objective function,
the weighted parameter number and FLOPs between a pair
of nodes can be computed as:

To the end, the architecture parameters can be updated using
the gradients.

The parameter number and FLOPs of a cell are obtained by
summarizing up the parameter numbers and FLOPs of all
the internal operations:

(3)�[params(i,j)] =
∑
o∈O

�
(i,j)
o

× P(o(i,j)),

(4)�[flops(i,j)] =
∑
o∈O

�
(i,j)
o

× F(o(i,j)).

(5)

⎧⎪⎨⎪⎩

��
[params(i,j)]

��
(i,j)
o

= P(o(i,j)),

��
[flops(i,j)]

��
(i,j)
o

= F(o(i,j)).

After the search stage, the constructed deep architecture con-
tains several cells, and its parameter number and FLOPs are
the sum of all the cells:

Based on the above analysis, we design the objective func-
tion as follows:

where CE is the cross entropy loss to evaluate the deep
architecture and the latter two terms are used to restrict the
amount of parameters and FLOPs, respectively. Specifically,
�1 and �2 are trade-off factors among the accuracy, parameter
number and FLOPs.

Neural Architecture Optimization

As shown in Fig. 1, the optimization process of DLW-NAS
mainly includes two stages. In the first stage, the architecture
weights between each pair of nodes in the cell (as shown in

(6)�[paramsn]
=
∑
i∈n

∑
j>i

�[params(i,j)],

(7)�[flopsn]
=
∑
i∈n

∑
j>i

�[flops(i,j)].

(8)�[params] =
∑
n

�[paramsn]
,

(9)�[flops] =
∑
n

�[flopsn]
.

(10)L = CE + �1�[params] + �2�[flops],

Fig. 1   The optimization process of neural architecture. a A cell con-
sisting of nodes and directional edges. Two white boxes denote the
input nodes, while the blue boxes denote the inner nodes. The direc-
tional edges between two nodes denote the candidate operations. b In

accordance with the learned architecture weights, only the operation
contributes the most is retained. c The ultimate sparse architecture
obtained based on our proposed architecture optimization strategy

432 Cognitive Computation (2023) 15:429–439

1 3

Fig. 1a) are learned and sorted, and only the operation cor-
responding to the maximum architecture weight is reserved.
Then, the original cell becomes a discrete structure (as shown in
Fig. 1b). Here we emphasize that, although most of the opera-
tions in the original cell have been discarded, as shown in Fig. 1b,
there is a connection between any nodes in the discrete structure.

In the second stage, while keeping the model accuracy, we
further sparsify the discrete structure and reduce its parameter
number and FLOPs. Specifically, the proposed strategy which
is based on the optimized spanning tree ensures us to obtain
the sparse cell topology. Concretely, we first abstract the dis-
crete structure into a weighted and undirected graph, and the
weight value on each edge is set to the inverse of the corre-
sponding architecture weight. Then, in the undirected graph,
we find a minimum spanning tree T. Since the construction of
the minimum spanning tree T starts from the edges with the
least weight, the edges contained in T correspond to the opera-
tions with the relatively large architecture weights. Neverthe-
less, some inner nodes may have only output edge but no input
edge. In this case, the information flows will be influenced.

To solve this problem, we traverse every node in the cell. As
long as a node encounters such a problem, the most weighted
operations having input to this node are added to T. By this
step, we complete the transformation from the discrete struc-
ture to the sparse structure (as shown in Fig. 1c).

As shown in Fig. 2, through the above two stages, the
proposed architecture optimization strategy yields relatively
sparse cells compared to that of DARTS with 8 connections
and that of SparseNAS with 12 connections. Whereas, there
still exists one issue that whether or not the reserved con-
nections are suitable for the learning tasks. In Fig. 3, we
show some experimental results obtained on the CIFAR-10
and CIFAR-100 datasets. From Fig. 3, we can see that 6 is
an elbow point of the curves about validation error. This
indicates that the object recognition accuracy of the con-
structed evaluation model with only five connections in the
cell is much lower than that with six connections. Moreover,
although the performance of the evaluation models with 7
or 8 connections in the searched cell is comparable to that
with 6 connections, they need much more parameters. This

Fig. 2   Topological structure of normal cells and reduction cells. a
Normal cell searched by DLW-NAS on CIFAR-10. b Reduction cell
searched by DLW-NAS on CIFAR-10. c Normal cell searched by

DLW-NAS on CIFAR-100. d Reduction cell searched by DLW-NAS
on CIFAR-100. e Normal cell searched by DARTS [8] on CIFAR-10.
f Normal cell searched by SparseNAS [22] on CIFAR-10

433Cognitive Computation (2023) 15:429–439

1 3

motivates us to restrict the number of operations in the cell
to a constant M = 6 . As the retained operations number N is
less than M, the M − N operations, with the largest architec-
ture weights, will be selected. Subsequently, these M opera-
tions are used to construct the final cell.

Algorithm 1 describes the overall process of the neural
architecture optimization strategy proposed in this sec-
tion. The structural weight of the initial neural structure
block is the trained parameter, and the input � is an N × 8
parameter matrix, where 8 represents the eight operations

Fig. 3   a The effect of the connections number contained in the searched cell on model parameters and evaluation accuracy on CIFAR-10. b The
effect of the connections number contained in the searched cell on model parameters and evaluation accuracy on CIFAR-100

434 Cognitive Computation (2023) 15:429–439

1 3

contained in the search space. Lines 1 to 7 describe the
process of transforming the initial neural structure into
discrete neural structure blocks. Lines 8 to 18 describe
how to realize the transformation from discrete structures
to sparse structures. Lines 9 to 23 introduce the edge num-
ber regularization rules used to balance the accuracy and
complexity of neural networks. Finally, a sparse and light-
weight neural structure block with excellent performance
is output.

Complexity Analysis

In this subsection, we analyze the computational complexity
of DLW-NAS from two aspects, i.e., the search space and
the whole deep architecture.

Existing differentiable NAS methods are mainly imple-
mented based on the DARTS search space. Hence, we
compare the proposed light-weight search space and that
of DARTS. For convenience, taking a pair of nodes as an
example, we analyze the computational complexity of the
search space. Here, we assume that, the size of the input
feature maps is 32×32, both input and output have 32 chan-
nels Cin = Cout = 32 , while the kernel size and convolutional
stride are 3 × 3 and 1, respectively. Regardless of the bias,
Table 1 compares the parameters and FLOPs of the search
space of DLW-NAS and DARTS. For clarity, we calculate
the mean values of parameters and FLOPs for all the opera-
tions between a pair of nodes as follows.

where O denotes the set of the candidate operations, |O| is
the size of O, while po and mo are the parameter number
and FLOPs of the operation o, respectively. Compared with
DARTS, the average parameters and FLOPs of DLW-NAS
are smaller, which is only 0.126M and 0.84M, respectively.

(11)

Params =
1

|O|
∑
o∈O

po, po > 0,

FLOPs =
1

|O|
∑
o∈O

mo, mo > 0,

It demonstrates that the computational complexity of the
search space of DLW-NAS is lower than that of DARTS.

To analyze the complexity of architecture, we take the
evaluation model that stacks 20 cells as an example. The
architecture complexity is evaluated by the number of trans-
formations of feature maps inside the cells. DLW-NAS and
DARTS contain 6 and 8 connections in a cell, respectively.
Thus, an image only needs 20 × 6 = 120 transformations in
DLW-NAS from input to output, while DARTS has to pass
20 × 8 = 160 transformations. It is easy to calculate that
our proposed architecture optimization method reduces the
number of operations of the evaluation model by 25%. This
shows that the architecture learned by DLW-NAS is more
light-weight than that learned by DARTS.

Experiments and Results

In this section, we report the experimental settings and results
in detail.

Datasets and Implementation Issues

To evaluate the proposed DLW-NAS method, we have con-
ducted experimental comparison on three standard image clas-
sification datasets, including CIFAR-10, CIFAR-100 and Ima-
geNet (mobile setting). We briefly introduce them as follows.

CIFAR‑10 and CIFAR‑100 [23]  These two datasets consist
of 50K training images and 10K testing images separately,
with image size of 32×32× 3. The images in these two data-
sets belong to 10 and 100 classes, respectively. During the
architecture search, half of the training data are applied to
train the architecture weights, and the remaining half are
used to adjust the parameters of the searched architecture.

ImageNet [24]  It is composed of 1.3M images for training
and 50K images for test, and the images belong to 1,000

Table 1   Comparison with
DARTS on candidate operations
of the search space. The best
results are highlighted with
boldface

DLW-NAS Params (K) FLOPs (M) DARTS Params (K) FLOPs (M)

Identity - - Identity - -
3× 3 SepConv 1.41 1.34 3× 3 SepConv 1.41 1.34
3× 3 DilConv 1.41 1.34 5× 5 SepConv 1.93 1.64
3× 3 ShuConv 0.30 0.20 3× 3 DilConv 1.41 1.34
SKConv 2.44 0.65 5× 5 DilConv 1.93 1.64
GhostConv 0.74 0.67 3× 3 Max Pooling - -
3× 3 Max Pooling - - 3× 3 Avg Pooling - -
Zero - - Zero - -
Avg 1.26 0.84 Avg 1.67 1.49

435Cognitive Computation (2023) 15:429–439

1 3

classes. The size of the images is 224×224× 3. The mobile
setting is used for test.

Following the optimization algorithm in [25], we learn
the architecture weights and network parameters. After the
architecture search stage, we utilize the proposed architec-
ture optimization strategy to transform the searched cell
to sparse structure, which contains M = 6 connections.
Moreover, �1 and �2 are set to 0.01 and 0.005, respectively.
When evaluating the architecture, we stack 20 cells and train
the deep architecture on CIFAR-10 and CIFAR-100 from
scratch. In addition, on ImageNet, we stack 14 cells to test
the deep architecture. Particularly, our experiments are con-
ducted using two NVIDIA GTX 1080Ti GPUs.

The Searched Architectures

We conduct the architecture search on CIFAR10 and
CIFAR100. Figure 2 presents the architectures searched by
DLW-NAS. Compared with SOTA DARTS [8] and Spar-
seNAS [22], we can see that the normal cells searched by
DLW-NAS are more sparse, and the number of internal
connections is only 3/4 of DARTS and 1/2 of SparseNAS.
Such results are attributed to the architecture optimization

strategy of DLW-NAS. Furthermore, the up-to-date light-
weight operations in the search space ensure to deliver a
quite efficient deep architecture.

Architecture Evaluation

In the following, we report the evaluation results on the
searched architectures.

Experiments on CIFAR‑10 and CIFAR‑100

Following previous work, we construct the evaluation model
with 20 searched cells, including 18 normal cells and 2 reduc-
tion cells. With batch size 96, we train the evaluation model
for 600 epochs from scratch. The standard SGD optimizer is
used, and we set the initial learning rate to 0.025, the momen-
tum to 0.9 and the weight decay to 3 × 10−4 on CIFAR-10 and
5 × 10−5 on CIFAR-100. Auxiliary towers [26] of weight 0.4
and cutout regularization [27] of length 16 are also applied.

In Table 2, we list the comparison results between our
method and other NAS methods, where “−” indicates that
the relevant results are not given in the research work listed.
The second column shows the recognition error rate of CNN

Table 2   Comparison with state-of-the-art methods on CIFAR-10. The best results are highlighted with boldface

Architecture Test Error. (%) Params (M) FLOPs (M) Search Cost
(GPU-days)

Search Method

DenseNet-BC [28] 3.46 25.6 - - manual
MobileNet [12] 15.60 3.3 - - manual
Ghost-VGG-16 [1] 6.30 7.7 - - manual
RandomNAS [29] 2.85 4.3 - 2.7 RS
DARTS-random + cutout [8] 3.29 3.2 - 4 RS
AmodebaNet-A + cutout [30] 3.12 3.2 - 3150 EA
Hierarchical-EAS [31] 3.75 15.7 - 300 EA
CARS-E + cutout [32] 2.86 3.0 - 0.4 EA
MetaQNN + cutout [33] 6.92 - - 100 RL
BlockQNN [34] 3.54 39.8 - 96 RL
ENAS + cutout [35] 2.89 4.6 626 0.5 RL
Path-level EAS [36] 2.99 5.7 - 200 RL
PNAS [37] 3.41 3.2 - 225 SMBO
EPNAS [38] 3.71 6.6 - 1.8 SMBO
GHN [39] 2.84 5.7 - 0.84 SMBO
DARTS (first order) + cutout [8] 3.00 3.3 - 1.5 GD
DARTS (second order) + cutout [8] 2.76 3.3 528 4 GD
SNAS + mild [40] 2.98 2.9 422 1.5 GD
CNAS + cutout [19] 4.23 2.95 - 2.5 GD
GDAS + cutout [41] 2.93 3.4 519 0.21 GD
DSO-NAS-full [18] 2.95 3 - 1 GD
SparseNAS + HAPG [22] 2.73 3.8 538 1 GD
BayesNAS + cutout [17] 2.90 3.1 - 0.2 GD
DLW-NAS + cutout (ours) 2.73 2.3 334 0.45 GD

436 Cognitive Computation (2023) 15:429–439

1 3

models constructed by different methods on CIFAR-10. The
smaller the value is, the higher the recognition accuracy of
the model for objects is. The third and fourth columns are
important indicators to measure the complexity of the model,
showing the number of model parameters and the amount of
calculation of different methods. Using “M” as a statistical
unit, the smaller the value is, the lower the complexity of the
model is, which means the model is lighter. In addition, the
last two columns in the table show the CPU time and model
construction methods required for automatic construction
of convolutional neural networks, in which RL (Reinforce-
ment Learning), EA (Evolutionary Algorithm) and SMBO
(Sequential model-based optimization) are all methods for
automatic model construction. Thus, we can see that DLW-
NAS achieves a 2.73% error rate with only 2.3M param-
eters and 334M FLOPs. Compared with the SOTA NAS
approaches, such as BayesNAS [17] and DSO-NAS [18],
the classification accuracy obtained by DLW-NAS is higher
and the number of model parameters is greatly reduced. The
test error of SparseNAS [22] is comparable with DLW-NAS.
However, there are more connections in the searched cell,
such that SparseNAS has more parameters and FLOPs. The
parameters and FLOPs of DLW-NAS are about 37% less
than those of SparseNAS.

Table 3 shows the performance of different methods on
CIFAR-100. The evaluation indices in the experiments are
consistent with those in Table 2. As shown in Table 3, the
architecture searched by DLW-NAS on CIFAR-100 uses only
2.47M parameters and 376M FLOPs and delivers an error rate
of 17.12%. Comparing with the SOTA DARTS, DLW-NAS
surpasses DARTS on classification performance but using
fewer parameters and FLOPs. This further demonstrates the
advantages of DLW-NAS over SOTA approaches. In a word,
compared with the manual design of neural network, evo-
lutionary algorithm and reinforcement learning method, the
network structure searched by our method has better perfor-
mance, faster search speed, fewer parameters and less compu-
tation. In comparison with other differentiable neural architec-
ture search methods, our method also has distinct advantages.
The results obtained by DLW-NAS are comparable with faster

search speed in the case of smaller parameters and less com-
putation with that of the SOTA methods.

Experiments on ImageNet

In this experiment, the architectures searched on CIFAR-10
are transferred to ImageNet for mobile setting test. Accord-
ing to the common comparison method on the ImageNet
dataset, Top-1 and Top-5 error rates are used to evaluate the
compared methods, and the complexity evaluation indices
are the same as CIFAR-10 and CIFAR-100 datasets. Follow-
ing the conventions [8], we construct the evaluation model
with 14 cells, including 12 normal cells as well as 2 reduc-
tion ones. Moreover, we train the evaluation model for 250
epochs with batch size 256. Bsides we set the initial value
of the learning rate of the SGD optimizer to 0.1.

It can be seen from Table 4 that the results obtained by
DLW-NAS are obviously superior to the manual design
of neural network methods and other differentiable meth-
ods on ImageNet. With only 3.8M parameters and 397M
FLOPs, DLW-NAS achieves a 26.1% error rate and outper-
forms DARTS on either model complexity or classification
accuracy. In addition, DLW-NAS performs slightly better
than DSO-NAS [18] which is directly searched on Ima-
geNet, with even less parameters and FLOPs. This dem-
onstrates the effectiveness of DLW-NAS on architecture
search. In terms of accuracy, SparseNAS performs slightly
better than DLW-NAS, but its number of parameters is
much more than that of DLW-NAS.

Ablation Study

DLW-NAS mainly includes three innovations: the light-
weight search space (LWSS), search strategy with com-
plexity constraints (SSCC) and architecture optimization
strategy (AOS). In the experiment, we also conduct abla-
tion study to evaluate the contribution of these components
to the performance of DLW-NAS on image classification.

Table 5 shows the experimental results on CIFAR-10.
It can be seen that each component has certain impact on

Table 3   Comparison with state-of-the-art methods on CIFAR-100. The best results are highlighted with boldface

Architecture Test Error. (%) Params (M) FLOPs (M) Search Cost
(GPU-days)

Search Method

DenseNet-BC [28] 17.18 25.6 - - manual
ResNeXt-29 [42] 18.56 25.2 - - manual
SKNet [20] 17.33 27.7 - - manual
DARTS (first order) + cutout [8] 17.74 3.4 536 1.5 GD
DARTS (second order) + cutout [8] 17.58 3.3 518 4 GD
CNAS + cutout [19] 22.24 3.67 - 2.5 GD
DLW-NAS + cutout (ours) 17.12 2.47 376 0.45 GD

437Cognitive Computation (2023) 15:429–439

1 3

the learning accuracy and complexity of the evaluation
model. For example, the results in the fourth row are based
on the DARTS search space, while that in the sixth row are
based on the proposed LWSS. As we can see that using the
proposed LWSS can search for models with lower compu-
tational complexity and higher recognition accuracy than
using the DARTS search space. Comparing the results
shown in the second and sixth rows, it can be seen that the
proposed AOS can greatly reduce the parameter number and
computational complexity. Overall, applying all the three
components, DLW-NAS can obtain SOTA learning accuracy
with low computational overhead.

Conclusion

In this work, we propose DLW-NAS, which is a differenti-
able light-weight neural architecture search method. To real-
ize the light-weight architecture search from the source, we
establish a novel light-weight search space. Furthermore,
we propose a new differentiable architecture search strategy

with complexity constraints. In addition, we introduce an
architecture optimization strategy to sparsify the connec-
tions in the searched architecture. This strategy reduces
the parameter number and computational complexity, but
basically preserves the model performance. To evaluate the
proposed DLW-NAS method, we test it on the CIFAR-10,
CIFAR-100 and ImageNet datasets. The results demonstrate
its advantages over the SOTA approaches.

Funding  This work was partially supported by the National Key
Research and Development Program of China under Grant No.
2018AAA0100400, the Natural Science Foundation of Shandong
Province under Grants No. ZR2020MF131 and No. ZR2021ZD19,
and the Science and Technology Program of Qingdao under Grant No.
21-1-4-ny-19-nsh.

Data Availability  Data sharing not applicable to this article as no data-
sets were generated or analyzed during the current study.

Declarations 

Ethics Approval  This article does not contain any studies with human
participants or animals performed by any of the authors.

Informed Consent  Informed consent was obtained from all individual
participants included in the study.

Conflicts of Interest  The authors declare no competing interests.

References

	 1.	 Han K, Wang Y, Tian Q, Guo J, Xu C, Xu C. Ghostnet: more
features from cheap operations. In: CVPR. 2020. p. 1577–586.

	 2.	 Sun Y, Xue B, Zhang M, Yen GG, Lv J. Automatically designing
CNN architectures using the genetic algorithm for image clas-
sification. IEEE Trans Cybern. 2020;50(9):3840–54.

Table 4   Comparison with
state-of-the-art methods on
ImageNet (mobile setting). The
best results are highlighted with
boldface

Architecture Test Err.(%)
top-1 top-5

Params (M) FLOPs (M) Search Cost
(GPU-days)

Search Method

MobileNet [12] 29.4 10.5 4.2 569 - manual
ShuffleNet [13] 26.4 10.2 5.0 524 - manual
OFA-random [14] 26.2 - 7.7 - - RS
NASNet-B [43] 27.2 8.7 5.3 488 1800 RL
NASNet-C [43] 27.5 9 4.9 558 1800 RL
GHN [39] 27 8.7 6.1 - 0.84 SMBO
DARTS [8] 26.7 8.7 4.7 574 4 GD
DSO-NAS [18] 26.2 8.6 4.7 571 1 GD
SNAS [40] 27.3 9.2 4.3 522 1.5 GD
GDAS [41] 27.5 9.1 4.4 497 0.21 GD
BayesNAS [17] 26.5 8.9 3.9 - 0.2 GD
SparseNAS + HAPG [22] 25.5 8.1 5.3 - 1 GD
DLW-NAS (ours) 26.1 8.3 3.8 397 0.45 GD

Table 5   Contribution of LWSS, SSCC and AOS to model perfor-
mance and complexity. The best results are highlighted with boldface

LWSS SSCC AOS Test Err. (%) Params (M) FLOPs (M)
√

2.76 2.9 385
√

2.98 3.1 478
√

2.83 2.7 411√ √
2.81 2.6 359√ √
2.76 2.4 336√ √
2.84 2.6 398√ √ √
2.73 2.3 334

438 Cognitive Computation (2023) 15:429–439

1 3

	 3.	 Orsic M, Segvic S. Efficient semantic segmentation with pyrami-
dal fusion. Pattern Recognit. 2021;110:107611.

	 4.	 Yang L, Wang H, Zeng Q, Liu Y, Bian G. A hybrid deep segmen-
tation network for fundus vessels via deep-learning framework.
Neurocomputing. 2021;448:168–78.

	 5.	 Ebadi N, Jozani M, Choo KKR, Rad P. A memory network infor-
mation retrieval model for identification of news misinformation.
IEEE Transactions on Big Data. 2021.

	 6.	 Mao Y, Zhong G, Wang H, Huang K. MCRN: a new content-
based music classification and recommendation network. In:
ICONIP, vol. 1332. 2020. p. 771–79.

	 7.	 Zoph B, Le QV. Neural architecture search with reinforcement
learning. In: ICLR. 2017.

	 8.	 Liu H, Simonyan K, Yang Y. DARTS: differentiable architecture
search. In: ICLR. 2019.

	 9.	 Zhao J, Zhang R, Zhou Z, Chen S, Liu Q. A neural architecture
search method based on gradient descent for remaining useful life
estimation. Neurocomputing. 2021;438(1).

	10.	 Mao Y, Zhong G, Wang Y, Deng Z. Differentiable light-weight
architecture search. In: IEEE International Conference on Multi-
media and Expo (ICME). 2021. p. 1–6. https://​doi.​org/​10.​1109/​
ICME5​1207.​2021.​94281​32.

	11.	 Iandola FN, Moskewicz MW, Ashraf K, Han S, Dally WJ, Keutzer
K. Squeezenet: Alexnet-level accuracy with 50x fewer parameters
and <1mb model size. CoRR abs/1602.07360. 2016.

	12.	 Howard AG, Zhu M, Chen B, Kalenichenko D, Wang W, Weyand
T, Andreetto M, Adam H. Mobilenets: efficient convolutional neu-
ral networks for mobile vision applications. CoRR abs/1704.04861.
2017.

	13.	 Zhang X, Zhou X, Lin M, Sun J. Shufflenet: an extremely efficient
convolutional neural network for mobile devices. In: CVPR. 2018.
p. 6848–6856.

	14.	 Cai H, Gan C, Wang T, Zhang Z, Han S. Once-for-All: train one
network and specialize it for efficient deployment. In: ICLR. 2020.

	15.	 Wu B, Dai X, Zhang P, Wang Y, Sun F, Wu Y, Tian Y, Vajda P, Jia
Y, Keutzer K. FBNet: hardware-aware efficient ConvNet design
via differentiable neural architecture search. In: CVPR. 2019. p.
10734–10742.

	16.	 Cai H, Zhu L, Han S. ProxylessNAS: direct neural architecture
search on target task and hardware. In: ICLR. 2019.

	17.	 Zhou H, Yang M, Wang J, Pan W. BayesNAS: a Bayesian
approach for neural architecture search. In: ICML, vol. 97. 2019.
p. 7603–613.

	18.	 Zhang X, Huang Z, Wang N. You only search once: single shot
neural architecture search via direct sparse optimization. CoRR
abs/1811.01567. 2019.

	19.	 Weng Y, Zhou T, Liu L, Xia C. Automatic convolutional neural
architecture search for image classification under different scenes.
IEEE Access. 2019;7:38495–506.

	20.	 Li X, Wang W, Hu X, Yang J. Selective kernel networks. In:
CVPR. 2019. p. 510–19.

	21.	 Li G, Zhang X, Wang Z, Li Z, Zhang T. STACNAS: towards
stable and consistent optimization for differentiable neural archi-
tecture search. CoRR abs/1909.11926. 2019.

	22.	 Wu Y, Liu A, Huang Z, Zhang S, Gool LV. Neural architecture
search as sparse supernet. CoRR abs/2007.16112. 2020.

	23.	 Krizhevsky A. Learning multiple layers of features from tiny
images. University of Toronto. 2012.

	24.	 Deng J, Dong W, Socher R, Li L, Li K, Li F. Imagenet: a large-
scale hierarchical image database. In: CVPR. 2009. p. 248–55.

	25.	 Chen X, Xie L, Wu J, Tian Q. Progressive differentiable architec-
ture search: bridging the depth gap between search and evaluation.
In: ICCV. 2019. p. 1294–303

	26.	 Szegedy C, Liu W, Jia Y, Sermanet P, Reed SE, Anguelov D,
Erhan D, Vanhoucke V, Rabinovich A. Going deeper with convo-
lutions. In: CVPR. 2015. p. 1–9.

	27.	 Devries T, Taylor GW. Improved regularization of convolutional
neural networks with cutout. CoRR abs/1708.04552. 2017

	28.	 Huang G, Liu Z, vander Maaten L, Weinberger KQ. Densely con-
nected convolutional networks. In: CVPR. 2017. p. 2261–269.

	29.	 Li L, Talwalkar A. Random search and reproducibility for neural
architecture search. In: Proceedings of the Thirty-Fifth Confer-
ence on Uncertainty in Artificial Intelligence, UAI, Tel Aviv,
Israel, July 22–25. AUAI Press; 2019. p. 367–77.

	30.	 Real E, Aggarwal A, Huang Y, Le QV. Regularized evolution for
image classifier architecture search. In: AAAI. 2019. p. 4780–4789.

	31.	 Liu H, Simonyan K, Vinyals O, Fernando C, Kavukcuoglu K.
Hierarchical representations for efficient architecture search. In:
6th International Conference on Learning Representations, ICLR,
Vancouver, BC, Canada, April 30 - May 3, Conference Track Pro-
ceedings. 2018. OpenR​eview.​net.

	32.	 Yang Z, Wang Y, Chen X, Shi B, Xu C, Xu C, Tian Q, Xu C.
CARS: continuous evolution for efficient neural architecture
search. In: IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, CVPR, Seattle, WA, USA, June 13-19. IEEE;
2020. p. 1826–835.

	33.	 Baker B, Gupta O, Naik N, Raskar R. Designing neural network
architectures using reinforcement learning. In: 5th International
Conference on Learning Representations. ICLR; 2017. OpenR​
eview.​net.

	34.	 Zhong Z, Yang Z, Deng B, Yan J, Wu W, Shao J, Liu C. Blockqnn:
Efficient block-wise neural network architecture generation.
CoRR. 2018.

	35.	 Pham H, Guan MY, Zoph B, Le QV, Dean J. Efficient neural archi-
tecture search via parameter sharing. In: ICML, vol. 80. 2018. p.
4092–4101.

	36.	 Cai H, Yang J, Zhang W, Han S, Yu Y. Path-level network
transformation for efficient architecture search. In: Proceed-
ings of the 35th International Conference on Machine Learning,
ICML, Stockholmsmässan, Stockholm, Sweden, July 10–15.
PMLR; 2018. p. 677–86.

	37.	 Liu C, Zoph B, Neumann M, Shlens J, Hua W, Li L, Fei-Fei L,
Yuille AL, Huang J, Murphy K. Progressive neural architecture
search. In: Computer Vision - ECCV - 15th European Confer-
ence, Munich, Germany, September 8–14, Proceedings, Part I.
Springer; 2018.

	38.	 Perez-Rua J, Baccouche M, Pateux S. Efficient progressive neu-
ral architecture search. In: British Machine Vision Conference,
BMVC, Newcastle, UK, September 3-6. BMVA Press; 2018. p.
150.

	39.	 Zhang C, Ren M, Urtasun R. Graph hypernetworks for neural
architecture search abs/1810.05749. 2018.

	40.	 Xie S, Zheng H, Liu C, Lin L. SNAS: stochastic neural architec-
ture search. In: ICLR. 2019.

	41.	 Dong X, Yang Y. Searching for a robust neural architecture in four
GPU hours. In: CVPR. 2019. p. 1761–1770.

	42.	 Xie S, Girshick RB, Dollár P, Tu Z, He K. Aggregated residual
transformations for deep neural networks. In: IEEE Conference on
Computer Vision and Pattern Recognition, CVPR, Honolulu, HI,
USA, July 21–26. IEEE Computer Society; 2017. p. 5987–995.

	43.	 Zoph B, Vasudevan V, Shlens J, Le QV. Learning transferable
architectures for scalable image recognition. In: CVPR. 2018. p.
8697–8710.

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

439Cognitive Computation (2023) 15:429–439

https://doi.org/10.1109/ICME51207.2021.9428132
https://doi.org/10.1109/ICME51207.2021.9428132
https://openreview.net/
https://openreview.net/
https://openreview.net/

	DLW-NAS: Differentiable Light-Weight Neural Architecture Search
	Abstract
	Introduction
	Related Work
	The Proposed DLW-NAS
	Light-Weight Search Space
	The Architecture Search Algorithm
	Neural Architecture Optimization
	Complexity Analysis

	Experiments and Results
	Datasets and Implementation Issues
	The Searched Architectures
	Architecture Evaluation
	Experiments on CIFAR-10 and CIFAR-100
	Experiments on ImageNet

	Ablation Study

	Conclusion
	References

