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Abstract
A novel strain of Coronavirus, identified as the Severe Acute Respiratory Syndrome-2 (SARS-CoV-2), outbroke in December 
2019 causing the novel Corona Virus Disease (COVID-19). Since its emergence, the virus has spread rapidly and has been 
declared a global pandemic. As of the end of January 2021, there are almost 100 million cases worldwide with over 2 million 
confirmed deaths. Widespread testing is essential to reduce further spread of the disease, but due to a shortage of testing kits 
and limited supply, alternative testing methods are being evaluated. Recently researchers have found that chest X-Ray (CXR) 
images provide salient information about COVID-19. An intelligent system can help the radiologists to detect COVID-19 
from these CXR images which can come in handy at remote locations in many developing nations. In this work, we propose 
a pipeline that uses CXR images to detect COVID-19 infection. The features from the CXR images were extracted and the 
relevant features were then selected using Hybrid Social Group Optimization algorithm. The selected features were then 
used to classify the CXR images using a number of classifiers. The proposed pipeline achieves a classification accuracy of 
99.65% using support vector classifier, which outperforms other state-of-the-art deep learning algorithms for binary and 
multi-class classification.
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Introduction

In December 2019, China saw a sudden increase in 
pneumonia patients. Initially, the clear cause of this 
pneumonia remained shrouded in mystery. However, these 
were soon to be epidemiologically linked to the wet animal 
wholesale market [1, 2]. China alerted the World Health 
Organization (WHO) on the December 31 about the odd 

cases of pneumonia in one of its populous cities, Wuhan, 
Hubei Province. The novel virus behind all the unusual 
pneumonia cases was named SARS-CoV-2 by the WHO 
and was identified to be belonging to the coronavirus 
family, which caused Severe Acute Respiratory Syndrome 
(SARS-CoV) and Middle East Respiratory Syndrome 
(MERS-CoV) outbreaks. Corona-viruses infect birds and 
mammals including humans and can cause respiratory tract 
diseases of varying severity [3]. The first major outbreak 
of a coronavirus was the 2002-2004 SARS outbreak. The 
outbreak eventually was declared a global epidemic, with 
a total of 8000 reported cases and a 9% mortality rate 
worldwide [4]. The similarities between the viruses causing 
SARS-CoV and COVID-19 (SARS-CoV-2) are striking. 
Both viruses have 86% similar genome sequences that are 
analogous with SARS-like viruses found in bats, thereby, 
indicating that both viruses, transmitted from bats to humans 
at some point [5] as depicted in Fig. 1.

The virus causing COVID-19 is highly transmittable and 
spreads mainly through coming in contact with respiratory 
droplets of an infected person. These droplets can penetrate 
the human body through inhalation or mouth [6]. As of the 
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end of January 2021, according to statistics of the European 
Centre for Disease Prevention and Control, there have been 
almost 100 million confirmed cases worldwide with more 
than 2 million confirmed deaths as seen in Fig. 2. The 
mortality rates depend heavily on the age of the patients 
and prior medical conditions.

The prodrome of COVID-19 generally appears after an 
incubation period of 5-6 days. The most common symptoms 
of COVID-19 onset are: fever, cough, and fatigue, while in 
some cases, the patient may also have a headache, excess 
sputum, and diarrhea [7]. Particularly, in severe cases, 
this disease often causes pneumonia leading to oxygen 
deprivation, thereby damaging the body’s vital organs 
which results in fatal issues such as, kidney failure, heart 
failure, and other life-threatening complications. But a large 
number of reported cases show only mild symptoms and can 
be efficiently treated and managed. Studies reported that the 
patients with severe symptoms tend to be older in age and 
had multiple comorbidities such as cardiovascular, digestive 
or respiratory diseases [8].

The outbreak has caused a major stir worldwide and has 
led to strict lockdown and social distancing measures being 
implemented in every affected country. Even developed 
countries find it difficult to cope with the ongoing demand 
for intensive care units which are essential to support 
patients with severe cases of COVID-19. There is also a 

crisis for testing kits as the number of cases has started to 
pile up due to the virulence of the disease [9]. According to 
the latest guidelines, the testing method for COVID-19 is the 
reverse transcription polymerase chain reaction (RT-PCR). 
The test uses a respiratory sample that can be obtained by 
using a nasopharyngeal swab or sputum sample [10]. The 
RT-PCR test is reliable in the virulent period of the first 
week of infection but as time passes the virus might not 
appear in the throat as it completely moves down to the lungs 
and keeps multiplying. In this case, the coughed-up sputum 
samples are used to test [10].

Over the last few months, many researchers have been 
actively contributing towards methodological development 
for early COVID-19 detection and screening.   This has 
been possible due to the recent developments of artificial 
intelligence (AI) and machine learning (ML)-based tools 
and techniques which have also been applied successfully 
to other tasks such as anomaly detection [12–14], 
biological data mining [15, 16], cyber security [17], disease 
detection [18–20], earthquake prediction [21], financial 
prediction [22], text analytics [23, 24] and urban planning 
[25].  Several AI and ML  driven approaches have been 
developed to support COVID-19 [26] through analyzing 
lung images acquired by means of Computed Tomography 
(CT) [9], CXR [11][27], safeguarding workers in workplaces 
[28], identifying symptoms using fuzzy systems [29], 
and supporting hospitals using robots [30]. Many of the 
proposed solutions are based on computationally extensive 
deep learning (DL) models which are highly complex in 
nature and often have unreasonable computational costs.

The previously proposed DL models require extensive 
amounts of data in order to be trained, which could be 
difficult to obtain, in case of pandemic such as COVID-19. 
Hence, we require a robust solution that can work on small 
dataset and has comparable or higher accuracy than state-of-
the-art DL models. Therefore, by using the inherent property 
of evolutionary algorithms of managing the smaller datasets 
with abridged computational complexity and relatively higher 
accuracy, we have developed a model which can be trained 
with smaller datasets and still yield respectable metrics.

In this paper, we propose a pipeline that uses CXR images 
to detect the COVID-19. In this pipeline the features from 
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Fig. 1   Block diagram showing SARS-CoV-2 transmission and spreading
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the radiographs are extracted and the relevant features are 
then selected using a modified Social Group Optimization 
(SGO) algorithm which we call Hybrid SGO algorithm 
(HSGO). The features selected using HSGO were then 
used in classifying the radiographs using the support vector 
classifier (SVC), K-nearest neighbor (KNN), decision tree 
(DT), and random forest (RF).

Towards the development of an improved, reliable and 
accurate pipeline, the current work can be summarized 
through the following highlights: 

1.	 A model is proposed to classify COVID-19 infected 
patients from their CXR images.

2.	 The model is trained and tested on open dataset of 
COVID-19 infected CXR images sourced from Kaggle 
[31–33].

3.	 Hybrid Social Group Optimization algorithm is 
proposed which is used to select features from the CXR 
images.

4.	 The selected feature set is then used to classify the CXR 
images using various classifiers.

5.	 The proposed model achieves an accuracy of 99.65% 
using the Support Vector Classifier.

6.	 Deep learning counterparts had a maximum accuracy of 
99.27%.

7.	 The proposed method has a higher accuracy and 
significantly lower training time compared to any 
available state-of-the-art deep learning algorithms.

The remainder of the article is organized as follows: Section 2 
depicts the related works, the proposed method is described in 
Section 3, Section 4 details the experimentation process and 
results, followed by Section 5 which concludes the work and 
finally Section 6 highlights the possible future developments.

Related Works

Since early 2020, several studies have been reported in 
the literature highlighting the shortcomings of RT-PCR 
testing, which includes a high false-negatives rate [34] 
and a short window for detection. In this public health 
emergency where the number of cases is increasing 
every day, the low sensitivity and the high rate of false-
negatives means that patients will not be identified 
accurately, which hampers the chance of receiving 
appropriate treatment. The infected people, also run the 
risk of infecting others, thereby compounding the threat. 
In [35] the authors have conducted a thorough study on 
the spread and fatality rate of the pandemic, showing 
how fatality can be greatly reduced by minimizing the 
exposure of vulnerable groups to COVID-19.

The Computed Tomography (CT) scan of the chest 
is one of the most important methods in the diagnosis 
of pneumonia. Ai et  al. showed a strong correlation 
between chest CT scans and RT-PCR test results in the 
identification of COVID-19 [36]. Apostolopoulos and 
Mpesiana [37] have proposed an automated COVID-
19 detection system that utilizes CXR scans of the 
patient’s chest to diagnose the disease by using transfer 
learning with convolutional neural network (CNN). Some 
researchers have also shown CNN to be a great tool for 
identification of COVID-19 from CXR radiographs [38]. 
In [39], authors have suggested anti-aliased convolutional 
networks for detection of lung diseases. Also, a number 
of reported work have shown that chest CT scans are an 
important tool in COVID-19 diagnosis [9, 40–42].

Evolutionary algorithms have always played a critical 
role in medical image analysis by reducing the overall 
computation required by intensive DL or ML algorithms. 
Rundo et al. [43] surveyed the literature for the state-of-
art of nature-inspired medical images analysis methods 
focusing on bio-medical data integration. Mostafa et al. 
[44] used whale optimization algorithm to segment liver 
from MRI scans by extracting features from different 
segments of the image with an accuracy of 97.5%. 
Woźniak et al. [45] used several bio-inspired algorithms 
to successfully detect pulmonary diseases from CXR 
images. The authors obtained the best accuracy of 
82.22% using the particle swarm optimization algorithm. 
González-Patiño et al. [46] proposed a novel bio-inspired 
method based on bat algorithm for early identification 
of breast cancer by analyzing mammographic images 
with an accuracy of 97.42%. Hemanth and Anitha [47] 
proposed a modified genetic algorithm to classify brain 
images from four different classes with a final accuracy 
of 98%. Agrawal et al. [48] proposed a hybrid adaptive 
cuckoo search-squirrel search algorithm to analyze 
Brain MRI scans by obtaining optimal multi-level 
thresholds using maximization of the edge magnitude 
information. Wachs-Lopes et al. [49] discusses seven 
recent bio-inspired algorithms over multi-thresholding 
segmentation of medical images. The algorithms were 
tested for a range of values of non-extensivity parameter 
(‘q’), which is an essential parameter for Tsallis entropy. 
The firefly algorithm had the best performance and the 
Grey Wolf Optimizer with the fastest convergence.

There have been a number of studies on COVID-
19 using CXR images, Ozturk et  al. [50] proposed 
DarkCOVIDNet using CNN and DarkNet, 2-D convolution 
and Max Pooling for identification of COVID-19 from 
CXR images. The accuracy achieved by this model was 
98.08%. Toğaçar et al. [51] used social mimic optimization 
along with SqueezeNet and MobileNetV2 deep learning 
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architectures for the identification of COVID-19 from 
CXR images. The accuracy of this model was 99.27 
(binary class) for covid-19 images, but the overall 
accuracy was 98.3% (COVID and Normal CXR images, 
multi-class). The accuracy of this model was indeed 
good, however, the method was not computationally 
efficient with two deep learning models. Panwar et al. 
[52] presented a model for fast identification of COVID-
19 using the Vgg-16 and CNN deep learning-based model. 
The accuracy for the binary class for classifying COVID-
19 images was 97.97% and normal image detection 
accuracy was 98.68%. Pereira et al. [53] used the pre-
trained CNN network, the F1-score achieved 0.89, which 
is quite low as acknowledged by the author as well. 
Waheed et al. [54] proposed COVIDGAN an auxiliary 
classifier generative adversarial network (GAN), the 
method had a limitation, that very small dataset was used 
in order to train, then GAN was used to create synthetic 
dataset. The method achieved an accuracy between 
85%–95% despite being biased towards the generated 
image dataset. Abdel-Basset et  al. [55] proposed an 
improved marine predators algorithm, bettering the results 
obtained by other bio-inspired algorithm for COVID-19 
detection with an overall fitness function value obtained 
66.26. Oh et al. [56] proposed a method to segmentation 
of the lung images along with FC-DenseNet103 gave an 
overall accuracy of 88.9% for classification of COVID-19 
images and 95% accuracy on classifying COVID-19 and 
Normal images. Vaid et al. [57] used simple pre-trained 
deep learning models and achieved an accuracy of 96.3% 
in classifying COVID-19 images. Mahmud et  al. [58] 
proposed a multi-dilated CNN and achieved an accuracy 
of 97.4% for successfully detecting COVID-19 images. 
Moreover, Dey et al. [9] proposed SGO assisted Kapoor’s 
entropy to segment COVID-19 specific regions in CT scan 

images and used K-nearest neighbor method to classify. 
The method achieved an accuracy of 87.75%.

Proposed Method

This work proposes a computer-aided diagnosis system 
that can automatically detect COVID-19 by using CXR 
radiographs of the patients. This system is expected to 
contribute in aiding doctors in the decision process, 
thereby reducing the time taken for accurate diagnosis 
and thus, hopefully, reducing the overall pressure on 
the medical staff as well. However, this should be noted 
that the has not been clinically validated like many other 
methods proposed in the literature and should not be used 
as an independent means to diagnose COVID-19.

The proposed pipeline consists of the following steps: 

1.	 Preprocessing of the lung CXR radiographs;
2.	 Feature extraction from CXR radiographs;
3.	 Selection of relevant features using the HSGO algorithm;
4.	 Classification of the extracted features from the 

radiographs as healthy or infected.

The aforementioned pipeline is depicted in Fig. 3.

Preprocessing and Feature Extraction

To detect COVID-19 infection through an automated 
classification method, features need to be extracted from 
the CXR images. In the first step, the given radiographs 
were resized to 100 × 100 from their original size of 
1024 × 1024 , which boosted computational speeds 
significantly and also reduced the extracted feature pool 

Fig. 3   Flowchart of the proposed pipeline. It shows the main steps as: preprocessing, feature extraction, feature selection, and classification
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without compromising accuracy. All the features were 
extracted using Pillow 7.1.2 in grayscale mode [59] 
which extracts every pixel in the image by assigning a 
value according to the luminosity level of the pixel. The 
value is determined by the ITU-R 601-2 luma transform 
for every pixel in image. The lung CXR is first converted 
to a 8-bit image where every bit stores black and white 
levels thereby allowing 256 different shades. By doing 
this we can keep the subtle details and also minimize the 

extracted feature pool. Figure 4 depicts the preprocessing 
and extraction process in detail.

Other extraction methods like bi-level mode that converts a 
lung CXR to 1-bit image where value for every pixel is determined 
using Floyd-Steinberg dither to approximate luminosity levels, 
Palette mode which converts and gives 8 bit of data for each 
pixel allowing 256 colors and RGB mode that converts and 
stores the true color value of every pixel using 3 × 8 bits were 
tested. All the aforementioned methods performed worse than 

Fig. 4   Preprocessing and feature 
extraction of lung CXR images



1770	 Cognitive Computation (2024) 16:1765–1777

1 3

the grayscale method. In case of Bi-level mode the final accuracy 
was considerably lower as many details required to classify an 
image were lost in conversion, whereas Palette and RGB mode 
both preserved the details but the number of features extracted 
was excessive for the problem at hand. Thus, using Grayscale 
mode the lung CXRs were converted and a total of 10,000 features 
were extracted from each one. The extracted feature pool was then 
subjected to feature selection, as described in subsequent sections.

Feature Selection

In this section, we discuss feature selection from the 
extracted dataset using the proposed HSGO algorithm. This 
step is essential for reducing computational costs and also 
boosts accuracy. The feature selection method is based on 
the SGO algorithm, which is described below.

Social Group Optimization (SGO)

The SGO algorithm, proposed by Satapathy and Naik [60], 
is a meta-heuristic model based on population behavior that 
is inspired by the human group’s ability to solve a complex 
problem. It is based on the observation that a group’s prob-
lem-solving capability is better than an individual’s problem-
solving ability as it exploits every member’s unique traits to 
solve a complex problem. Every person in the population is 
a candidate solution that has some knowledge about the solu-
tion to the given problem. The person with the best solution 
in the population imparts its knowledge to others, thereby 
increasing the overall knowledge of the entire population.

Mathematically, the SGO algorithm can be expressed as: 
let N be the number of persons in the population and each 
person is defined as Pi = (x1, x2, x3,⋯ , xD) where D is the 
number of features which uniquely define a person. The 
features of every person need to be optimized to yield the 
best solution to the problem. For a given problem, the fitness 
function can be defined as fi where 0 < i < N for every person 
in the population.

Improving Phase  Every person acquires some 
knowledge from the best person by the following function: 
xi,j(new) = c × xi,j(old) + r × (gbestj − xi,j(old)) here, gbestj 
is the population’s best person, i.e., person with the best fitness 
value, c is the self-introspection factor, r is any random value 
0 < r < 1 , and xi,j(new) is the jth feature for the ith person in 
the population which is accepted if it gives better fitness value.

Acquiring Phase  Every person in the population 
learns from random persons in the population and from 
the population’s best person by the following function: 
xi,j(new) = xi,j(old) + r1 × (xr,j − xi,j) + r2 × (gbestj − xi,j) 
where xi,j(old) is the initial value of the jth feature for the ith 
person in the population, gbestj is the population’s best person, 

i.e., person with the best fitness value, c is the self-introspection 
factor, r1 and r2 are any random values 0 < r1, r2 < 1 , and 
xi,j(new) is the jth feature for the ith person in the population 
which is accepted if it gives better fitness value.

Hybrid Social Group Optimization (HSGO)

The HSGO algorithm is an improved version of the SGO 
algorithm, which has been developed to select optimal 
features from a feature pool. By following a wrapper-based 
approach, HSGO gives the optimal feature set in considerably 
fewer iterations. Theoretically, both SGO and HSGO should 
eventually give the optimal feature set but in our experiments 
HSGO outperforms SGO and other conventional feature 
selection methods by selecting a markedly smaller feature 
set which also gives a noticeably better accuracy. Table 1 
compares HSGO with SGO and other conventional methods. 
This improvement can be attributed to addition of a random 
factor which helps HSGO to overcome local minima or maxima 
traps, when compared to the traditional SGO algorithm. The 
SGO algorithm when used for feature selection, tends to yield 
the same results after a few generations of notable improvement 
in the population. The effect of this random factor is evident 
especially when the number of features in the dataset are high 
( > 1000 ). The random factor is obtained by introducing a 
new step called the Mutation phase, this phase is explained 
in Algorithm 1. Algorithm 2 shows the proposed HSGO 
algorithm which can be broadly divided to the following steps.

Table 1   Comparison of Feature Selection Methods

Selection Method Features 
Selected

Accuracy (%) Classifier Used

Hybrid SGO 116 99.65 SVC
SGO 254 99.31 SVC
KPCA 500 99.31 SVC
PCA 511 99.31 SVC
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Initialization function The initialization function initializes 
each person in the population by making a random array of 

integer values ranging from 0 to 9 with dimensions (N, D) 
where N is the number of people in population and D is total 
extracted features. The range of 0 to 9 was chosen to allow 
enough randomness in features of every person in the 
population while at the same time making it much easier to 
trace the learning steps. The initialization and improvement 
process is shown pictorially in Fig. 5.

Fitness function The fitness function used here is the 
classifier which will be used on the optimal subset of features. 
It gives the fitness and the accuracy of the current subset of 
the dataset by assigning fitness values to each person in the 
population after every generation.

where, classifier is the classifier being used, Pi is the ith 
person in the population, and fi is the calculated fitness.

Mutation Phase The purpose of the mutation phase is 
to facilitate continuous improvement in the population by 
constantly introducing a new person whose traits are notably 
different from the persons currently in the population. 
Algorithm 1 shows the mutation phase of the process.

A subset of the dataset is created for each person 
in population, every generation, by selecting only the 
corresponding columns of the dataset where the persons feature 
value is greater than 3. Initially, we selected the columns from 
dataset which had corresponding feature value of 5 or more, but 
it was changed to 3 to get a wide variety of feature subsets in the 
initial population. The subset created is then used to calculate 
accuracy using appropriate classifiers and is gradually improved 
with every generation to give the final selection of features that 
give the best accuracy and minimum computational cost.

The HSGO algorithm selected 116 features out of 10,000 
raw features extracted from lung CXR images. In other words, 
the algorithm selected only 1.16% features from the extracted 
feature set, therefore, filtering out 98.84% of insignificant 
features. Table 1 shows the comparison of various feature 
selection methods used, accuracy obtained using the feature 
subset and the classifier used.

Experimentation and Results

In this section, we discuss the implementation of the HSGO 
algorithm. It comprises of setup specifications along with 
the various parameters used in the algorithm and classifiers.

Dataset

The dataset used in this work was obtained from the 
Kaggle repository ”COVID-19 Radiography Database”. 
The database from this repository consisted of 219 

fi = classifier(Pi)
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COVID-19 positive images, 1341 normal images, and 
1345 viral pneumonia images. [31–33]. Adding 152 more 
COVID-19 positive images from other similar sources, 
the total number of images for this class was increased 
to 371. Our experiments were performed using CXR 
radiographs of positive COVID-19 cases and normal 
images from the dataset. All the images were resized 
from 1024×1024 to 100×100 pixels, which substantially 
reduces the feature pool extracted and boosts 
computational speed. All the results quoted in the work 
were achieved using the original dataset. Representative 
radiographs for both COVID-19 infected patients and 
normal cases are given in Fig. 6, respectively. As from 
the individual image numbers from different classes it 
can be seen that the dataset is imbalanced, we created 
3 subsets from the full dataset for evaluation. The split 
ratio between the COVID-19 and non-COVID-19 CXR 
images were changed by either increasing or decreasing 
the non-COVID-19 CXR images to make the subsets to 

contain 30% COVID-19–70% non-COVID-19 images, 
50% COVID-19–50% non-COVID-19 images, and the 
full dataset containing all COVID-19 and non-COVID-19 
CXR images. It should be noted here that, this split was 
solely for the sake of evaluation, the final model was 
trained on the original dataset.

Experimental Setup

All tests were performed on Google Colaboratory, allowing 
execution of python code in browser, on Google Cloud 
Servers running on a Intel(R) Xeon(R) CPU @ 2.30 GHz, 
having 20 physical cores paired with a K80 GPU and RAM 
capacity up to 36 GB. A maximum of 108 GB of disk 
space was available, out of which 33 GB was used for the 
experiments. Pillow library, a fork of Python Imaging Library 
was used for extracting features from the lung CXRs. All 
the algorithms were developed using Python 3.6.7 as the 
language and NumPy, Pandas, and Scikit-learn libraries.

Fig. 5   Initialization and genera-
tional improvement provided by 
the hybrid SGO algorithm
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Input Parameters

The parameters used in the HSGO algorithm are shown in 
Table 2 and the parameters of the various classifiers are 
reported in Table 3.

Among the parameters of the HSGO algorithm, the 
N and D are constant values which are chosen as per the 
problem requirements. The self-introspection factor c used 
in the improving phase controls the knowledge gained from 
the generation’s best at each iteration and can be set from 
0 < c < 1 . If the value of c is too low, the learning steps are 
too flat, which can be beneficial in some cases whereas higher 
values of c (> 0.8) results in steep learning steps and is generally 
unstable. In our experiments c = 0.7 was used which yields 
a respectable learning rate without compromising stability. 
r1 and r2 are independent random numbers which affect the 
stochastic nature of the algorithm. The value of r1 and r2 can 
be 0 < r1, r2 < 1 . We have used r1 = 0.6 and r2 = 0.8 in our 
experiments to achieve the stated results. All the parameters used 
in classifiers were obtained by the process of hyper parameter 
tuning using Grid Search algorithm. The algorithm determines 
the best parameters by methodically checking the specified 
classifier against a set of possible parameters thereby ensuring 
best metrics.

Performance

The proposed pipeline with HSGO algorithm was applied 
on the complete dataset (i.e., 371 COVID-19 positive 

CXR images and 1341 non-COVID-19 CXR images) 
and the classification of the features was performed by 
five different methods, namely, KNN, DT, RF, L-SVC, 
and SVC. As shown in Fig.  7, the best accuracy of 
99.65% was obtained with the SVC classifier and this 
was consistent with the F1-score obtained for the SVC 
method reported in Table 4.

To assess the effect of the number of COVID-19 images 
on the accuracy, the proposed pipeline with HSGO algorithm 
and SVC classifier was applied on three different subsets 
of data (see "Dataset" section for details). It was observed 
that the highest accuracy of 99.65% was obtained when 
the complete dataset was used. Also, comparing with other 
optimization algorithms, as shown in Fig. 8, this highest 
accuracy was obtained with the HSGO algorithm on the 
complete dataset in comparison to other methods (such as 
SGO, KPCA, and PCA) and dataset size. On the same dataset 
the SGO, KPCA, and PCA methods provided an accuracy 

NormalCOVID-19

Fig. 6   Example chest X-ray images from the dateset – COVID-19 
(left), and normal (right)

Table 2   Parameters for the HSGO Algorithm

Parameter Value Description

N 5 No. of Persons
D 10,000 No. of features
r1 0.6 Random value r1
r2 0.8 Random value r2
c 0.7 Self-Introspection factor

Table 3   Parameters for Machine Learning Algorithms

Classifier Parameters Used

KNN n-neighbors = 3, metric = manhattan
DT criterion = gini, splitter = best
RF criterion = gini, max-depth = 2, n-estimators = 100
L-SVC penalty = ’l2’, loss = ’squaredhinge’, maxiter = 1000
SVC C = 1.0, kernel = ’rbf’, degree = 3, gamma = ’scale’, 

maxiter = −1
PCA n_components = 0.98, random_state = None
KPCA kernel = ’linear’, n_components = 500
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Fig. 7   Classification accuracy of various classifiers
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of 99.31%. When the number of COVID-19 positive CXR 
images were 30% and 50% and the non-COVID-19 images 
were 70% and 50%, respectively, the proposed HSGO 
algorithm outperformed all other methods. In case of the 3:7 
dataset, the highest accuracy was 99.05% with HSGO and 
in case of the 1:1 dataset, the highest accuracy was 99.26%.

Evidently, the performance of the pipeline is 
consistent even after altering the composition of the 
dataset showing the classification accuracy of minority 
class, i.e., COVID-19 is maintained. Based on the 
above discussions, it can be claimed that the proposed 
HSGO-based pipeline, in combination with the SVC, is 
capable of detecting COVID-19 from CXR radiographs 
remarkably well.

Benchmarking with State‑of‑the‑Art Deep Learning 
Models and Evolutionary Algorithms

The results obtained with the HGSO algorithm were also 
compared with other similar bio-inspired algorithms 
namely Chaotic Crow Search Optimization algorithm 
(CSO) and Spider-Monkey Optimization algorithm 
(OSMO). These algorithms are tweaked versions of 
the original crow search algorithm and spider monkey 
optimization algorithm, respectively. The CSO algorithm 

is a meta-heuristic optimizer which takes inspiration 
from a crow’s searching methods to hide extra food and 
its retrieval when needed [61]. On the other hand, the 
OSMO algorithm is a swarm intelligence technique [62] 
that relies on the collective intelligence of a group to 
solve the problem at hand. Both algorithms were used as 
a feature selection method for the same dataset and the 
selected feature set was then used with every classifier. 
The maximum accuracy obtained were saved and plotted. 
As seen in Fig. 9, the proposed method performs better 
than aforementioned meta-heuristics.

The authors in [38] used four pre-trained deep CNN 
architectures, namely, AlexNet, ResNet18, SqueezeNet 
and DenseNet201 to classify normal and COVID-19 
infected radiographs with an accuracy as high as 98.3% 
using the SqueezeNet. A comparison of the accuracy of 
our model against the state-of-the-art DL (as discussed 
in section 2) and other optimized algorithms have been 
depicted in the bar graph in Fig. 9, Evidently the proposed 
method outperforms every other method with 99.65% 
accuracy using the SVC classifier.

Conclusion

The ongoing global pandemic due to the COVID-19 
outbreak has led to a global crisis worldwide. Even 
developed countries are struggling to cope with the 
demand for medical supplies and testing kits. The shortage 
of testing kits especially hampers efforts to stop the spread 
of the disease, as many cases go undetected, which may 
lead to even more infections of COVID-19. Early diagnosis 
of the disease is essential to stop further spread and reduce 
mortality rates. The proposed solution of a computer-aided 
diagnosis system, uses CXR radiographs of patients to 
automatically predict COVID-19. Our experimental results 
show that the model with SVC yields the highest accuracy 

Table 4   Performance comparison of different classifiers

Class Classifier, Prec Precision, Sens Sensitivity, F1S F1 score

Class. Prec. Sens. F1S

KNN 0.9896 0.9897 0.9897
DT 0.9489 0.9591 0.9611
RF 0.9758 0.9761 0.9759
L-SVC 0.993 0.993 0.993
SVC 0.9966 0.9965 0.9965

Fig. 8   Effect of number of 
images from COVID-19 and 
non-COVID-19 classes on clas-
sification performance
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of 99.65% among all classifiers. The proposed pipeline, 
due to its high accuracy and precision, can be used to 
develop mobile applications that can be an aid in early 
diagnosis of COVID-19 for medical practitioners.

Future Scope

The proposed pipeline’s accuracy can be further improved. 
For instance,  the HSGO  model can be made more 
accurate by increasing the number of COVID-19 chest 
CXR images. The effects of numerous parameters used 
in HSGO can be studied in depth on different datasets 
to  unravel how they all come together and affect the 
final results. Alternative feature extraction methods can 
be experimented with the proposed pipeline to further 
enhance the end result. The Mutation phase of the HSGO 
can also be adjusted according to the problem at hand, 
thereby allowing widespread applications in countless 
real-world problems.

Author Contributions  This work was carried out in close collabora-
tion between all co-authors. All authors have contributed to, seen and 
approved the final manuscript.

Code Availability  The code can be accessed via the following 
GitHub repository: https​://githu​b.com/Enixe​s/Hybri​d-Socia​l-Group​- 
Optim​izati​on-algor​ithm.

Declarations 

Ethical Approval  All procedures performed in studies involving human 
participants were in accordance with the ethical standards of the 

institutional and/or national research committee and with the 1964 Helsinki 
declaration and its later amendments or comparable ethical standards.

Informed Consent  Informed consent was obtained from all individual 
participants included in the study.

Conflict of Interest  The authors declare that the research was conducted 
in the absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://creat​iveco​mmons​.org/licen​ses/by/4.0/.

References

	 1.	 Zhu N, et  al. A Novel Coronavirus from Patients with 
Pneumonia in China: 2019. N Engl J Med. 2020;382(1):727–33.

	 2.	 Hui DS, et al. The continuing 2019-nCoV epidemic threat of 
novel coronaviruses to global health -The latest 2019 novel 
coronavirus outbreak in Wuhan. China. Int J Infect Dis. 
2020;91(1):264–6.

	 3.	 Fraire AE, Woda BA, Welsh RM, Kradin RL. Viruses and the 
Lung. Berlin Heidelberg: Springer-Verlag, Berlin Heidelberg; 
2014.

	 4.	 CDC. SARS Basics Fact Sheet;. Available at https​://www.cdc.gov/
sars/about​/fs-sars.html (2020/05/20).

Fig. 9   Accuracy comparison 
with other Deep Learning and 
other Bio-Inspired Algo-
rithms. References: nCOV-
net [52], SqueezeNet [38], 
Squeeze&MobileNetV2 [51], 
DarkCOVIDNet [50], Alexnet 
[38], COVxnet [58], ResNet 
[38], DL-VGG-19 [57], COV-
IDGAN [54], FC-DenseNet103 
[56], OSMO [61], and CSO [62]

10088 09 29 49 69 89

HSGO (Proposed)
nCOVnet 

SqueezeNet
Squeeze&MobileNetV2

DarkCovidNet
Alexnet

COVxnet
ResNet

DL-VGG-19
CovidGAN

FC-DenseNet103
OSMO

CSO

Accuracy

Al
go

rit
hm

s

https://github.com/Enixes/Hybrid-Social-Group-Optimization-algorithm
https://github.com/Enixes/Hybrid-Social-Group-Optimization-algorithm
http://creativecommons.org/licenses/by/4.0/
https://www.cdc.gov/sars/about/fs-sars.html
https://www.cdc.gov/sars/about/fs-sars.html


1776	 Cognitive Computation (2024) 16:1765–1777

1 3

	 5.	 Annelies WS, CJ C, VJ L. Can we contain the COVID-19 outbreak 
with the same measures as for SARS? Lancet Infect Disease. 
2020;20(5):e102–107

	 6.	 Shereen MA, Khan S, Kazmi A, Bashir N, Siddique R. COVID-
19 infection: Origin, transmission, and characteristics of human 
coronaviruses. J Adv Res. 2020;24:91–8.

	 7.	 Rothan HA, Byrareddy SN. The epidemiology and pathogenesis 
of coronavirus disease (COVID-19) outbreak. J Autoimmun. 
2020;109:102433.

	 8.	 Sohrabi C, et  al. World Health Organization declares global 
emergency: A review of the 2019 novel coronavirus (COVID-
19). Int J Surg. 2020;76:71–6.

	 9.	 Dey N, Rajinikanth V, Fong SJ, Kaiser MS, Mahmud M. 
Social-group-optimization assisted Kapur’s Entropy and 
Morphological Segmentation for automated detection of COVID-
19 infection from computed tomography images. Cogn Comput. 
2020;12(5):1011–23.

	10.	 CDC. Information for Laboratories;. Available at https​://www.
cdc.gov/coron​aviru​s/2019-ncov/lab/index​.html (2020/05/20).

	11.	 Rousan LA, Elobeid E, Karrar M, et al. Chest x-ray findings and 
temporal lung changes in patients with COVID-19 pneumonia. 
BMC Pulm Med. 2020;245:

	12.	 Yahaya SW, Lotfi A, Mahmud M. A consensus novelty detection 
ensemble approach for anomaly detection in activities of daily 
living. Appl Soft Comput. 2019;83:105613.

	13.	 Fabietti M, Mahmud M, Lotfi A, Averna A, Guggenmo D, Nudo 
R, et al. Neural Network-based Artifact Detection in Local Field 
Potentials Recorded from Chronically Implanted Neural Probes. 
In: Proc. IJCNN; 2020. p. 1–8.

	14.	 Ali HM, Kaiser MS, Mahmud M. Application of Convolutional 
Neural Network in Segmenting Brain Regions from MRI Data. In: 
Goel V, Shan C, editors. Liang P. Brain Informatics. Lecture Notes 
in Computer Science. Cham: Springer International Publishing; 
2019. p. 136–146.

	15.	 Mahmud M, Kaiser MS, Hussain A, Vassanelli S. Applications of 
deep learning and reinforcement learning to biological data. IEEE 
Trans Neural Netw Learn Syst. 2018;29(6):2063–79.

	16.	 Mahmud M, Kaiser MS, McGinnity TM, Hussain A. 
Deep Learning in Mining Biological Data. Cogn Comput. 
2021;13(1):1–33.

	17.	 Mahmud M, Kaiser MS, Rahman MM, Rahman MA, Shabut A, 
Al-Mamun S, et al. A brain-inspired trust management model to 
assure security in a cloud based IoT framework for neuroscience 
applications. Cogn Comput. 2018;10(5):864–73.

	18.	 Noor MBT, Zenia NZ, Kaiser MS, Mahmud M, Al Mamun 
S. Detecting Neurodegenerative Disease from MRI: A Brief 
Review on a Deep Learning Perspective. In: Goel V, Shan C, 
editors. Liang P. Brain Informatics. Lecture Notes in Computer 
Science. Cham: Springer International Publishing; 2019. p. 
115–125.

	19.	 Noor MBT, Zenia NZ, Kaiser MS, Al Mamun S, Mahmud M. 
Application of deep learning in detecting neurological disorders 
from magnetic resonance images: a survey on the detection of 
Alzheimer’s disease. Parkinson’s disease and schizophrenia. 
Brain informatics. 2020;7(1):1–21.

	20.	 Miah Y, Prima CNE, Seema SJ, Mahmud M, Kaiser MS. 
Performance comparison of machine learning techniques in 
identifying dementia from open access clinical datasets. In: 
Proc. ICACIn. Springer, Singapore; 2021. p. 79–89.

	21.	 Al Banna MH, Taher KA, Kaiser MS, Mahmud M, Rahman 
MS, Hosen AS, et al. Application of artificial intelligence in 
predicting earthquakes: state-of-the-art and future challenges. 
IEEE Access. 2020;8:192880–923.

	22.	 Orojo O, Tepper J, McGinnity TM, Mahmud M. A Multi-
recurrent Network for Crude Oil Price Prediction. In: Proc. 
SSCI; 2019. p. 2940–2945.

	23.	 Watkins J, Fabietti M, Mahmud M. SENSE: a Student 
Performance Quantifier using Sentiment Analysis. In: Proc. 
IJCNN; 2020. p. 1–6.

	24.	 Rabby G, Azad S, Mahmud M, Zamli KZ, Rahman MM. 
TeKET: a tree-based unsupervised keyphrase extraction 
technique. Cogn Comput. 2020;12(4):811–33.

	25.	 Kaiser MS, Lwin KT, Mahmud M, Hajializadeh D, 
Chaipimonplin T, Sarhan A, et al. Advances in crowd analysis 
for urban applications through urban event detection. IEEE 
Trans Intell Transp Syst. 2018;19(10):3092–112.

	26.	 Mahmud M, Kaiser MS. Machine Learning in Fighting 
Pandemics: A COVID-19 Case Study. In: Santosh KC, 
Joshi A, editors. COVID-19: Prediction, Decision-Making, 
and its Impacts. Lecture Notes on Data Engineering and 
Communications Technologies. Singapore: Springer; 2021. p. 
77–81.

	27.	 Aradhya VNM, Mahmud M, Agarwal B, Kaiser MS. One Shot 
Cluster based Approach for the Detection of COVID-19 from 
Chest X-Ray Images. Cogn Comput. 2021;p. 1–9. [Online First, 
doi: https​://doi.org/10.1007/s1255​9-020-09774​-w].

	28.	 Kaiser MS, et  al. iWorkSafe: Towards Healthy Workplaces 
during COVID-19 with an Intelligent pHealth App for Industrial 
Settings. IEEE Access. 2021;9:13814–13828 https​://doi.
org/10.1109/ACCES​S.2021.30501​93.

	29.	 Bhapkar HR, Mahalle PN, Shinde GR, Mahmud M. Rough Sets 
in COVID-19 to Predict Symptomatic Cases. In: Santosh KC, 
Joshi A, editors. COVID-19: Prediction, Decision-Making, 
and its Impacts. Lecture Notes on Data Engineering and 
Communications Technologies. Singapore: Springer; 2021. p. 
57–68.

	30.	 Kaiser MS, Al Mamun S, Mahmud M, Tania MH. Healthcare 
Robots to Combat COVID-19. In: Santosh KC, Joshi A, editors. 
COVID-19: Prediction, Decision-Making, and its Impacts. 
Lecture Notes on Data Engineering and Communications 
Technologies. Singapore: Springer; 2021. p. 83–97.

	31.	 SIRMI. COVID-19 Database. Societa Italiana di Radiologia;. 
Available at https​://www.sirm.org/categ​ory/senza​-categ​oria/
covid​-19/ (2020/05/20).

	32.	 Cohen JP, Morrison P, Dao L. COVID-19 image data collection. 
GitHub; 2020. Accessed on 25/07/2020. Available from: https​://
githu​b.com/ieee8​023/covid​-chest​xray-datas​et.

	33.	 Mooney P. Chest X-Ray Images (Pneumonia);. Available at 
https​://www.kaggl​e.com/pault​imoth​ymoon​ey/chest​-xray-
pneum​onia (2020/05/20).

	34.	 Prinzi A. False Negatives and Reinfections: the Challenges of 
SARS-CoV-2 RT-PCR Testing;. Available at https​://asm.org/
Artic​les/2020/April​/False​-Negat​ives-and-Reinf​ectio​ns-the- 
Chall​enges​-of (2020/05/20).

	35.	 Anderez DO, Kanjo E, Pogrebna G, Kaiwartya O, Johnson SD, 
Hunt JA. A COVID-19-Based Modified Epidemiological Model 
and Technological Approaches to Help Vulnerable Individuals 
Emerge from the Lockdown in the UK. Sensors (Basel). 
2020;20:20(17):4967.

	36.	 Ai T, et al. Correlation of Chest CT and RT-PCR Testing in 
Coronavirus Disease 2019 (COVID-19) in China: A Report of 
1014 Cases. Radiology. 2020;296(2):E32–E40.

	37.	 Apostolopoulos ID, Mpesiana TA. Covid-19: automatic detection 
from X-ray images utilizing transfer learning with convolutional 
neural network. Phys Eng Sci Med. 2020;76:71–6.

	38.	 Chowdhury ME, et al. Can AI help in screening Viral and COVID-
19 pneumonia? CoRR. 2020;abs/2003.13145:1–12.

	39.	 Singh J, Tripathy A, Garg P, Kumar A. Lung tuberculosis 
detection using anti-aliased convolutional networks. Procedia 
Comput Sci. 2020;173:281–90.

	40.	 Tenda ED, et al. The Importance of Chest CT Scan in COVID-19: 
A Case Series. Acta Med Indones. 2020;68–73.

https://www.cdc.gov/coronavirus/2019-ncov/lab/index.html
https://www.cdc.gov/coronavirus/2019-ncov/lab/index.html
https://doi.org/10.1007/s12559-020-09774-w].
https://doi.org/10.1109/ACCESS.2021.3050193
https://doi.org/10.1109/ACCESS.2021.3050193
https://www.sirm.org/category/senza-categoria/covid-19/
https://www.sirm.org/category/senza-categoria/covid-19/
https://github.com/ieee8023/covid-chestxray-dataset
https://github.com/ieee8023/covid-chestxray-dataset
https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia
https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia
https://asm.org/Articles/2020/April/False-Negatives-and-Reinfections-the-Challenges-of
https://asm.org/Articles/2020/April/False-Negatives-and-Reinfections-the-Challenges-of
https://asm.org/Articles/2020/April/False-Negatives-and-Reinfections-the-Challenges-of


1777Cognitive Computation (2024) 16:1765–1777	

1 3

	41.	 Yang R, et al. Chest CT Severity Score: An Imaging Tool for 
Assessing Severe COVID-19. Radiol: Cardiothorac Imaging. 
2020;2(2):1–23.

	42.	 Caruso D, et al. Chest CT Features of COVID-19 in Rome. Italy. 
Radiology. 2020;296(2):E79–E85.

	43.	 Rundo L, Militello C, Vitabile S, Russo G, Sala E, Gilardi 
MC. A survey on nature-inspired medical image analysis: a 
step further in biomedical data integration. Fundam Inform. 
2020;171(1–4):345–65.

	44.	 Mostafa A, Hassanien AE, Houseni M, Hefny H. Liver 
segmentation in MRI images based on whale optimization 
algorithm. Multimed Tools Appl. 2017;76(23):24931–54.

	45.	 Woźniak M, Połap D. Bio-inspired methods modeled for 
respiratory disease detection from medical images. Swarm Evol 
Comput. 2018;41:69–966.

	46.	 González-Patiño D, Villuendas-Rey Y, Argüelles-Cruz AJ, 
Karray F. A novel bio-inspired method for early diagnosis of 
breast cancer through mammographic image analysis. Appl Sci. 
2019;9(21):4492.

	47.	 Hemanth DJ, Anitha J. Modified Genetic Algorithm approaches 
for classification of abnormal Magnetic Resonance Brain tumour 
images. Appl Soft Comput. 2019;75:21–8.

	48.	 Agrawal S, Samantaray L, Panda R, Dora L. A New Hybrid 
Adaptive Cuckoo Search-Squirrel Search Algorithm for Brain 
MR Image Analysis. In: Studies in Computational Intelligence. 
Springer Singapore; 2019. p. 85–117.

	49.	 Wachs-Lopes G, Santos R, Saito N, Rodrigues P. Recent nature-
Inspired algorithms for medical image segmentation based 
on tsallis statistics. Commun Nonlinear Sci Numer Simul. 
2020;88:105256.

	50.	 Ozturk T, et al. Automated detection of COVID-19 cases using 
deep neural networks with X-ray images. Comput Biol Med. 
2020;121:103792.

	51.	 Toğaçar M, Ergen B, Cömert Z. COVID-19 detection using 
deep learning models to exploit Social Mimic Optimization and 
structured chest X-ray images using fuzzy color and stacking 
approaches. Comput Biol Med. 2020;121:103805.

	52.	 Panwar H, Gupta P, Siddiqui MK, Morales-Menendez R, Singh 
V. Application of deep learning for fast detection of COVID-19 in 
X-Rays using nCOVnet. Chaos Solit Fractals. 2020;138:109944.

	53.	 Pereira RM, Bertolini D, Teixeira LO, Silla CN Jr, Costa YM. 
COVID-19 identification in chest X-ray images on flat and 
hierarchical classification scenarios. Comput Methods Programs 
Biomed. 2020;194:105532.

	54.	 Waheed A, et al. CovidGAN: Data Augmentation Using Auxiliary 
Classifier GAN for Improved Covid-19 Detection. IEEE Access. 
2020;8:91916–233.

	55.	 Abdel-Basset M, Mohamed R, Elhoseny M, Chakrabortty 
RK, Ryan M. A Hybrid COVID-19 Detection Model Using an 
Improved Marine Predators Algorithm and a Ranking-Based 
Diversity Reduction Strategy. IEEE Access. 2020;8:79521–40.

	56.	 Oh Y, Park S, Ye JC. Deep Learning COVID-19 Features on CXR 
using Limited Training Data Sets. IEEE Trans Med Imaging. 
2020;39(8):2688–700.

	57.	 Vaid S, Kalantar R, Bhandari M. Deep learning COVID-19 
detection bias: accuracy through artificial intelligence. Int Orthop. 
2020;44:1539–42.

	58.	 Mahmud T, Rahman MA, Fattah SA. CovXNet: A multi-dilation 
convolutional neural network for automatic COVID-19 and other 
pneumonia detection from chest X-ray images with transferable 
multi-receptive feature optimization. Comput Biol Med. 
2020;122:103869.

	59.	 Lundh F, Clark A. PILLOW;. Available at https​://pillo​w. 
readt​hedoc​s.io/en/3.1.x/refer​ence/Image​.html (2020/05/20).

	60.	 Satapathy S, Naik A. Social group optimization (SGO): a new 
population evolutionary optimization technique. Complex Intell 
Syst. 2016;2:173–203.

	61.	 Gupta N, Gupta D, Khanna A, Rebouças Filho PP, de Albuquerque 
VHC. Evolutionary algorithms for automatic lung disease 
detection. Measurement. 2019;140:590–608.

	62.	 Kumar S, Sharma B, Sharma VK, Poonia RC. Automated soil 
prediction using bag-of-features and chaotic spider monkey 
optimization algorithm. Evol Intell. 2018. https​://doi.org/10.1007/
s1206​5-018-0186-9.

https://pillow.readthedocs.io/en/3.1.x/reference/Image.html
https://pillow.readthedocs.io/en/3.1.x/reference/Image.html
https://doi.org/10.1007/s12065-018-0186-9
https://doi.org/10.1007/s12065-018-0186-9

	COVID-19 Infection Detection from Chest X-Ray Images Using Hybrid Social Group Optimization and Support Vector Classifier
	Abstract
	Introduction
	Related Works
	Proposed Method
	Preprocessing and Feature Extraction
	Feature Selection
	Social Group Optimization (SGO)
	Hybrid Social Group Optimization (HSGO)


	Experimentation and Results
	Dataset
	Experimental Setup
	Input Parameters
	Performance
	Benchmarking with State-of-the-Art Deep Learning Models and Evolutionary Algorithms

	Conclusion
	Future Scope
	References


