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Abstract
As modern socioeconomic decision-making problems are becoming more and more complex, it also becomes more and 
more difficult to appropriately depict decision makers’ cognitive information in decision-making process. In addition, in 
group decision-making problems, decision makers’ cognition is usually diverse, which makes it more complicated to express 
the overall preference information. Recently, the dual-hesitant Pythagorean fuzzy sets (DHPFSs) have been proved to be an 
effective tool to depict decision makers’ evaluation values in multi-attribute group decision-making (MAGDM) procedure. 
The basic elements of DHPFSs are dual-hesitant Pythagorean fuzzy numbers (DHFNs), which are characterized by some 
possible membership degrees and non-membership degrees. In a DHFN, all members have the same importance, which indi-
cates that multiple occurrence and appearance of some elements is ignored. Hence, the DHPFSs still have some drawbacks 
when expressing decision makers’ evaluation information in MAGDM problems. This paper aims at proposing a novel tool 
to describe decision maker’s evaluation values and apply it in solving MAGDM problems. This paper extends the traditional 
DHPFSs to probabilistic dual-hesitant Pythagorean fuzzy sets (PDHPFSs), which consider not only multiple membership and 
non-membership degrees, but also their probabilistic information. Afterward, we investigate the applications of PDHPFSs in 
MAGDM process. To this end, we first introduce the concept of DHPFSs as well as some related notions, such as operational 
rules, score function, accuracy function, comparison method, and distance measure. Second, based on the power average and 
Hamy mean, some aggregation operators for DHPFSs are presented. Properties of these new operators are also discussed. 
Third, we put forward a novel MAGDM method under PDHPFSs. A novel MAGDM method is developed, and further, we 
conduct numerical examples to show the performance and advantages of the new method. Results indicate that our method 
can effectively handle MAGDM problems in reality. In addition, comparative analysis also reveals the advantages of our 
method. This paper contributed a novel MAGDM method and numerical examples as well as comparative analysis were 
provided to show the effectiveness and advantages of our proposed method. Our contributions provide decision makers a 
new manner to determine the optimal alternative in realistic MAGDM problems.

Keywords  Dual-hesitant Pythagorean fuzzy sets · Probabilistic dual-hesitant Pythagorean fuzzy sets · Power average · 
Hamy mean · Multi-attribute group decision-making

Introduction

The theory of multi-attribute group decision-making 
(MAGDM) has received extensive attention and quite a 
few achievements have been reported in the past decades. 

The final decision result of a MAGDM problem relies on 
decision makers’ (DMs) cognitive information and hence, 
describing DMs’ cognition appropriately and effectively is a 
precondition of determining the final optimal option. Never-
theless, it is very difficult to depict DMs’ cognitive informa-
tion because of the increasing complexity and uncertainty 
of realistic socioeconomic environment. In addition, espe-
cially in MAGDM procedure, as DMs usually have different 
expertise, their cognition is usually diverse. Consequently, 
DMs’ cognitive process is full of complexity, vagueness, 
and uncertainty. In the past decades, some scholars have 
attempted to depict DMs’ cognitive information from the 
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perspective of fuzzy sets theory. For instance, the good per-
formance of Yager’s Pythagorean fuzzy sets (PFSs) [1] in 
describing fuzzy and uncertain information has received 
much attention. In the framework of PFSs, it is necessary 
to not only depict fuzzy information from both positive and 
negative aspects but also provide enough freedom for DMs 
to comprehensively express their evaluation values. Due 
to the efficiency of PFSs in denoting attribute values that 
provided by DMs, they have been extensively applied to 
MAGDM problems. In addition, quite a few new decision-
making approaches have been proposed [2]. To accommo-
date more complicated decision-making situations, some 
scholars and scientists focused on extending the classical 
PFSs, in order to more appropriately and accurately depict 
DMs’ preference information over feasible alternatives. 
For instance, Garg [3] extended the PFSs to the interval-
valued PFSs, which employ interval numbers to denote the 
membership degrees (MDs) and non-membership degrees 
(NMDs). Peng and Yang [4], Geng et al. [5], and Wei et al. 
[6] proposed the Pythagorean fuzzy linguistic sets, Pythago-
rean fuzzy uncertain linguistic sets, and Pythagorean 2-tuple 
linguistic sets, respectively, which can describe both DMs’ 
quantitative and qualitative decision information. Addition-
ally, based on the interval-valued PFSs, Du et al. [7], Liu 
et al. [8], and Wang et al. [9] proposed the interval-valued 
Pythagorean fuzzy linguistic sets, interval-valued Pythago-
rean fuzzy uncertain linguistic sets, and interval-valued 
Pythagorean 2-tuple linguistic sets, respectively.

The abovementioned extensions of PFSs have been 
proved to be efficient to handle DMs’ complex cognitive 
information. However, sometimes the difficulty in estab-
lishing MDs and NMDs lies in handling a set of possible 
values instead of margin errors or some possibility distribu-
tion values. In order to deal with such situations, Wei and 
Lu [10] extended the PFSs to the dual-hesitant Pythagorean 
fuzzy sets (DHPFSs). Similar to the dual-hesitant fuzzy set 
(DHFS) [11], the DHPFS is also characterized by two sets 
of some values in [0, 1], denoting the possible MDs and 
NMDs, respectively. The DHPFSs absorb the advantages 
of both PFSs and DHFSs, and they are more powerful and 
flexible to depict attribute values in MAGDM problems. 
Afterward, Lu et al. [12] proposed a bidirectional project 
method of DHPFSs and applied it in performance assess-
ment of new rural construction. Ji et al. [13] generalized the 
traditional TODIM into DHPFSs to evaluate personal default 
risk in P2P lending platform. In addition, some scholars 
investigated MAGDM methods under DHPFSs from the per-
spective of dual-hesitant Pythagorean fuzzy (DHPF) aggre-
gation operators (AOs). For instance, Tang and Wei [14, 
15], Wei et al. [16] proposed the DHPF Bonferroni mean 
operators, generalized DHPF Bonferroni mean operators, 
DHPF Heronian mean operators, and DHPF Hamy mean 
operators, respectively. These AOs have been successfully 

applied in MAGDM problems and some novel decision-
making approaches have been proposed correspondingly.

Nevertheless, the DHPFSs still have a shortcoming when 
dealing with DMs’ evaluation information. They neglect the 
frequency or multiple occurrences of elements in each DHPF 
numbers (DHFNs). For example, three professors are invited 
to evaluate the research ability of a student. The three profes-
sors would like to use three sets of values {0.5, 0.6}, {0.6}, 
and {0.5, 0.8} to denote the possible MDs of their assess-
ments. Similarly, three sets of values {0.3, 0.4, 0.6}, {0.4}, 
and {0.6} are employed by the three professors to denote the 
NMDs of their evaluations. Then, the overall evaluation value 
by the decision-making group can be denoted as d = {{0.5, 
0.6, 0.8}, {0.3, 0.4, 0.6}}, which is a dual-hesitant Pythago-
rean fuzzy number (DHPFN). However, in the DHPFN d 
the multiple occurrence and appearance of the MDs 0.5 and 
0.6, and the NMDs 0.4 and 0.6 is ignored. In the other word, 
the DHPFN d cannot accurately express the comprehensive 
evaluation value of the group. As a matter of fact, to more 
accurately denote the evaluation information of a group, not 
only the MDs and NMDs but also their corresponding fre-
quency or probabilistic information should be considered. 
Similar researches can be found in recent publications. For 
example, Pang et al. [17] extended the hesitant fuzzy lin-
guistic sets [18] to probabilistic linguistic sets (PLSs) by tak-
ing the probabilistic information of each linguistic term into 
account. In PLSs, not only linguistic terms provided by DMs, 
but also the frequencies of them are captured. Hence, PLSs 
can more accurately express DMs’ evaluation information. In 
[19–22], many scholars focused on applications of PLSs in 
practical MAGDM problems. Similarly, Jiang and Ma [23] 
generalized the hesitant fuzzy sets into probabilistic hesitant 
fuzzy sets (PHFSs) which also consider the probabilities of 
all the MDs. Song et al. [24] extended the interval-valued 
hesitant fuzzy sets into interval-valued probabilistic hesitant 
fuzzy sets by capturing the probabilistic information of each 
interval-valued MDs. Recently, Hao et al. [25] extended dual 
hesitant fuzzy sets to probabilistic dual hesitant fuzzy sets 
(PDHFSs).

The shortcomings of DHPFSs in depicting DMs’ evalu-
ation values and the high efficiency of PLSs, PHFSs and 
PDHFSs in representing fuzzy information motivated us to 
propose an enhanced form of DHPFSs to more appropriately 
express DMs’ preference information. We noticed the that the 
reason of why PLSs, PHFSs and PDHFSs have good ability 
of representing evaluation information, is because all of them 
not only consider each member in an evaluation element but 
also take into account its corresponding probabilistic informa-
tion. Hence, based on above analysis, to improve the ability of 
DHPFSs in expressing DMs’ overall evaluation information, 
it is necessary to extend the classical DHPFSs to probabilistic 
DHPFSs (PDHPFSs). In the PDHPFSs, both the MDs, NMDs 
as well as their corresponding probabilistic information are 
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considered. Hence, compared with the DHPFSs, the PDHPFSs 
can more effectively denote DMs’ evaluation values in com-
plicated MAGDM problems. In addition, the PDHPFSs are 
parallel to PDHFSs but are more powerful. This is because 
PDHPFSs have laxer constraint, which provides freedom for 
DMs to comprehensively express their evaluation information. 
For the applications of PDHPFSs in MAGDM, we further 
propose operational rules, comparison method, and distance 
measure of probabilistic dual-hesitant Pythagorean fuzzy ele-
ments (PDHPFEs). When considering the AOs of PDHPFEs, 
we are impressed by the good performance of power Hamy 
mean (PHM) [26] operator in fusing information. The PHM 
is a combination of the power average (PA) [27] operator and 
Hamy mean (HM) [28]. The performance of PHM is impres-
sive as it not only reduces the bad influence of DMs’ extreme 
evaluation values on the results but also considers the inter-
relationship among multiple connected attributes. Thus, this 
paper employs PHM to aggerate PDHPFEs and propose novel 
AOs. Finally, based on the new AOs, we further introduce a 
novel MAGDM method, wherein attribute values are in the 
form of PDHPFEs.

The main contributions of this study consist of three 
aspects. First, we propose a novel information representa-
tion tool to depict overall evaluation values of a group, viz., 
PDHPFSs. Because PPDHPFS considers both MDs, NMDs 
as well as their frequency or probabilistic information, it is 
more powerful than PDHPFS. In addition, due to its laxer 
constraint that the square sum of MD and NMD is less than 
or equal to one, PDHPFS is also more powerful than Hao 
et al.’s [25] PDHFSs. Second, a series of AOs for PDHPFSs 
are presented. Evidence is provided to demonstrate the 
advantages of superiorities of the proposed AOs in solv-
ing MAGDM problems. Finally, a new MAGDM method is 
put forward. The make our paper more readable, we organ-
ize our manuscript as follows. The “Preliminaries” section 
briefly reviews some basic concepts. The “The Probabilistic 
Dual-Hesitant Pythagorean Fuzzy Sets” section proposes the 
notion of PDHPFSs as well as some other related concepts. 
The “Probabilistic Dual-Hesitant Pythagorean Fuzzy Aggre-
gation Operators” section investigates AOs of PDHPFEs and 
studies their important properties. The “An Approach to 
Multiple Attribute Decision Making with Probabilistic Dual-
Hesitant Pythagorean Fuzzy Information” section presents a 
new MAGDM approach based on PDHPFSs. The “Numeri-
cal Example” section conducts numerical experiments. The 
“Conclusions” section summarizes the paper and gives the 
future research directions.

Preliminaries

In this section, we briefly review some basic notions, which 
will be used in the following sections.

The Dual‑Hesitant Pythagorean Fuzzy Set

Definition 1  [10]  Let X be an ordinary set, then a dual 
hesitant Pythagorean fuzzy set (DHPFS) A defined on X is 
expressed as

where hA(x) and gA(x) are two sets of some interval values, 
denoting the possible MDs and NMDs of the element x ∈ X 
to the set A, such that.

where � ∈ hA(x),� ∈ gA(x) ,  �+ = ∪�∈hA(x)
max {�} and 

�+ = ∪�∈gA(x)
max {�} . For convenience, the ordered pair 

�A(x) =
(
hA(x), gA(x)

)
 is called a DHPFN, which can be 

denoted as � = (h, g) for simplicity.

To rank any two DHPFNs, Wei and Lu [10] proposed a 
comparison method for DHPFNs.

Definition 2 [10]  Let � = (h, g) be a DHPFN, the score func-
tion of � is defined as

and the accuracy function of � is expressed as

where #h and #g denote the numbers of values in h and 
g, respectively. For any two DHPFNs, �1 =

(
h1, g1

)
 and 

�2 =
(
h2, g2

)
,

1.	 If S
(
𝛼1
)
> S

(
𝛼2
)
 , then 𝛼1 > 𝛼2;

2.	 If S
(
�1
)
= S

(
�2
)
 , then

if H
(
𝛼1
)
> H

(
𝛼2
)
 , then 𝛼1 > 𝛼2;

if H
(
�1
)
= H

(
�2
)
 , then �1 = �2.

Wei and Lu [10] proposed basic operations rules of 
DHPFNs.

Definition 3 [10]  Let �1 =
(
h1, g1

)
,�2 =

(
h2, g2

)
 and � = (h, g) 

be any three DHPFNs, and � be a positive real number, then

1.	
𝛼1 ⊕ 𝛼2 = ∪𝛾1∈h1,𝛾2∈h2,𝜂1∈g1,𝜂2∈g2{{(

𝛾2
1
+ 𝛾2

2
− 𝛾2

1
𝛾2
2

)1∕2}
,
{
𝜂1𝜂2

}}
;

2.	
𝛼1 ⊗ 𝛼2 = ∪𝛾1∈h1,𝛾2∈h2,𝜂1∈g1,𝜂2∈g2{{

𝛾1𝛾2
}
,

{(
𝜂2
1
+ 𝜂2

2
− 𝜂2

1
𝜂2
2

)1∕q}}
;

(1)A =
�⟨x, hA(x),gA(x)⟩ �x ∈ X

�
,

(2)0 ≤ � , � ≤ 1,
(
�+

)2
+
(
�+

)2
≤ 1,

(3)S(�) =
1

2

(
1 +

1

#h

∑
�∈h

�2 −
1

#g

∑
�∈g

�2
)
,

(4)H(�) =
1

#h

∑
�∈h

�2 +
1

#g

∑
�∈g

�2,
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3.	 �� = ∪�∈h,�∈g

{{(
1 −

(
1 − �2

)�)1∕2
}
,
{
��
}}

;

4.	 �� = ∪�∈h,�∈g

{{
��
}
,

{(
1 −

(
1 − �2

)�)1∕2
}}

..

Power Average Operator and Hamy Mean

Definition 4 [27]  Let ai(i = 1, 2, ..., n) be a collection of non-
negative crisp numbers, then the power average (PA) opera-
tor is defined as

where T
�
ai
�
=

n∑
j=1,i≠j

Sup
�
ai, aj

�
 , Sup

(
ai, aj

)
 denotes the sup-

port for ai from aj , satisfying the conditions

1.	 0 ≤ Sup
(
ai, aj

)
≤ 1

2.	 Sup
(
ai, aj

)
= Sup

(
aj, ai

)
;

3.	 Sup(a, b) ≤ Sup(c, d) , if |a, b| ≥ |c, d|.

Definition 5 [28]  Let ai(i = 1, 2, ..., n) be a collection of crisp 
numbers and k = 1, 2, ..., n . If

then HM(k) is the Hamy mean (HM) operator, where (
i1, i2, ..., ik

)
 traverses all k-tuple combination of (1, 2, ..., n) , 

and Ck
n
 is the binomial coefficient.

The Probabilistic Dual‑Hesitant Pythagorean 
Fuzzy Sets

In this section, we attempt to propose the concept of PDHPFS. 
To this end, we first present the motivations to explain why we 
need PDHPFSs. Then, the definition, operational rules, compari-
son method, and distance measure of PDHPFSs are presented.

The Motivation of Proposing the PDHPFSs

As discussed above, DHPFSs can effectively depict DMs’ 
fuzzy evaluation values as well as their high hesitation. Nev-
ertheless, it has been pointed out that DHPFSs are still insuf-
ficient to handle some practical decision-making situations and 
some important information is lost. We provide the following 
example to explain this drawback of DHPFSs.

(5)PA
�
a1, a2, ..., an

�
=

n∑
i=1

�
1 + T

�
ai
��
ai

n∑
i=1

�
1 + T

�
ai
�� ,

(6)HM(k)
(
a1, a2, ..., an

)
=

1

Ck
n

∑
1≤i1<....<ik≤n

(
k∏

j=1

aij

)1∕k

,

Example 1  Suppose there are three professors, and they are 
required to evaluate a thesis of a student under the attribute 
novelty. In order to comprehensively capture the profes-
sors’ evaluation information, they are permitted to provide 
multiple MDs and NMDs. The possible MDs and NMDs 
provided by the three decision experts are listed in Table 1.

Obviously, in the framework of DHPFSs, the overall evalu-
ation value of provided the three professors can be denoted as 
d = {{0.1, 0.2, 0.3, 0.4, 0.5, 0.6}, {0.1, 0.2, 0.3, 0.4}}, which is 
a DHPFN. However, it is noted that the multiple occurrences 
of MD 0.4 and 0.6 and the NMD 0.2, 0.3 and 0.4 are ignored, 
which indicates that there exits information loss and the 
DHPFN d fails to fully depict the overall evaluation value of 
the decision-making group. As a matter of fact, to more accu-
rately depict DMs’ evaluation values in hesitant fuzzy environ-
ment, not only MDs and NMDs, but also their corresponding 
probabilistic information should be taken into consideration. In 
other word, in Example 1, the multiple occurrence and appear-
ance of the MDs 0.4 and 0.6 and the NMDs 0.2, 0.3, and 0.4 
should be also accounted. Hence, motivated by PHFSs and 
PDHFSs, in the following we extend DHPFSs to PDHPFSs.

The Definition of PDHPFSs

Definition 6  Let X be a fixed set, a probabilistic dual hesi-
tant Pythagorean fuzzy set (PDHPFS) D defined on X is 
expressed as

where hA(x) and gA(x) are two sets of values in the interval 
[0,1], denoting the possible MDs and NMDs of the element 
x ∈ X to the set D. p(x) and t(x) are the probabilistic informa-
tion for the MDs and NMDs, respectively. In addition,h(x)
,g(x),p(x) and t(x) satisfy the following conditions:

where � ∈ hA(x),� ∈ gA(x) , �+ = ∪�∈hA(x)
max {�} , �+ =

∪�∈gA(x)
max {�},pi ∈ p(x) , tj ∈ t(x) , #h and #g denote the 

numbers of values in h and g, respectively. For convenience, 

(7)D = {⟨x, h(x)�p(x) , g(x)�t(x) �x ∈ X ⟩},

(8)

0 ≤ � , � ≤ 1,
(
�+

)2
+
(
�+

)2
≤ 1, 0 ≤ pi, tj ≤ 1,

#h∑
i=1

pi = 1,

#g∑
j=1

tj = 1

Table 1   The possible MDs and NMDs provided by the three profes-
sors in Example 1

The possible MDs The possible NMDs

The first professor {0.3, 0.4, 0.5} {0.2, 0.3}
The second professor {0.2, 0.6} {0.1, 0.2, 0.3, 0.4}
The third professor {0.1, 0.4, 0.6} {0.3, 0.4}
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the ordered pair d(x) = (h(x)|p(x) , g(x)|t(x) ) is called a 
probabilistic dual hesitant Pythagorean fuzzy element 
(PDHPFE), which can be denoted as d = (h|p , g|t ) for 
simplification. Notably, we can find out that the proposed 
PDHPFS is an extension of DHPFS. If we take the cor-
responding probabilistic information of each element into 
account in the DHPFS, then the PDHPFS is obtained. In 
addition, as PDHPFS describes larger information space, 
PDHPFS can be regarded as a generalized form and PDHFS 
can be regarded as a special case of PDHPFS. This indicates 
that PDHPFSs are more powerful and flexible than PDHFS. 
Moreover, all probabilistic dual hesitant fuzzy elements 
(PDHFEs) are PDHPFEs and PDHFEs are a special case 
of PDHPFEs.

Example 2  If we use PDHPFE to depict the overall evalua-
tion value of the three professors, then it should be denoted 
as d = {{0.1 | 0.125, 0.2 | 0.125, 0.3 | 0.125, 0.4 | 0.250, 0.5 | 
0.125, 0.6 | 0.250}, {0.1 | 0.125, 0.2 | 0.250, 0.3 | 0.375, 0.4 | 
0.250}}. Evidently, d is a PDHPFE. In this evaluation value 
d, different MDs and NMDs have different probabilities. In 
addition, the multiple appearance of MDs 0.4 and 0.6 and the 
NMDs 0.2, 0.3, and 0.4 are considered. The example reveals 
that PDHPFSs dig more information over DHPFSs, and it is 
more suitable to employ PDHPFSs to depict DMs’ evaluation 
values in MAGDM procedure. Additionally, it is easy to notice 
that d is also a PDHFE, and this is because 0.6 + 0.4 ≤ 1 . 
However, if the third professor uses the set of values {0.4, 
0.5} to denote the NMDs, then the overall evaluation value of 
group is d�

={{0.1 | 0.125, 0.2 | 0.125, 0.3 | 0.125, 0.4 | 0.250, 
0.5 | 0.125, 0.6 | 0.250}, {0.1 | 0.125, 0.2 | 0.250, 0.3 | 0.250, 
0.4 | 0.250, 0.5 | 0.125}}. Evidently, d′ cannot be handled by 
PDHFEs as 0.5 + 0.6  1 , which indicates that the evaluation 
value d′ does not satisfy the constraint of PDHFSs and PDH-
FEs. However, according to the constraint of PDHPFS pre-
sented in Definition 6, evaluation value d′ is still a PDHPFE, as 
0.6

2 + 0.5
2 = 0.61 ≤ 1 . This example indicates that PDHPFSs 

are more powerful and flexible than PDHFSs.

Motivated by the operations of DHPFNs and PDHFEs, we 
can derive the basic operational rules of PDHPFEs.

Definition 7  Let d1 =
(
h1
|||ph1 , g1

|||tg1
)
 , d2 =

(
h2
|||ph2 , g2

|||tg2
)
 

and d =
(
h||ph , g|||tg

)
 be any three PDHPFEs, and � be a 

possible real number, then

1.	

d1 ⊕ d2 = ∪𝛾1∈h1,𝛾2∈h2,𝜂1∈g1,𝜂2∈g2{{(
𝛾2
1
+ 𝛾2

2
− 𝛾2

2
𝛾2
2

)1∕ 2|||p𝛾1p𝛾2
}
,

{
𝜂1𝜂2

|||t𝜂1 t𝜂2
}}

;

2.	

d1 ⊗ d2 = ∪𝛾1∈h1,𝛾2∈h2,𝜂1∈g1,𝜂2∈g2{{
𝛾1𝛾2

|||p𝛾1p𝛾2
}
,

{(
𝜂2
1
+ 𝜂2

2
− 𝜂2

2
𝜂2
2

)1∕ 2|||t𝜂1 t𝜂2
}}

;

3.	 �d = ∪�∈h,�∈g

{{(
1 −

(
1 − �2

)�)1∕2|||p�
}
,

{
��
|||t�

}}
;

4.	 d� = ∪�∈h,�∈g

{{
��
|||p�

}
,

{(
1 −

(
1 − �2

)�)1∕2|||t�
}}

.

Example 3  Let d1 = {{0.3|0.5, 0.6|0.5}, {0.1|0.5, 0.2|0.2, 0.6
|0.3}} , d2 = {{0.2|0.3, 0.4|0.3, 0.5|0.4}, {0.5|0.7, 0.6|0.3}} 
be two PDHPFEs, then

1.	
d1 ⊕ d2 =

{
{0.3555|0.15, 0.4854|0.15, 0.5635|0.2,
{0.05|0.35, 0.06|0.15, 0.1|0.14, 0.12|
0.621|0.15, 0.68|0.15, 0.7211|0.2}

0.06, 0.3|0.21, 0.36|0.09}
}
;

2.	
d1 ⊗ d2 =

{
{0.06|0.15, 0.12|0.3, 0.15|0.2, 0.24|
{0.5074|0.35, 0.6053|0.15, 0.5292|0.14,

0.15, 0.3|0.2}
0.621|0.06, 0.7211|0.21, 0.7684|0.09}

}
;

3.	
3d1 = {{0.4964|0.5, 0.859|0.5}, {0.001|0.5, 0.008|

0.2, 0.216|0.3}};
4.	

d3
2
= {{0.008|0.3, 0.064|0.3, 0.125|0.4}, {0.7603|

0.7, 0.859|0.3}}.
To rank any two PDHPFEs, we propose a comparison 

method.

Definition 8  Let d =
(
h||ph , g|||tg

)
 be a PDHPFE, then the 

score function of d is expressed as

And the accuracy function of d is defined as

where #h and #g denote the numbers of values in h and g, 
respectively.

Let d1 =
(
h1
|||ph1 , g1

|||tg1
)
 and d2 =

(
h2
|||ph2 , g2

|||tg2
)
 be any 

two PDHPFEs,

1.	 If S
(
d1
)
> S

(
d2
)
 , then d1 > d2;

2.	 If S
(
d1
)
= S

(
d2
)
 , then

(9)S(d) =

#h∑
i=1,�∈h

�ipi −

#g∑
j=1,�∈g

�jtj,

(10)H(d) =

#h∑
i=1,�∈h

�ipi +

#g∑
j=1,�∈g

�jtj,
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1 3

if H
(
d1
)
> H

(
d2
)
 , then d1 > d2;

if H
(
d1
)
= H

(
d2
)
 , then d1 = d2.

E xa m p l e  4   L e t  d1 = {{0.3|0.5, 0.6|0.5}, {0.1|0.5, 0.2| 
0.2, 0.6|0.3}} ,  d2 = {{0.2|0.3, 0.4|0.3, 0.5|0.4}, {0.5|0.7,
0.6|0.3}} be two PDHPFEs, then we have

S
(
d1
)
= 0.18 , H

(
d1
)
= 0.72 , S

(
d2
)
= −0.15 , H

(
d2
)
=

= 0.91.
According of Definition 8, we can get d1 > d2.

Distance Between Two PDHPFEs

Definition 9  Let d1 =
(
h1
|||ph1 , g1

|||tg1
)

 and d2 =
(
h2
|||ph2 ,

g2
|||tg2

)
 be two PDHPFEs, then the distance between d1 and 

d2 is defined as

where ��(i)
1

∈ h1,�
�( j)

1
∈ g1,�

�(i)

2
∈ h2,�

�( j)

2
∈ g2,𝛾

𝜎(i)

1
< 𝛾

𝜎(i+1)

1

,𝜂𝜎( j)
1

< 𝜂
𝜎(j+1)

1
 , 𝛾𝜎(i)

2
< 𝛾

𝜎(i+1)

2
 and 𝜂𝜎(j)

2
< 𝜂

𝜎(j+1)

2
 . The symbol 

#h denotes the number of values in h1 and h2, and #g repre-
sents the number of values in g1 and g2.

Remark 1  From Definition 9, we can find out that when calcu-
lating the distance between two PDHPFEs, they must have the 
same numbers of MDs and NMDs. However, this requirement 
cannot be always met. Hence, to operate correctly, the shorter 
PDHPFEs should be extended by adding some values until 
the numbers of the MDs and NMDs of the two PDHPFEs are 
equal. In the following, we present a principle to extend the short 
PDHPFEs. Let d1 and d2 be any two PDHPFEs, which can be 
expressed as

and

(11)

dis
(
d1, d2

)
=

1

#h + #g

( #h∑
i=1

||||
(
�
�(i)

1

)2

p
�
�(i)

1

−
(
�
�(i)

2

)2

p
�
�(i)

2

||||

+

#g∑
j=1

||||
(
�
�(j)

1

)2

t
�
�(j)

1

−
(
�
�(j)

2

)2

t
�
�(j)

2

||||
)
,

(12)

d1 =
(
h1, g1

)
=

{{
�
�(1)

1

|||p��(1)1

, �
�(2)

1

|||p��(2)1

, ..., �
�(#h1)
1

||||p��(#h1)1

}
,

{
�
�(1)

1

|||t��(1)1

, �
�(2)

1

|||t��(2)1

, ..., �
�(#g1)
1

||||t��(#g1)1

}}
,

(13)

d2 =
(
h2, g2

)
=

{{
�
�(1)

2

|||p��(1)2

, �
�(2)

2

|||p��(2)2

, ..., �
�(#h2)
2

||||p��(#h2)2

}
,

{
�
�(1)

2

|||t��(1)2

, �
�(2)

2

|||t��(2)2

, ..., �
�(#g1)
2

||||t��(#g1)2

}}
,

If #h1 < #h2 and #g2 < #g1 , then we have two methods to 
extend d1 and d2 . First, we assume DMs are optimistic to 
their evaluations, then we can extend d1 and d2 to.

and

respectively, where #h�
1
= #h�

2
= #h2 and #g�

1
= #g�

2
= #g1 . If 

DMs are pessimistic to their evaluations, then we can extend 
d1 and d2 to

and

respectively, where #h�
1
= #h�

2
= #h2 and #g1� = #g2

� = #g1 . 
In this paper, we assume DMs are optimistic to their evalu-
ation values. To better demonstrate the distance between 
two PDHPFEs, we provide the following example. Let d1
= {{0.3|0.4 , 0.6|0.6}, {0.1|0.2 , 0.2|0.3 , 0.5|0.5}} and d2 =
{{0.5|0.3 , 0.6|0.2 , 0.7|0.1 , 0.8|0.4}, {0.1|0.2 , 0.3|0.8}} be 
two PDHPFEs, when calculating the distance between d1 
and d2, we should extend d1 and d2 to

(14)

d1
� =

�
h1

�
, g1

�
�
=

⎧
⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎧
⎪⎨⎪⎩
�
�(1)

1

���p��(1)1

, �
�(2)

1

���p��(2)1

, ..., �
�(#h1)
1

������
p

�
�(#h1)
1

#h2−#h1+1

,

�
�(#h1)
1

������
p

�
�(#h1)
1

#h2−#h1+1

, ..., �
�(#h1)
1

������
p

�
�(#h1)
1

#h2−#h1+1

⎫⎪⎬⎪⎭
,

�
�
�(1)

1

���t��(1)1

, �
�(2)

1

���t��(2)1

, ..., �
�(#g1)
1

����t��(#g1)1

�

⎫
⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

,

(15)

d2
� =

�
h2

�
, g2

�
�
=

⎧
⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

�
�
�(1)

2

���p��(1)2

, �
�(2)

2

���p��(2)2

, ..., �
�(#h2)
2

����p��(#h2)2

�
,

⎧⎪⎨⎪⎩
�
�(1)

2

���t��(1)2

, �
�(2)

2

���t��(2)2

, ..., �
�(#g1)
2

������
t

�
�(#g1)
2

#g1−#g2+1

,

�
�(#g1)
2

������
t

�
�(#g1)
2

#g1−#g2+1

...., �
�(#g1)
2

������
t

�
�(#g1)
2

#g1−#g2+1

⎫⎪⎬⎪⎭

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

,

(16)

d1
� =

�
h1

�
, g1

�
�
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎧⎪⎪⎨⎪⎪⎩

�
�(1)

1

������
p

�
�(1)
1

#h2−#h1+1

, �
�(1)

1

������
p

�
�(1)
1

#h2−#h1+1

, ....,�
�(1)

1

������
p

�
�(1)
1

#h2−#h1+1

,

�
�(2)

1

���p��(2)1

, ..., �
�(#h1)
1

������
p

�
�(#h1)
1

#h2−#h1+1

⎫⎪⎪⎬⎪⎪⎭

,

�
�
�(1)

1

���t��(1)1

, �
�(2)

1

���t��(2)1

, ..., �
�(#g1)
1

����t��(#g1)1

�

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

,

(17)

d2
� =

�
h2

�
, g2

�
�
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

�
�
�(1)

2

���p��(1)2

, �
�(2)

2

���p��(2)2

, ..., �
�(#h2)
2

����p��(#h2)2

�
,

�
�
�(1)

2

������
t

�
�(1)
2

#g1−#g2+1

,�
�(1)

2

������
t

�
�(1)
2

#g1−#g2+1

, ..., �
�(1)

2

������
t

�
�(1)
2

#g1−#g2+1

,

�
�(2)

2

���t��(2)2

, ..., �
�(#g1)
2

������
t

�
�(#g1)
2

#g1−#g2+1

⎫⎪⎬⎪⎭

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

,
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1 3

Then

Probabilistic Dual‑Hesitant Pythagorean 
Fuzzy Aggregation Operators

In this section, we propose some combined AOs for 
PDHPFEs based on PHM. Properties and special cases of 
the proposed AOs are also studied in this section.

The Probabilistic Dual‑Hesitant Pythagorean Fuzzy 
Power Hamy Mean Operator

Definition 10  Let di =
(
hi
|||phi , gi

|||tgi
)
(i = 1, 2, ..., n) be a 

collection of PDHPFEs and k = 1, 2, ..., n . The probabilistic 
dual-hesitant Pythagorean fuzzy power Hamy mean 
(PDHPFPHM) operator is expressed as

where 
(
i1, i2, ..., ik

)
 traverses all k-tuple combination of 

(1, 2, ..., n) , and Ck
n
 is the binomial coefficient, where 

d1
� ={{0.3|0.4 , 0.6|0.2 , 0.6|0.2 , 0.6|0.2},

{0.1|0.2 , 0.2|0.3 , 0.5|0.5}}

d2
� ={{0.5|0.3 , 0.6|0.2 , 0.7|0.1 , 0.8|0.4},

{0.1|0.2 , 0.3|0.4 , 0.3|0.4}}

d
�
d1, d2

�
=

1

4 + 3

⎛⎜⎜⎜⎝

��0.32 × 0.4 − 0.52 × 0.3�� + ��0.62 × 0.2 − 0.62 × 0.2��+��0.62 × 0.2 − 0.72 × 0.1�� + ��0.62 × 0.2 − 0.82 × 0.4��+��0.12 × 0.2 − 0.12 × 0.2�� + ��0.22 × 0.3 − 0.32 × 0.4��+��0.52 × 0.5 − 0.32 × 0.4��

⎞⎟⎟⎟⎠
= 0.0513.

(18)

PDHPFPHM(k)
�
d1, d2, ..., dn

�

=
1

Ck
n

⊕
1≤i1<....<ik≤n

⎛
⎜⎜⎜⎝

k

⊗
j=1

⎛
⎜⎜⎜⎝

n
�
1 + T

�
dij

��
dij∑n

s=1

�
1 + T

�
ds
��

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎠

1∕ k

,

T
�
di
�
=

n∑
j=1,i≠j

Sup
�
di, dj

�
 , Sup

(
di, dj

)
 denotes the support for 

di from dj , satisfying the following conditions

1.	 0 ≤ Sup
(
di, dj

)
≤ 1

2.	 Sup
(
di, dj

)
= Sup

(
dj, di

)
;

3.	 Sup(a, b) ≤ Sup(c, d) , if |a, b| ≥ |c, d|.

If we assume

then Eq. (18) can be transformed into

Theorem 1  Let di =
(
hi
|||phi , gi

|||tgi
)
(i = 1, 2, ..., n) be a col-

lection of PDHPFEs and k = 1, 2, ..., n , the aggregated value 
by the PDHPFPHM operator is still a PDHPFE and

Proof  According to Definition 7 and Eq. (20), we can obtain

and

(19)�i =
1 + T

�
di
�

∑n

s=1

�
1 + T

�
ds
��

(20)

PDHPFPHM(k)
(
d1, d2, ..., dn

)
=

1

Ck
n

⊕
1≤i1<....<ik≤n

(
k

⊗
j=1

(
n𝜉ij dij

))1∕ k

(21)

PDHPFPHM(k)
�
d1, d2, ..., dn

�
=

∪𝛾ij
∈hij

,𝜂ij
∈gij

⎧⎪⎨⎪⎩

⎧⎪⎨⎪⎩

⎛⎜⎜⎝
1 −

�
1≤i1<....<ik≤n

�
1 −

k�
j=1

�
1 −

�
1 − 𝛾2

ij

�n𝜉ij

�1∕ k
� 1

Ckn ⎞⎟⎟⎠

1∕ 2������
�

1≤i1<....<ik≤n

k�
j=1

p𝛾ij

⎫⎪⎬⎪⎭
,

⎧
⎪⎨⎪⎩

�
1≤i1<....<ik≤n

�
1 −

k�
j=1

�
1 − 𝜂

2n𝜉ij

ij

�1∕ k
� 1

2Ckn
������

�
1≤i1<....<ik≤n

k�
j=1

t𝜂ij

⎫
⎪⎬⎪⎭

⎫
⎪⎬⎪⎭
.

n�ij dij =∪�ij
∈hij

,�ij
∈gij{{(
1 −

(
1 − �2

ij

)n�ij

)1∕ 2||||p�ij
}

,

{
�
n�ij

ij

||||t�ij
}}
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Then,

Therefore,

Thus,

Theorem 2  Let di =
(
hi
|||phi , gi

|||tgi
)
(i = 1, 2, ..., n) be a col-

l e c t i o n  o f  P D H P F E s  a n d  k = 1, 2, ..., n  i f 
di = d =

(
hi
|||phi , gi

|||tgi
)
 for i = 1, 2, ..., n , then

k

⊗
j=1

�
n𝜉ij dij

�
= ∪𝛾ij

∈hij
,𝜂ij

∈gij

⎧
⎪⎨⎪⎩

�
k�

j=1

�
1 −

�
1 − 𝛾2

ij

�n𝜉ij

�1∕2 ������

k�
j=1

p𝛾ij

�
,

⎧
⎪⎨⎪⎩

�
1 −

k�
j=1

�
1 − 𝜂

2n𝜉ij

ij

��1∕2 ������

k�
j=1

t𝜂ij

�⎫
⎪⎬⎪⎭
.

�
k

⊗
j=1

�
n𝜉ij dij

��1∕ k

= ∪𝛾ij
∈hij

,𝜂ij
∈gij

⎧
⎪⎨⎪⎩

�
k�

j=1

�
1 −

�
1 − 𝛾2

ij

�n𝜉ij

�1∕ 2k������

k�
j=1

p𝛾ij

�
,

⎧
⎪⎨⎪⎩

⎛
⎜⎜⎝
1 −

�
k�

j=1

�
1 − 𝜂

2n𝜉ij

ij

��1∕ k⎞
⎟⎟⎠

1∕ 2������

k�
j=1

t𝜂ij

⎫
⎪⎬⎪⎭

⎫
⎪⎬⎪⎭
.

⊕
1≤i1<....<ik≤n

�
k

⊗
j=1

�
n𝜉ij dij

��1∕ k

= ∪𝛾ij
∈hij

,𝜂ij
∈gij

⎧
⎪⎨⎪⎩

⎧
⎪⎨⎪⎩

�
1 −

�
1≤i1<....<ik≤n

�
1 −

k�
j=1

�
1 −

�
1 − 𝛾2

ij

�n𝜉ij

�1∕ k
��1∕ 2������

�
1≤i1<....<ik≤n

k�
j=1

p𝛾ij

⎫
⎪⎬⎪⎭
,

⎧⎪⎨⎪⎩

�
1≤i1<....<ik≤n

⎛⎜⎜⎝
1 −

�
k�

j=1

�
1 − 𝜂

2n𝜉ij

ij

��1∕ k⎞⎟⎟⎠

1∕ 2������
�

1≤i1<....<ik≤n

k�
j=1

t𝜂ij

⎫⎪⎬⎪⎭

⎫⎪⎬⎪⎭
.

1

Ck
n

⊕
1≤i1<....<ik≤n

�
k

⊗
j=1

�
n𝜉ij dij

��1∕ k

= ∪𝛾ij
∈hij

,𝜂ij
∈gij

⎧
⎪⎨⎪⎩

⎧
⎪⎨⎪⎩

⎛
⎜⎜⎝
1 −

�
1≤i1<....<ik≤n

�
1 −

k�
j=1

�
1 −

�
1 − 𝛾2

ij

�n𝜉ij

�1∕ k
� 1

Ckn
⎞
⎟⎟⎠

1∕ 2������
�

1≤i1<....<ik≤n

k�
j=1

p𝛾ij

⎫
⎪⎬⎪⎭
,

⎧⎪⎨⎪⎩

�
1≤i1<....<ik≤n

�
1 −

k�
j=1

�
1 − 𝜂

2n𝜉ij

ij

�1∕ k
� 1

2Ckn
������

�
1≤i1<....<ik≤n

k�
j=1

t𝜂ij

⎫⎪⎬⎪⎭

⎫⎪⎬⎪⎭
.

(22)PDHPFPHM(k)
(
d1, d2, ..., dn

)
= d.

Proof  Since di = d =
(
h||ph , g|||tg

)
 for any i , we can get 

Sup
(
di, dj

)
= 1  f o r  i, j = 1,2,… , n   . 

T h u s ,T
�
di
�
=

n∑
j=1,i≠j

Sup
�
di, dj

�
= n − 1 ,  t h e r e f o r e , 

�i = 1∕n(i = 1,2,… , n) holds for  al l  j = 1,2,… , n . 
Therefore,
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1 3

Now, we can discuss some special cases of the PDHPF-
PHM operator with respect to the parameter k.

Case 1  When k = 1 , then the PDHPFPHM operator reduces 
to the probabilistic dual-hesitant Pythagorean fuzzy power 
average (PDHPFPA) operator, i.e.,

Case 2  When k = n , then the PDHPFPHM operator reduces 
to the probabilistic dual-hesitant Pythagorean fuzzy power 
geometric (PDHPFPG) operator, i.e.,

PDHPFPHM(k)
�
d1, d2, ..., dn

�

= ∪𝛾ij
∈hij

,𝜂ij
∈gij

⎧
⎪⎨⎪⎩

⎧
⎪⎨⎪⎩

⎛
⎜⎜⎝
1 −

�
1≤i1<....<ik≤n

�
1 −

k�
j=1

𝛾2∕ k

� 1

Ckn ⎞⎟⎟⎠

1∕ 2������
�

1≤i1<....<ik≤n

k�
j=1

p𝛾

⎫
⎪⎬⎪⎭
,

⎧
⎪⎨⎪⎩

�
1≤i1<....<ik≤n

�
1 −

k�
j=1

�
1 − 𝜂2

�1∕ k
� 1

2Ckn
������

�
1≤i1<....<ik≤n

k�
j=1

t𝜂

⎫
⎪⎬⎪⎭

⎫
⎪⎬⎪⎭

= ∪𝛾ij
∈hij

,𝜂ij
∈gij

���
𝛾2
�1∕ 2������

�
1≤i1<....<ik≤n

k�
j=1

p𝛾

�
,

��
𝜂2
�1∕ 2������

�
1≤i1<....<ik≤n

k�
j=1

t𝜂

��

=
�
𝛾��ph , 𝜂���tg

�
= d.

(23)

PDHPFPHM(1)
�
d1, d2, ..., dn

�

= ∪𝛾i∈hi,𝜂i∈gi

⎧⎪⎨⎪⎩

⎧⎪⎨⎪⎩

�
1 −

n�
i=1

�
1 − 𝛾2

i

�𝜉i
�1∕ 2�����

n�
i=1

p𝛾i

⎫⎪⎬⎪⎭
,

�
n�
i=1

�
𝜂
𝜉i
i

������

n�
i=1

t𝜂i

��

=
n

⊕
i=1

𝜉idi = PDHPFPA
�
d1, d2, ..., dn

�
.

(24)

PDHPFPHM(n)
�
d1, d2, ..., dn

�

= ∪𝛾i∈hi ,𝜂i∈gi

��
n�
i=1

�
1 −

�
1 − 𝛾2

i

�𝜉i�1∕ 2�����

n�
i=1

p𝛾i

�
,

⎧⎪⎨⎪⎩

�
1 −

n�
i=1

�
1 − 𝜂

2n𝜉i
i

�1∕ n
�1∕ 2�����

n�
i=1

t𝜂i

⎫⎪⎬⎪⎭

⎫⎪⎬⎪⎭
=

n

⊗
i=1

d
𝜉i
i
= DHPFPG

�
d1, d2, ..., dn

�
.

The Probabilistic Dual‑Hesitant Pythagorean Fuzzy 
Power Weighted Hamy Mean Operator

Definition 11  Let di =
(
hi
|||phi , gi

|||tgi
)
(i = 1, 2, ..., n) be a col-

lection of PDHPFEs, k = 1, 2, ..., n and w =
(
w1,w2, ...,wn

)T 
be the weight vector, such that 0 ≤ wi ≤ 1 and 

∑n

i=1
wi = 1 

The probabilistic dual-hesitant Pythagorean fuzzy power 
weight Hamy mean (PDHPFPWHM) operator can be 
defined as.

where T
�
dj
�
=

n∑
i=1,i≠j

Sup
�
di, dj

�
 , 
(
i1, i2, ..., ik

)
 traverses all 

k-tuple combination of (1, 2, ..., n) , and Ck
n
 is the binomial 

coefficient. Sup
(
di, dj

)
 denotes the support for di from dj , 

satisfying the properties presented in Definition 10. If we 
assume

then Eq. (25) can be transformed into

(25)

PDHPFPWHM(k)
�
d1, d2, ..., dn

�

=
1

Ck
n

⊕
1≤i1<....<ik≤n

⎛
⎜⎜⎜⎝

k

⊗
j=1

⎛
⎜⎜⎜⎝

nwij

�
1 + T

�
dij

��
dij∑n

s=1
ws

�
1 + T

�
ds
��

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎠

1∕ k

,

(26)�i =
wi

�
1 + T

�
di
��

∑n

s=1
ws

�
1 + T

�
ds
�� ,

(27)

PDHPFPWHM(k)
(
d1, d2, ..., dn

)
=

1

Ck
n

⊕
1≤i1<....<ik≤n

(
k

⊗
j=1

(
n𝜎ijdij

))1∕ k

.
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Theorem 3  Let di =
(
hi
|||phi , gi

|||tgi
)
(i = 1, 2, ..., n) be a col-

lection of PDHPFEs and k = 1, 2, ..., n , the aggregated value 
by the PDHPFPWHM operator is still a PDHPFE and

Theorem 4  Let di =
(
hi
|||phi , gi

|||tgi
)
(i = 1, 2, ..., n) be a col-

l e c t i o n  o f  P D H P F E s  a n d  k = 1, 2, ..., n  i f 
di = d =

(
hi
|||phi , gi

|||tgi
)
 for i = 1, 2, ..., n , then

The proof of Theorem 4 is similar to that of Theorem 2, 
which is omitted here. In the following, we discuss some 
special cases of the PDHPFPWHM operator with respect 
to the parameter k.

Case 3  When k = 1 , then the PDHPFPWHM operator 
reduces to probabilistic dual hesitant Pythagorean fuzzy 
power weighted average (PDHPFPWA) operator, i.e.,

Case 4  When k = n , then PDHPFPWHM operator reduces 
to probabilistic dual-hesitant Pythagorean fuzzy power 
weighted geometric (PDHPFPWG) operator, i.e.,

(28)

PDHPFPWHM(k)
�
d1, d2, ..., dn

�

= ∪𝛾ij
∈hij

,𝜂ij
∈gij

⎧⎪⎨⎪⎩

⎧⎪⎨⎪⎩

⎛⎜⎜⎝
1 −

�
1≤i1<....<ik≤n

�
1 −

k�
j=1

�
1 −

�
1 − 𝛾2

ij

�n𝜎ij
�1∕ k

� 1

Ckn
⎞⎟⎟⎠

1∕ 2������
�

1≤i1<....<ik≤n

k�
j=1

p𝛾ij

⎫⎪⎬⎪⎭
,

⎧
⎪⎨⎪⎩

�
1≤i1<....<ik≤n

�
1 −

k�
j=1

�
1 − 𝜂

2n𝜎ij

ij

�1∕ k
� 1

2Ckn
������

�
1≤i1<....<ik≤n

k�
j=1

t𝜂ij

⎫
⎪⎬⎪⎭

⎫
⎪⎬⎪⎭

(29)PDHPFPWHM(k)
(
d1, d2, ..., dn

)
= d

(30)
PDHPFPWHM(1)

�
d1, d2, ..., dn

�
= ∪𝛾i∈hi,𝜂i∈gi

⎧
⎪⎨⎪⎩

⎧⎪⎨⎪⎩

�
1 −

n�
i=1

�
1 − 𝛾2

i

�𝜎i
�1∕ 2�����

n�
i=1

p𝛾i

⎫
⎪⎬⎪⎭
,

�
n�
i=1

𝜂
𝜎i
i

�����

n�
i=1

t𝜂i

�⎫⎪⎬⎪⎭
=

n

⊕
i=1

𝜎idi = PDHPFPWA
�
d1, d2, ..., dn

�
.

(31)

PDHPFPWHM(n)
�
d1, d2, ..., dn

�

= ∪𝛾i∈hi ,𝜂i∈gi

��
n�
i=1

�
1 −

�
1 − 𝛾2

i

�𝜎i�1∕ 2�����

n�
i=1

p𝛾i

�
,

⎧⎪⎨⎪⎩

�
1 −

n�
i=1

�
1 − 𝜂

2n𝜎i
i

�1∕ n
�1∕ 2�����

n�
i=1

t𝜂i

⎫⎪⎬⎪⎭

⎫⎪⎬⎪⎭
=

n

⊗
i=1

d
𝜎i
i
= DHPFPWG

�
d1, d2, ..., dn

�
.

An Approach to Multiple Attribute Decision 
Making with Probabilistic Dual‑Hesitant 
Pythagorean Fuzzy Information

In this section, we utilize the proposed aggregation opera-
tors to handle MAGDM problems with probabilistic dual-
hes i t ant  Pythagorean fuzzy infor mat ion .  Let 
A =

{
A1,A2, ...,Am

}
 b e  m  a l t e r n a t i v e s ,  a n d 

C =
{
C1,C2, ...,Cn

}
 be n attributes, w =

(
w1,w2, ...,wn

)T 
be the weight vector, satisfying 

n∑
j=1

wj = 1 and 0 ≤ wj ≤ 1 . 

If the DMs provide several values for the alternative Ai 
under the attribute Cj with anonymity and each value has 
the precise probabilistic information based on some rules, 
these values can be considered as a PDHPFE 
dij =

(
hij
|||phij , gij

|||tgij
)

 . Suppose that the decision matrix 
D =

(
dij
)
m×n

 is the probabilistic dual hesitant Pythagorean 
fuzzy decision matrix, where dij(i = 1, 2, ...,m, j = 1, 2, ..., n) 

are in the form of PDHPFEs. In the following, we apply 
the PDHPFPWHM operator to the MAGDM problems for 
potential evaluation.
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Step 1. Standardize the decision matrices according to 
the following equation,

where I1 and I2 represent the positive type and the nega-
tive type respectively.
Step 2. Calculate the support Sup

(
dik, dir

)
 according to 

the following equation,

where k, r = 1, 2, ..., n;k ≠ r and d
(
dik, dir

)
 is the distance 

between dik and dir,which is proposed in Definition 9.
Step 3. Calculate T

(
dij
)
 by

where k, r = 1, 2, ..., n;i = 1, 2, ...,m and j = 1, 2, ..., n.
Step 4. Compute the power weights �ij associated with 
the PDHPFE dij by

where i = 1, 2, ...,m; j = 1, 2, ..., n;𝛿ij > 0 and 
∑n

j=1
�ij = 1.

Step 5. For alternative Ai(i = 1, 2, ...,m) , utilize the 
PDHPFPWHM operator

to aggregate attributes, and an overall evaluation value 
can be obtained.
Step 6 .  Rank the overall  evaluation values 
di(i = 1, 2, ...,m) according to Definition 8.
Step 7. Rank alternatives according to the rank of the 
overall values, and choose the best alternative.

To better illustrate the steps of our MAGDM method, we 
provide the following flowchart (see Fig. 1).

Numerical Example

Example 5  We illustrate our novel method by using an example, 
which demonstrates how to assign limited extravascular mem-
brane oxygenation (ECMO) to patients with acute respiratory 
distress syndrome (ARDS), under uncertain medical situations.

ECMO is a first-aid device using extracorporeal respiratory 
circulation to assist patients with severe cardiopulmonary 

(32)dij =

⎧
⎪⎨⎪⎩

�
hij
���phij , gij

���tgij
�

CJ ∈ I1�
gij
���tgij , hij

���phij
�

CJ ∈ I2

,

(33)Sup
(
dik, did

)
= 1 − d

(
dik, did

)
,

(34)T
(
dij
)
=

n∑
k=1,k≠r

Sup
(
dik, dir

)
,

(35)�ij =
wj

�
1 + T

�
dij
��

∑n

s=1
ws

�
1 + T

�
dis

�� ,

(36)di = PDHPFPWHM(k)
(
di1, di2, ..., din

)
,

failure. It works by pumping blood from a vein, passing it 
through the membrane of the lung to oxygenate hemoglobin 
and removing carbon dioxide, and then transferring the blood 
back to the patient after the gas exchange [29]. ARDS is an 
acute and diffuse inflammatory lung injury which is one of 
the common respiratory critical diseases threatening human 
health. The mortality of ARDS is greater than 40% which 
remains high [30]. Approximately 80% of all deaths in adult 
ARDS patients occur within 2–3 weeks after the onset of the 
syndrome [31]. The characteristics of ARDS are the acute 
onset of hypoxemia and bilateral pulmonary infiltrates, which 
are consistent with pulmonary edema. These characteristics 
are in line with the indications for ECMO. Some patients can 
use ECMO for adjuvant therapy to improve the cure rate in 
some situations. However, ECMO is costly which means that 
the number of such devices in a normal hospital is small [29]. 
Therefore, it is not available for every patient with ARDS to 
use ECMO equipment. In addition, this treatment method will 
cause irreversible damage to patients’ lungs, and some serious 
complications will occur in the use process [30]. Therefore, 
reasonable arrangement of using ECMO equipment will be 
conducive to improving the cure rate and saving lives. The 
real clinical environment is always very complex. The vital 
signs are different from patient to patient, and conventional 
treatment for them may be different. It’s difficult for doctors 
to determine which patient is more suitable for ECMO treat-
ment. In this paper, we proposed a method based on proba-
bilistic dual-hesitant Pythagorean fuzzy aggregation operators 
which has a powerful ability to deal with the information with 
high degree of ambiguity and uncertainty.

Suppose that there are four patients Ai(i = 1, 2, 3, 4) with 
ARDS in the same ICU, and all of them show four condi-
tions Cj(j = 1, 2, 3, 4) of different degrees: cardio-pulmonary 
function (C1); hepatorenal function (C2); complication risk 
(C3), and total vital signs (C4). The weighted vector of attrib-
utes is w = (0.32, 0.26, 0.18, 0.24)T , satisfying 

n∑
j=1

wj = 1 and 

0 ≤ wj ≤ 1 . In order to evaluate the most suitable patient, the 
doctor performing ECMO is invited to evaluate the situation 
of four patients from four conditions respectively and the 
decision matrices D =

(
dij
)
4×4

 is shown in Table 2.

The Decision‑Making Process

In this subsection, we use the method introduced in the 
“Probabilistic Dual-Hesitant Pythagorean Fuzzy Aggrega-
tion Operators” section to determine the optimal alternative. 
The decision-making steps are presented as follows.

Step 1. As the attributes C3 (complication risk) is nega-
tive, we need to standardize the decision matrices accord-
ing to Eq. (32). Then, the normalized matrix D2 can be 
obtained, which is shown in Table 3.
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Step 2. Calculate the support Sup
(
dik, dir

)
 according to 

Eq. (33). For convenience, we utilize the symbol Skr 
to represent the support between dik and dir satisfying 
k, r = 1, 2, 3, 4 and k ≠ r . Hence, we obtain the follow-
ing results.

S12 = S21 = (0.9606, 0.7950, 0.9356, 0.9734),

S13 = S31 = (0.9213, 0.8083, 0.6413, 0.7154)

S14 = S41 = (0.9578, 0.9250, 0.8968, 0.9546),

S23 = S32 = (0.7638, 0.7250, 0.6232, 0.7856)

Step 3. Calculate the support T
(
dij
)
 according to 

Eq.  (34). For convenience, we use the symbol Tij to 
represent the values T

(
dij
)
(i, j = 1, 2, 3, 4) , and we can 

obtain the following matrix:

S24 = S42 = (0.9692, 0.8000, 0.8848, 0.9800),

S34 = S43 = (0.8550, 0.8583, 0.8640, 0.5313)

T =

⎡⎢⎢⎢⎣

2.8396 2.6935 2.5400 2.7819

2.5283 2.3200 2.3917 2.5833

2.4736 2.4436 2.1285 2.6456

2.6434 2.7391 2.0323 2.4658

⎤⎥⎥⎥⎦

Start

Collect decision makers s evaluation 
values to construct the decision matrices 

under PDHPFSs

The alternatives set

{A1,A2, ,Am}

The attributes set

{C1,C2, ,Cn}

Construct the original PDHPF decision matrices

The main steps of our proposed 
MAGDM method

Calculate the support

Sup(dik,dir)

Standardize the original decision matrices

Compute the overall support

T(dij)
Compute the power weights 

ij

Utilize the PDHPFPWHM operator to aggregate attributes 

Compute score values

S(di)(i=1,2, ,m)

Ranking alternatives and choose the best alternative

End

Fig. 1   The flowchart of our proposed MAGDM method
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Step 4. Calculate the power weight �ij associated with 
the PDHPFS dij according to Eq. (35), and we have

Step 5. For the patient Ai(i = 1, 2, 3, 4) , utilize the 
PDHPFPWHM operator to calculate the overall evalu-
ation di(i = 1, 2, 3, 4) . Without the loss of generality, let 
the parameter k = 3 , and the overall evaluation values 
(only the first elements of each membership and non-
membership degrees is shown) are shown as follows:

Step 6. Calculate the score values S
(
di
)
(i = 1, 2, 3, 4) of 

the overall evaluation values, and we can get

�=

⎡⎢⎢⎢⎣

0.3291 0.2572 0.1707 0.2431

0.3261 0.2493 0.1763 0.2484

0.3227 0.2599 0.1635 0.2540

0.3316 0.2765 0.1553 0.2366

⎤⎥⎥⎥⎦

d1 = {{0.5414|0.034, ...}, {0.2636|1}},
d2 = {{0.2945|1}, {0.4698|0.1250, ...}}

d3 = {{0.3068|0.2160, ...}, {0.4822|1}},
d4 = {{0.2447|0.0429, ...}, {0.4941|0.1250, ...}}

S
(
d1
)
= 0.2400, S

(
d2
)
= −0.1630,

S
(
d3
)
= −0.1490, S

(
d4
)
= −0.2231

Step 7. According to the score values, the ranking 
orders of the alternatives can be determined, that is 
A1 ≻ A3 ≻ A2 ≻ A4 . Therefore, A1 is the most suitable 
patient to use ECMO equipment.

Analysis of the Influence of the Parameter k

It is worth pointing out that the parameter k has great impact 
on the decision results. In the following, we calculate the score 
functions of alternatives with different values of the parameter 
k. The results are shown in Table 4 and depicted in Fig. 2.

From Fig. 2, we can observe that the parameter k has a 
certain impact on the final comprehensive score value and 
ranking orders. The score values of alternatives obtained 
by the PDHPFPWHM operator become smaller with the 
increase of the parameter k. However, the best alternative 
is always A1 and the worst alternative is always A4. For 
k = 1, 2, 3 , although the score values are different, we can 
get the same ranking of the four alternatives. On the con-
trary, for k = 4 , A2 is considered as the suboptimal solution, 
whereas the third best alternative is identified for other three 
values of parameter k. This is because the method ( k = 4 ) 
considers the interrelationship among the four attributes. 
This also illustrates that our method is very flexible and 
practical and can deal with MAGDM problems where the 

Table 2   The probabilistic dual 
hesitant Pythagorean fuzzy 
decision matrix D given by 
doctor

C1 C2

A1 {{0.7|0.3, 0.6|0.3, 0.5|0.4}, {0.2|1}} {{0.7|1}, {0.25|1}}
A2 {{0.1|1}, {0.4|1}} {{0.3|1}, {0.7|1}}
A3 {{0.6|1}, {0.35|1}} {{0.56|1}, {0.2|1}}
A4 {{0.05|0.7, 0.2|0.3}, {0.5|1}} {{0.3|0.5, 0.2|0.5}, {0.6|0.5, 0.5|0.5}}

C3 C4

A1 {{0.2|1}, {0.2|1}} {{0.7|0.5, 0.6|0.5}, {0.3|1}}
A2 {{0.3|0.5, 0.2|0.5}, {0.7|1}} {{0.3|1}, {0.3|1}}
A3 {{0.7|1}, {0.1|1}} {{0.2|0.6, 0.4|0.4}, {0.4|1}}
A4 {{0.15|1}, {0.8|1}} {{0.2|1}, {0.6|1}}

Table 3   The normalized 
decision matrix D2

C1 C2

A1 {{0.7|0.3, 0.6|0.3, 0.5|0.4}, {0.2|1}} {{0.7|1}, {0.25|1}}
A2 {{0.1|1}, {0.4|1}} {{0.3|1}, {0.7|1}}
A3 {{0.6|1}, {0.35|1}} {{0.56|1}, {0.2|1}}
A4 {{0.05|0.7, 0.2|0.3}, {0.5|1}} {{0.3|0.5, 0.2|0.5}, {0.6|0.5, 0.5|0.5}}

C3 C4

A1 {{0.2|1}, {0.2|1}} {{0.7|0.5, 0.6|0.5}, {0.3|1}}
A2 {{0.7|1}, {0.3|0.5, 0.2|0.5}} {{0.3|1}, {0.3|1}}
A3 {{0.1|1}, {0.7|1}} {{0.2|0.6, 0.4|0.4}, {0.4|1}}
A4 {{0.8|1}, {0.15|1}} {{0.2|1}, {0.6|1}}
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interrelationship exists among all attributes. In practice, we 
can assign different values to k according to actual needs.

Validity Test

In this subsection, we try to show the validity of our proposed 
method. In order to do this, we use our method and that devel-
oped by Hao et al. [25] based on the probabilistic dual-hesitant 
fuzzy weighted average (PDHFWA) operator, and that pro-
posed by Garg and Kaur [32] based on the probabilistic dual-
hesitant fuzzy weighted Einstein average (PDHFWEA) opera-
tor to solve Example 5 and compare their decision results. The 
results derived by the three methods are presented in Table 5. 
It is noted that the final ranking result of alternatives derived 
by our developed method is same as those obtained by Hao 
et al.’s [25] and Garg and Kaur’s [32] decision-making meth-
ods, which implies the validity of our method.

Advantages and Superiorities of Our Method

To better illustrate the advantages and superiorities of our 
proposed method, we utilize our proposed method and some 
existing MAGDM methods to solve some practical decision-
making problems and conduct comparative analysis.

It Can Express DMs’ Evaluations Flexibly

As an extension of the classical PDHFSs, the PDHPFSs also 
satisfy the constraint that the square sum of MD and NMD is 
less than or equal to one. Evidently, the constraint of PDHPFSs 
is laxer than that of PDHFSs. Consequently, PDHPFSs can 
deal with some cases that PDHFSs are powerless to handle. In 
other word, our proposed method gives DMs more freedom to 
express their evaluation information. In order to better explain 
this advantage, we provide the following example.

Example 6  In realistic MAGDM problems, DMs pro-
vide their evaluation values according to their own cog-
nition. Hence, sometimes DMs may provide evalua-
tion values where the sum of MD and NMD is greater 
than one. To better demonstrate this situation, we 
replace the evaluation value of C4 of alternative A1 with 
{{0.7|0.5 , 0.6|0.5}, {0.7|1}} in Example 5. We use our pro-
posed method and Hao et al.’s [25] and Garg’s methods 
[32] to deal with Example 6 and the decision results are 
presented in Table 6.

As seen in Table 6, the methods introduced by Hao et al. [25] 
and Garg and Kaur [32] fails to handle Example 6, whereas our 

Table 4   Scores and ranking orders of Example 5 with different k in 
the PDHPFPWHM operator

k Score function S
(
�i
)
(k = 1, 2, 3, 4) Ranking orders

k = 1 S
(
�1
)
= 0.3742   S

(
�2
)
= 0.0013

S
(
�3
)
= 0.1335   S

(
�4
)
= −0.0268

A1 ≻ A3 ≻ A2 ≻ A4

k = 2 S
(
�1
)
= 0.2889   S

(
�2
)
= −0.1139

S
(
�3
)
= −0.0417  S

(
�4
)
= −0.1811

A1 ≻ A3 ≻ A2 ≻ A4

k = 3 S
(
�1
)
= 0.2400   S

(
�2
)
= −0.1630

S
(
�3
)
= −0.1490   S

(
�4
)
= −0.2231

A1 ≻ A3 ≻ A2 ≻ A4

k = 4 S
(
�1
)
= 0.2046   S

(
�2
)
= −0.1933

S
(
�3
)
= −0.2188   S

(
�4
)
= −0.2464

A1 ≻ A2 ≻ A3 ≻ A4

Fig. 2   The score values of alter-
natives when k ∈ [1, 4] patient A1

patient A2
patient A3
patient A4
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method produces the ranking results A1 ≻ A3 ≻ A2 ≻ A4 . The 
reason is that the evaluation values �14 is cannot be handled 
by PDHFSs, as 0.7 + 0.7 = 1.4 > 1 . In addition, we notice 
0.72 + 0.72 = 0.98 < 1 , and hence our proposed method can 
still handle Example 6. Therefore, our method is more flexible 
and can handle more complicated MAGDM problems.

It Can Consider the Interrelationship Among Attributes

In most realistic MAGDM problems, it is widely realized 
that attributes are usually interactive. In other word, when 
considering to compute the overall evaluation values, not 
only the attribute values, but also the interrelationship 
between attributes should be taken into account. The HM 
operator is a powerful tool to deal with the MAGDM prob-
lems because it can capture the interrelationship among the 
multi-input arguments. Therefore, our proposed method 
also considers the interrelationship among attributes. In 
most real MAGDM problems, there are some interrela-
tionship among attributes. Our proposed method can solve 
this problem by allowing the DMs to set the value of the 
parameter k. In order to better demonstrate this feature, we 
give the following example.

Example 7  Assuming that all attributes are dependent in 
Example 5, then we utilize some existing MAGDM meth-
ods and the method we proposed in this paper to solve this 
example and present the result in Table 7.

It is seen from Table 7 that Hao et al.’s [25] and Garg and 
Kaur’s [32] MAGDM methods produce the same ranking 

order, i.e., A1 ≻ A3 ≻ A2 ≻ A4 . In addition, when k = 1, our 
proposed method also obtains the same ranking result. This 
is because Hao et al.’s [25] method and Garg and Kaur’s 
[32] approach are based on the simple weighted average 
operator, which do not reflect the interrelationship among 
attributes. Similarly, when k = 1, our proposed method does 
not consider the interrelationship among attributes, either. 
Moreover, we can find out that when k = 4, our method pro-
duces different ranking results as Hao et al.’s [25] and Garg 
and Kaur’s [32] MAGDM methods do. This is because when 
k = 4, our method takes the interrelationship among all the 
four attributes into consideration. In addition, we should 
point out that when k = 2 and 3, our method captures the 
interrelationship among any two and any three attributes, 
respectively. In realistic MAGDM problems, there exits 
interrelationship among attributes and usually such inter-
relationship is usually complicated. Hence, compared with 
Hao et al.’s [25] and Garg and Kaur’s [32] methods, our pro-
posed method is more powerful and flexible to solve actual 
MAGDM problems.

It Effectively Handles Extreme Evaluation Values

In modern decision-making situations, DMs usually have 
different background and preference and they sometime pro-
vide prejudiced evaluation values. In addition, as practical 
MAGDM problems are becoming more and more compli-
cated, DMs can hardly get all information related the deci-
sion-making problems and they probably provide unduly 
high or low evaluation values. It is realized that the negative 
influence of such kind of extreme evaluation values should 
be eliminated in order to obtain fair final decision results. 

Table 5   The decision results of Example 5 by different methods

Method Score function Ranking orders

Hao et al.’s [25] method based on PDHFWA operator [25] S
(
d1
)
= 0.3586  S

(
d2
)
= −0.0469

S
(
d3
)
= 0.1006  S

(
d4
)
= −0.0677

A1 ≻ A3 ≻ A2 ≻ A4

Garg and Kaur’s [32] method based on PDHFWEA operator S
(
d1
)
= 0.3496  S

(
d2
)
= −0.0737

S
(
d3
)
= 0.0800  S

(
d4
)
= −0.1115

A1 ≻ A3 ≻ A2 ≻ A4

The proposed method based on the PDHPFPWHM operator when k = 1 S
(
d1
)
= 0.3742  S

(
d2
)
= 0.0013

S
(
d3
)
= 0.1335  S

(
d4
)
= −0.0268

A1 ≻ A3 ≻ A2 ≻ A4

Table 6   The decision results on Example 6 by different methods

Method Score function Ranking orders

Hao et al.’s [25] method based on PDHFWA operator Cannot be calculated None
Garg and Kaur’s [32] method based on PDHFWEA operator Cannot be calculated None
The proposed method based on the PDHPFPWHM operator when k = 1 S

(
d1
)
= 0.3243  S

(
d2
)
= −0.0260  

S
(
d3
)
= 0.1335  S

(
d4
)
= −0.0268

A1 ≻ A3 ≻ A2 ≻ A4
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In other word, if such kind of bad influence of unreasonable 
evaluations is not reduced or eliminated, the results may be 
not reliable and reasonable. Our method is based the PA 
operator, and hence, it has the ability of reducing the bad 
influence of DMs’ extreme evaluation values on the final 
decision results, making the ranking order of alternatives 
more reliable. In order to demonstrate such advantage, we 
provide the following example.

Example 8  Doctors need to make a quick decision about 
whether to use ECMO equipment because their patients with 
ARDS disease may deteriorate rapidly. But different doctors 
focus on different issues, some of them may not be able to 
give reasonable evaluation values in a short period of time. 
Therefore, some evaluation values may be higher or lower 
than normal levels. Assume the doctor gives a low evalua-
tion value {{0.179|1}, {0.821|1}} of the patient A2 under 
the attributes C2. The other evaluation values are the same 
as decision matrices shown in Table 2. We utilize different 
methods to solve Example 8 and present the results in Table 8.

From Table 8, we can find that the ranking result obtained 
by our method based on PDHPFPWHM operator has not 
changed, which is A1 ≻ A3 ≻ A2 ≻ A4 . Whereas Hao et al.’s 
[25] method based on PDHFWA operator and Garg and 
Kaur’s method [32] based on PDHFWEA operator pro-
duce a different ranking result, i.e., A1 ≻ A3 ≻ A4 ≻ A2 . 
The reason is that the PDHFWA and PDHFWEA opera-
tor only analyze the whole data simply but not avoid the 

unreasonable influence. However, our proposed approach 
based on PDHPFPWHM is constructed on the PA opera-
tor, which can reduce the impact of unreasonable data on 
ranking results by assigning smaller weights to data that are 
too high or too low. Therefore, our proposed method can 
eliminate the influence of unreasonable data on the results 
and is more reasonable and powerful than other methods.

Conclusions

The traditional DHPFSs, which absorb the advantages of 
DHFSs and PFSs, have the ability of describing fuzzy deci-
sion-making information in MAGDM procedure. However, 
DHPFSs still have limitations or drawbacks when depicting 
fuzzy decision-making information, i.e., they do not consider 
the possibilistic information of possible MDs and NMDs. 
This paper presented the PDHPFSs, which take correspond-
ing probabilistic values into consideration in DHPFSs. For 
the sake of usage of PDHPFSs in MAGDM, we further put 
forward a collection of probabilistic dual hesitant fuzzy AOs. 
As seen in numerical examples, comparative analysis demon-
strated the advantages and superiorities of our proposed AOs. 
Our paper contributed a novel MAGDM method and pro-
vided DMs a new manner to determine the best alternative.

In further works, we will continue our study from three 
aspects. First, we will study applications of our proposed 
method in realistic MAGDM problems. Second, we shall 
study more AOs for PDHPFEs and propose some new 

Table 7   The decision results of Example 6 by different methods

Method Score function Ranking orders

Hao et al.’s [25] method based on PDHFWA operator S
(
d1
)
= 0.3586  S

(
d2
)
= −0.0469

S
(
d3
)
= 0.1006  S

(
d4
)
= −0.0677

A1 ≻ A3 ≻ A2 ≻ A4

Garg and Kaur’s [32] method based on PDHFWEA operator S
(
d1
)
= 0.3496  S

(
d2
)
= −0.0737

S
(
d3
)
= 0.0800  S

(
d4
)
= −0.1115

A1 ≻ A3 ≻ A2 ≻ A4

The proposed method based on the PDHPFPWHM operator when k = 1 S
(
d1
)
= 0.3742  S

(
d2
)
= 0.0013

S
(
d3
)
= 0.1335  S

(
d4
)
= −0.0268

A1 ≻ A3 ≻ A2 ≻ A4

The proposed method based on the PDHPFPWHM operator when k = 4 S
(
�1
)
= 0.2046  S

(
�2
)
= −0.1933

S
(
�3
)
= −0.2188  S

(
�4
)
= −0.2464

A1 ≻ A2 ≻ A3 ≻ A4

Table 8   The decision results on Example 7 by different methods

Method Score function Ranking orders

Hao et al.’s [25] method based on PDHFWA operator S
(
d1
)
= 0.3586  S

(
d2
)
= −0.0912

S
(
d3
)
= 0.1006  S

(
d4
)
= −0.0677

A1 ≻ A3 ≻ A4 ≻ A2

Garg and Kaur’s [32] method based on PDHFWEA operator S
(
d1
)
= 0.3496  S

(
d2
)
= −0.1258

S
(
d3
)
= 0.0800  S

(
d4
)
= −0.1115

A1 ≻ A3 ≻ A4 ≻ A2

The proposed method based on the PDHPFPWHM operator when k = 1 S
(
d1
)
= 0.3742  S

(
d2
)
= −0.0260

S
(
d3
)
= 0.1335  S

(
d4
)
= −0.0268

A1 ≻ A3 ≻ A2 ≻ A4
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MAGDM methods. Third, we are considering to extend 
DHPFSs to an improved form. For example, considering 
DMs would like to use interval numbers instead of crisp 
numbers to present probabilistic information, we shall 
extend PDHPFSs to interval-valued PDHPFSs and continue 
to investigate MAGDM method based on interval-valued 
PDHPFSs.
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