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Abstract
The ability to generalize unconstrained conditions such as severe occlusions and large pose variations remains a challenging 
goal to achieve in face alignment. In this paper, a multistage model based on deep neural networks is proposed which 
takes advantage of spatial transformer networks, hourglass networks and exemplar-based shape constraints. First, a spatial 
transformer-generative adversarial network which consists of convolutional layers and residual units is utilized to solve the 
initialization issues caused by face detectors, such as rotation and scale variations, to obtain improved face bounding boxes 
for face alignment. Then, stacked hourglass network is employed to obtain preliminary locations of landmarks as well as their 
corresponding scores. In addition, an exemplar-based shape dictionary is designed to determine landmarks with low scores 
based on those with high scores. By incorporating face shape constraints, misaligned landmarks caused by occlusions or 
cluttered backgrounds can be considerably improved. Extensive experiments based on challenging benchmark datasets are 
performed to demonstrate the superior performance of the proposed method over other state-of-the-art methods.

Keywords Face alignment · Facial landmark detection · Multistage model · Spatial transformer generative adversarial 
networks · Stacked hourglass networks · Exemplar-based shape constraints

Introduction

Face alignment (or facial landmark detection) aims to 
locate a set of predefined human facial landmarks, such as 
the corners of the eyes, the eyebrows, and the tip of the 
nose for high-level vision tasks, such as face recognition 
[1], face point matching [2], facial animation [3], and 3D 

face modelling [4]. Although considerable progress has been 
made, face alignment is still challenging due to large-view 
face variations, lighting conditions, complex expressions, 
and partial occlusions.

Recently, progresses have been made by convolutional 
neural networks (CNNs) in semantic segmentation [5] and 
in human pose estimation and face alignment based on 
heatmap regression [6]. The hourglass network [6] offers 
a method for human pose estimation. The model utilizes 
repeated down-sampled and up-sampled modules to extract 
features across multiple scales. The hourglass network has 
been introduced to face alignment task and achieved efficient 
performance. However, existing methods are still inefficient 
in modelling face structural priors, the performance of these 
methods degrades severely when face images suffer from 
heavy occlusion, and this problem is challenging to address 
since occlusion is common and diverse in reality.

Several typical face alignment models have attempted to 
address faces under partial occlusions. Robust cascaded pose 
regression (RCPR) [7] is the first method that simultaneously 
detects landmarks and estimates occlusions. In this method, 
the face is divided into a 3 × 3 grid for each regression stage, 
and only one non-occluded face region is used to predict 
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the location of the landmarks. The work in [8] proposed 
a unified framework that combines landmark localization 
and visibility estimation, which focuses more on landmarks 
with high visibility probabilities and iteratively updates 
landmark locations and landmark visibility probabilities. 
Xing et al. [9] considered the regression procedure as a 
sparse coding problem by learning two dictionaries: One is 
the face appearance dictionary, the other is the face shape 
dictionary. With two relational dictionaries, the occluded 
face appearance is restored, and the influence of the 
occluded landmarks is suppressed. Liu et al. [10] utilized 
shape-indexed appearance to estimate the occlusion level 
of each landmark, and the face shape is reconstructed by 
similar shapes from the exemplar-based shape dictionary. 
Although these methods have shown superior performance 
in detecting occluded landmarks, they still suffer from poor 
scalability and robustness. The first limitation is the lack 
of large-scale ground-truth occlusion annotation for natural 
images. The task of providing occlusion annotation is often 
time-consuming, involving a considerable amount of tedious 
manual work. Additionally, due to the inherent complex 
variations in human facial appearance in unconstrained 
environments, it is difficult to recover the occluded 
appearance using face appearance dictionary.

Another challenge is the initialization issue of face images 
derived from face detectors, which has drawn little attention in 
previous studies. The preprocessing step of face alignment is 
to crop face rectangles through a face detector. However, due 
to severe occlusion or blur, the face detector may not produce 
an appropriate face rectangle. As Ren et al. noted in [11], if 
the initial images have different scale and rotation variations, 
the performance of many face alignment methods would 
be severely degraded. It will be useful if an algorithm could 
produce canonical face poses with the same scales and center 
shifts. The work of [12] proposed a deep regression framework 
with two-stage reinitialization to address the problems of face 

image initialization and landmark detection. In this model, the 
spatial transformer networks (STNs) is embedded as subnets at 
each stage. However, due to its complex architecture and end-to-
end learning strategy, the STN is hard to be supervised during 
training, or worse yet, has a negative impact on the performance 
of final coordinates regression. In [13], a simple regression 
network is employed to detect several facial key points, and then 
performed Procrustes analysis with the mean shape to obtain 
affine transformation parameters, further removing the rigid 
transformation. However, under severe occlusion conditions, 
even the state-of-the-art algorithms may fail to localize 
landmarks correctly, to make matters worse, the inaccurate 
locations of landmarks lead to the inaccurate prediction of affine 
transformation parameters.

In this work1, a multistage model (MSM) is proposed to 
address the problem of face image initialization and to facilitate 
the robustness of face alignment under occlusion. The MSM 
consists of three parts: a spatial transformer - generative 
adversarial network (ST-GAN), a two-stage hourglass network 
and an exemplar-based shape dictionary. Figure 1 gives an 
overview of MSM. First, ST-GAN produces better initial facial 
images by removing rigid transformations from translation, scale 
and rotation. In contrast to the original STN [15], the idea of 
adversarial learning [16] is introduced to enhance the accuracy 
of spatial transformation. STN is considered a generator; then, 
a discriminator is designed to distinguish whether the pose 
of the generated facial image is canonical. After facial image 
initialization, canonical facial images are fed to the hourglass 
network. The output of the hourglass network consists of a set 
of score maps, and each score map determines the primary 
position and reliability score for each landmark. The reliability 
score is used to measure the quality of the localization. The 

ST-GAN

Spa�al transforma�on stage Landmark detec�on stage

Landmark determina�on stage

Stacked hourglass network

Decode

Reliable landmarksShape dic�onary

+ ∗

Shape reconstruc�on

= ∗ + … + ∗

Fig. 1  Overview of the proposed multistage model (MSM). First, spa-
tial transformer-generative adversarial network (ST-GAN) normalizes a 
face to a canonical state. Second, stacked hourglass network is used to 
obtain score maps, which determine the position and confidence score 

of each landmark. Finally, landmarks with high scores are used to search 
for similar shapes from the shape dictionary, and landmarks with low 
scores are determined by a weighted combination of all score maps 
using reconstruction coefficients, �

i

1 This work is built on top of [14] with four major contributions as 
listed at the end of Section I.
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key innovation of MSM is that landmarks with high scores are 
utilized to refine the landmarks with low scores. Specifically, due 
to partial occlusion, the occluded landmarks cannot be located 
precisely, and the visible landmark can be predicted precisely. 
As shown in Fig. 1, the scores of visible landmarks are high 
in the heatmap and the landmarks under occlusion have lower 
scores than the visible landmarks. Thus, reliable landmarks 
with high scores can help to refine the occluded landmarks 
with low scores. Finally, an exemplar-based shape dictionary is 
introduced to search for the most similar shapes and reconstruct 
the face shape based on the landmarks with high scores.

In summary, we make the following contributions to the 
face alignment task: 

1. A spatial transformer-generative adversarial network is 
proposed to produce promising initial face images for 
face alignment.

2. Based on the intensity of the heatmaps obtained by 
a two-stage hourglass network, a scoring scheme is 
designed to measure the quality of predicted landmarks 
locations, which can estimate the occlusion level of each 
landmark and distinguish the aligned landmarks from 
misaligned landmarks.

3. An exemplar-based shape dictionary is employed to 
impose geometric constraints. The landmarks with high 
scores are used to search similar shapes from dictionary, 
and the landmarks with low scores are refined by shape 
reconstruction using similar shapes.

4. Experiment results on several benchmark datasets 
(300-W, COFW and WFLW) show that the proposed 
multistage model outperforms most recent face alignment 
methods, especially for faces with difficult scenarios such 
as large pose, lighting and occlusion, etc.

Related Work

In this section, we first review the development of face align-
ment, and then briefly review STNs.

Face Alignment

Face alignment methods can be generally classified into 
three categories: discriminative fitting, cascaded shape 
regression, and deep learning.

Since facial shape and facial appearance are deformable 
structured objects, methods based on discriminative fitting 
typically model facial structures by learning shape and 
appearance variation models. According to the difference 
in facial representations, these methods can be divided into 
two categories: One is the holistic-based representation, such 
as active appearance model (AAM) [17], the other is part-
based representation, such as active shape model (ASM) 

[18], constrained local model (CLM) [19], Gauss–Newton 
deformable part model (GN-DPM) [20]. These methods 
typically require an iterative process to find the optimal 
parameter configuration for a given face, thus it is time-
consuming and prone to fall into local minima. Moreover, 
due to the limited capacity of parametric models, such 
methods are sensitive to occlusion and large pose variation.

Methods based on cascaded shape regression were popular 
in face alignment before the advent of deep learning. These 
approaches are based on a multistage framework, and each stage 
refines the position of predicted landmarks in a coarse-to-fine 
manner. Specifically, a weak regressor is utilized in each stage 
to model the relation between the image feature and the shape 
increment. Cootes et al. [21] proposed an efficient method that 
combines random forest regression and a statistical shape model. 
The supervised descent method (SDM) [22] focuses on solving 
the optimization problem of the least-squares method. Ren et al. 
[11] proposed learning local binary features around local patches 
using random forest regression, which was faster than existing 
methods. In [23], a projective invariant is designed for modelling 
the intrinsic structure of human faces and combined it with 
cascade regression methods. The regression-based approach 
mentioned above employs the handcrafted feature descriptors 
(e.g., SIF [22], HoG [24], or random forest/fern descriptors [11]) 
to extract facial texture information. It is clear that conventional 
cascaded regression methods have yielded drastic improvements 
based on standard benchmarks such as 300 W [25]. However, 
most of these methods are sensitive to initialized shapes, due to 
the limitations of handcrafted features.

Recently, CNNs have made a series of breakthroughs in 
many visual analysis tasks such as image classification [26], 
semantic segmentation [5], and human pose estimation [6]. The 
application of CNNs greatly boosts the performance of face 
alignment. CNN-based methods can be generally classified 
into two categories: coordinate regression methods [27–29] and 
heatmap regression methods [30–35]. The difference between 
the two categories is that the former directly regresses landmark 
coordinates with a network, and the latter first learns a mapping 
function from image to likelihood heatmaps, and chooses the 
location with the highest response value in the heatmap as the 
predicted location. Sun et al. [27] first introduced CNNs to  
the face alignment field, and cascaded three CNNs to detect  
facial landmarks in a multistage manner. The method in [28] 
jointly learns landmark localization and correlated recognition 
tasks, such as facial attributes and expressions. Xiao et al. [29] 
proposed a framework that leverages the advantages of CNNs 
and recurrent neural networks (RNNs). The feature extraction 
stage is replaced with a CNN, and the fitting stage is replaced 
with an RNN. Weng et al. [36] proposed an exemplar-based 
cascaded auto-encoder network for real-time face alignment. 
These coordinate regression methods can directly detect the 
coordinates of landmarks and do not require post-processing 
operations. However, since coordinate regression methods are 
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predicted landmarks from dense layers that contain high-level 
semantic information but lack the details of the facial texture, 
result in limitations in real-world scenarios, such as occlusion, 
large poses, and other uncontrolled conditions. Kowalski et al. 
[30] first introduced the idea of heatmaps to cascaded CNNs. 
They generated heatmaps based on the predicted coordinates 
of the previous stage, and then combined the original image as 
an input for the next stage. In [32], a binary hourglass network 
with a multi-scale feature fusion residual module is developed 
to boost performance for 2D and 3D face alignment. Deng et al. 
[33] employed affine transformation to remove rotation and scale 
variations in facial images and then detected landmarks through 
hourglass networks. In [34], the concept of boundary heatmap 
is introduced as a facial geometry. Valle et al. [35] combined 
a CNN and ensemble of regression trees (ERT) to enhance 
computational efficiency. Although heatmap regression methods 
represented by hourglass networks show excellent performance, 
there are still many limitations for hourglass networks to model 
the geometric structure of the human face.

Spatial Transformer Network

CNNs achieve excellent performance in local feature 
representation. However, CNNs still lack the ability to be 
spatially invariant to the input image. Jaderberg et al. [15] first 
presented STN that explicitly learns invariance to translation, 
scale and rotation. Benefiting from STN, they achieved state-of-
the-art performance in several image classification tasks, such as 
MNIST [37] digit classification. STN allows a neural network to 
learn how to perform spatial transformations on an input image 
to enhance the geometric invariance of the model. In [38], an 
STN was embedded in cascaded CNNs , to jointly learn spatial 
transformation and landmark localization for face detection. 
Similarly, the work of [12] embedded an STN as a subnet to 
obtain an improved initial image for face landmark localization. 
In [39], STN is applied to the task of image composition, and an 
STN is embedded in the generator of the generative adversarial 
network (GAN) for warping a specific object of a given image 
and placing it in the scene image. Apparently, original STN is 
robust to handling the spatial transformation of simple objects, 
such as handwritten digits. Due to the complex variations of 

faces in uncontrolled conditions, the original STN has difficulty 
in robustly providing accurate spatial transformations.

Method

As illustrated in Fig. 1, MSM consists of three pivotal 
steps: GAN-based spatial transformation, CNN-based land-
mark detection and exemplar-based shape reconstruction. 
In this section, MSM is described in detail.

Spatial Transformer ‑ Generative Adversarial 
Network

Recent studies [11, 12] have shown that the preprocessing 
of face images is critical to face alignment tasks. Face 
detection networks such as RPN-based network can be 
used as a preprocessing step of face alignment, which 
can improve the accuracy of face alignment , but it can’t 
solve the rotation and scale variations at the same time. 
If the initialized image has a large pose or excessive 
unnecessary background, the accuracy of landmark 
localization is greatly reduced. There are two typical 
methods for facial image pre-processing: one is based on 
affine transformation, and the other is based on STNs. 
Affine transformation methods first detect several fiducial 
key points and then calculate the parameters of affine 
transformation by Procrustes analysis based on located 
key points and the key points of the mean face shape. It is 
obvious that affine transformation methods have the same 
limitations as the conventional face alignment algorithm, 
regarding sensitivity to occlusion and blur. STN-based 
methods explicitly learn image warping without key point 
detection, which is more flexible and robust than the 
affine transformation approach. Nonetheless, due to the 
complexity of the human face in nature, it is challenging 
to regress accurate transformation parameters using the 
basic STN model.

To improve the robustness of STN [15] to handling complex 
face images, adversarial learning is introduced. As shown in 
Fig. 2, the proposed spatial transformer - generative adversarial 
network (ST-GAN) consists of two parts: a generative deep 

Grid Generator

Sampler

Real

Fake

Genera�ve deep neural network

Discrimina�ve deep neural network

Fig. 2  Architecture of spatial transformer - generative adversarial 
network (ST-GAN). The generative deep neural network (GDNN) is 
used to generate the transformation matrix � . The discriminative deep 

neural network (DDNN) is used to determine whether the generated 
face image is “real”, which means a canonical face without unneces-
sary background
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neural network (GDNN) and a discriminative deep neural 
network (DDNN). Similar to original STN [15], the generative 
deep neural network consists of three main components: 
a localization network, a grid generator and a sampler. The 
localization network is realized by a convolutional network 
consisting of 11 convolutional layers with different strides. 
The overall configuration of the proposed GDNN and DDNN 
are listed in Table 1 and 2, respectively. The size of input of 
GDNN is 128 × 128 . Each of the first 9 convolutional layers 
of the GDNN is of size 3 × 3 with different strides. At the end, 
a 4 × 4 global average pooling layer and a 1 × 1 convolutional 
layer are utilized to regress the transformation matrix � . For 2D 
affine transformation, the transformation matrix � is selected 
to be a 2 by 3 matrix.

The grid generator generates a grid R = {gi}, gi = [xi, yi] 
in the input image corresponding to each pixel i from the 
output image. The sampler uses the transformation matrix 
� and applies it to the input image. Specifically, assuming 
(xs

i
, ys

i
) are the source coordinates of the ith of the input 

image and (xt
i
, yt

i
) are the target coordinates of the ith of the 

(1)� =

(
�11 �12 �13

�21 �22 �23

)

output image, the transformation procedure is defined as 
follows.

Similar to [12], supervised learning is applied to train 
affine transformation parameters. As shown in Table 2, 
the size of the input of DDNN is 128 × 128 , and the out-
put is a scalar representing the possibilities. Each of the 
first 6 convolutional layers is of size 4 × 4 with stride 2, 
the convolutional layer 7 is of size 2 × 2 with stride 1. 
The loss function of discriminator DDNN is defined as 
follows (for simplicity, GDNN is denoted as G, DDNN 
is denoted as D):

where Ireal refers to real sample which is the ground truth 
image without rotation, scale and unnecessary background. 
Ifake refers to noise sample which is a designed facial 
image with rotation, scale and unnecessary background. 
� represents the expectation. The discriminator learns to 
predict the ground truth facial image as one while predicting 
the generated facial image as zero. With DDNN, the 
adversarial loss can be defined as follows:

The loss function of generator G is defined as

where �̂� is the parameter regressed by GDNN and �∗ is 
the ground truth transformation parameter. The hyper-
parameters a and b are used to balance different losses. 
Thus, GDNN is optimized to fool discriminator DDNN by 
regressing more accurate parameter that will improve the 
learning of the spatial transformation. The final objective 
function can be expressed as follows.

In this way, the generator G and the discriminator D 
play a minimax game in which D tries to maximize  
the probability it correctly classifies the face pose  
is canonical or not (i.e. real or fake), and G tries to 
minimize the probability that D will predict its output 
is fake. The whole training process is summarized in 
Algorithm  1. Equations  3, 5 and 6 was cited on this 
algorithm.

(2)
�
xs
i

ys
i

�
= �(g) =

�
�11 �12 �13

�21 �22 �23

�⎛
⎜⎜⎝

xt
i

yt
i

1

⎞
⎟⎟⎠

(3)LD = �[logD(Ireal)] + �[log (1 − D(G(Ifake)))]

(4)LA = �[log(1 − D(G(Ifake)))]

(5)LG = a||�̂� − 𝜃
∗|| + bLA

(6)argmin
G

max
D

(LG + LD)

Table 1  ST-GAN architecture. Configuration refers to size, number 
of convolutional kernels, and number of strides

Layer Input size Configuration Output size

Conv1 128 × 128 × 3 3 × 3 , 8, stride 2 64 × 64 × 8

Conv2 64 × 64 × 8 3 × 3 , 16, stride 2 32 × 32 × 16

Conv3 32 × 32 × 16 3 × 3 , 16, stride 1 32 × 32 × 16

Conv4 32 × 32 × 16 3 × 3 , 32, stride 2 16 × 16 × 32

Conv5 16 × 16 × 32 3 × 3 , 32, stride 1 16 × 16 × 32

Conv6 16 × 16 × 32 3 × 3 , 16, stride 2 8 × 8 × 64

Conv7 8 × 8 × 64 3 × 3 , 64, stride 1 8 × 8 × 64

Conv8 8 × 8 × 64 3 × 3 , 16, stride 2 4 × 4 × 128

Conv9 4 × 4 × 128 3 × 3 , 128, stride 1 4 × 4 × 128

Conv10 4 × 4 × 128 4 × 4 , 32, stride 1 1 × 1 × 32

Conv11 1 × 1 × 32 1 × 1 , 6, stride 1 1 × 1 × 6

Table 2  DDNN architecture. Configuration refers to size, number of 
convolutional kernels, and number of strides

Layer Input size Configuration Output size

Conv1 128 × 128 × 3 4 × 4 , 32, stride 2 64 × 64 × 32

Conv2 64 × 64 × 32 4 × 4 , 64, stride 2 32 × 32 × 64

Conv3 32 × 32 × 64 4 × 4 , 128, stride 2 16 × 16 × 128

Conv4 16 × 16 × 128 4 × 4 , 256, stride 2 8 × 8 × 256

Conv5 8 × 8 × 256 4 × 4 , 512, stride 2 4 × 4 × 512

Conv6 4 × 4 × 512 4 × 4 , 1024, stride 2 2 × 2 × 1024

Conv7 2 × 2 × 1024 2 × 2 , 2, stride 1 1 × 1 × 2
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CNN‑Based Preliminary Landmark Detection

Exemplar-based sparse constraints require a set of reliable 
landmarks to converge. Thus, the objective of the preliminary 
stage is to precisely locate visible landmarks. Deep convolutional 
neural network is an effective method for detecting visible 
landmarks. Stacked hourglass network [6], which is a repeated 
encoder and decoder architecture, has proven to have some 
distinct advantages: 1) It is a simple, minimally designed 
network with the capability of capturing information at different 
scales; 2) In a symmetrical topology, two feature maps with the 
same resolution are connected by skip connections to better 
maintain low-level information; 3) There is a loss function for 
intermediate supervision at the end of each hourglass module; 
4) It can produce pixel-wise predictions of the same resolution 
as the input image. Recently, many work adopted four or eight 
hourglass modules as network backbone, but such strategy are 
computationally expensive for real-time applications.

To achieve a good trade-off between performance and 
efficiency, a network based on two hourglass modules is 
designed. Residual unit [26] are used as the building blocks 
in the hourglass network, Fig. 4 gives the detail of a 3-layer 
residual unit. A residual block can be expressed as follows:

Where xn+1 and xn are the output and input feature maps 
of the nth block, Wn denotes the weights of convolutional 

(7)xn+1 = xn + F(xn,Wn)

layers. F consists of batch normalization, ReLU is used for 
non linearity function, two 1 × 1 convolutional layers and a 
3 × 3 convolutional layer, with an 1 × 1 skip convolutional 
layer are used to match different channels of input and output 
feature maps. Stacked residual units can increase feature 
channels and extract high-level discriminative features. 
First, we give an overview of the network architecture. 
As shown in Fig.  3, the input of the network is a face 
image normalized by the previous ST-GAN with a spatial 
resolution of 128 × 128 , followed by two 3 × 3 convolutional 
layers to increase the number of feature channels and a max 
pooling layer to decrease the resolution from 128 to 64, 
through a 3 × 3 convolutional layer and a residual unit, the 
number of channels is increased to 256. then the feature 
maps with 256 channels and 64 × 64 resolution are fed to 
the hourglass module. The hourglass module consists of a 
four-layer recursive structure, and each level consists of a 
downsampling layer, residual units, a skip connection layer 
and a deconvolutional layer. Considering computational 
costs, 64 × 64 resolution is used in the hourglass module. 
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Fig. 3  Architecture of single hourglass network. Each set of 3 rectan-
gular boxes represents one residual unit. The numbers in the angle 
brackets at the top and bottom of the each blue rectangle indicate the 
number of channels of the input feature map and output feature map, 

respectively. “/2” and “ ∗ 2 ” denote a max pooling layer and a decon-
volutional layer, respectively. Finally, the output is a 2 × L vector, L 
denotes the total number of landmarks in a face image

Fig. 4  Structure of a residual unit
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Unlike the original hourglass module [6] which uses 
upsampling layer to recover the size of the feature maps, 
deconvolution [40] is introduced to replace upsampling 
layers to better maintain spatial semantic information. Batch 
normalization is performed before all convolutional layers 
to accelerate convergence except for the first convolutional 
layer with 3 × 3 kernels. ReLU is used as an activation 
function.

For an image I, this network is trained to obtain L 
heatmaps H(I), where L is the total number of landmarks 
for each face. The location of each predicted landmark 
is decoded from corresponding heatmap by taking the 
location with the maximum value as follows:

where l is the index of the landmark and the corresponding 
heatmap. c(l) gives the coordinate of the l-th landmark. Some 
examples output by this network are shown in Fig. 5. Note 
that visible landmarks can be precisely located; however, 
these results may not have a biological human facial shape 
since occluded landmarks were not detected. In addition, the 
response heatmaps of visible landmarks are more focused 
than those of occluded landmarks. Although different images 
have different occlusions, the low score and high score of the 
landmarks can be calculated by the corresponding intensity 
values in the heatmaps. It is challenging to decode corrected 
positions from scattered heatmaps, which is a limitation of 
the heatmap regression based method.

To review the definition of a heatmap. During training, a 
ground truth heatmap for one landmark is created by putting 
a Gaussian peak at the ground truth location of a landmark, 
and the intensity decreases with the distance to the closest 

(8)c(l) = argmaxHl(I)

landmark. Motivated by a recent stud [10] that used shape-
indexed appearance to estimate the occlusion level of each 
landmark, the intensity of the heatmap is employed to 
estimate location quality and further distinguish reliable 
landmarks and missing landmarks. In detail, each landmark 
is weighted based on the corresponding intensity values in 
the heatmaps. Thus, more reliable landmarks with strong 
local information are assigned high weights. The landmarks 
under occlusion are assigned low weights. The process of 
assigning weight can be expressed by the following equation:

where scorel(k, t) is the value of coordinate (k,  t) in the  
l-th heatmap, r determines the size of the rectangle used to  
calculate the score. The coordinate (Xl, Yl) gives the predicted 
location of the l-th landmark. Based on the assigned weight,  
the predicted landmarks can be classified into two categories:  
reliable landmarks and misaligned landmarks. The coordinate  
and weights of reliable landmarks act as initial information 
for the following shape refinement stage.

Exemplar‑Based Shape Reconstruction

Deep convolutional neural networks have a strong capacity 
for local feature representation, thus the visible landmarks can 
be effectively located through the first two stages. However, 
a large number of parameters can easily lead to network 
overfitting, especially for limited training samples. In addition, 
CNNs still lack the ability to model the geometric structure 
of the human face, resulting in sensitivity to occlusion. In 

(9)wl =

∑Xl+r

k=Xl−r

∑Yl+r

t=Yl−r
scorel(k, t)

(2 × r + 1)2

Fig. 5  Example outputs obtained by two-stage hourglass network. The 
first row shows detected landmark locations. The second row shows 
the corresponding heatmaps. Note that the occluded landmarks can-

not be precisely located in most cases. The non-occluded landmarks in 
heatmaps have higher intensity values than the occluded ones
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contrast, human vision is capable of predicting face shapes by 
utilizing geometric constraints. Motivated by this ability, these 
misaligned landmarks can be refined by similar face shapes in 
the training samples, and this approach is feasible and simple. 
To this end, following [10, 41], sparse shape constraints are 
incorporated to correct the misaligned landmarks. The sparse 
shape model is a popular method of imposing shape priors, it 
can refine the gross error and maintains shape detail at the same 
time. This feature allows the model to be perfectly integrated 
with CNNs. The objective of the sparse shape model can be 
formulated as follows:

where S is a 2L × 1 vector with L landmark coordinates of the 
predicted normalized shape. Ds is an N × 2L matrix, that is a 
shape dictionary .The original shape dictionary is created by 
the landmarks of all faces in the database, N is the number  
of samples in the database, and L is the number of landmarks 
in the face. � is the shape reconstruction coefficient, and � is  
the regularization parameter. As Liu et al. noted in [10], the  
traditional sparse shape model treats all landmarks equally, 
causing the error from corrupted landmarks spread to other  
aligned landmarks, and harms the convergence of the model.  
In other words, incorrect reconstruction targets lead the 
sparse shape constraint to produce incorrect shapes. Different 
from [10], only the accurately aligned landmarks which 
were assigned high weights are used to search for similar 
shapes from a dictionary. As shown in Fig. 6, the meaning 
of numbers above landmarks is the shape reconstruction 
coefficient. This part of the facial shape, which consists of 
only reliable landmarks, is our reconstruction target.

After the first two stages, the preliminary coordinates and 
weight of each landmark can be determined. Then a threshold 
T is set to distinguish reliable landmarks and misaligned land-
marks, Thus, for each shape S we obtained a binary vector V. If 
the l-th component of V is 1, then the l-th landmark is consid- 
ered reliable. Based on reliable landmarks, the search process 
can be formulated as follows:

(10)argmin ��S − Ds�
��2 + �‖�‖2

where V∗ = diag (V) . The goal of V∗ is to force the search 
process to neglect misaligned landmarks and emphasize land-
marks with high weights. ⊙ indicates searching for the most 
similar shape in the dictionary. (V∗S ⊙ V∗DS) is used to search 
for the k nearest exemplar shapes of V∗S from the adaptive 
shape dictionary V∗Ds . Then the misaligned part shape can 
be reconstructed by the k nearest shapes and the reconstruc-
tion coefficients can be simply computed by the least-squares 
method. However, searching all training samples is time-
consuming, especially for a large training set. Furthermore, 
there are many similar face shapes that are redundant. Thus, 
K-means algorithm is applied to all training shapes to obtain 
N representative face shapes, which form a compact shape 
dictionary DS . Searching from DS will be more effective. The 
shape reconstruction procedure is shown in Fig. 6. The whole 
process of the proposed multistage model is summarized in 
Algorithm 2. Equation 9 was cited on this algorithm.

(11)min
𝛼

‖V∗S − (V∗S ⊙ V∗DS)𝛼‖22

Fig. 6  Face shape reconstruction based on nearest exemplar shapes. The reconstruction target is a partial face shape which consists only reliable 
landmarks
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where N is the number of total images, L is the number 
of total landmarks for a given face, and Pij and Gij denote 
the predicted and ground truth locations, respectively. di is 
the normalization parameter. The experiment results using 
different definitions of di : the distance between the eye 
centers (“inter-pupils”) and the distance between the outer 
eye corners (“inter-ocular”).

For the 300-W, 300-W test set and COFW dataset, image 
with an NRMSE (“inter-ocular”) of 0.08 or greater is 
considered a failure. For the WFLW dataset, following [34], 
image with an NRMSE (“inter-ocular”) of 0.1 or greater is 
considered a failure.

Implementation Details

We independently trained three models: ST-GAN,stack ed 
hourglass network and face shape dictionary. For ST-GAN, 
the faces are cropped by the provided bounding boxes and 
resized to 128×128 resolution. Data augmentation is applied 
by random flipping, rotation (between ±30◦ ), scaling (between 
±10% ) and colour jittering. The network is optimized by 
Adam stochastic optimization with an initial learning rate 
of 0.0005 and reduced by half after 400 epochs. In total, 
1000 epochs are used in training. The minibatch size is set 
to 16. The stacked hourglass network was trained following a 
similar procedure, and the difference is that the input images 
of the network are cropped by ground truth bounding boxes, 
training is applied for a total of 300 epochs. The learning 
rate is reduced to half after 100 epochs. Both networks were 
implemented in PyTorch.

In the face shape dictionary training procedure, the 300-W 
training set and semifrontal face of the Menpo [47] dataset are 
used to train 68-point face shape dictionaries. Additionally, 
the WFLW training set is used to train 98-point face shape 
dictionaries. First, affine transformation is performed with 
the ground truth coordinates of the pupil and the coordinates 
of the midpoint to make the face canonical. Then, the face 
shapes are normalized by converting the coordinates of each 
landmark to a 128 × 128 space. K-means algorithm is utilized 
to cluster normalized face shapes to reduce spatial redundancy 
and improve the computational efficiency. As shown in Fig. 7, 
we tested different dictionary sizes N and different numbers 
k of face shapes for reconstruction. Finally N and k are set 
as 500 and 100, respectively. Therefore, the face shapes are 
reconstructed by 100 most similar shapes in dictionary with 
size 500. The reconstruction coefficients are computed by the 
least-squares method and ridge regression. The regularization 
parameter of ridge regression is set to 60. In 5, a and b are set 
to 1 and 0.5, respectively.

(12)NRMSE =
1

N

N�
i

1

L

∑L

j
�Pij − Gij�2
di

Experiment Results and Discussion

In this section, we conduct extensive experiments and analysis 
to show the effectiveness of the proposed method. The follow-
ing paragraphs describe the datasets, implementation details, 
experimental results and ablation study.

Datasets

Our method is evaluated on several challenging datasets 
including 300-W, COFW and WFLW. 

1. 300-W [25]: 300-W is currently the most widely used 
dataset. It was created from four datasets including the 
AFW [42], LFPW [43], HELEN [44] and IBUG [25] 
dataset, each face image is annotated with 68 landmarks. 
The training set consists of the AFW, LFPW training 
set and HELEN training set, resulting in a total of 3148 
images. The test set consists of three parts: the common 
set, challenge set and full set. The common set consists 
of the LPFW test set and HELEN test set, resulting 
in a total of 554 images. The challenge set, which is 
the IBUG dataset, contains 135 images. The full set 
consists of a common set and challenge set containing 
689 images.

2. 300-W private test set [45]: The 300-W private test set 
was introduced after the 300-W dataset and was used 
for the 300-W Challenge benchmark. It consists of 300 
indoor images and 300 outdoor images, each image 
was annotated 68 landmarks using the same annotation 
scheme as the one of 300-W.

3. COFW [7]: The COFW dataset focuses on occlusion 
in nature. The training set consists of 1345 images, 
the testing set consists of 507 faces with a wide range 
of occlusion patterns, and each face is annotated with 
29 landmarks. In our experiment we use reannotated 
version [46] of the 68 landmarks for comparison to other 
approaches.

4. WFLW [34]:WFLW is considered the most challenging 
dataset. It contains 10000 faces (7500 for training and 
2500 for testing) with 98 fully manually annotated 
landmarks and corresponding facial bounding boxes. 
Compared to the above datasets, WFLW includes rich 
attribute annotations, such as occlusion, pose, make-up, 
blur and illumination attribute information.

Evaluation Metrics

Similar to previous methods, we use the normalized root 
mean squared error (NRMSE), cumulative errors distribu-
tion (CED) curve, area under the curve (AUC) and failure 
rate to measure the landmark location error.
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Our model is implemented on Ubuntu 18.04 with a 
NVIDIA GTX1080 (8GB) GPU and an Intel Core 7500 CPU 
@3.4 GHz×4 . Training the ST-GAN and stacked hourglass 
network took around 8 hours and 6 hours respectively. 
The Python implementation process images at 14 FPS on 
average, the CNN part (the ST-GAN and stacked hourglass 
network) took around 50 ms and the shape reconstruction 
took around 20 ms per image.

Experiment Using 300‑W Dataset

Many existing methods have established a series of 
impressive results on this dataset. In Table 3, we compare 
our results with LBF [11], TCDCN [48], CFSS [49], MDM 
[50], RAR [29], DAN [30], TSR [12], SHN [13], LAB [34], 
DCFE [35], 3DDE [51], PCD-CNN [52], SAN [53], DeCaFA 
[55], AGCFN [56] and ODN [54] are also used in Table 3.

First, we report the NRMSE results on 300-W dataset of 
the proposed MSM method and those of other methods in 3. 
For the Challenge Subset of 300-W, the MSM achieves an 

inter-pupils NRMSE of 6.97% and an inter-ocular NRMSE 
of 4.83% . This demonstrates the MSM is robust to handling 
face under difficult scenarios such as large pose, lighting 
and occlusion, etc. For the Common Subset and Fullset of 
300-W, the inter-pupils NRMSE values of LAB is slightly 
better than those of the MSM. However, the LAB is much 
more computational expensive due to a network architecture 
using eight-stacked hourglass modules versus two stacked 
hourglass modules in the MSM. For the Common Subset and 
Fullset of 300-W, comparable inter-ocular NRMSE values 

Fig. 7  Face shape reconstruction based on k nearest exemplar shapes 
in dictionary with size N. The results are obtained using COFW data-
set

Fig. 8  MSM example outputs using 300-W dataset. For clarity of illustration, detected key points are connected to show dotted face shapes

Table 3  NRMSE (%) of face alignment results using 300-W dataset

Method Year Common Subset Challenge Subset Fullset
NRMSE (inter-pupils) (%)

LBF [11] 2014 4.95 11.98 6.32
TCDCN [48] 2014 4.80 8.60 5.54
CFSS [49] 2015 4.73 9.98 5.76
MDM [50] 2016 4.83 10.14 5.88
RAR [29] 2016 4.12 8.35 4.94
DAN [30] 2017 4.42 7.57 5.03
TSR [12] 2017 4.36 7.56 4.99
SHN [13] 2017 4.12 7.00 4.68
LAB [34] 2018 3.42 6.98 4.12
DCFE [35] 2018 3.83 7.54 4.55
3DDE [51] 2019 3.73 7.10 4.39
MSM - 3.74 6.97 4.38
NRMSE (inter-ocular) (%)
DAN [30] 2017 3.19 5.24 3.59
PCD-CNN [52] 2018 3.67 7.62 4.44
SAN [53] 2018 3.34 6.60 3.98
LAB [34] 2018 2.98 5.19 3.49
DCFE [35] 2018 2.76 5.22 3.24
ODN [54] 2019 3.56 6.67 4.17
3DDE [51] 2019 2.69 4.92 3.13
DeCaFA [55] 2019 2.93 5.26 3.39
MSM - 2.70 4.83 3.11
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are obtained by the 3DDE using a UNet-based network and 
MSM using two-stacked hourglass modules in which MSM 
obtained slightly higher and slightly lower NRMSE values 
respectively in the Common Subset and Fullset. Figure 8 
shows the MSM results using 300-W dataset.

For the 300-W private test set, the comparison of 
NRMSE, failure rate and AUC are shown in Table 4 indicate 
that the MSM outperforms all other methods in NRMSE 
values, failure rate and AUC. The results for proposed MSM 
is close to AGCFN, the reason is that MSM is more robust 
for faces with difficult scenarios, such as large pose, lighting 
and occlusion, while for the common set MSM is slightly 
better than AGCFN.

We compare the CED curves obtained by the DAN, the 
method proposed by Fan et al. [57], Zhou et al. [58], Yan 
et al. [24] and Deng et al. [59]. As shown in Fig. 9, MSM 
obtained the lowest point-to-point NRMSE values as com-
pared to other methods.

Although 300-W is the most widely used face alignment 
dataset, its small sample size and relatively simple face 
images limit its scope to be used for comprehensive evalua-
tion on the performance of an algorithm under a broad range 
of conditions.

Experiment Using COFW Dataset

To evaluate the robustness to occlusion of the MSM method 
subject to various occluded face images, the COFW dataset is 
used which is regarded as a challenging dataset for existing state-
of-the-art face alignment methods. In Table 5, various methods 
including RCPR, TCDCN, HPM [46], CFSS, SHN, JMFA [33], 
AGCFN and LAB are compared. The MSM was trained on the 
300-W dataset with a total of 3148 face training images. As 
shown in Table 5, the MSM achieved the lowest inter-pupils 
NRMSE of 5.50% and the lowest inter-ocular NRMSE value of 
3.90% with failure rate of 0%. These reflect the effectiveness of 
MSM in managing faces under heavy occlusion. The NRMSE 
values for SHN and JMFA are slightly higher than those of the 
MSM method. It should be noted that the training sets of both 
the SHN and the JMFA are much larger than that of the MSM 
in which the SHN and the JMFA include the 300-W and Menpo 
[47] training sets, for a total of 9360 face images, which is almost 
three times more images than that of the MSM.

Figure 11 shows the CED curves which indicate the 
MSM outperforms other methods (including SAPM [60]) 
by a large margin on the COFW dataset. Example results 
obtained from COFW are given in  Fig. 10.

Experiment Using WFLW Dataset

The landmark configurations of this dataset is different from 
above datasets, all images in WFLW dataset are annotated by 
98-points manually. For comprehensive analysis of existing 
state-of-the-art methods, the dataset contains various type of 
challenge including large pose, illumination, blur, occlusion 
and excessive disturbing background, etc. Since WFLW is 
a newly released dataset, we compare the proposed method 
with a number of methods including ESR, SDM, CFSS, 
DVLN [61], LAB, 3DDE and DeCaFA [55]. We report the 

Table 4  Inter-ocular NRMSE (%), failure rate (%) and AUC of face 
alignment results using 300-W private test set

Method NRMSE (%) Failure (%) AUC 

CFSS [49] - 12.30 0.4132
MDM [50] 5.05 6.80 0.4532
DAN [30] 4.30 2.67 0.4700
SHN [13] 4.05 - -
DCFE [35] 3.88 1.83 0.5242
AGCFN [56] 3.82 1.60 0.5252
MSM 3.81 1.50 0.5262

Fig. 9  CED curves of face alignment results using 300-W private test 
set

Table 5  NRMSE (%) and failure rate (%) of face alignment results 
using COFW dataset

Method Training inter-pupils inter-ocular

Set NRMSE (%) NRMSE (%) Failure (%)

RCPR [7] 300-W 12.27 8.76 20.12
TCDCN 

[48]
300-W 10.72 7.66 16.17

HPM [46] 300-W 9.40 6.72 6.71
CFSS [49] 300-W 8.80 6.28 9.07
SHN [13] 300-W, 

Menpo
5.60 4.00 0

JMFA [33] 300-W, 
Menpo

5.58 - -

LAB [34] 300-W - 4.62 2.17
ODN [54] 300-W - 5.30 -
MSM 300-W 5.50 3.90 0
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NRMSE (inter-ocular), failure rate and AUC on the test set 
and six subsets of WFLW. As shown in Table 6, the MSM 
method outperforms all other state-of-the-art methods in 
terms of the NRMSE, failure rate and AUC. An exception 
is for the case of an NRMSE value of 5.77% (occlusion 
subset) obtained by the 3DDE versus 5.85% obtained by the 
MSM. Note that the input images of 3DDE are cropped by 
ground-truth bounding box, which is much more beneficial to 
landmark localization task. However, MSM still outperforms 
3DDE using the provided bounding box in all other metrics. 
The MSM results using WFLW dataset are shown in Fig. 12.

Experimental Results on Ablation Study

In this subsection the proposed method is evaluated by dif-
ferent configurations. The framework consists of several 

pivotal components including ST-GAN, stacked hourglass 
network and examplar-based face shape reconstruction. 
Their effectiveness are validated within the framework 
based on the COFW and WFLW datasets. To further evalu-
ate the robustness of ST-GAN, a 50-layer residual network 
(Res-50) is introduced to verify whether the ST-GAN is 
effective to coordinate regression-based method. Since Res-
50 requires input images size of 224 × 224 , the size of the 
average pooling kernel in Res-50 is resized from 7 to 4, and 
the size of the network input is 128 × 128 . The results of all 
ablation experiments use the inter-ocular distance as nor-
malizing factor. Each proposed component was analyzed, 
i.e., with ST-GAN (labeled as “ST-GAN”), hourglass net-
work (labeled as “HG”), and shape reconstruction (labeled 
as “SR”), by comparing their NRMSE and failure rates. 
Note that our baseline is HG, and ST-GAN+HG+SR rep-
resents the full MSM method.

Table 7 and 8 show the NRMSE values and failure rates 
obtained by different configurations of our framework 
evaluated on the COFW and WFLW datasets. When 
combined with the ST-GAN, the Res-50 network reduces the 
NRMSE from 4.76% to 4.23%, and the hourglass network 
decrease the NRMSE from 4.64% to 4.34%. This result 
demonstrates that the proposed ST-GAN method improved 
the performance of the face alignment task because STN can 
remove the translation, scale and rotation variation in each 
face, which can further reduce the variance in the regression 
target. Note that our method can effectively normalize face 
images to canonical poses and simultaneously remove 
unnecessary background. Compared with the baseline (HG) 
of our work, the innovations introduced in this paper exhibit 
a certain improvement for each subset of the WFLW dataset. 
These results demonstrate that in various difficult situations, 

Fig. 10  MSM example outputs using COFW dataset subject to various occlusion, such as hands, glasses, food, and mask covering a wide range 
of faces

Fig. 11  CED curves of face alignment results using COFW dataset
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Table 6  NRMSE (%), failure 
rate (%) and AUC of face 
alignment results using WFLW 
dataset

Metric Method Fullset Pose Expression Illumination Make-up Occlusion Blur

NRMSE (%) SDM [22] 10.29 24.10 11.45 9.32 9.38 13.03 11.28
CFSS [49] 9.07 21.36 10.09 8.30 8.74 11.76 9.96
DVLN [61] 6.08 11.54 6.78 5.73 5.98 7.33 6.88
LAB [34] 5.27 10.24 5.51 5.23 5.15 6.79 6.32
3DDE [51] 4.68 8.62 5.21 4.65 4.60 5.77 5.41
DeCaFA [55] 4.62 8.11 4.65 4.41 4.63 5.74 5.38
MSM 4.60 8.01 4.81 4.58 4.47 5.85 5.28

Failure (%) SDM [22] 29.40 84.36 33.44 26.22 27.67 41.85 35.32
CFSS [49] 20.56 66.26 23.25 17.34 21.84 32.88 23.67
DVLN [61] 10.84 46.93 11.15 7.31 11.65 16.30 13.71
LAB [34] 7.56 28.83 6.37 6.73 7.77 13.72 10.74
3DDE [51] 5.04 22.39 5.41 3.86 6.79 9.37 6.72
DeCaFA [55] 4.84 21.4 3.73 3.22 6.15 9.26 6.61
MSM 4.28 16.87 2.87 3.72 4.37 9.36 5.95

AUC SDM [22] 0.3002 0.0226 0.2293 0.3237 0.3125 0.2060 0.2398
CFSS [49] 0.3659 0.0632 0.3157 0.3854 0.3691 0.2688 0.3037
DVLN [61] 0.4551 0.1474 0.3889 0.4743 0.4494 0.3794 0.3973
LAB [34] 0.5323 0.2345 0.4951 0.5433 0.5394 0.4490 0.4630
3DDE [51] 0.5544 0.2640 0.5175 0.5602 0.5536 0.4692 0.4957
DeCaFA [55] 0.5630 0.2920 0.5460 0.5790 0.5750 0.4850 0.4940
MSM 0.5671 0.3091 0.5478 0.5725 0.5711 0.4849 0.5073

Fig. 12  MSM example outputs using WFLW dataset subject to extremely challenge cases, such as illumination, large pose, occlusion and dis-
turbing background, etc

Table 7  Comparison of 
NRMSE (%) using WFLW 
dataset with different 
configurations

Method Fullset Pose Expression Illumination Make-up Occlusion Blur

Res-50 5.73 11.28 6.13 5.65 5.80 6.98 6.51
ST-GAN + Res-50 5.42 10.65 6.00 5.31 5.39 6.57 6.23
HG 5.41 10.03 5.56 5.54 6.03 7.00 6.25
ST-GAN + HG 4.81 8.49 5.09 4.75 4.70 6.16 5.51
HG + SR 5.17 9.49 5.42 5.38 5.74 6.60 6.08
ST-GAN + HG + SR 4.60 8.01 4.81 4.58 4.47 5.85 5.28
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the scoring scheme and face shape reconstruction method 
can be used to accurately locate difficult key points, not just 
in the case of occlusion. In Fig. 13, the CED curves show 

that ST-GAN+HG+SR which representing the full MSM 
method outperforms the other two configurations. Examples 
of the outputs obtained by the proposed ST-GAN on the 
WFLW dataset are shown in Fig. 14. Note that ST-GAN not 
only tackle the rotation variations but also solve the scale 
variations, because the image size before and after ST-GAN 
is the same .

Finally, we discuss the setting of the threshold K for 
distinguishing the reliability of landmarks. To this end, 
we performed a statistical analysis of the scores for each 
landmark of each sample on the COFW dataset, as shown 
in Fig.  15. As can be seen from the definition of the 
landmarks in Fig. 16, landmarks 1 to 17 in the contour of 
the face obtain significantly lower scores. This is because 

Table 8  Comparisons of NRMSE (%) and failure rate (%) using 
COFW dataset with different configurations

Method NRMSE (%) Failure (%)

Res-50 4.76 4.54
ST-GAN + Res-50 4.23 3.81
HG 4.64 6.52
ST-GAN + HG 4.34 5.23
HG + SR 4.10 0.99
ST-GAN + HG + SR 3.95 0.99

Fig. 13  Comparisons of CED curves using WFLW dataset with dif-
ferent configurations

Fig. 14  ST-GAN examples outputs using WFLW dataset. Images in first and third rows are cropped by provided bounding boxes. Images in sec-
ond and fourth rows are obtained by ST-GAN. Note that ST-GAN not only normalizes face but also removes disturbing background areas

Fig. 15  Score distribution related to each landmark using COFW 
dataset
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the features of the face contours are relatively simple. 
Conversely, features near the facial features are significantly 
more discriminative, thus landmarks at these locations 
have higher scores. From the above analysis, we can draw 
a conclusion that it is unreliable to set the same threshold 
K for all landmarks to distinguish the localization quality. 
The landmarks at the contour of the face should be set with 
lower thresholds, while the landmarks at the facial features 
of the face are in contrast. Therefore, we verified several 
different threshold configurations, as shown in Table 9. 
Finally, the setting for the threshold K is: landmarks at the 
contour is 0.4, and landmarks at the facial features is 0.6.

Conclusion

In this paper a multistage model has been presented for 
robust face alignment. Our method leverages the best 
advantages of STNs, CNNs and exemplar-based shape 
constraints. Benefiting from the robust spatial transformation 
of the ST-GAN, the input image is warped to an alignment-
friendly state. The stacked hourglass network provides 
accurate localization to landmarks that contain rich local 
information. The intensity of the heat map is introduced to 
distinguish the aligned landmarks from missing landmarks, 
and the weight of each aligned landmark is determined 
simultaneously. Finally, with the help of these aligned 
landmarks, misaligned landmarks is refined by sparse shape 
constraints. A compact face shape dictionary learned by the 
K-means algorithm is used to improve the computational 
efficiency. Extensive experiments and ablation study have 
been conducted using challenging datasets (300-W, COFW 
and WFLW), the experimental results and analysis have 
demonstrated the effectiveness of the proposed multistage 
model as compared to other state-of-the-art methods. In the 
existing database, there are not enough faces with difficult 
scenarios for training. GAN could be used to produce 
training data with difficult scenarios to further improve 
the performance for robust face alignment. For portable 
and real-time aplications, multiplierless neural networks 
[62–69] can be designed using back propagation [69] and 
other algorithms for implementing the multistage model.

Demos are posted on the website at http://101.37.150. 
44:8088/msm.aspx
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