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Abstract
Co-clustering simultaneously performs clustering on the sample and feature dimensions of the data matrix, so it can obtain 
better insight into the data than traditional clustering. Adjustment learning extracts valuable information from chunklets 
for unsupervised cluster learning in specific scenarios, but in fact it can be easily extended to semi-supervised and super-
vised learning situations. In this paper, we propose a novel co-clustering framework, named co-adjustment learning for co-
clustering (CALCC), and CALCC can be simultaneously used in unsupervised, semi-supervised and supervised learning 
situations. A novel co-adjustment learning (CAL) model is proposed to extract meaningful representations in both sample 
space and feature space for co-clustering. CAL can not only perform the sample projection as well as feature projection under 
the guidance of chunklet information, it can also transform the original data into another space with improved separability. 
We can obtain the row partition matrix and column partition matrix by performing the clustering process on the representa-
tions learned by the CAL model. In order to prove the availability of our framework, an unsupervised case of CALCC is 
introduced to make an extensive comparison with several related methods (specifically including the classic co-clustering 
methods and the state-of-the-art methods closely related to our work) on several image and real data sets. The experimental 
results show the superior performance of the CAL model in discovering discriminative representations and demonstrate the 
effectiveness of the CALCC framework. The proposed CALCC framework, as demonstrated in the experiments, is more 
effective superior to the related methods. In addition, the chunklet information can be effective to enhance the expression 
ability of the learned representations.

Keywords  Co-clustering · Chunklet constraints · Co-projection · Representation learning

Introduction

Co-clustering (or bi-clustering [10]) is a widely used and 
powerful unsupervised learning solution that simultaneously 
performs clustering on rows and columns of a data matrix 
to explore inter-correlated patterns. Unlike traditional 
clustering methods [1] that aim to group rows or columns 
of the data matrix into clusters, co-clustering is intended 
to reorganize the original data matrix into blocks (i.e., 
co-clusters). Specifically, co-clustering describes the 
partitioning of the original data matrix into k row-clusters 
and l column-clusters (i.e., the total number of co-clusters 
is k × l ) using similarity measures according to a certain 
evaluation criterion. According to the criterion, the similarity 
between two instances from the same cluster is higher than 
that of instances from different clusters [21]. This approach 
differs from subspace clustering, which focuses on selecting 
a quantity of original dimensions in some unsupervised 
manner such that cluster structures become more evident in 
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this subspace [12]. Since co-clustering algorithms utilize the 
relations between sample clusters and feature clusters, they 
make the data sets more predictable and the co-clustering 
performance more excellent compared with traditional one-
side clustering.

However, it is always a challenging task to achieve high-
performance co-clustering quality without background 
information. To consider the prior information, semi-
supervised co-clustering was proposed [34]. Current semi-
supervised co-clustering methods focus on incorporating the 
known prior knowledge into the co-clustering algorithms 
so that the co-clustering performance can be improved. 
Computationally, most semi-supervised co-clustering 
algorithms lack flexibility because the constraints must be 
satisfied at each stage. Moreover, those semi-supervised 
co-clustering methods only consider the given constraints 
to be satisfied and clustering in the original data space. They 
are incapable of transforming the original data into a lower-
dimensional data space guided by constraints. Constraint 
projection is a prevalent technique to address this problem 
in semi-supervised clustering [13].

Constraint projection (CP) aims to transform the 
original data into a lower-dimensional data space guided 
by constraints (usually pairwise constraints). The reduced 
data can still remain as the original class information. 
Recently, CP technology has also been integrated with 
semi-supervised co-clustering algorithms. Constraint 
co-projection can transform the original sample space 
and feature space into a low-dimensional space through 
simultaneously performing the sample CP (SCP) as 
well as feature CP (FCP)  [19]. CP has been successful 
in incorporating prior knowledge into the representation 
learning process of the original data. However, a major 
challenge facing the CP is its high dependence on prior 
knowledge. In many tasks, even a small amount of prior 
knowledge is difficult to obtain owing to the high cost of the 
data-labeling process. It is desirable to apply the technology 
of CP to situations where prior knowledge cannot be 
directly accessed.

Adjustment learning is a simple and efficient approach 
that uses chunklets for unsupervised cluster learning in 
specific scenarios  [33]. Chunklets are small groups of 
points that come from the unknown but the same class. 
Unlike labels, chunklets can sometimes be automatically 
obtained without human intervention. For each chunklet, the 
class label is consistent but unknown for all the data points 
belonging to it. This means that each class of data points 
consists of one or more chunklets in adjustment learning. 
Since chunklet information is not extracted from prior 
labeled data, adjustment learning is cast into the domain 
of unsupervised learning. However, adjustment learning 
can be easily extended to semi-supervised and supervised 
learning situations. In the first case, chunklets directly come 

from background information, i.e., we know in advance 
that a small number of samples or features (one or more) 
belong to the same class. In the second case, chunklets are 
extracted from the fully labeled data. Therefore, chunklet 
constraints can be regarded as another form of positive 
constraints. Unlike the must-link constraints, which hold 
that two instances must be clustered in the same cluster, the 
chunklet constraints specify instances belonging to the same 
cluster that do not necessarily appear in pairs; rather, they 
appear in groups.

In this paper, a novel co-clustering framework, named 
co-adjustment learning for co-clustering (CALCC), is 
proposed. Development of the framework was inspired 
by the following two aspects: i) Chunklets as a new form 
of positive constraint information can be effectively 
incorporated into the representation learning process of the 
CP model. ii) Simultaneous use of sample chunklets and 
feature chunklets can be helpful to obtain better insight into 
the data. In order to transform the original data space into 
another space with the property of better separability such 
that the clustering performance can be effectively enhanced, 
a novel co-projection model, named co-adjustment learning 
(CAL), is proposed. The sample chunklet constraints and 
feature chunklet constraints can be simultaneously used to 
guide the representation learning process in the proposed 
CAL model. After CAL is defined, we find that it is naturally 
born for co-clustering, so the CALCC co-clustering 
framework is proposed.

The proposed CALCC framework can be simultaneously 
used in unsupervised, semi-supervised and supervised 
learning situations. i) Unsupervised CALCC is designed 
to handle a frequently encountered problem. That is, in 
many tasks, it is difficult to find the clear range of a cluster, 
whereas it is easy to find the clear range of a chunklet, 
regardless of whether it resides in sample space or feature 
space. Thus, we can use different unsupervised clustering 
algorithms to generate clearly structured chunklets on 
both dimensions of the data matrix according to different 
characteristics of the data. ii) Semi-supervised CALCC 
can effectively address the situation: We know in advance 
that some samples or features belong to the same class (the 
groups of instances belonging to the same class can be seen 
as chunklets). iii) As mentioned above, chunklets are small 
groups of instances from the unknown but the same class. 
In supervised CALCC, we divide the fully labeled samples 
and features into sample chunklets and feature chunklets, 
respectively. The entire framework of CALCC is illustrated 
in Fig. 1.

To the best of our knowledge, this is the first work 
to improve the expression ability of the data space 
by incorporating the chunklet information into the 
representation learning process of the CP model. Several 
aspects of the paper are highlighted as follows: 
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i)	 We focus on utilizing the valuable chunklet information 
to simultaneously enhance the separability of the sample 
space and feature space of the original data. And the 
valuable chunklet information can be generated in 
unsupervised, semi-supervised and supervised settings.

ii)	 The proposed CAL model can simultaneously perform 
the sample projection as well as feature projection under 
the guidance of those chunklet information. In the trans-
formed new representation space, the relations between 
samples and features are properly preserved and the 
input data become more predictable.

iii)	 Because unsupervised CALCC is the most difficult 
and valuable case in our framework, the representative 
CALCC-KM algorithm was proposed for unsupervised 
clustering task. In addition, we performed a comparative 
experiment on the three modalities of unsupervised 
CALCC. The results on benchmark data sets show the 
superior performance of the proposed framework.

The remainder of this paper is organized as follows: In 
Section  2, we introduce existing works on which our 
approach is based. In Section  3, we provide a detailed 
illustration of the proposed CAL model. Experimental 
results are shown in Section 4. The paper is concluded in 
Section 5.

Related Work

In this section, we review previous research closely related 
to our work. We first basically overview representative 
co-clustering algorithms. Then, we briefly introduce the 
technology of constraint projection.

Co-clustering has received significant attention 
from researchers since it was first proposed in the early 
1970s  [16]. Co-clustering is the most widely employed 
clustering approach in the fields of gene expression [7, 10, 
14], natural language processing [8, 38] and recommender 
systems [17, 24].

Dhillon et  al.  [12] proposed a spectral co-clustering 
method (SCC) by which the document collection is 
modeled as a document-word bipartite graph. Accordingly, 
the co-clustering problem is regarded as a bipartite-graph 
partitioning problem. The background information is 
considered so that the clustering performance can be 
improved. Shi et al. [34] proposed a novel semi-supervised 
spectral co-clustering method (SCM). SCM can efficiently 
solve the poor clustering performance problem of most 
co-clustering algorithms caused by the sparsity of data 
and presence of noise. Numerous co-clustering methods 
are founded on information-theory-based models. The 
information theoretic co-clustering algorithm (ITCC) [11] 
seeks to enhance interrelated mutual information by 
performing simultaneous clustering on both column and 
row dimensions at each stage. Banerjee et al. [2] proposed a 
more general co-clustering framework wherein any Bregman 
divergence can be used in the objective function. Soon 
thereafter, Bekkerman et al. [3] extended the co-clustering 
framework to multi-way clustering to cluster a set of 
objects by simultaneously clustering their heterogeneous 
components. Moreover, Bayesian co-clustering (BCC) [31] 
and nonparametric Bayesian co-clustering ensembles [35] 
enable a mixed membership in column-clusters and row-
clusters. Non-negative matrix factorization (NMF) and its 
graph-regularized extensions have received tremendous 
research interest over the past several years  [18]. Chen 
et al.  [9] presented a semi-supervised NMF method for 

Fig. 1   Framework of CALCC. I + ⋆ = semi-supervised CALCC, II + ⋆ = unsupervised CALCC and II + ⋆ = supervised CALCC. Colored 
connecting lines in different colors are used to represent different ways to obtain chunklets
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co-clustering (SSNMFCC). In this scheme, relational 
matrices can be computed through simultaneous modality 
selection and distance metric learning. More recently, Kumar 
et al. [23] presented a model-based co-clustering transfer 
learning algorithm to address data shifting problems. 
Whang et al. [37] presented non-exhaustive, overlapping 
co-clustering (NEO-CC), an effective solution to non-
exhaustive, overlapping problems in co-clustering. Huang 
et al. [20] proposed a document co-clustering framework 
with adaptive local structure learning (ALSLCC) in which 
tri-factorization and intrinsic structure learning can be 
simultaneously performed. Nie et al. [27] proposed a novel 
co-clustering algorithm (SOBG) to learn a structured 
optimal bipartite graph with exactly k connected components 
from the original data, where k equals the number of clusters.

A large majority of CP methods aim to transform the 
original instances into a new low-dimensional space 
guided by the given constraints such that the clustering 
or classification performance can be improved in the 
new representation space. Zhang et al. [40] applied CP 
to ensemble learning. They first transformed the original 
data points into a new data space by using CP. Then, the 
base classifiers are built in this new space. Combined 
with pairwise constraints, a two-side CP method called 
constraint co-projection was furthermore proposed [19]. 
Constraint co-projection simultaneously performs SCP 
and FCP to project the original sample space and feature 
space into low-dimensional space. Moreover, relying on 
fully labeled data, a supervised subspace projections 
method was presented for constructing ensembles of 
classifiers [15]. The algorithms based on using CP for 
classification are described in  [29] and  [28].

Despite the widespread application of CP in semi-
supervised clustering, research on unsupervised CP 
remains limited and preliminary. Some previous 
research focused on using equivalence constraints 
as side information  [22, 32]. Chunklets are a kind of 
equivalence constraint that can be automatically obtained 
without human intervention in many specific tasks. 
Adjustment learning is an approach that uses chunklets 
for unsupervised learning. However, only in specific 
scenarios in which chunklets can be naturally generated 
can adjustment learning be classified as an unsupervised 
setting. It is desirable to extend it to general scenarios 
to enable chunklet constraints to be used for CP. 
Furthermore, it is easy to find chunklets with an evident 
structure in both a sample space and feature space 
using appropriate unsupervised clustering methods. 
The proposed framework can flexibly employ different 
unsupervised clustering algorithms according to different 
data characteristics. Accordingly, it can generate sample 
chunklets and feature chunklets on the sample and feature 
dimensions of the data matrix, respectively. Based on 

the chunklets we obtain, original samples and features 
can be simultaneously projected into low-dimensional 
space using chunklet co-projection. Hence, in the new 
low-dimensional representation space, instances from the 
same chunklet are close to each other.

Co‑Adjustment Learning Model

In this section, the proposed method is described in 
detail. Specifically, we formulate the objective function 
of the CAL model and find the solution to it. The 
algorithm of unsupervised CALCC is also detailed at 
the end of this section.

Problem Formulation

As defined above, co-clustering seeks coherent blocks of 
rows and columns to explore inter-correlated patterns of 
the data. To devise a good co-clustering framework, one 
must first characterize the “goodness” of a co-clustering 
framework. Let X = (xij)n×p be a data matrix of n rows and 
p columns in some input space. Let the two collections, 
R = (R1,R2, ...,Rk) and C = (C1,C2, ...,Cl) , respectively, 
denote the partition of the set of rows and the partition 
of the set of columns of the data matrix, where k is the 
row-cluster number and l is the column-cluster number. 
At this point, the pair (R

�
,C

�
) is called the co-cluster 

( � = 1, 2, ..., k , � = 1, 2, ..., l ). Let Ncc = k × l be the total 
number of co-clusters, |.| denote the cardinality of a set. 
The quality of the co-clustering method is assessed by 
the total variance of co-clusters, which is denoted as 
T(R

�
,C

�
) . Here,

where �
�
 is the average value in the �-th co-cluster and

Generally speaking, a co-clustering framework having a 
zero total variance is considered perfect, and a co-clustering 
framework having a lower total variance is better than that 
with a higher total variance [5].

To obtain a lower total variance for our framework, 
we strive to simultaneously project the original samples 
and features into low-dimensional representation space 
guided by the chunklet constraints. Accordingly, the 
instances from the same chunklet are close to each other 
in the new low-dimensional space. Let the collection 
C = {x11, ..., x1m1

,… , xc1, ..., xcmc
,… , xΩ1, ..., xΩmΩ

} denote 

(1)T(R
�
,C

�
) =

Ncc∑

�=1

∑

i∈R
�

∑

j∈C
�

(xij − �
�
)2

�
�
=

∑
i∈R

�

∑
j∈C

�

xij

�R
�
��C

�
�

.
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the set of data points consisting of Ω chunklets, where 
c = 1, ...,Ω and xci denotes the i-th point in the c-th 
chunklet and mc is the number of data points in the c-
th chunklet. Let m =

∑Ω

c=1
mc . The within-chunklet 

covariance matrix W is defined as

where xc is the mean of the c-th chunklet, �T denotes the 
transposition of vector �.

The basic idea of the CAL model is to simultaneously 
transform the original samples and features into low-
dimensional space guided by constraint information extracted 
from chunklets. Let Cs = {(si, sj)|si and sj be samples 
belonging to the same chunklet} , Cf = {( fi, fj)|fi and fj are 
features belonging to the same chunklet} . We define the 
sample within-chunklet covariance matrix Ws as follows:

Similarly, the feature within-chunklet covariance matrix Wf  
is defined as:

The objective of the CAL model is to learn two sets 
of co-projective matrix U = [u1, u2, ..., uL] ∈ Rp×L and 
M = [m1,m2, ...,mG] ∈ Rn×G , which can simultaneously 
map the original samples and features into low-dimensional 
representation space. Hence, the original class information 
can be most reliably retained in the reduced data. At the 
same time, instances in the same sample (or feature) chunklet 
are close in the new low-dimensional sample (or feature) 
space. Thus, the CAL optimization problem is defined as 
minimizing the objective function J(U, M). Moreover,

The objective seeks to explore the inter-correlated 
patterns of samples and features. Based on it, we can 
learn two sets of co-projective matrix U and M, which 
can effectively project the original samples and features 

(2)W =

Ω∑

c=1

mc∑

i=1

(xci − xc)(xci − xc)
T

(3)

Ws =
1

|Cs|
∑

(si,sj)∈Cs

[(si −
si + sj

2
)(si −

si + sj

2
)T

+ (sj −
si + sj

2
)(sj −

si + sj

2
)T ]

=
1

2|Cs|
∑

(si,sj)∈Cs

(si − sj)(si − sj)
T
.

(4)Wf =
1

2|Cf |
∑

( fi,fj)∈Cf

( fi − fj)( fi − fj)
T
.

(5)

J(U,M) =
1

2|Cs|
∑

(si,sj)∈Cs

∥ UT (si − sj) ∥
2

+
1

2|Cf |
∑

( fi,fj)∈Cf

∥ MT ( fi − fj) ∥
2 .

into low-dimensional sample space and feature space, 
respectively. We found that the new data space learned by 
the CAL model can not only capture data distributions, 
but also render the entities of the same chunklet become 
closer, while the entities of the different chunklets become 
farther apart.

Inference

To enhance the convenience of the subsequent discussions, 
we define Ss,Sf  as follows:

and

From objective function (5), if we intend to minimize 
J(U, M), both Ss and Sf  should be minimized. Furthermore, 
an analytical solution can be obtained for simultaneously 
finding the optimal co-projective matrix U in (6) and M in 
(7). First, we rewrite (6) as:

According to (8), Sf  is rewritten as:

In this paper, we call Ss and Sf  the chunklet scatter values. The 
most important step for the proposed CAL model is to seek 
two sets of co-projective matrix U = [u1, u2, ..., uL] ∈ Rp×L 
and M = [m1,m2, ...,mG] ∈ Rn×G , so that the information 
in the sample chunklets and feature chunklets can be most 
effectively retained in the low-dimensional representation 
space. From (8) and (9), the objective function (5) is 
transformed into

(6)Ss =
1

2|Cs|
∑

(si,sj)∈Cs

∥ UT (si − sj) ∥
2

(7)Sf =
1

2|Cf |
∑

( fi,fj)∈Cf

∥ MT ( fi − fj) ∥
2 .

(8)

Ss =
1

2|Cs|
∑

(si,sj)∈Cs

∥ UT (si − sj) ∥
2

=
1

2|Cs|
∑

(si,sj)∈Cs

L∑

l

UT
l
(si − sj)(si − sj)

TUl

=

L∑

l

UT
l

(
1

2|Cs|
∑

(si,sj)∈Cs

(si − sj)(si − sj)
T

)
Ul

=

L∑

l

UT
l
WsUl.

(9)

Sf =
1

2|Cf |
∑

( fi,fj)∈Cf

∥ MT ( fi − fj) ∥
2

=

G∑

g

MT
g
WfMg.
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To simplify the problem, we assume L = G . Nevertheless, 
by a simple parameter setting, the proposed framework can 
easily solve the special case of L ≠ G , which is discussed 
in Section 3.4.

According to simple algebraic theory [40], we further 
rewrite the objective function in (10) as:

where V = [U;M] , and

To find the solution to this optimization problem, the 
traditional Lagrange multiplier optimization technique [19] 
is used. The Lagrangian can be denoted as:

We calculate the partial derivative of LV1,...,V�

 with respect to 
each V

�
 and set it to zero. Hence,

It is apparent from (13) that the solution V
�
 is an eigenvector 

of W, and �
�
 is the corresponding eigenvalue of W. 

Therefore, to minimize J, V must be composed of the first � 
eigenvectors of W, which makes J the sum of the � smallest 
eigenvalues of W.

Suppose Λd = [�1 ≤, ...,≤ �d] is the solution to (13), 
and Vd = [V1, ...,Vd] is the corresponding eigenvector 
matrix. Denote the within-chunklet covariance matrix 
W

�

= diag(�1, �2, ..., �d). Thus, the optimization problem is 

(10)

J(U,M) =
1

2|Cs|
∑

(si,sj)∈Cs

∥ UT (si − sj) ∥
2

+
1

2|Cf |
∑

( fi,fj)∈Cf

∥ MT ( fi − fj) ∥
2

=

L∑

l

UT
l
WsUl +

G∑

g

MT
g
WfMg.

(11)

J(U,M) =

L∑

l

UT
l
WsUl +

G∑

g

MT
g
WfMg

= Trace
(
UTWsU

)
+ Trace

(
MTWfM

)

= Trace

([
U

M

]T [
Ws 0

0 Wf

] [
U

M

])

= Trace
(
VTWV

)

s.t VTV = I

W =

[
Ws 0

0 Wf

]
.

(12)LV1,...,V𝜂

= Ĵ
(
V1, ...,V𝜂

)
−

𝜂∑

𝜀=1

𝛿
𝜀

(
VT
𝜀
V
𝜀
− 1

)
.

(13)
�L

�V
�

= 2WV
�
− 2�

�
V
�
= 0, ∀

�
= 1, ..., �

⇒ WV
�
= �

�
V
�
, ∀

�
= 1, ..., �.

transformed into a trace minimization problem. Its solution 
is to choose i for:

Equation (14) indicates that it can be minimized when we 
choose the non-negative eigenvalues of �i for the sum. That 
is, we take the first d smallest non-negative eigenvalues of 
W, and we minimize J(U, M) by constructing Vd = [U;M] 
using the corresponding eigenvectors. Additionally, we have:

Now, we obtain the co-projection matrices U and M, and the 
solution to the optimization is found.

However, to obtain the optimal rescaling transformation [36], 
it is desirable to let the within-chunklet covariance matrix be 
fixed, i.e., we let it be the identify matrix. To that end, equation 
(15) is reconstructed as:

Thus, the final co-projective matrix of CALCC is defined 
as FT , and

Based on F, we can obtain the final co-projection matrices, 
U and M. Specifically, U = F[F1;F2;...;Fp] ( Fi denotes the 
i-th row of F) , which is the sample projection matrix with p 
rows and d columns. Meanwhile, M = F[Fp+1;Fp+2;...;Fp+n] 
is the feature projection matrix with n rows and d 
columns. After obtaining the final co-projective matrix 
U = [u1, u2, ..., ud] ∈ Rp×d and M = [m1,m2, ...,md] ∈ Rn×d , 
and by performing the sample-projection Ys = XU and 
feature-projection Yf = XTM , we can transform the original 
sample space and feature space into a low-dimensional 
sample space and feature space. Instances from the same 
chunklet become closer to each other in the learned 
representation space. In the new sample space and feature 
space, we can obtain the row partition matrix and column 
partition matrix from which coherent co-clusters can be 
found by running the unsupervised clustering algorithm. 
Consequently, we obtain the final co-clusters with the lowest 
total variance.

CALCC Co‑Clustering Framework

Under the guidance of chunklet information, the 
proposed CAL model can transform the original sample 

(14)Minimize

(∑

i

�i

)
.

(15)W
�

= VT
d
WVd = Λd.

(16)

W
�

= VT
d
WVd

= Λ
−

1

2

d
(VT

d
WVd)Λ

−
1

2

d

= (VdΛd
−

1

2 )TW(VdΛd
−

1

2 ) = I.

(17)F = VdΛd
−

1

2 .
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space and feature space into a new meaningful sample 
space and feature space, respectively. So it is naturally 
born for co-clustering framework. Hence, a novel 
co-clustering framework, named co-adjustment learning 
for co-clustering (CALCC), is proposed.

The proposed framework can be used in unsupervised, 
semi-supervised and supervised learning situations. In 
unsupervised CALCC, we flexibly choose the befitting 
unsupervised clustering algorithm to generate sample 
chunklets and feature chunklets according to the 
characteristics of the input data. In semi-supervised 
CALCC, chunklets directly come from prior knowledge. 
Chunklets can be extracted from the fully labeled samples 
and features in supervised CALCC.

While the performance of supervised CALCC is 
notable, reliance on such a large number of labeled data 
items limits the utility of CALCC in many domains where 
such data sets are not available. On the other hand, in 
many situations, there is no a priori knowledge that can be 
exploited, which makes semi-supervised learning useless. 
Thus, we herein focus on unsupervised CALCC.

Algorithm Description

According to the previously given inference, the detailed 
algorithm procedure for unsupervised CALCC is 
summarized in Algorithm 1. It should be noted that we 
assume L = G for simplicity in this paper. In many cases, 
however, the dimensions of samples and features tend 
to be different for different data sets. Here, by a simple 
parameter setting in step 5, the corresponding dimensions 
of U and M can be differently set in accordance with 
specific needs. 

Experiments

This section evaluates unsupervised CALCC using 
several real-world data sets. In detail, CALCC-KM, a 
representative unsupervised case of CALCC, which 
uses k-means clustering for chunklet generation, is first 
introduced to make a performance comparison with several 
related co-clustering methods. Then, we evaluate the 
effectiveness of three modalities in unsupervised CALCC.

Datasets

We describe our experiments performed on several real-
world data sets, including 10 image data sets from Microsoft 
Research Asia Multimedia (MSRA-MM) [25] and 9 real data 
sets from the University of California, Irvine (UCI), machine 
learning repository [4]. The summary of these 19 data sets is 
given in Table 1. The first 12 data sets (including 10 image 
data sets and 2 big real data sets) in the table were used 
to conduct a performance comparison of the representative 
CALCC-KM and several related co-clustering methods, and 
the last 7 data sets were used to demonstrate the effectiveness 
of unsupervised CALCC in various modalities.

To evaluate the availability of the proposed framework, 
we perform an extensive comparison of the effective 
CALCC-KM with several related methods which stay 
either classic or state of the art, specifically including

Table 1   Summary of data sets

No. Data set Source Samples Features Classes

1 MM01 Microsoft 930 428 2
2 MM02 Microsoft 880 428 3
3 MM03 Microsoft 1100 428 2
4 MM04 Microsoft 840 428 4
5 MM05 Microsoft 968 428 2
6 MM06 Microsoft 1730 428 3
7 MM07 Microsoft 883 428 3
8 MM08 Microsoft 891 899 3
9 MM09 Microsoft 880 892 3
10 MM10 Microsoft 892 892 3
11 Noma UCI 34465 118 2
12 Huma UCI 10299 501 6
13 Ionosphere UCI 354 34 2
14 Sona UCI 208 60 2
15 Spect UCI 267 22 2
16 Syncon UCI 600 60 10
17 Vote UCI 435 16 2
18 Wdbc UCI 563 30 2
19 Credi UCI 690 15 2
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•	 SCC [12]: a spectral co-clustering method, in which the 
document collection is modeled as a document-word 
bipartite graph.

•	 ITCC [11]: an information theoretic co-clustering method 
aiming to enhance inter-related mutual information.

•	 BCC [2]: a Bayesian co-clustering method that enables a 
mixed membership in column-clusters and row-clusters.

•	 SOBG [27]: a co-clustering method that seeks to learn a 
structured optimal bipartite graph.

•	 ALSLCC  [20]: an adaptive local structure learning 
method for document co-clustering.

•	 SCM [34]: a semi-supervised SCC for solving the prob-
lems of sparse data and noise in co-clustering.

•	 SSNMFCC [9]: a semi-supervised NMF method for co-
clustering, in which relational matrices are computed 
through simultaneous modality selection and distance 
metric learning.

•	 SNCC [26]: a sparse neighbor constrained co-clustering 
for alleviating the misclassification of close instances.

•	 CoCE [39]: a co-clustering ensemble approach for learn-
ing robust co-clusters by combining multiple base co-
clusterings.

Classic methods SCC, ITCC, BCC and SCM are widely 
used as baseline co-clustering algorithms. Other state-of-
the-art methods SOBG, ALSLCC, SSNMFCC, SNCC, 
CoCE are either extensions of these classical methods or 
are most closely related to our work.

In unsupervised CALCC-KM, chunklets are obtained 
by performing the k-means clustering, and in order to 
prove the proposed two-step CALCC framework can 
yield better clustering performances than that of the one-
step clustering approach, k-means is also introduced and 
compared with other co-clustering algorithms. For each 

data set, clustering results are obtained by applying the 
k-means algorithm to sample representations learned by 
each co-clustering algorithm.

Furthermore, in our experiments, we set the number of 
sample clusters k as equal to the number of feature clusters 
l. The number of sample chunklets k̃ was also set to be the 
same as the number of feature chunklets l̃ . Particularly, 
we let k̃ = 4 × k (i.e., l̃ = 4 × l ) in our experiments. The 
default percentage of pairwise constraints is 5% for semi-
supervised co-clustering methods. For each parameter 
setting, we repeated the experiments 20 times and recorded 
the average result for comparison.

Evaluation Metric

It is a commonly used method for measuring co-clustering 
quality by comparing the row (sample) clustering quality 
or column (feature) clustering quality between different 
co-clustering algorithms  [19, 20, 34]. For the evaluation, 
we used clustering accuracy (ACC) to measure the 
experimental results. ACC is a widely used standard 
measure for clustering [6]. It measures the frequency with 
which all data points from the same class label reside in 
the same cluster [33]. ACC is defined as:

where �(x, y) equals 1 if x = y and 0 otherwise, n is the 
number of instances of data set X, and yi and ŷi are the 
true label and predicted label corresponding to instance 
xi , respectively. Additionally, map(ŷi) is the permutation 
mapping function that changes predicted labels to match the 
true labels by using the Kuhn–Munkres algorithm.

(18)ACC =

∑n

i=1
𝜓(yi,map(ŷi))

n

Table 2   Accuracy results of the experiment

Data set K-means ITCC​ BCC SCC SOBG ALSLCC SCM SSNMFCC SNCC CoCE CALCC-KM

MM01 0.6087 0.6204 0.6080 0.6409 0.6430 0.6623 0.6450 0.5597 0.7216 0.6552 0.7469
MM02 0.4909 0.4807 0.5324 0.5570 0.5648 0.5909 0.5670 0.3991 0.6118 0.6053 0.5917
MM03 0.6501 0.6273 0.7583 0.5000 0.5009 0.7511 0.5280 0.5145 0.7218 0.7119 0.7673
MM04 0.3052 0.3655 0.4273 0.3087 0.4298 0.4202 0.3255 0.2730 0.3754 0.4309 0.4089
MM05 0.5631 0.5207 0.6381 0.6875 0.6942 0.6582 0.6877 0.5346 0.6029 0.6527 0.7005
MM06 0.3540 0.3855 0.5787 0.3520 0.3526 0.5642 0.3871 0.3512 0.5603 0.5976 0.5521
MM07 0.4422 0.4700 0.5177 0.4530 0.4530 0.5391 0.4557 0.3607 0.5471 0.5183 0.5682
MM08 0.4554 0.4276 0.5026 0.5129 0.5095 0.5577 0.5210 0.3823 0.5221 0.5413 0.5703
MM09 0.4991 0.5034 0.4707 0.5716 0.5670 0.5715 0.6021 0.3989 0.6196 0.5825 0.6603
MM10 0.3043 0.3767 0.3858 0.3946 0.5549 0.4094 0.4192 0.3901 0.4507 0.4748 0.4354
Noma 0.7105 0.7130 0.7059 0.7307 0.7130 0.7316 0.7293 0.6965 0.6993 0.7340 0.7366
Huma 0.5536 0.4841 0.5232 0.4841 0.4905 0.5049 0.4936 0.5409 0.5664 0.5829 0.5602
Av. 0.4940 0.4979 0.5541 0.5161 0.5394 0.5801 0.5301 0.4501 0.5874 0.5906 0.6082
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Results

The clustering results of all 11 methods on 12 data sets are 
shown in Table 2. It is obvious that CALCC-KM outperforms 
10 other related methods with the best average ACC of 0.6082. 
We observe that compared with other clustering algorithms, 
CALCC-KM achieves the best clustering results most of the 
time. In specific terms, among the 11 algorithms, CALCC-KM 
achieves the 7 best clustering results on the 12 data sets, while 
the other 10 methods only achieve 5 of the best clustering results. 
Another important observation is that SCM achieves a better 
clustering quality than SCC, which verifies the assumption 
that prior information can reduce the noise and effectively 
enhance the clustering performance. We also observe that on 
average, most of co-clustering methods outperform the k-means 
clustering, this is because co-clustering algorithms can utilize 
the relations between sample clusters and feature clusters, as 
a consequence, they make the data sets more predictable and 
the co-clustering performance more excellent compared with 
traditional one-side clustering.

The Friedman-aligned test [19] is introduced to make 
a further comparison among those algorithms. Table 3 
shows the aligned observations and the aligned ranks 
in the parentheses with consideration of the known 11 
algorithms and 12 data sets. As shown in the table, on 
average, CALCC-KM ranks first at 24.58. The Friedman 
aligned test can be used to check whether the measured 
sum of aligned ranks is different from the total aligned 
ranks R̂j = 731 at the high level of significance expected 
under the null hypothesis:

With 11 algorithms and 12 data sets, T is distributed 
according to the Chi-square distribution with 11 − 1 = 10 
degrees of freedom. The p-value computed by using the 
�
2(10) distribution is 0.00000025; thus, the null hypothesis 

is significantly rejected. It is obvious that the value is far less 
than 0.05, which shows that the results of the algorithms are 
significantly different.

Unsupervised CALCC‑KM versus Semi‑Supervised 
Co‑Clustering

To further illustrate the superior performance of the proposed 
framework, for each of the 12 data sets, we plot the average 

n∑

j=1

̂R2

i,.
= 7672 + 6992 + ... + 7112 + 7552 = 6, 429, 978

k∑

j=1

̂R2

.,j
= 11722 + 11642 + ... + 4072 + 2952 = 8, 224, 698

T =
(11 − 1)[8, 224, 698 − (11 ⋅ 122∕4)(11 ⋅ 12 + 1)2]

11 × 12(11 × 12 + 1)(2 × 11 × 12 + 1)∕6 − 6, 429, 978∕11

= 59.68
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ACC value against the increasing percentage of pairwise 
constraints for our unsupervised CALCC-KM algorithm and 
two other semi-supervised SSNMFCC and SCM algorithms. 
Since our CALCC-KM is an unsupervised co-clustering 
algorithm, the accuracy of CALCC-KM is not affected by the 

percentage of pairwise constraints and is always a constant. 
The ACC results are shown in Figs. 2 and 3. Surprisingly, 
as observed in Fig.  2, our unsupervised CALCC-KM 
significantly outperforms the other two semi-supervised SCM 
and SSNMFCC methods in most cases. In Fig. 3, it is obvious 
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Fig. 2   Experimental results for unsupervised co-clustering CALCC-KM and semi-supervised co-clustering SCM and SSNMFCC on 12 data sets 
against the increasing percentage of pairwise constraints
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that the average ACC of CALCC-KM on 12 data sets is close 
to 61%. It is almost 8% and 20% higher than that of SCM and 
SSNMFCC, respectively. Furthermore, the average accuracies 
of SCM and SSNMFCC consistently increase with the gradual 
increase of the pairwise constraint percent (from 5 to 30 
percent). Particularly, the ACC curve of SCM rises relatively 
gently as the pairwise constraints increase, which may be 
caused by the problem of constraint conflicts. In general, as 
an unsupervised co-clustering algorithm, CALCC-KM can 
generate far superior clustering quality than some of related 
semi-supervised co-clustering algorithms.

Two‑Side CALCC versus Its One‑Side Counterpart

The proposed CALCC is a two-side co-clustering 
framework. In this framework, not only chunklets from 

sample side, but also chunklets from feature side are used 
to guide the learning process of the CAL model. In order to 
prove the availability of the information extracted from those 
feature chunklets, we evaluate the clustering performance of 
one-side CALCC with only minimizing the sample chunklet 
scatter values. In this case, the objective function (5) is 
reduced to J(U) = Ss . And the sample-projective matrix U 
can be easily obtained according to equations (10)-(17) (by 
simply setting V = U).

A novel one-side clustering method named CALCC-KM1 
was proposed to make a comparison with its two-side 
counterpart CALCC-KM. K-means clustering was used 
to generate sample chunklets from the original data set 
in CALCC-KM1. The clustering results of the k-means, 
CALCC-KM and CALCC-KM1 algorithms over 12 data 
sets are shown in Table 4.

Fig. 3   Average ACC of 12 
data sets for unsupervised 
co-clustering CALCC-KM and 
semi-supervised co-clustering 
SCM and SSNMFCC against 
the increasing percentage of 
pairwise constraints
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Table 4   The clustering results of the K-means, CALCC-KM and CALCC-KM1 algorithms over 12 MSRA-MM and UCI data sets. Note that the 
highest score is denoted by bold font, and the second is underlined

Methods MM01 MM02 MM03 MM04 MM05 MM06 MM07 MM08 MM09 MM10 Noma Huma Av.

k-means 0.6087 0.4909 0.6501 0.3052 0.5631 0.3540 0.4422 0.4554 0.4991 0.3043 0.7105 0.5536 0.4940
CALCC-KM1 0.5773 0.5481 0.6926 0.4118 0.6603 0.4008 0.4159 0.5829 0.4855 0.3972 0.6943 0.5883 0.5379
CALCC-KM 0.7469 0.5917 0.7673 0.4089 0.7005 0.5521 0.5682 0.5703 0.6603 0.4354 0.7366 0.5602 0.6082
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The table shows that two-side CALCC can achieve better 
performance than its one-side counterpart, supporting the 
view that two-side co-clustering can obtain better insight 
into the data and make the input data more predictable than 
traditional one-side clustering. We also notice that the use 
of sample chunklets can improve the results as well, which 
also verifies the effectiveness of the chunklet information.

Discussion on Chunklet Number

In this subsection, we describe our empirical evaluation 
of the impact of different numbers of chunklets on the 
performance of unsupervised CALCC. Considering the 
different characteristics of the original data matrix and the 
experiment effectiveness, we represent different numbers 
of chunklets as different multiples of cluster numbers. The 
parameter � is used to represent multiples of the cluster 
number, i.e., k̃ = � × k , l̃ = � × l . In our experiments, the 
value of � was varied from one to ten in steps of one. The 
clustering results on 12 data sets are plotted in Fig. 4. As 
can be seen from the figure, CALCC-KM achieves varying 
clustering quality at different � values for different data sets. 
To summarize, data sets with different distributions may be 
composed of different numbers of chunklets that can easily 
find boundaries.

Significantly, for the simplicity of the experiments, we 
only considered pursuing the optimal � in the case of � ≤ 10 . 
Thus, the optimal � obtained is actually the local optimal � . 
However, the experimental results show that even in the case 
of the local optimum, our CALCC-KM has achieved the 
best results over the other related co-clustering algorithms. 
This means that a better parameter setting can help achieve 
a better clustering quality than that reported in this paper.

Effectiveness of Our Model with Different Modalities

Since the proposed unsupervised CALCC is formulated 
for more than one modality, we evaluated its effectiveness 
in the three modalities on the last 7 data sets in Table 1. In 
addition to CALCC-KM, we introduce two other modalities, 
CALCC-DP and CALCC-AP. More specifically, CALCC-DP 
and CALCC-AP indicate that density peaks (DP) [30] and 
AP clustering are, respectively, applied to generate chunklets 
on sample and feature dimensions. The results are shown in 
Fig. 5. We can observe that all of three modalities achieve 
a high cluster quality over the seven data sets. In addition, 
CALCC-DP outperforms the other two modalities in Spect and 
Credi data sets, and CALCC-AP achieves the best performance 
in Ionosphere, Sona, Vote, and Wdbc data sets. However, only 
in the Syncon data set does CALCC-KM obtain the highest 
accuracy. The reason for that might be because compared with 
DP and AP clustering k-means is not the most suitable clustering 
method to generate clearly structured chunklets on the other six 
data sets. In general terms, in unsupervised CALCC, different 
unsupervised clustering algorithms for chunklet generation can 
achieve significantly different co-clustering performances in 
accordance with the different data characteristics.

Study on Time Complexity

The time complexity of the CAL model is mainly 
determined by the singular value decomposition (SVD) 
process of the covariance matrix W in Eq. (11). The matrix 
W is a square matrix of order n + p for a data matrix �n×p 
with n rows and p columns. It is known that exact SVD of 
a q-order matrix has time complexity O(q3) , so the time 
complexity of the model is O((n + p)3) . For the proposed 
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CALCC-KM algorithm, it costs another O(nk̃gs + pl̃gf ) 
time complexity to construct chunklets and another 
O(nkcs + plcf ) time complexity to obtain clustering 
results, where k̃ (k), l̃ (l) are the number of row-chunklets 
(row-clusters) and column-chunklets (column-clusters), 
respectively; gs ( gf  ) is the number of sample (feature) 
chunklet generation iterations, cs ( cf  ) is the number of 
sample (feature) clustering iterations.

Conclusion

In this paper, a novel co-clustering framework named 
co-adjustment learning for co-clustering (CALCC) 
was proposed. The proposed CALCC can be flexibly 
used in unsupervised, semi-supervised and supervised 
learning situations. A constraint co-projection model, 
co-adjustment learning (CAL), was first introduced. The 
CAL model not only makes full use of the informative 
chunklet constraints, but also transforms the original 
data into a new discriminative representation space by 
simultaneously performing sample projection as well 
as feature projection. In the transformed space, the 
co-clusters with lowest total variance can be efficiently 
found. To the best of our knowledge, the presented 
CAL model that exploits constraint information from 
chunklets for co-projection is the first to be introduced. 
In order to prove the availability of our framework, an 

unsupervised case of CALCC was introduced to make an 
extensive comparison with several related co-clustering 
methods on several image and real data sets. Besides, we 
also performed a comparative experiment on the three 
modalities of unsupervised CALCC. The experimental 
results revealed the superior performance of the CAL 
model in discovering discriminative representations 
and demonstrated the effectiveness of the proposed 
framework.
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