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Abstract
Recent advances in deep learning have provided an opportunity to improve and automate dysarthria intelligibility assessment, 
offering a cost-effective, accessible, and less subjective way to assess dysarthric speakers. However, reviewing previous 
literature in the area determines that the generalization of results on new dysarthric patients was not measured properly or 
incomplete among the previous studies that yielded very high accuracies due to the gaps in the adopted evaluation methodolo-
gies. This is of particular importance as any practical and clinical application of intelligibility assessment approaches must 
reliably generalize on new patients; otherwise, the clinicians cannot accept the assessment results provided by the system 
deploying the approach. In this paper, after these gaps are explained, we report on our extensive investigation to propose a 
deep learning–based dysarthric intelligibility assessment optimal setup. Then, we explain different evaluation strategies that 
were applied to thoroughly verify how the optimal setup performs with new speakers and across different classes of speech 
intelligibility. Finally, a comparative study was conducted, benchmarking the performance of our proposed optimal setup 
against the state of the art by adopting similar strategies previous studies employed. Results indicate an average of 78.2% 
classification accuracy for unforeseen low intelligibility speakers, 40.6% for moderate intelligibility speakers, and 40.4% for 
high intelligibility speakers. Furthermore, we noticed a high variance of classification accuracies among individual speakers. 
Finally, our proposed optimal setup delivered an average of 97.19% classification accuracy when adopting a similar evalu-
ation strategy used by the previous studies.
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Introduction

Dysarthria is a motor speech disorder caused by weakness 
or lack of control of the muscles used for articulation [1]. 
This impairment can be caused by physical injuries that 
damage the neural cells in the brain, stroke, etc., and is a 
symptom of neurological disorders such as Parkinson’s dis-
ease and cerebral palsy [2]. The lack of articulatory control 

and muscle weakness associated with dysarthria affect the 
speaking rate, varied amplitude and pitch dynamics, and 
articulation, all of which result in unintelligible speech that 
is more difficult to understand due to imprecise articulation 
of phonemes or abnormal variations in speech [3]. Intelligi-
bility can be thought of as the quality of speech indicating 
how well healthy speakers can understand the spoken words 
[4]; dysarthric individuals may have reduced intelligibil-
ity, and variation in dysarthria severity can lead to speech 
of differing degrees of intelligibility that can significantly 
reduce the patient’s communication abilities. Low speech 
intelligibility can severely impact dysarthric individuals’ 
life and independence. A study has shown that over 47% 
of dysarthric sufferers reported often repeating what they 
say as healthy speakers find it difficult to understand them 
[5]. Speech and Language Pathologists (SLPs) are required 
to know the severity of dysarthria to assess the progression 
in the underlying cause of the impairment [6], which helps 
them to design effective treatment plans, exercises, and 
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recovery sessions, as well as monitor the effectiveness of 
the therapy [7].

Usually, dysarthric intelligibility assessments are per-
formed clinically by trained SLPs, who estimate and clas-
sify the intelligibility based on the number of words they can 
understand. However, this auditory-based clinical assessment 
can be subjective [8], and studies have shown these assess-
ments can be influenced by factors such as assessor familiar-
ity and different use of rating scales between assessors [9]. 
Such factors introduce errors and make these assessments 
difficult to administer and unreliable, leading to ineffective 
therapy. Additionally, SLPs need to perform the assessments 
manually, making them expensive and inaccessible for indi-
viduals with limited access to SLPs and speech clinics [10]. 
Hence, automated intelligibility assessment approaches could 
offer the potential for an inexpensive, simple, and less subjec-
tive way to classify dysarthric speakers and reduce the likeli-
hood of error in the process. Additionally, this may improve 
access to such assessments and help provide a framework to 
facilitate remote treatment, recovery plans, and rehabilitation 
of dysarthric speakers. While traditional computation meth-
ods may be insufficient to accurately capture and learn com-
plex patterns associated with human speech, deep learning 
algorithms are better equipped to offer an avenue to produce 
a model with sufficient predictive abilities to meaningfully 
improve dysarthric intelligibility assessments.

Automatic dysarthria intelligibility assessment using machine 
learning technologies is typically done in two stages. In the first 
stage, a computational model is built (i.e., trained) based on the 
historical speech samples and their respective speech intelligi-
bility class label. Once the model is trained, it can map speech 
samples from speakers with unknown intelligibility levels to a 
certain class by finding and analyzing similarities among speak-
ers’ acoustic features to those used during training without any 
human intervention. As such, the two primary components of 
such systems are the feature extraction method presenting acous-
tic features and the machine learning classifier used to learn 
and map the features to classes of speech intelligibility. Outputs 
could be formulated in intelligibility classes, such as low or high 
intelligibility, and could assist clinicians by providing an inter-
pretable classification of the speaker’s intelligibility level.

Studying the literature shows few attempts to leverage 
machine learning algorithms to automate intelligibility assess-
ment. Nevertheless, as explained in [11], despite high accura-
cies reported, some previous studies did not properly verify 
the generalizability of their methods. For example, most 
studies verified their approaches against the same speaker(s) 
whose speech samples were used during the training stage, 
which means the speaker information was leaked in the test-
ing data resulting in the model tending to perform speaker 
recognition [12] instead of learning intelligibility patterns 
associated with dysarthria. Additionally, some studies did 

not apply cross-validation or test the predictive capability of 
their models by including all dysarthric subjects in the dataset 
they considered. This flaw in evaluation strategy is impor-
tant as we noticed significant fluctuations in the predictive 
performance across the dysarthric speakers from the same 
intelligibly class, indicating that any results obtained from one 
speaker per intelligibility class are not a reliable indication 
of model performance. Likewise, only reporting the average 
accuracies without the breakdown of the results per subject or 
intelligibility class may not be a solid indication of the model 
performance as higher average accuracies can be achieved if 
there are more speech samples from intelligible test subjects 
than severe dysarthria in the testing data.

This paper first presents an overview of the state-of-
the-art automatic dysarthric intelligibility assessment 
approaches, highlighting the gaps in the evaluation method-
ologies adopted in the previous studies. Next, we report on 
our extensive investigation in which we conducted multiple 
sets of experiments to propose a deep learning–based dys-
arthric intelligibility assessment optimal setup that recom-
mends feature extraction approaches and other parameters 
future researchers and practitioners need to consider in order 
to design such a system. Then, we employed different evalu-
ation strategies to thoroughly verify how the optimal setup 
performs with the 16 dysarthric subjects in the UA-Speech 
corpus [13] and across different intelligibility classes. 
Finally, we conducted further experiments to perform a 
comparative study benchmarking the performance of our 
proposed optimal setup against the state of the art by adopt-
ing similar strategies previous studies employed to verify 
their models. Our objectives in this study were to address the 
gaps in evaluation strategy remained by the previous studies 
and provide a robust indication of intelligibility assessment 
generalization on new speakers.

Related Work

Based on the data used to build and classify speech models,  
automatic dysarthria intelligibility classification approaches 
can be classified into two categories: reference-free approaches, 
which do not require any prior knowledge of healthy speech,  
or reference-based approaches that utilize healthy speech  
signals when measuring intelligibility [11]. To put it differently, 
reference-free approaches rely on extracting features that are 
directly correlated with speech intelligibility, whereas reference- 
based approaches use healthy (normal) speech to make a  
comparison and measure the ratio of deviations from normal 
speech, then relate the measurement to intelligibility classes. 
The rest of this section provides examples of both approaches to 
intelligibility assessment.
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Reference‑Free Approaches

Reference-free approaches are more commonly seen in the 
literature; hence, we can see a larger variety of machine 
learning algorithms and input modalities have been explored. 
Some of these studies focused on finding the best acoustic 
features and others on the machine learning algorithms. For 
example, in [14], acoustic features, such as the kurtosis of 
the linear prediction residual and the range of the funda-
mental frequency, were manually extracted to investigate 
their correlation with intelligibility and resulted in creating 
a “composite measure” using six such features. The authors 
then concatenated these features and built a regression clas-
sifier achieving Pearson correlation coefficient (PC) of 0.97 
when predicting intelligibility scores of UA-Speech subjects. 
This work presented intelligibility assessment by calculat-
ing an intelligibility score instead of perceiving intelligibil-
ity assessment as a multi-class classification task in which 
the classifier maps the subject’s intelligibility to different 
classes of speech intelligibility such as mild, moderate, 
high, and severe intelligibility. An example of the multi-
class approach is the study conducted in [15] where artificial 
neural networks with a single hidden layer were employed 
to perform intelligibility classification on UA-Speech cor-
pora, achieving a 96.4% classification accuracy using audio 
descriptors related to the timbre of musical instruments as 
input features.

Nonetheless, deep learning algorithms have shown to deliver 
state-of-the-art performances when dealing with unstructured 
data such as speech in comparison to shallow algorithms. In 
terms of deep learning algorithms to perform reference-free 
intelligibility assessment, we can refer to [16], where multi-
ple standard deep learning architectures were built and evalu-
ated on UA-Speech and TORGO [17] corpora. In particular, 
a fully connected dense neural network, a convolutional neu-
ral network (CNN), and a long short-term memory network 
(LSTM) were considered in this study. The dysarthric subjects 
in TORGO were classified into three classes of intelligibility 
(high, moderate, and low) and four classes for UA-Speech sub-
jects (high, moderate, low, and very low). Speech features were 
presented by mel-frequency cepstral coefficients (MFCCs) in 
all experiments. The authors also provided experimental results 
obtained from support vector machines (SVMs). The overall 
classification accuracies of both the dense and CNN models 
outperformed the SVM on both TORGO and UA-Speech 
experiments concluding the superiority of the deep learning 
architectures. However, the LSTM did not perform as well 
as the other models since, according to the study, the tempo-
ral information learned by the LSTM exposed to the simpler 
common words during training was insufficient to identify the 
severity level of the complex uncommon words in the test set. 

Nevertheless, this hypothesis could have been explored by 
using the common words for both training and testing.

When it comes to mining visual data and learning patterns 
presented in images and videos, CNNs have been the most suc-
cessful algorithm due to their abilities in learning translation-
invariant patterns. Similarly, CNNs have been successfully 
used in speech modeling tasks where acoustic features were 
presented visually. In this context, CNNs have been applied for 
dysarthria intelligibility classification where dysarthric speech 
features were presented as spectrograms, for example, in [18]. 
A more comprehensive example is [5], in which a cross-modal 
framework including both video and acoustic data was pro-
posed. In this framework, MFCCs were considered to present 
the acoustic features, and a Facial Action Coding system was 
applied to track facial muscle movement. The architecture 
used was a multi-input deep learning architecture with two 
CNN streams, one CNN for each input type. The framework 
obtained the highest recorded accuracy of over 99% on UA-
Speech. Another example is [19], where short speech segments 
(less than 1 s) were fed to a standard CNN and a deeper CNN 
with residual connections. With the maximum of 1-s-long 
speech segments, the study reported that the residual CNN 
achieved 86.63% classification accuracy compared to 64.35% 
accuracy obtained from the standard CNN.

Reference‑Based Approaches

Automatic speech recognition (ASR) technologies play a key 
role in reference-based automated approaches. Such approaches 
rely on the assumption that if the ASR model is trained only 
on healthy speech, then it should perform poorly on dysarthric 
speech, and that the performance deteriorates as the intelligi-
bility of the speech decreases. Hence, ASR-based approaches 
measure speech intelligibility by computing the word or alpha-
bet accuracy ratio obtained from an ASR system. A notable 
study here is [20] in which Mozilla DeepSpeech speech-to-
alphabet system was used to assess the intelligibility of dys-
arthric speech. In this work, the impaired speech was given to 
DeepSpeech, and then intelligibility estimates were provided 
by calculating the cost of transforming the output string from 
the ASR to the ground truth. The study also compared dif-
ferent subsets of words from the UA-Speech database, and it 
was found that measuring speech intelligibility using some 
specific words can be more effective than other words. Esti-
mations obtained from this approach using the specific set of 
words achieved a 0.98 Pearson correlation coefficient value. 
Another example is [20], which used an acoustic model based 
on i-vectors and SVMs trained on English healthy speech and 
common words from UA-Speech, then evaluated on the dysar-
thric uncommon words from UA-Speech. The model achieved 
accuracies up to 0.91 PC.
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Limitations of the Previous Studies

Table 1 summarizes the existing intelligibility assessment 
approaches on the UA-Speech corpus. The studies cited 
in this table classified the severity of dysarthria based on 
speech intelligibility into severe dysarthria (very low intel-
ligibility < 25%), high dysarthria (low intelligibility between 
25 and 50%), moderate dysarthria (intelligibility between 50 
and 75%), and mild dysarthria (high intelligibility > 75%) 
based on the intelligibility of the subjects reported in the 
dataset. The table also explains the evaluation strategies 
adopted in those studies, particularly whether unforeseen 
subjects were considered during evaluation. UA-Speech cor-
pus is explained in detail in the next section.

As shown in Table 1, previous studies reported very high 
classification accuracies, but the evaluation approaches 
adopted did not properly measure the generalizability of 
the models. For example, the highest performing model 
achieved an accuracy of 99.6% for their CNN-based uni-
model approach using only speech data [7]. Nevertheless, 
the authors evaluated their model on two high (93% and 
90.4%) intelligibility subjects, one moderate (62%), one low 
(29%), and only one very low (7.4%) intelligibility subject 
in which the authors handpicked his speech samples. This 
means it was likely their results were affected by the number 

of higher intelligibility test subjects (60% of the test subjects 
had intelligibility of more than 62%), and the authors did not 
provide the breakdown of the results per subject. Moreover, 
there was no explanation why the speech samples of the only 
very low intelligibility subject were manually selected, and 
not all audio samples provided in the dataset for this subject 
were not considered. Thus, the top result may not imply how 
the model performs with very low intelligibility dysarthric 
subjects. They also did not test the system for all UA-Speech 
speakers. Nonetheless, the results reported in this paper are 
still significant.

Another limitation we noticed in the rest of the works 
cited in Table 1 was the evaluation data contained speech 
samples of the same subjects used for training the models; 
i.e., the models were evaluated on the training speakers. 
Using the test speaker’s data during training may prompt 
the models to conduct closed-set speaker recognition instead 
of speech intelligibility assessment. In particular, these stud-
ies mostly split the evaluation datasets based on the type of 
utterances instead of the speakers; a common approach when 
UA-Speech subjects were considered was using the common 
155 words provided by the dataset as the training data, with 
the 300 uncommon words of the same speaker for the test-
ing data. This provides evidence to the notion that reported 
intelligibility assessment models may focus more on who 

Table 1  Summary of highest performing dysarthria intelligibility classification models on UA-Speech

Paper Model Acoustic features Evaluation  
methodology

Mean  
classification 
accuracy

Comments

Bhat et al. 2017 [15] ANN Audio features designed for 
spectral characterization 
of musical instruments

Trained and Tested on 
the same ten subjects

96.4% Trained and tested across 2812 
digits and command utterances 
from blocks 1 and 2

70% of data used for training and 
15% for validation and 15% for 
testing

Tong et al. 2020 [7] CNN MFCC and recorded video 
of speakers

Trained on ten subjects, 
tested on five different 
subjects

99.6% Held out five manually selected 
subjects for testing purposes  
but used only 1/3 of “very  
low” intelligibility speaker’s 
data in testing (selecting a 
single block instead of all three 
available). Likewise, the testing 
dataset was imbalanced with 
more test samples from higher 
intelligibility speakers, which 
may have affected the average 
accuracy provided

Gupta et al. 2021 [19] ResNet Spectrogram Tested and trained 
on the same eight 
subjects

98.9% Subjects were manually selected 
and tested with 10% of the entire 
dataset

Joshy and Rajan 2021 [16] SVM MFCC Tested and trained on 
the same 15 subjects

82.9% Uncommon words used for testing 
(4500 utterances), the rest of  
the data for training (6975  
utterances)

DNN 93.6%
CNN 93.2%
LSTM 75.1%
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the speaker was and not necessarily their speech intelligibil-
ity. As an illustration, the study that utilized residual CNNs 
[20] achieved 98.9% accuracy but considered only eight UA-
Speech dysarthric subjects for training and the same speak-
ers for testing with 90:10 train/test split across all speakers’ 
data.

Consequently, it is inconclusive how well these models 
perform when given speech data from dysarthric speakers 
not seen during training. Using test speakers whose utter-
ances were not considered during training delivers a more 
robust estimation of the model’s applicability in real sce-
narios. This is of significant importance when the models 
are deployed in clinical practice since they must classify new 
patients reliably.

Finally, none of the previous studies in Table 1 considered 
all UA-Speech subjects, nor verified their models against 
all the subjects. Given the scarcity of dysarthric data is a 
significant issue [21], not using all available data does not 
seem justified. Our study addresses all these limitations and 
provides realistic measurements to indicate generalizability 
best.

Dysarthric Participants

The UA-Speech [13] corpus was used for all the experiments  
conducted in this study. The corpus consists of 16 dysarthric 
speakers whose data can be used, each speaking 455 unique 
words, with three repetitions (aka blocks) of each word 
except the uncommon words. A 7-channel microphone array 
was used to record the utterances, generating seven audio 
files for each utterance in each block. The prompt words 
consist of 150 common words such as 10 digits, 26 radio 
alphabet letters, and 19 basic computer commands such as  
“delete” and “enter” and 100 common words selected from the  
most common words in the Brown corpus of written Eng-
lish such as “it,” “is,” and “you”; and 300 uncommon words 
selected from Project Gutenberg in which children’s novels 
were digitized. These uncommon words are a set of more 
complex words selected to maximize biphone diversity.

Speech intelligibility of the subjects, provided by the cor-
pus, was measured by having five American-English speakers 
aged 18–40 years old attempt to transcribe 255 spoken words 
for a given dysarthric subject. The listeners rated each word 
between 0 and 2 indicating how certain they were about their 
transcribe choice, in which 0 was not certain and 2 very cer-
tain. Then, UA-Speech authors calculated the ratio of correct 
responses per listener, and the average percentage of correct 
responses became the intelligibility rating for the subject. To 
assess the reliability of assessments among the listeners, an 
examination of the repeated words was conducted to check 
whether the repeated words were the same. For the words 
marked very certain, the authors reported 91.64% average 

agreement among the listeners. For the words marked oth-
erwise, the transcriptions provided by the listeners were 
either identical or of the same phonological similarity. This 
indicated that the listeners did not randomly transcribe the 
unintelligible words.

Based on the perceptual intelligibility scores provided 
in the dataset, we classified UA-Speech subjects into three 
classes of intelligibility: low intelligibility (less than 33% 
intelligibility), mild or moderate intelligibility (33–66% intel-
ligibility), and high intelligibility (more than 66% intelligibil-
ity). We have considered speech samples provided by all 16 
UA-Speech subjects shown in Table 2 in our experiments.

Experiments and Results

In this study, we conducted multiple sets of experiments to 
identify the optimal setup to conduct dysarthric intelligibil-
ity assessment and then verify the optimal setup against all 
dysarthric subjects in Table 2 and deliver per-speaker results 
in addition to results per intelligibility class.

We considered speech features presented as both MFCCs 
and spectrograms for the optimal setup identification since 
they both delivered significant results in the previous studies. 
While MFCCs have been widely studied in the literature, 
spectrograms do not appear to be thoroughly investigated in 
the context of intelligibility assessment, although they have 
outperformed other feature extraction approaches in ASR 
tasks [18]. We experimented with different configurations 
by selecting different MFCC parameters and spectrogram 
setups explained below.

Our evaluation method differed from those shown in Table 1 
by using held-out speakers to measure how well our models 
generalize to unseen speakers. In particular, no speech sample 
from the testing speakers was among the training set in any of 
the experiment sets explained below. Additionally, accuracy 
was measured in all experiments.

Additionally, in the remaining of this paper, we refer to 
configurations (confs) as experiments with different MFCC 
feature extraction parameters, such as different number of 
MFCC features and frame lengths. On the other hand, set-
ups refer to different spectrogram experiments to identify 
optimal utterance length and whether common UA-Speech 
words were included. We opted to select different terms 
(configurations vs setups) to indicate that the latter was not 
experiments with different spectrogram configurations.

Experiment Set 1: Identifying the Best MFCC‑Based 
Feature Set

In experiment sets 1 and 2, all models were tested on speak-
ers M01 (low intelligibility), M05 (moderate intelligibility), 
and M09 (high intelligibility) utterances while the rest of the 
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utterances from the other 13 speakers were used for training. 
All available words from UA-Speech were utilized in train-
ing and testing, but only M5 microphone data was used. The 
number of audio samples per participant was highly varied 
concerning the available microphone data, but the M5 micro-
phone had the highest number of collected utterances across all 
microphones. Table 3 summarizes the speakers used in training 
and evaluating the models during set 1 and 2 experiments.

In order to design the network architecture for this set of 
experiments, we employed Keras Tuner [22] applying Hyper-
band [23] to automatically identify the CNN configuration and 
architecture shown in Fig. 1. This was done by configuring a 
search space with different number of neurons in each layer, 
convolutional filters, batch sizes, dropout values, optimizers, 
etc. Then, the hyperband optimization algorithm employed an 
adaptive approach to allocate resources paired with early stop-
ping, trained a large number of models with different architec-
tures and hyperparameters defined in the search space in a few 
epochs, and proceeded with further training with the models 
that delivered the best performances. This process iterated 
until the best performing models were identified and reported.

Identifying the best MFCC configuration, we explored dif-
ferent MFCC frame and sliding window rates, and whether 

to include the MFCC delta coefficients. For each setup, we 
retrained the CNN with the training subjects of Table 3 and 
measured its performance on the testing subjects. This pro-
cess was repeated ten times in each configuration while the 
testing accuracies were recorded and averaged. The results 
of this experiment are presented in Table 4. As can be seen, 
the best performance was achieved when the first 13 MFCCs 
(i.e., mel cepstrum with 12 coefficients plus the energy infor-
mation) were used with relatively long frames of 256 ms 
sliding each 128 ms. The inclusion of MFCC first and sec-
ond derivatives degraded the model performance. Likewise, 
results demonstrate that longer frames achieved higher perfor-
mance. Although this is contrary to typical usage of MFCCs 
in healthy speech processing when short frames of 20–30 ms 
are commonly used, it was not unexpected and is consistent 
with our previous findings for dysarthric ASR [24].

Experiment Set 2: Identify the Best Spectrogram 
Setup

In the second set of experiments, mel-spectrograms were 
created using a decibel scale on the frequency axis to empha-
size the frequency ranges relevant to human speech. Librosa 
mel-spectrograms [25] with default parameters were used to 
generate the spectrograms. The default parameters were FFT 
window length of 2048, 512 samples between successive 
frames (hop length), and window function was set to Hann.

Generally, the utterance length of the high intelligibility 
speakers in the dataset was shorter than 5 s, while low intelligi-
bility speakers had a longer average length, typically exceeding 
7 s. A trade-off between not using excessively longer utterances 
that were mostly empty while still long enough to capture low 

Table 2  The UA-Speech 
participants

Dysarthric 
subjects

Age Perceptual intelligibility 
score

Dysarthria diagnosis Intelligibility 
class

M04  > 18 2 Spastic Low
F03 51 6 Spastic Low
M12 19 7 Mixed Low
M01  > 18 10 Spastic Low
M07 58 28 Spastic Low
F02 30 29 Spastic Low
M06 18 39 Spastic Mid
M16 Not provided 43 Spastic Mid
M05 21 58 Spastic Mid
M11 48 62 Athetoid Mid
F04 18 62 Athetoid (or mixed) Mid
M09 19 86 Spastic High
M14 40 90 Spastic High
M10 21 93 Not provided High
M08 28 95 Spastic High
F05 22 95 Spastic High

Table 3  Experiment 1 and 2 train/test dysarthric speakers

Intelligibility category Test subjects Training subjects

Low M01 F02, F03, M01, M04, M07, 
M12

Moderate (mid) M05 F04, M05, M06, M1, M16
High M09 F05, M08, M09, M10, M14
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intelligibility speech was difficult to determine. Hence, we con-
sider the optimal length of the utterance as one of the param-
eters to investigate during this experiment set. To do so, we 
conducted multiple experiments retraining the model using 5-, 
7-, and 10-s audio lengths. Audio files that were longer than 
2 s over the predetermined audio length were excluded from 
both training and evaluation to ensure consistency among the 
generated spectrograms. From our observations, spectrograms 
from longer UA-Speech utterances mostly consist of silence or 
background noise and did not include useful speech data.

Moreover, in our early experiments, we noticed that models 
trained only on uncommon UA-Speech words performed better 
— this seemed counterintuitive to exclude data, especially when 
the dysarthria acoustic data is scarce, but the difference in results 
was significant enough to be a consideration. However, it was 
unclear whether changing the spectrogram length and the inclu-
sion/exclusion of the common words would impact the model 
performance. Hence, we built several models trained on all words 
and only the uncommon words to investigate this effect. Overall, 
six setups were configured and evaluated for this experimental set 
using audio length values of 5, 7, and 10 s, and the two different 
word selection schemes (uncommon words only or all words). 
The same three subjects from Table 3 were considered for model 
evaluation.

Similar to experiment 1, Keras Tuner was used to identify 
the best CNN architecture depicted in Fig. 2. The spectrograms’ 
resolution was 128 × 157 pixels for experiments with 5-s audios, 

128 × 219 pixels for 7-s audio experiments, and 128 × 313 pixels 
for 10-s audio experiments.

In each experiment, we retrained the model five times for 
30 epochs with early stopping if the validation loss did not 
decrease in at least five epochs. Adam optimizer with an ini-
tial learning rate of 0.0003 and a batch size of 16 was used. 
Table 5 shows the mean classification accuracy of the models 
under each of the audio length and training word setups and 
the maximum classification accuracies achieved.

Based on the results obtained, the best performing setup 
was the 5-s spectrogram length using only the uncommon 
words that achieved the maximum of 81% accuracy on the 
three unseen speakers. Interestingly, the models trained only 
on the uncommon words outperformed all those trained on 
both the common and uncommon words. It appears that the 
addition of the common words may not be beneficial in an 
intelligibility classification setting. We assume that the com-
mon words may not contain enough discriminatory infor-
mation for the model to learn intelligibility assessment. On 
the other hand, there may be more stark differences between 
speakers of different intelligibility classes when using only 
uncommon words, which may help the model generalizes 
more successfully. Given that setup #1 delivered the best 
results, it can be concluded that 5-s audios uttering uncom-
mon words are the optimal setup to conduct dysarthria intel-
ligibility classification, considering generalizability to unseen 
speakers, when features are presented via spectrograms.

Fig. 1  Experiment set 1 CNN architecture

Table 4  Experiment set 1 
results

MFCC configurations Frame 
length

Sliding window Coefficients Average 
accuracy

Conf #1 25 ms 10 ms 13MFCCs 45.2%
Conf #2 64 ms 32 ms 13 MFCCs 52.5%
Conf #3 64 ms 16 ms 13 MFCCs 49.2%
Conf #4 128 ms 64 ms 13 MFCCs 57.8%
Conf #5 256 ms 128 ms 13 MFCCs 63.1%
Conf #6 256 ms 128 ms 13 MFCCs + delta MFCCs 56.4%
Conf #7 256 ms 128 ms 13 MFCCs + delta 

MFCCs + delta-delta MFCCs
51.7%
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As for the optimal length, the longer utterances appear to 
reduce performance, at least when using uncommon words 
only, which is consistent with previous findings reported 
in the literature [26]. The 5-s length performs the best on 
average and has the highest maximum accuracy. However, 
one additional consideration is that the shorter audio length 
reduces the number of utterances used in the training since 
some low intelligibility utterances may get excluded. None-
theless, this can be remedied by trimming longer utterances 
to 5 s. However, this requires an automated audio segmenta-
tion technique in case the content of the audio files is skewed 
towards the beginning or end of the file.

Figure 3 shows the confusion matrix delivered by setup 
#1 model in terms of performance per intelligibility class. 
It can be noted that the misclassifications were not spread 
evenly among the three intelligibility classes. Particularly, the 
low intelligibility speaker was most frequently misclassified 

(34%), in which the model considered his speech samples as 
high intelligibility 22% of the time. Moderate intelligibility 
was most accurately classified (90%), followed by high intel-
ligibility with an 80% classification rate. Similar to the low 
intelligibility misclassification rate, the high intelligibility 
subject was misclassified more often as low intelligibility 
(15%) than moderate (4%).

Experiment Set 3: Verification of the Optimal Setup 
with All UA‑Speech Dysarthric Speakers

Between experiment sets 1 and 2, the CNN trained with 
spectrograms of 5-s utterances with uncommon words deliv-
ered a 12.05% better average classification rate over the best 
MFCC configuration for M01, M05, and M09 dysarthric 
subjects, and, as such, was selected as the optimal setup. 
The next step was to confirm how this setup performs for 

Fig. 2  Experiment 2 CNN architecture

Table 5  Experiment set 2 
results

Experiment setup Utterance 
length

Word selection Mean accuracy Max accuracy

Setup #1 5 s Uncommon only 75.15% 81.00%
Setup #2 5 s All words 57.78% 64.28%
Setup #3 7 s Uncommon only 73.92% 78.52%
Setup #4 7 s All words 61.23% 63.60%
Setup #5 10 s Uncommon only 70.39% 77.26%
Setup #6 10 s All words 57.56% 61.43%
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the remaining participants, which was done by conducting 
two more sets of experiments.

In the first set, 5-fold cross-validation was employed 
where different combinations of held-out speakers were 
used for evaluation purposes. In each fold, utterances of dif-
ferent speakers were entirely held-out during training. For 
example, we held out F02, M06, and M08 utterances in the 
second fold, trained the model with the rest of the speakers’ 
data, and then tested the model on the speakers mentioned 
above. In the next fold, we selected F03, M11, and M14 for 
testing and the rest of the speakers for training. Each fold 
contained testing speakers from all three dysarthric intel-
ligibility classes and used the optimal 5-s utterances of only 
uncommon words during training and evaluation with the 
CNN shown in Fig. 2. Additionally, the CNN in each fold 

was retrained five times, as explained in the “Experiment 
Set 1: Identifying the Best MFCC-Based Feature Set” sec-
tion. It is pertinent to note that the first fold results are from 
Table 5. Figure 4 depicts the results of these experiments.

In the second set of these experiments, we conducted leave-
one-speaker-out approach [27] with 16 folds to verify the per-
formance against each individual UA-Speech speaker. This 
was done by holding out a speaker in each fold for testing and 
training the CNN with the remaining 15 speakers based on the 
optimal setup. The process was repeated in the next fold with 
another speaker selected to held-out. These experiments were 
important to identify if particular speakers were skewing the 
performance. The same setup of 30 epochs with early stopping 
if validation loss does not decrease was used in each fold. The 
results of these experiments are illustrated in Fig. 5.

Discussion

Across different experiments we conducted, varying results 
were obtained. For example, each of the alternative sets of 
test speakers in the “Experiment Set 3: Verification of the 
Optimal Setup with All UA-Speech Dysarthric Speakers” 
section and Fig. 4 led to worse performance compared to 
the initial set of speakers in the first fold, which suggests 
the results from one speaker are not necessarily generaliz-
able to the rest of the speakers of the same intelligibility 
class. Likewise, a large variation in results can be seen in 
the results shown by Fig. 5, ranging from as low as 0.3% 
classification accuracy up to 94.60%. This can also be seen 
from Fig. 6, where the results obtained from each speaker 
is plotted against the mean (56.66%) and standard deviation 
(32%). Only 56% of the observations are within one standard 
deviation above or below the mean, suggesting that the results 
do not follow normal distribution.

Fig. 3  Confusion matrix for spectrogram setup #1 (5-s audio length, 
uncommon words only) tested on speakers M01 (low), M05 (moder-
ate), and M09 (high)

Fig. 4  5-fold cross-validation 
results
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As shown in Fig. 6, speakers such as M01 and M07 were 
classified with over 90% accuracy, but few speakers such 
as F04, M10, and M11 with less than 10% classification 
accuracy, which indicates the model significantly misclas-
sified the utterances from these speakers. Interestingly, M09 
utterances were not classified well when trained on all other 
speakers, despite the 80% accuracy reported in Fig. 3. On 
the other hand, M01 and M05 were classified with more than 
87% accuracy when evaluated individually.

In general, it appears that the low intelligibility speak-
ers were identified more correctly on average than the other 

intelligibility classes during the 16-fold experiments. Table 6 
displays the average accuracy per intelligibility class based 
on the results obtained from the 16-fold experiments. We 
can see that the low intelligibility speakers appear to have 
the highest classification accuracy on average in this setting, 
even with the shorter 5-s audio length cut-off. The other two 
intelligibility classes seem more difficult to classify unseen 
speakers. However, the mid intelligibility speaker M05 and 
the high intelligibility speaker M08 had utterances classi-
fied more than 87% of the time correctly — there was not a 
universally poor classification of mid and high intelligibility 

Fig. 5  16-fold leave-one 
speaker-out classification accu-
racy results

Fig. 6  16-fold leave-one-speaker-out results analysis
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speakers during the 16-fold experiments. While the high 
degree of variation makes definitive conclusions difficult to 
draw, perhaps the low intelligibility speakers are more dis-
similar from the other intelligibility classes and hence are 
easier to distinguish generally. Additionally, the mid and 
high intelligibility classes have only one female speaker 
each, explaining their suboptimal results. These results show 
that further investigation into the characteristics of speakers 
like M10 and M11 may be useful to explore difficulties in 
dysarthric intelligibility modeling not generalizing as well 
to unseen speakers.

Comparison with the State of the Art

Performance inconsistencies are obvious from the results 
obtained by evaluation on completely unseen speakers. We 
did not see the same level of performance achieved by the 
studies reported in Table 1, although for some speakers, the 
results are comparable with the state of the art. Neverthe-
less, because of the held-out strategy we adopted, a direct 
comparison with those studies that did not consider unseen 
speakers is not informative. To verify how our identified 
optimal setup compares with those reported in the literature, 
we have conducted a final set of experiments adopting a 
similar evaluation strategy considered in [19]. This would 
provide more confidence that the presence of unseen speak-
ers is responsible for the variations in performance, not the 
optimal setup.

In [19], 90% of the utterances from four male speakers 
(M01, M05, M07, M09) and four female speakers (F02, F03, 
F04, F05) were used for training, and the remaining 10% of 
the same participants’ utterances for testing. The data con-
tained all 455 distinct words, including both common and 
uncommon words. In our comparative study, we decided to 
use all available speakers and the uncommon words in train-
ing and evaluation based on the proposed optimal setup. We 
also used an 80:20 train/test split across all speakers’ data 
to increase the number of testing utterances. Additionally, 
the previous performances reported in the “Experiments and 
Results” section were obtained by perceiving the intelligibil-
ity classification as a three-class problem, but the baseline 
paper divided dysarthric intelligibility into four classes. As 
such, we conducted two comparative experiments based on 
both three-class and four-class tasks. We obtained 97.83% 
accuracy for the three-class and 97.19% for the four-class 

task compared to the maximum 98.90% accuracy reported 
in [19].

Observing the results of the 3-class setting, it is much 
higher than the 81% accuracy obtained from unseen speak-
ers. We believe this validates our concerns that using the 
training speakers for evaluation leaks speaker information, 
prompting the model to lean towards speaker recognition 
rather than intelligibility assessment. Additionally, this sug-
gests that the variations in performance compared to the 
state-of-the-art results are due to the more difficult evalua-
tion procedure and not because of a suboptimal setup.

Conclusions

In this paper, we reported on multiple sets of experiments 
we conducted to assess how well deep learning–based auto-
matic dysarthric intelligibility assessment models generalize 
to new speakers, and to identify the optimal setup indicating 
which acoustic features perform better, different parameters 
such as utterance length, etc. Studying the literature identi-
fied that the state-of-the-art results may not properly reflect 
actual performances despite the very high accuracy reported, 
which was confirmed based on the results we obtained.

To find the optimal setup, we conducted 13 experiments 
investigating different MFCC configurations and spectrogram 
setups as input modalities to establish a high-performing dys-
arthria intelligibility assessment model when evaluated on 
speakers that the model was not exposed to. These experi-
ments delivered a maximum of 81% classification accuracy 
on three unseen dysarthric speakers from the UA-Speech 
corpus, each presenting a different intelligibility class. The 
optimal setup was found to be a 5-s audio length and focusing 
on the uncommon words from the UA-Speech vocabulary 
using a CNN architecture we identified via hyperband tun-
ing. While MFCCs are more commonly used in the literature, 
spectrograms outperformed them by delivering around 12% 
better classification accuracy in our experiments.

Once the optimal setup was identified, we proceeded with 
more experiments to investigate the setup’s generalization per-
formance on all available UA-Speech speakers via a 5-fold 
cross validation and 16-fold leave-one-out cross validation 
procedures; each employed a different strategy in dividing 
the train and test speakers. The results obtained from these 

Table 6  Intelligibility class 
average results (16-fold 
experiments)

Intelligibility class Speakers Average 
accuracy

Low intelligibility (less than 33%) F02, F03, M01, M04, M07, M12 78.2%
Moderate intelligibility (between 33 and 66%) F04, M05, M06, M11, M16 40.6%
High intelligibility (more than 66%) F05, M08, M09, M10, M14 40.4%
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experiments indicated varying accuracies ranging from 0.30 
to 94.60% for different speakers. No test speaker utterance was 
leaked in the training set in all of these experiments, ensuring 
test speakers remained completely unseen.

In order to measure how the optimal setup performs in 
comparison to the state of the art, we conducted two more 
comparative experiments adopting a similar strategy com-
monly used in the literature in which the test utterances were 
selected from all available speakers that their speech sam-
ples were provided to the model during training. The opti-
mal setup achieved over 97% accuracy, which is as high as 
those reported in the literature. Nonetheless, this evaluation 
strategy does not indicate how well the model performs in 
clinical settings where new speakers need to be assessed.

The high variance in the results obtained from experi-
ments with unforeseen speakers highlights the need for more 
investigations with more dysarthric subjects. Nevertheless, 
this is difficult in practice, especially given the communica-
tion challenges dysarthric speakers face and the fatigue they 
endure when speaking for longer periods. Another possibil-
ity is a cross-database evaluation to extend the amount of 
data available for training and testing — although the means 
to standardize and preprocess the speech across different 
databases may require significant effort and poses extra 
challenges. Another issue is the strategy applied to assess 
the subjects’ speech intelligibility in different dysarthric 
corpora, which may not be consistent and result in further 
performance degradation and variance.

Another strategy that we are currently pursuing is to design 
a dysarthria assessment system that deploys the optimal setup 
to help SLPs conduct intelligibility assessments. The system 
will capture further speech data and have a feedback loop from 
SLPs when the system’s prediction is incorrect to learn from 
the new data and SLPs’ assessment.
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