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Abstract
In recent years, the method of automatically constructing convolutional neural networks based on neural architecture search 
has attracted wide attention, and greatly reduces the manual intervention and the cost of manual design of neural networks. 
However, most neural architecture search methods focus on the performance of the model, but ignore the complexity of the 
model, which makes it difficult to deploy this method on devices with limited resources. In this paper, a novel differentiable 
light-weight architecture search method named DLW-NAS is proposed, which aims to search convolutional neural networks 
(CNNs) with remarkable performance as well as a small amount of parameters and floating point operations (FLOPs). Con-
cretely, in order to limit the parameters and FLOPs from the source of neural architecture search (NAS), we build a light-
weight search space containing effective light-weight operations. Moreover, we design a differentiable NAS strategy with 
computation complexity constraints. In addition, we propose a neural architecture optimization method, which makes the 
topology of the searched architecture sparse. The experimental results show that DLW-NAS achieves 2.73% error rate on 
CIFAR-10, which is comparable to the state-of-the-art (SOTA) methods. However, it only needs 2.3M parameters and 334M 
FLOPs, which reduces that of the SOTA DARTS by 30% and 36% in parameters and FLOPs, respectively. The searched 
model on CIFAR-100 uses only 2.47M parameters and 376M FLOPs with an error rate of only 17.12%. On ImageNet, com-
pared with the SOTA MobileNet, DLW-NAS achieves 3.3% better top-1 accuracy with much fewer parameters and FLOPs.

Keywords Neural architecture search · Light-weight search space · Differentiable architecture search

Introduction

Convolutional neural networks (CNNs) inspired by the 
cognitive mechanism of biological natural vision have been 
successfully applied to many fields in recent years, such as 
object recognition [1, 2], image segmentation [3, 4] and 
information retrieval [5, 6]. Generally, CNNs are manually 
designed for the specific applications. However, manual 
design methods are heavily dependent upon the knowledge 

of domain experts, and the design process requires lots of 
time and efforts.

To automatically design CNNs, Zoph and Le propose the 
first neural architecture search (NAS) algorithm [7]. Since 
then, the research on NAS has attracted more and more atten-
tion [8, 9]. As one of the most popular NAS algorithms, differ-
entiable architecture search (DARTS) [8] is usually taken as 
a benchmark framework. DARTS searches CNNs based on a 
cell structure. Each cell can be seen as a directed acyclic graph 
(DAG) and has N nodes and E edges. Then, the searched cell 
is stacked in sequence to form a complete deep CNNs. In the 
search stage, DARTS assigns a learnable parameter � to each 
edge via the softmax function, where the value of � represents 
the contribution of the edge in the cell. Nevertheless, there 
exist two shortcomings in the DARTS algorithm. On the one 
hand, the operations in the cell have a major number of param-
eters and FLOPs. On the other hand, based on the architecture 
parameters, DARTS simply retains the two operations cor-
responding to the two largest � at each node, which results in 
relatively redundant connections in the cell. These two issues 
cause that DARTS can only search for CNNs with complex 
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architectures. However, the amount of model parameters and 
FLOPs is crucial for the deployment of CNNs on devices with 
limited memory and computing resources.

This paper puts forward a differentiable light-weight archi-
tecture search method, named DLW-NAS, to automatically 
build high-performance and light-weight CNNs. Specifically, 
the core ideas of this work include three aspects. First, as the 
search space can directly affect the accuracy and complex-
ity of the searched model, we rebuild a new search space 
involving several effective light-weight operations. Second, 
we design a novel differentiable architecture search strategy 
with computation complexity constraints. Last but not the 
least, we propose a neural architecture optimization strategy, 
with which we can keep as few operations as possible in the 
cell while maintaining the model performance.

We have conducted extensive experiments on the CIFAR-
10, CIFAR-100 and ImageNet datasets to evaluate DLW-NAS. 
DLW-NAS obtains 2.73% test error rate on CIFAR-10 with 
only 2.3M parameters and 334M FLOPs. On CIFAR-100, it 
uses only 2.47M parameters and 376M FLOPs with an error 
rate of 17.12%. When transferred from CIFAR-10 to ImageNet 
for mobile settings, using 3.8M parameters and 397M FLOPs, 
DLW-NAS produces top-1 and top-5 error rates of 26.1% and 
8.3%, respectively, which are the state-of-the-art (SOTA) results 
but with fewer parameters and FLOPs than SOTA approaches.

Our major contributions can be summarized as below:

– We present a differentiable light-weight neural architec-
ture search algorithm called DLW-NAS. Especially, we 
rebuild a light-weight search space to limit the amount of 
parameters and calculations of the searched model from 
the source of NAS.

– We design a differentiable NAS strategy with computa-
tion complexity constraints, which can be used to search 
for light-weight architectures.

– We propose a novel and effective neural architecture opti-
mization strategy to greatly sparsify the cell structure.

– On standard image classification datasets, including CIFAR-
10, CIFAR-100 and ImageNet, we obtain the SOTA results 
with the searched light-weight models.

This paper is extended based on our conference version [10] 
with significant improvements. Firstly, we conduct a more 
comprehensive review of related approaches on the basis of 
our conference version. Secondly, we design a new differ-
entiable search strategy with computation complexity con-
straints to automatically search light-weight CNNs. Thirdly, 
we have added more comparisons on the CIFAR-10 and 
ImageNet datasets, and performed more experiments on the 
CIFAR-100 dataset. Experiments show that the proposed 
DLW-NAS in this paper outperforms its previous version. 
Additionally, we have conducted ablation study to verify the 
effect of each component of DLW-NAS.

The rest of this paper is organized as follows. In “Related 
Work”, we briefly review some related work. In “The Pro-
posed DLW-NAS”, we describe the proposed method, 
including the design of the search space, the new search 
strategy, the neural architecture optimization strategy and 
computational complexity analysis. The experimental results 
are reported and analyzed in “Experiments and Results”. 
The conclusion of this paper is presented in “Conclusion”.

Related Work

There are mainly two ways for the construction of light-
weight CNNs, namely handcrafted and automatic design. We 
briefly review these two kinds of approaches in the following.

Handcrafted Handcrafted methods usually change traditional 
convolutional operations or model construction rules to com-
press the amount of parameters and FLOPs. For instance, 
SqueezeNet [11] adjusts the number of feature channels via 
expanding and squeezing convolutional layers. To reduce 
the computational complexity of convolutional operations, 
Howard et al. propose the depthwise separable convolution 
to perform convolutional operations channel by channel [12]. 
ShuffleNet [13] achieves the reduction of computation com-
plexity using group convolution and channel shuffle. Recently, 
based on a set of original feature maps, Han et al. have gener-
ated numerous “ghost” feature maps by using a serial of linear 
transformations, which is effective in digging out the required 
information from original features [1]. Although manually 
designed CNNs show extraordinarily considerable perfor-
mance, the design methods are heavily dependent upon the 
knowledge of domain experts.

Automatic Design The auto-design of convolutinal networks 
usually refers to learning the optimal network structure based 
on NAS algorithms. As one of the most popular NAS algo-
rithms, DARTS converts the discrete operations search into 
a differentiable optimization problem through the Softmax 
function, which effectively reduces the search time. Recently, 
some differentiable NAS methods used for automatically 
designing light-weight models on embedded devices are 
proposed [14, 15]. For example, Cai et al. propose a latency 
regularization loss to reduce inference latency [16] in the 
search process. Wu et al. present an algorithm for search-
ing a continuous structure with sparsity constraints, which is 
known as the mixed-path NAS algorithm. These hardware-
aware NAS methods are effective in reducing the inference 
delay of deep neural networks. However, they do not specifi-
cally explore how to limit model parameters and FLOPs. To 
search for CNNs with low computational complexity, quite a 
few methods are proposed by either constraining the number 
of transformation operations or redesigning the search space. 
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For example, both BayesNAS [17] and DSO-NAS [18] use 
the �1-norm to enforce the connections sparse in the cell topol-
ogy. In CNAS [19], Weng et al. build a new search space by 
exploring some light-weight operations. In this work, we syn-
thetically consider the differentiable light-weight architecture 
search problem. In particular, we design a novel search space 
containing only light-weight operations and propose a new 
strategy to optimize the neural architectures.

The Proposed DLW‑NAS

This section describes our proposed differentiable light-
weight neural structure search (DLW-NAS) method in detail. 
Specifically, the new light-weight search space is first pre-
sented in “Light-Weight Search Space”, followed by the 
neural architecture search algorithm in “The Architecture 
Search Algorithm”. Section “Neural Architecture Optimi-
zation” shows our proposed effective neural architecture 
optimization strategy. Finally, we quantitatively analyze the 
complexity of DLW-NAS in “Complexity Analysis”.

Light‑Weight Search Space

Search space determines the accuracy and complexity of 
the constructed CNNs to a great extent. It is the foundation 
of neural architecture search. To rebuild a new light-weight 
search space, we comprehensively consider candidate opera-
tions in the cell topology from three aspects, namely accu-
racy, parameters and FLOPs. Our target is to construct deep 
architectures with as high accuracy and as few parameters 
and FLOPs as possible. Hence, we mainly improve the search 
space of DARTS [8]. Except for five light-weight operations in 
DARTS search space, i.e., max pooling, depthwise separable 
convolution, identity, dilated convolution and zero, we explore 
three more awesome light-weight operations (i.e., GhostConv, 
SKConv and ShuConv). Therefore, there are eight light-weight 
operations in the search space of DLW-NAS. In the following, 
we briefly introduce the new three light-weight operations. 

 (i) GhostConv [1] is a plug-and-play light-weight opera-
tion. It can generate the same number of feature maps 
as traditional convolution through a series of simple 
linear transformation operations (e.g., depthwise sepa-
rable convolution and 1 × 1 convolution). However, dif-
ferent from conventional convolution, the number of 
parameters and FLOPs of GhostConv is only 1/r of that 
of conventional convolution operation, where r repre-
sents the number of the used convolutional kernels.

 (ii) SKConv [20] makes the input feature maps segmented 
into several branches along the channel dimension 
and uses convolutional kernels to procure features of 
different sizes of receptive fields.

 (iii) ShuConv [13] adopts the point-wise group convo-
lutions as well as channel shuffle, so that they can 
significantly reduce the computational overhead.

Besides, we constrain the light-weight search space of DLW-
NAS from the following two aspects: 

1. Limiting the size of convolutional kernels to 3×3. Previ-
ous methods usually include convolution kernels of size 
5 × 5 or even 7 × 7. Whereas, these convolutional kernels 
retain larger receptive field with a quantity of parameters 
and FLOPs. Therefore, we abandon convolutional opera-
tions with receptive field larger than 3 × 3. In addition, it 
is desirable to replace stacked convolutional layers and 
have large receptive field with dilated convolution. For 
example, with the dilation rate 2, a 3 × 3 dilated convolu-
tion can be regarded as a 5 × 5 convolutional operation.

2. Droping redundant operations. In [21], Li et al. prove 
the existence of the multi-collinearity problem among 
the candidate operations of previous differentiable NAS 
approaches [8]. That is, some operations (such as average 
pooling and max pooling) have high linear correlation, 
which may split the contributions of the candidate opera-
tions during the model searching. To avoid this problem, 
we preserve only one operation with multi-collinearity in 
the search space of DLW-NAS. This guarantees that the 
candidate operations are not redundant.

The Architecture Search Algorithm

This subsection introduces the proposed differentiable neu-
ral architecture search strategy. Following previous work [8], 
we search a cell and stack it to build the deep architecture. 
The structure of the initial cell is shown in Fig. 1a. It can be 
abstracted as a directed acyclic graph (DAG). In the cell, the 
nodes represent layers of the network, while each directional 
edge E(i,j) represents the information flow which is from node 
i to node j. During the search process, information flows that 
input into a node are summarized to:

where x(i) represents the output of the i-th node, and o(i,j) 
is a set of candidate operations performed between node 
i and node j (e.g., 3 × 3 dilated convolution and max pool-
ing). For changing the discrete search to a continuous and 
differentiable optimization problem, like DARTS [8], we 
utilize the softmax function to compute the contribution of 
each operation.

(1)x(j) =
∑
i<j

o
(i,j)

(x(i)),

(2)o
(i,j)

=
�
o∈O

exp(𝛼
(i,j)
o )

∑
o
�
∈O exp(𝛼

(i,j

o
� )
o(x), i < j,
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where O denotes the set of candidate light-weight operations 
in the search space, and o represents an operation between 
node i and node j with its architecture weight �(i,j)

o  . Specifi-
cally, we apply a vector �(i,j) with dimension |O| to param-
eterize the candidate operations between node i and node j. 
In addition, the value of �(i,j)

o  measures how much a candidate 
operation has contributed in the feature map transformation.

To learn light-weight architectures, we add computational 
complexity constraints on the differentiable optimization 
algorithm. We use P(o(i,j)) and F(o(i,j)) to compute the num-
ber of parameters and FLOPs of operation o(i,j) , respectively. 
To maintain the differentiability of the objective function, 
the weighted parameter number and FLOPs between a pair 
of nodes can be computed as:

To the end, the architecture parameters can be updated using 
the gradients.

The parameter number and FLOPs of a cell are obtained by 
summarizing up the parameter numbers and FLOPs of all 
the internal operations:

(3)�[params(i,j)] =
∑
o∈O

�
(i,j)
o

× P(o(i,j)),

(4)�[flops(i,j)] =
∑
o∈O

�
(i,j)
o

× F(o(i,j)).

(5)

⎧⎪⎨⎪⎩

��
[params(i,j) ]

��
(i,j)
o

= P(o(i,j)),

��
[flops(i,j)]

��
(i,j)
o

= F(o(i,j)).

After the search stage, the constructed deep architecture con-
tains several cells, and its parameter number and FLOPs are 
the sum of all the cells:

Based on the above analysis, we design the objective func-
tion as follows:

where CE is the cross entropy loss to evaluate the deep 
architecture and the latter two terms are used to restrict the 
amount of parameters and FLOPs, respectively. Specifically, 
�1 and �2 are trade-off factors among the accuracy, parameter 
number and FLOPs.

Neural Architecture Optimization

As shown in Fig. 1, the optimization process of DLW-NAS 
mainly includes two stages. In the first stage, the architecture 
weights between each pair of nodes in the cell (as shown in 

(6)�[paramsn]
=
∑
i∈n

∑
j>i

�[params(i,j)],

(7)�[flopsn]
=
∑
i∈n

∑
j>i

�[flops(i,j)].

(8)�[params] =
∑
n

�[paramsn]
,

(9)�[flops] =
∑
n

�[flopsn]
.

(10)L = CE + �1�[params] + �2�[flops],

Fig. 1  The optimization process of neural architecture. a A cell con-
sisting of nodes and directional edges. Two white boxes denote the 
input nodes, while the blue boxes denote the inner nodes. The direc-
tional edges between two nodes denote the candidate operations. b In 

accordance with the learned architecture weights, only the operation 
contributes the most is retained. c The ultimate sparse architecture 
obtained based on our proposed architecture optimization strategy
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Fig. 1a) are learned and sorted, and only the operation cor-
responding to the maximum architecture weight is reserved. 
Then, the original cell becomes a discrete structure (as shown in 
Fig. 1b). Here we emphasize that, although most of the opera-
tions in the original cell have been discarded, as shown in Fig. 1b, 
there is a connection between any nodes in the discrete structure.

In the second stage, while keeping the model accuracy, we 
further sparsify the discrete structure and reduce its parameter 
number and FLOPs. Specifically, the proposed strategy which 
is based on the optimized spanning tree ensures us to obtain 
the sparse cell topology. Concretely, we first abstract the dis-
crete structure into a weighted and undirected graph, and the 
weight value on each edge is set to the inverse of the corre-
sponding architecture weight. Then, in the undirected graph, 
we find a minimum spanning tree T. Since the construction of 
the minimum spanning tree T starts from the edges with the 
least weight, the edges contained in T correspond to the opera-
tions with the relatively large architecture weights. Neverthe-
less, some inner nodes may have only output edge but no input 
edge. In this case, the information flows will be influenced. 

To solve this problem, we traverse every node in the cell. As 
long as a node encounters such a problem, the most weighted 
operations having input to this node are added to T. By this 
step, we complete the transformation from the discrete struc-
ture to the sparse structure (as shown in Fig. 1c).

As shown in Fig. 2, through the above two stages, the 
proposed architecture optimization strategy yields relatively 
sparse cells compared to that of DARTS with 8 connections 
and that of SparseNAS with 12 connections. Whereas, there 
still exists one issue that whether or not the reserved con-
nections are suitable for the learning tasks. In Fig. 3, we 
show some experimental results obtained on the CIFAR-10 
and CIFAR-100 datasets. From Fig. 3, we can see that 6 is 
an elbow point of the curves about validation error. This 
indicates that the object recognition accuracy of the con-
structed evaluation model with only five connections in the 
cell is much lower than that with six connections. Moreover, 
although the performance of the evaluation models with 7 
or 8 connections in the searched cell is comparable to that 
with 6 connections, they need much more parameters. This 

Fig. 2  Topological structure of normal cells and reduction cells. a 
Normal cell searched by DLW-NAS on CIFAR-10. b Reduction cell 
searched by DLW-NAS on CIFAR-10. c Normal cell searched by 

DLW-NAS on CIFAR-100. d Reduction cell searched by DLW-NAS 
on CIFAR-100. e Normal cell searched by DARTS [8] on CIFAR-10. 
f Normal cell searched by SparseNAS [22] on CIFAR-10
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motivates us to restrict the number of operations in the cell 
to a constant M = 6 . As the retained operations number N is 
less than M, the M − N operations, with the largest architec-
ture weights, will be selected. Subsequently, these M opera-
tions are used to construct the final cell.

Algorithm 1 describes the overall process of the neural 
architecture optimization strategy proposed in this sec-
tion. The structural weight of the initial neural structure 
block is the trained parameter, and the input � is an N × 8 
parameter matrix, where 8 represents the eight operations 

Fig. 3  a The effect of the connections number contained in the searched cell on model parameters and evaluation accuracy on CIFAR-10. b The 
effect of the connections number contained in the searched cell on model parameters and evaluation accuracy on CIFAR-100
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contained in the search space. Lines 1 to 7 describe the 
process of transforming the initial neural structure into 
discrete neural structure blocks. Lines 8 to 18 describe 
how to realize the transformation from discrete structures 
to sparse structures. Lines 9 to 23 introduce the edge num-
ber regularization rules used to balance the accuracy and 
complexity of neural networks. Finally, a sparse and light-
weight neural structure block with excellent performance 
is output.

Complexity Analysis

In this subsection, we analyze the computational complexity 
of DLW-NAS from two aspects, i.e., the search space and 
the whole deep architecture.

Existing differentiable NAS methods are mainly imple-
mented based on the DARTS search space. Hence, we 
compare the proposed light-weight search space and that 
of DARTS. For convenience, taking a pair of nodes as an 
example, we analyze the computational complexity of the 
search space. Here, we assume that, the size of the input 
feature maps is 32×32, both input and output have 32 chan-
nels Cin = Cout = 32 , while the kernel size and convolutional 
stride are 3 × 3 and 1, respectively. Regardless of the bias, 
Table 1 compares the parameters and FLOPs of the search 
space of DLW-NAS and DARTS. For clarity, we calculate 
the mean values of parameters and FLOPs for all the opera-
tions between a pair of nodes as follows.

where O denotes the set of the candidate operations, |O| is 
the size of O, while po and mo are the parameter number 
and FLOPs of the operation o, respectively. Compared with 
DARTS, the average parameters and FLOPs of DLW-NAS 
are smaller, which is only 0.126M and 0.84M, respectively. 

(11)

Params =
1

|O|
∑
o∈O

po, po > 0,

FLOPs =
1

|O|
∑
o∈O

mo, mo > 0,

It demonstrates that the computational complexity of the 
search space of DLW-NAS is lower than that of DARTS.

To analyze the complexity of architecture, we take the 
evaluation model that stacks 20 cells as an example. The 
architecture complexity is evaluated by the number of trans-
formations of feature maps inside the cells. DLW-NAS and 
DARTS contain 6 and 8 connections in a cell, respectively. 
Thus, an image only needs 20 × 6 = 120 transformations in 
DLW-NAS from input to output, while DARTS has to pass 
20 × 8 = 160 transformations. It is easy to calculate that 
our proposed architecture optimization method reduces the 
number of operations of the evaluation model by 25%. This 
shows that the architecture learned by DLW-NAS is more 
light-weight than that learned by DARTS.

Experiments and Results

In this section, we report the experimental settings and results 
in detail.

Datasets and Implementation Issues

To evaluate the proposed DLW-NAS method, we have con-
ducted experimental comparison on three standard image clas-
sification datasets, including CIFAR-10, CIFAR-100 and Ima-
geNet (mobile setting). We briefly introduce them as follows.

CIFAR‑10 and CIFAR‑100 [23] These two datasets consist 
of 50K training images and 10K testing images separately, 
with image size of 32×32× 3. The images in these two data-
sets belong to 10 and 100 classes, respectively. During the 
architecture search, half of the training data are applied to 
train the architecture weights, and the remaining half are 
used to adjust the parameters of the searched architecture.

ImageNet [24] It is composed of 1.3M images for training 
and 50K images for test, and the images belong to 1,000 

Table 1  Comparison with 
DARTS on candidate operations 
of the search space. The best 
results are highlighted with 
boldface

DLW-NAS Params (K) FLOPs (M) DARTS Params (K) FLOPs (M)

Identity - - Identity - -
3× 3 SepConv 1.41 1.34 3× 3 SepConv 1.41 1.34
3× 3 DilConv 1.41 1.34 5× 5 SepConv 1.93 1.64
3× 3 ShuConv 0.30 0.20 3× 3 DilConv 1.41 1.34
SKConv 2.44 0.65 5× 5 DilConv 1.93 1.64
GhostConv 0.74 0.67 3× 3 Max Pooling - -
3× 3 Max Pooling - - 3× 3 Avg Pooling - -
Zero - - Zero - -
Avg 1.26 0.84 Avg 1.67 1.49
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classes. The size of the images is 224×224× 3. The mobile 
setting is used for test.

Following the optimization algorithm in [25], we learn 
the architecture weights and network parameters. After the 
architecture search stage, we utilize the proposed architec-
ture optimization strategy to transform the searched cell 
to sparse structure, which contains M = 6 connections. 
Moreover, �1 and �2 are set to 0.01 and 0.005, respectively. 
When evaluating the architecture, we stack 20 cells and train 
the deep architecture on CIFAR-10 and CIFAR-100 from 
scratch. In addition, on ImageNet, we stack 14 cells to test 
the deep architecture. Particularly, our experiments are con-
ducted using two NVIDIA GTX 1080Ti GPUs.

The Searched Architectures

We conduct the architecture search on CIFAR10 and 
CIFAR100. Figure 2 presents the architectures searched by 
DLW-NAS. Compared with SOTA DARTS [8] and Spar-
seNAS [22], we can see that the normal cells searched by 
DLW-NAS are more sparse, and the number of internal 
connections is only 3/4 of DARTS and 1/2 of SparseNAS. 
Such results are attributed to the architecture optimization 

strategy of DLW-NAS. Furthermore, the up-to-date light-
weight operations in the search space ensure to deliver a 
quite efficient deep architecture.

Architecture Evaluation

In the following, we report the evaluation results on the 
searched architectures.

Experiments on CIFAR‑10 and CIFAR‑100

Following previous work, we construct the evaluation model 
with 20 searched cells, including 18 normal cells and 2 reduc-
tion cells. With batch size 96, we train the evaluation model 
for 600 epochs from scratch. The standard SGD optimizer is 
used, and we set the initial learning rate to 0.025, the momen-
tum to 0.9 and the weight decay to 3 × 10−4 on CIFAR-10 and 
5 × 10−5 on CIFAR-100. Auxiliary towers [26] of weight 0.4 
and cutout regularization [27] of length 16 are also applied.

In Table 2, we list the comparison results between our 
method and other NAS methods, where “−” indicates that 
the relevant results are not given in the research work listed. 
The second column shows the recognition error rate of CNN 

Table 2  Comparison with state-of-the-art methods on CIFAR-10. The best results are highlighted with boldface

Architecture Test Error. (%) Params (M) FLOPs (M) Search Cost 
(GPU-days)

Search Method

DenseNet-BC [28] 3.46 25.6 - - manual
MobileNet [12] 15.60 3.3 - - manual
Ghost-VGG-16 [1] 6.30 7.7 - - manual
RandomNAS [29] 2.85 4.3 - 2.7 RS
DARTS-random + cutout [8] 3.29 3.2 - 4 RS
AmodebaNet-A + cutout [30] 3.12 3.2 - 3150 EA
Hierarchical-EAS [31] 3.75 15.7 - 300 EA
CARS-E + cutout [32] 2.86 3.0 - 0.4 EA
MetaQNN + cutout [33] 6.92 - - 100 RL
BlockQNN [34] 3.54 39.8 - 96 RL
ENAS + cutout [35] 2.89 4.6 626 0.5 RL
Path-level EAS [36] 2.99 5.7 - 200 RL
PNAS [37] 3.41 3.2 - 225 SMBO
EPNAS [38] 3.71 6.6 - 1.8 SMBO
GHN [39] 2.84 5.7 - 0.84 SMBO
DARTS (first order) + cutout [8] 3.00 3.3 - 1.5 GD
DARTS (second order) + cutout [8] 2.76 3.3 528 4 GD
SNAS + mild [40] 2.98 2.9 422 1.5 GD
CNAS + cutout [19] 4.23 2.95 - 2.5 GD
GDAS + cutout [41] 2.93 3.4 519 0.21 GD
DSO-NAS-full [18] 2.95 3 - 1 GD
SparseNAS + HAPG [22] 2.73 3.8 538 1 GD
BayesNAS + cutout [17] 2.90 3.1 - 0.2 GD
DLW-NAS + cutout (ours) 2.73 2.3 334 0.45 GD
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models constructed by different methods on CIFAR-10. The 
smaller the value is, the higher the recognition accuracy of 
the model for objects is. The third and fourth columns are 
important indicators to measure the complexity of the model, 
showing the number of model parameters and the amount of 
calculation of different methods. Using “M” as a statistical 
unit, the smaller the value is, the lower the complexity of the 
model is, which means the model is lighter. In addition, the 
last two columns in the table show the CPU time and model 
construction methods required for automatic construction 
of convolutional neural networks, in which RL (Reinforce-
ment Learning), EA (Evolutionary Algorithm) and SMBO 
(Sequential model-based optimization) are all methods for 
automatic model construction. Thus, we can see that DLW-
NAS achieves a 2.73% error rate with only 2.3M param-
eters and 334M FLOPs. Compared with the SOTA NAS 
approaches, such as BayesNAS [17] and DSO-NAS [18], 
the classification accuracy obtained by DLW-NAS is higher 
and the number of model parameters is greatly reduced. The 
test error of SparseNAS [22] is comparable with DLW-NAS. 
However, there are more connections in the searched cell, 
such that SparseNAS has more parameters and FLOPs. The 
parameters and FLOPs of DLW-NAS are about 37% less 
than those of SparseNAS.

Table 3 shows the performance of different methods on 
CIFAR-100. The evaluation indices in the experiments are 
consistent with those in Table 2. As shown in Table 3, the 
architecture searched by DLW-NAS on CIFAR-100 uses only 
2.47M parameters and 376M FLOPs and delivers an error rate 
of 17.12%. Comparing with the SOTA DARTS, DLW-NAS 
surpasses DARTS on classification performance but using 
fewer parameters and FLOPs. This further demonstrates the 
advantages of DLW-NAS over SOTA approaches. In a word, 
compared with the manual design of neural network, evo-
lutionary algorithm and reinforcement learning method, the 
network structure searched by our method has better perfor-
mance, faster search speed, fewer parameters and less compu-
tation. In comparison with other differentiable neural architec-
ture search methods, our method also has distinct advantages. 
The results obtained by DLW-NAS are comparable with faster 

search speed in the case of smaller parameters and less com-
putation with that of the SOTA methods.

Experiments on ImageNet

In this experiment, the architectures searched on CIFAR-10 
are transferred to ImageNet for mobile setting test. Accord-
ing to the common comparison method on the ImageNet 
dataset, Top-1 and Top-5 error rates are used to evaluate the 
compared methods, and the complexity evaluation indices 
are the same as CIFAR-10 and CIFAR-100 datasets. Follow-
ing the conventions [8], we construct the evaluation model 
with 14 cells, including 12 normal cells as well as 2 reduc-
tion ones. Moreover, we train the evaluation model for 250 
epochs with batch size 256. Bsides we set the initial value 
of the learning rate of the SGD optimizer to 0.1.

It can be seen from Table 4 that the results obtained by 
DLW-NAS are obviously superior to the manual design 
of neural network methods and other differentiable meth-
ods on ImageNet. With only 3.8M parameters and 397M 
FLOPs, DLW-NAS achieves a 26.1% error rate and outper-
forms DARTS on either model complexity or classification 
accuracy. In addition, DLW-NAS performs slightly better 
than DSO-NAS [18] which is directly searched on Ima-
geNet, with even less parameters and FLOPs. This dem-
onstrates the effectiveness of DLW-NAS on architecture 
search. In terms of accuracy, SparseNAS performs slightly 
better than DLW-NAS, but its number of parameters is 
much more than that of DLW-NAS.

Ablation Study

DLW-NAS mainly includes three innovations: the light-
weight search space (LWSS), search strategy with com-
plexity constraints (SSCC) and architecture optimization 
strategy (AOS). In the experiment, we also conduct abla-
tion study to evaluate the contribution of these components 
to the performance of DLW-NAS on image classification.

Table 5 shows the experimental results on CIFAR-10. 
It can be seen that each component has certain impact on 

Table 3  Comparison with state-of-the-art methods on CIFAR-100. The best results are highlighted with boldface

Architecture Test Error. (%) Params (M) FLOPs (M) Search Cost 
(GPU-days)

Search Method

DenseNet-BC [28] 17.18 25.6 - - manual
ResNeXt-29 [42] 18.56 25.2 - - manual
SKNet [20] 17.33 27.7 - - manual
DARTS (first order) + cutout [8] 17.74 3.4 536 1.5 GD
DARTS (second order) + cutout [8] 17.58 3.3 518 4 GD
CNAS + cutout [19] 22.24 3.67 - 2.5 GD
DLW-NAS + cutout (ours) 17.12 2.47 376 0.45 GD
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the learning accuracy and complexity of the evaluation 
model. For example, the results in the fourth row are based 
on the DARTS search space, while that in the sixth row are 
based on the proposed LWSS. As we can see that using the 
proposed LWSS can search for models with lower compu-
tational complexity and higher recognition accuracy than 
using the DARTS search space. Comparing the results 
shown in the second and sixth rows, it can be seen that the 
proposed AOS can greatly reduce the parameter number and 
computational complexity. Overall, applying all the three 
components, DLW-NAS can obtain SOTA learning accuracy 
with low computational overhead.

Conclusion

In this work, we propose DLW-NAS, which is a differenti-
able light-weight neural architecture search method. To real-
ize the light-weight architecture search from the source, we 
establish a novel light-weight search space. Furthermore, 
we propose a new differentiable architecture search strategy 

with complexity constraints. In addition, we introduce an 
architecture optimization strategy to sparsify the connec-
tions in the searched architecture. This strategy reduces 
the parameter number and computational complexity, but 
basically preserves the model performance. To evaluate the 
proposed DLW-NAS method, we test it on the CIFAR-10, 
CIFAR-100 and ImageNet datasets. The results demonstrate 
its advantages over the SOTA approaches.
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