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Abstract
Hate speech is an important problem in the management of user-generated content. To remove offensive content or ban 
misbehaving users, content moderators need reliable hate speech detectors. Recently, deep neural networks based on the 
transformer architecture, such as the (multilingual) BERT model, have achieved superior performance in many natural 
language classification tasks, including hate speech detection. So far, these methods have not been able to quantify their 
output in terms of reliability. We propose a Bayesian method using Monte Carlo dropout within the attention layers of the 
transformer models to provide well-calibrated reliability estimates. We evaluate and visualize the results of the proposed 
approach on hate speech detection problems in several languages. Additionally, we test whether affective dimensions can 
enhance the information extracted by the BERT model in hate speech classification. Our experiments show that Monte Carlo 
dropout provides a viable mechanism for reliability estimation in transformer networks. Used within the BERT model, it 
offers state-of-the-art classification performance and can detect less trusted predictions.

Keywords  Prediction uncertainty · Reliability estimation · Monte Carlo dropout · Transformer neural networks · Bayesian 
BERT · Sentic Computing · Model calibration

Introduction

With the rise of social network popularity, hate speech 
phenomena have significantly increased [22]. Hate speech 
not only harms both minority groups and the whole society, 
but it can lead to actual crimes [3]. Thus, (automated) hate 
speech detection mechanisms are urgently needed. However, 

falsely accusing people of hate speech is also a problem. 
Many content providers rely on human moderators to 
reliably decide whether a given text is offensive or not, but 
this is a mundane and stressful job which can even cause 
post-traumatic stress disorders1. There have been many 
attempts to automate the detection of hate speech in social 
media using machine learning, but existing models lack the 
quantification of reliability for their decisions.

In the last few years, recurrent neural networks 
(RNNs) were the most popular text classification choice. 
Long Short-Term Memory (LSTM) networks, the most 
successful RNN architecture, were already successfully 
adapted for the assessment of predictive reliability in 
hate speech classification [7]. Recently, neural network 
architecture with attention layers, called ‘transformer 
architecture’ [6], have showed even better performance 
on almost all language processing tasks. Using 
transformer networks for masked language modeling 
produced breakthrough pretrained models, such as 
BERT (Bidirectional Encoder Representations from 
Transformers) [43]. The attention mechanism, which is a 
crucial part of transformer networks, became an essential 
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part of natural language understanding with a significant 
impact on language applications. We aim to investigate 
the behavior of the attention mechanism concerning the 
reliability of predictions. We focus on the hate speech 
recognition task.

In hate speech detection, reliable predictions are needed 
to remove harmful content and possibly ban malicious users 
without harming the freedom of speech [7]. Standard neural 
networks are inadequate for the assessment of predictive 
uncertainty, and the best solution is to use the Bayesian 
inference framework. However, classical Bayesian inference 
techniques do not scale well in neural networks with high 
dimensional parameter space [8]. Various methods were 
proposed in order to overcome this problem [9]. One of 
the most efficient methods is called Monte Carlo Dropout 
(MCD) [12]. Its idea is to use dropout in neural networks 
as a regularization technique [13] and interpret it as a 
Bayesian optimization approach that takes samples from 
the approximate posterior distribution.

Several authors have shown that emotional information 
[56] extracted from a text can improve the performance 
of lexical approaches and standard machine learning 
algorithms [1, 2, 21, 28]. The role and utility of emotional 
information in deep learning have not yet been established; 
besides, we still have only limited understanding of the 
emotions in the text. A series of computational models that 
bridge the gap between the human emotional perspective 
evolved in a domain known as ’Sentic Computing’ [54]. 
The computational initiative, named ’SenticNet’, combines 
knowledge from psycholinguists, neuroscientists, and 
computer scientists to better understand emotions in text. 
We used information on affective dimensions provided by 
SenticNet, together with the outputs of the state-of-the-art 
contextual language model BERT [43]. This was enhanced 
with a reliability estimation mechanism based on MCD as 
input for a hate speech classifier. Concerning emotions, 
we follow two goals in this work: i) to test the predictive 
performance of emotion-enhanced BERT models in hate 
speech detection, and ii) to better understand the role of 
emotions in hate speech.

Our main contributions are: 

1.	 We present a novel methodology for the assessment 
of prediction uncertainty in attention networks and in 
BERT models.

2.	 Empirical analysis of the proposed Bayesian attention 
networks (BANs) and MCD enhanced BERT models 
show an improved calibration and prediction perfor-
mance on hate speech detection tasks in several lan-
guages.

3.	 We combine contextual and reliability information 
obtained from MCD BERT with sentiment-related 
knowledge provided by SenticNet.

4.	 We demonstrate novel visualization of prediction uncer-
tainty for individual instances, as well as for groups of 
instances.

The paper consists of six more sections. In Section 2, we 
present related works on prediction uncertainty, hate speech 
detection and its relationship with sentiment analysis. In 
Section 3, we propose the methodology for uncertainty 
assessment in transformer networks using attention layers 
and MCD, while in Section 4, we analyze the calibration 
of predictions. Section  5 presents the datasets and the 
evaluation scenario. The obtained results are presented in 
Section 6, followed by conclusions and ideas for further work 
in Section 7.

Related Work

We present the related work categorized into four areas. 
In Section 2.1, we introduce work done on hate speech 
detection, followed by the related research on transformer 
architecture for text classification in Section  2.2. In 
Section  2.3, we describe existing approaches for the 
assessment of uncertainty in text classification. Finally, 
in Section 2.4, we relate hate speech detection with the 
particularities of sentic computing.

Hate Speech Detection

Analyzing sentiments and extracting emotions from texts are 
very useful natural language processing (NLP) applications. 
With the rise of social media popularity, the hate speech 
detection became highly needed. Hate speech is defined as 
written or oral communication that abuses or threatens a 
specific group or target [15].

Detecting abusive language for less-resourced 
languages is complex, and has inspired research in 
multilingual and cross-lingual methods [16]. These 
methods are especially useful when the involved languages 
are morphologically or geographically close [18]. In our 
work, we investigate hate speech detection methods for 
English, Croatian, and Slovene languages. The English 
language is well-resourced and researched [19, 22, 24]. 
Recently, hate speech detection studies appeared for 
Croatian [25, 27, 29] and Slovene [31, 33, 34].

The hate speech detection is mostly treated as a binary 
text classification problem. In the past, the most frequently 
used classifier was the Support Vector Machines (SVM) 
method [37]. However, deep neural networks are now a 
dominant technique, first through RNNs [38], and recently 
using the pre-trained transformer networks [39, 40]. In 
this work, we analyzed the state-of-the-art pre-trained 
transformer networks, called (multilingual) BERT model.
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Attention Networks for Text Classification

Attention mechanism is a key component of transformer 
architecture, proposed by [6]. Due to its power and suitability 
for parallelization, this architecture soon replaced LSTM 
networks for many NLP tasks. Recently, large pre-trained 
transformer models have been investigated in the context 
of text classification tasks. For example, [11] trained both 
multiplicative LSTM (mLSTM) and transformer language 
models on a large 40GB text dataset [42] and transferred 
those models to binary and multi-class text classification 
problems. They concluded that the transformer model 
outperforms the mLSTM model, especially when fine-tuned 
for multidimensional emotions classification.

The BERT model [43] uses the transformer architecture 
and large text corpora to learn masked language model and 
sequence of sentences tasks. BERT and its follow-ups are 
able to learn and extract many language characteristics (both 
syntactic and semantic) and excel for many text classification 
tasks. Despite the short time since its conception, BERT 
has already attracted enormous attention from the NLP 
community. Hundreds of research groups extensively 
research it; see a recent overview by [23]. Practical guidelines 
on how to fine-tune the BERT model for text classification 
were compiled by [41].

A multilingual hierarchical attention mechanism for 
document classification was investigated by several authors 
[44–46]. However, different attention layers of large pre-
trained models were not tested separately or in the context 
of prediction reliability. Also, to the best of our knowledge, 
the predictive reliability of BERT outputs has not been 
investigated, yet.

Prediction Uncertainty for Text Classification

While recent works on classification reliability mostly 
investigate deep neural networks, many other probabilistic 
classifiers were analyzed in the past [10]. For example, [30] 
explores the probabilistic properties of SVM predictions.

Prediction uncertainty is an important issue for black-
box models like neural networks, as they do not provide 
interpretability or reliability information about their 
predictions. Most reliability scores for deep neural networks 
are based on a Bayesian framework. The most popular 
exception is the work of [26], who proposed using deep 
ensembles to estimate the prediction uncertainty.

An efficient approach to reliability assessment in neural 
networks is to mimic the Bayesian inference using MCD 
[12]. The dropout technique was first introduced to RNNs in 
2013 [47], but further research revealed a negative impact of 
dropout in RNNs [4]. Later, dropout was successfully applied 
to language modeling by [69], who applied it only to fully 
connected layers. [5] implemented the variational inference 

based dropout, which can regularize also recurrent layers. 
Additionally, they provide a solution for dropout within 
word embeddings. The method mimics Bayesian inference 
by combining probabilistic parameter interpretation and 
deep RNNs. The authors introduce the idea of augmenting 
probabilistic RNN models with the prediction uncertainty 
estimation. Several other works investigate how to estimate 
prediction uncertainty using RNNs [48], e.g., Bayes by 
Backpropagation (BBB) [32].

Recently, a fast and scalable method called ‘SWAG’ 
was proposed by [36]. The main idea of this method is to 
randomize the learning rate and interpret it as a sampling 
from the Gaussian distribution. SWAG fits the Gaussian 
distribution by capturing the Stochastic Weight Averaging 
(SWA) mean and co-variance matrix, representing the first 
two moments of stochastic gradient descent iterations. 
Different to SWAG, we use the Gaussian distribution as a 
posterior over neural network weights, and then perform a 
Bayesian model averaging for uncertainty estimation and 
calibration.

MCD was recently used within several models and 
different architectures to obtain the prediction uncertainty 
and improve the classification results [49–51]. Transformer 
networks were not yet analyzed.

Sentic Computing

Sentiments and emotions play an essential role in hate and 
offensive speech, and have been used successfully in their 
automatic detection. [28] have used eight basic emotions 
from Plutchik’s model [52], the positive and negative 
sentiment polarities, indicator of a presence of a word in 
the Hatebase lexicon2, and the intensity of anger emotion. 
Their combination of the lexicon-based and machine 
learning approach successfully predicted hate speech and 
showed a high utility of emotional features. Alorainy et al., 
2018 [1] used the emotional analysis on Twitter suspended 
accounts and discovered that they contain more disgust, 
negative sentiment, fear, and sadness than active accounts. 
Using this information for hate speech detection, their 
machine learning models showed improved performance. 
[21] also used the eight basic emotions in their emotional 
analysis and showed that emotions could improve 
Facebook posts’ clustering. Finally, [2] used several 
different groups of features (linguistic, sentiment, and 
Twitter-specific features such as hashtags and profanity 
lexicon) to predict hate speech. Interestingly, their results 
show that Twitter-specific features are the most successful, 
and the additional sentiment features do not improve 
predictive performance. All the methods mentioned above 

2  http://www.hateb​ase.org
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use either classical machine learning approaches such as 
SVM, Naive Bayes, logistic regression, and random forest, 
or RNNs, such as LSTMs.

To advance approaches based on lexical keywords 
and frequency statistics, [54] proposed a framework for 
emotional computing called ‘SenticNet’ that captures 
semantics and latent emotional information by relying 
on the implicit meaning associated with commonsense 
concepts. The original emotion categorization model 
called Hourglass of Emotions [53] was supported by the 
SenticNet 4 framework [54], while its newer revised version 
[55] is used in SenticNet 6 framework [17]. These models 
are biologically-inspired and psychologically-motivated. 
Each of the two models is based on four independent but 
concomitant affective dimensions, which can be combined 
to build more complex emotions. Based on this, SenticNet 
framework can describe and explain emotional experiences 
by disassembling text to the ground sentiments.

The SenticNet framework has been successfully used 
in sentiment classification problems. Sentic LSTM [35] 
integrates the explicit emotional information with the 
LSTM networks by adding a recurrent additive network that 
simulates sentic patterns. A recent SenticNet 6 framework 
[17] combines top-down and bottom-up knowledge 
representation. From top-up direction it encodes meaning 
using symbolic models (logic and semantic networks); in 
bottom-up direction, it learns syntactic patterns from data, 
using subsymbolic methods (biLSTM and BERT). Authors 
report state-of-the-art results for sentiment analyses.

In our work, we use the transformer architecture that can 
extract highly relevant information from texts. Concerning 
emotions, the question we investigate is whether adding 
emotional information to the distribution of predictions can 
improve the performance of hate speech detection. This 
question is particularly relevant for the current state-of the-
art BERT model [43], which is known to capture a plethora 
of language information, such as part-of-speech tags, 
dependency structure, and sentiment.

Bayesian Attention Networks

The BERT model [43] is the transformer network that has 
achieved state-of-the-art results in many NLP tasks, including 
text classification [58–60]. In this work, we introduce 
Monte Carlo Dropout to transformer networks and BERT 
to construct their Bayesian variants. Analysis of different 
amounts of dropout, different variants of BERT modifications, 
and their hyper-parameters would require pretraining and 
fine-tuning several different BERT models, which would 
require substantial computational resources. For example, 
pretraining a single BERT model on four Tensor Processing 
Units (TPUs) requires more than a month of computational 

time. Thus, in this work, we explore two reliability extensions, 
i) the reliability on the encoder part of the BERT architecture 
trained from scratch (without pretraining) on the task 
of interest (in this work, we refer to these models as the 
attention networks), and ii) reliability of pre-trained BERT 
models, using only fine-tuning. We believe this is a reasonable 
setting which sheds light on an important reliability aspect of 
transformer networks.

In Section 3.1, we first formally define the attention 
network architecture, and in Section  3.2, we make it 
Bayesian by introducing MCD. Finally, in Section 3.3, we 
describe how the MCD principle can be employed in already 
pre-trained BERT models.

Attention Networks

The basic architecture of the attention network follows the 
architecture of transformer networks [6] and is shown in 
Fig. 1.

The proposed architecture is similar to the encoder part of 
the transformer architecture. The difference is in the output 
part, where a single output head was added to perform binary 
classification using the sigmoid activation function. The main 
difference to BERT, which also uses just the encoder part of 
transformer network, is that we do not use any pretraining. 
The second difference is that attention network uses the 
classification head and BERT has the language model head. 
In both cases, the output is composed of feed-forward layers 
followed by the nonlinearity but with different dimensions 
in each case. By not relying on the pretraining, we are much 
more flexible concerning the number of layers and number 
of neurons in each layer. For our tasks, we use orders of 
magnitude fewer parameters, e.g., we used a maximum of 
3 million parameters (at the expense of loosing information 
from pretraining). The architecture can contain many 
attention heads, where a single attention head is computed as:

The attention matrices are commonly known as the query 
Q , the key K , and the value matrix V . The normalizing 
factor, dk , denotes the dimensionality of keys. The attention 
function can be described as mapping the query and the 
set of key-value pairs to the output, where the query, keys, 
values, and output are all vectors. The output is computed as 
a weighted sum of the values. The weight assigned to each 
value is computed by a compatibility function of the query 
with the corresponding key.

Intuitively, the multiplication of query and key 
vectors with subsequent values can be understood as the 
extraction of relations. The softmax activation enables 
each pair of considered input tokens to be represented 

oh = softmax(
Q ⋅ KT

√
dk

) ⋅ V,

356 Cognitive Computation (2022) 14:353–371



1 3

with a single real value. It effectively introduces 
sparseness into the weight space – only certain token 
pairs emerge with high weights and are relevant for 
the remaining part of the considered neural network 
architecture. In practice, multiple such heads can be 
concatenated and fed into the succeeding feed-forward 
layer. The application of softmax has been shown to 
emphasize only particular parts of the parameter space, 
thereby making the neural network more focused.

The positional encoding, as discussed in [6], represents 
a matrix that encodes individual positions in a matrix 
of the same dimensionality as the one holding the 
information on sequences (input embedding). The 
positional encoding was introduced to account for word 
order. Here, relative distances between different tokens 
are taken into account by incorporating the position-
related signal into a given token representation.

While there are, in principle, many different ways of 
how attention networks can be extended with the Bayesian 
approach, we propose to use the well-established MCD.

Monte Carlo Dropout for Attention Networks

In our proposal, called Bayesian Attention Networks 
(BAN), we use MCD within attention networks but 
contrary to the original dropout setting, the dropout 
layers are active also during the prediction phase. In 
this way, the predictions are not deterministic but are 
sampled from the learned distribution, thereby forming 
an ensemble of predictions. The obtained distribution can 
be, for example, inspected for higher moment properties 
and can offer additional information on the uncertainty 
of a given prediction. During the prediction phase, the 
dropout layers are activated again and the output of a 
proportion of randomly selected neurons in those layers 
is set to zero. A forward pass on such partially activated 
architecture is repeated for a fixed number of samples, 
every time dropping different randomly selected neurons. 
The results of different passes can be combined to obtain 
the final prediction, or further inspected as a probability 
distribution.

Monte Carlo Dropout for BERT

MCD was used in the BERT model in the same way as in 
BAN. MCD can provide multiple predictions of a neural 
network during the test time, as long as the dropout was 
used during the training phase [61]. Training of neural 
networks with the dropout distributes the captured 
information across the network. During the prediction, 
such a trained neural network is robust. Using the dropout 
principle, a new prediction is possible in each forward 
pass. A sufficiently large set of such predictions can be 
used to estimate the prediction reliability. The BERT 
model is trained with 10% of dropout in all of the layers 
by default, and thus allows for multiple predictions using 
the described principle. We call this model ‘MCD BERT’. 
A limitation of this approach is that a single dropout 
rate of 10% is used during training, while other dropout 
probabilities might be more suitable for reliability 
estimation. We leave this analysis for further work.

Fig. 1   A scheme of Attention Networks. The dropout is introduced in 
the blue colored layers

357Cognitive Computation (2022) 14:353–371
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Calibration of Probabilistic Classifiers

The quality of reliability scores returned by probabilistic 
classifiers (such as BAN and MCD BERT) is assessed 
with calibration measures. A classifier is calibrated if its 
output scores are close to actual probabilities in a sense 
that a class predicted with the score p is correct with the 
actual probability p, i.e. in p ⋅ 100 percent of cases. Without 
special calibration approaches, most neural networks 
are overconfident and overestimate their probabilities. 
The calibration of a model can be visualized using a 
calibration plot where the model’s prediction accuracy (true 
probabilities) is plotted against the predicted probabilities 
(i.e. outputs scores). The perfect calibration manifests itself 
as a diagonal in the calibration plot (see an example of a 
calibration plot in Fig. 6).

Since classifiers are typically not perfectly calibrated, 
we investigated different methods to improve the 
calibration of used neural networks. We compared several 
existing calibration methods with a novel approach that 
combines existing techniques with a method for threshold 
adaptation. In Section  4.1, we describe the existing 
calibration methods, followed by the proposed threshold 
adaptation in Section 4.2.

Existing Calibration Methods

We first formally describe how to obtain calibrated 
predictions from the reliability scores. Let (X, Y) be the input 
space, where X represents the set of predictive variables, 
and Y is the binary class variable (either 0 or 1). Let f be the 
predictor (e.g., neural network) with f (X) = (Ŷ , P̂) , where 
Ŷ  is the binary class prediction, and P̂ is its associated 
confidence score or probability score of correct prediction. 
The calibration of the model f is expressed as:

where p̂ is the prediction score from [0, 1] interval, obtained 
from the predictor f. We interpret this score as the probability 
of a specific outcome, assigned by the model f. Probability 
p is the model’s confidence or true probability that model 
f predicts correctly. If a model predicts a certain outcome 
with a high probability, it is desirable that the confidence of 
this prediction being correct is also high. In the ideal case 
of perfect calibration p̂ = p.

Based on Equation (1), there are two ways to reduce the 
calibration error: either to obtain calibrated predictions p̂ or 
to manipulate the prediction threshold in such a way that the 
predicted outcome Ŷ is better calibrated. To assess the quality 

(1)P(Ŷ = Y|P̂ = p̂) = p,

of the produced reliability scores, we compare them to results of 
two calibration methods, Platt’s method and Isotonic regression.

Platt’s method [30] learns two scalar parameters a, b ∈ ℝ in 
such way that the prediction q̂ = 𝜎(ap̂ + b) presents a calibrated 
probability of predicted score p̂ , and � is the sigmoid function. 
To find good values of a and b, typically a separate calibration 
dataset is used. The isotonic regression is a non-parametric form 
of regression in which we assume that the function is chosen 
from the class of all isotonic (i.e., non-decreasing) functions [62]. 
Given the predictions from our classifier p̂ , and the true target y, 
the calibrated prediction returned by the isotonic regression is:

where m is a non-decreasing function.

Adaptive Threshold

We explored the adaptive threshold (AT), which we 
apply to classification with BANs. During learning, after 
each weight update phase, we assess the performance 
of BAN. For each instance in the validation set, we do 
multiple forward passes with unfrozen dropout layers and 
store the average of the returned scores as the probability 
estimate. Once the probability estimates for the validation 
set are collected, we test several decision thresholds and 
determine the predictions of each instances. The best-
performing threshold w.r.t. a given performance metric 
(in our case the classification accuracy), is stored together 
with its performance and weights of the neural network. 
The obtained performance estimate can also be used for 
early stopping in the learning phase. When we apply the 
model to new instances, we use the best threshold from 
the training phase (instead of the default value of 0.5). 
The purpose of AT is to automatically find the threshold 
with the best performance. To summarize, we employ the 
following procedure: 

1.	 During the training and after each weight update, we gen-
erate the probability distribution with MCD. The mean 
of the distribution is considered the probability score of 
a given instance being assigned to the positive class.

2.	 Using the validation set, we test a range of possible thresh-
olds that determine the instances’ labels. We tested the 
threshold range between 0.1 and 0.9 in increments of 0.001.

3.	 If the accuracy obtained by the default threshold (0.5) 
was improved by any other threshold, we stored both the 
current parameter set and the threshold value used to 
obtain the improved performance on the validation set.

4.	 The weights of the best performing model and the match-
ing threshold are returned as the final prediction model.

q̂ = m(p̂) + 𝜖
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Evaluation Settings

In this section, we present the evaluation settings, and in 
Section 6, we report the results. Starting with Section 5.1, 
we describe the used hate speech datasets, followed by the 
affective dimensions of the Hourglass of Emotions method in 
Section 5.2. The implementation details of the used prediction 
models are presented in Section 5.3. In Section 5.4, we present 
the evaluation measures for the predictive performance, and in 
Section 5.5, the measures used in the evaluation of calibration.

Hate Speech Datasets

To test the proposed methodology in the multilingual 
context, we used hate speech datasets in three languages, 
English, Croatian, and Slovene. The summary of datasets is 
available in Table 1. 

1.	 The English dataset3 is extracted from hate speech and 
offensive language detection study of [22]. The subset of 
data we used consists of 5,000 tweets. We took 1,430 tweets 
labeled as the hate speech and randomly sampled 3,670 
tweets from the remaining 23,353 tweets.

2.	 The Croatian dataset was provided by the Styria media 
company within the EMBEDDIA project4. The texts consists 
of user comments on the news portal Večernji list5. The 
original dataset consists of 9,646,634 comments from which 
we selected 8,422 comments. 50% of instances were labeled 
as the hate speech by human moderators, and the other half 
was chosen randomly from non-problematic comments.

3.	 The Slovene dataset was produced in the Slovenian national 
project FRENK6. The text dataset used in the experiment 
is a combination of two different studies of Facebook 
comments [33]. The first group of comments was collected 
on LGBT homophobia topics, while the second on anti-
migrants posts. In our final dataset, we used all of the 2,182 
hate speech comments, and the same number of non-hate 
speech comments were randomly sampled.

The Hourglass of Emotions Affective Dimensions

To test if emotional information extracted from text can 
complement the information extracted by BERT models, 
we used the English tweets dataset and affective dimensions 
obtained with two versions of the Hourglass of Emotions 
model; the affective dimensions of the original model can 
be extracted using the SenticNet 4 framework [53], and the 
affective dimensions of its revision [55] are available in the 
SenticNet 6 framework.

SenticNet 4

We used the SenticPhrase interface to obtain the original 
Hourglass of Emotions affective dimensions from the 
SenticNet 4 framework [14]. For each sentence, we 
extracted four affective dimensions (pleasantness, attention, 
sensitivity, and aptitude). Within SenticNet 4, verb and 
noun concepts are linked to primitives, and in this way, 
most concept inflections can be captured by the knowledge 
base verb concepts. The implementation is freely accessible 
via Python API (Application Programming Interface) in the 
Python sentic package7.

To gain a better understanding of the four affective 
dimensions, [57] presented the following example: 

1.	 The user is happy with the service provided 
(pleasantness).

2.	 The user is interested in the information supplied 
(attention).

3.	 The user is comfortable with the interface (sensitivity).
4.	 The user is disposed to use the application (aptitude).

The hate speech texts usually express unhappiness with 
the current situation and unwillingness to hear or consider 
different opinions. Hence, the nature of the hate speech is 
opposite to the nature of pleasantness and aptitude, while it 
can be correlated with the attention.

The distributions of the affective dimensions for English 
tweets, separately for non-hate speech and hate speech instances, 
are shown in Fig. 2. While the distributions are different among 

Table 1   Characteristics of the 
datasets used in the experiments

Dataset type Size Hate Non-hate LSTM embeddings

English tweets 5000 1430 3670 sentence
Croatian news comments 8422 4211 4211 fastText
Slovene Facebook comments 4364 2182 2182 fastText

3  https​://githu​b.com/t-david​son/hate-speec​h-and-offen​sive-langu​age
4  http://embed​dia.eu
5  https​://www.vecer​nji.hr
6  http://nl.ijs.si/frenk​/ (Research on Inappropriate Electronic Com-
munication) 7  https​://pypi.org/proje​ct/senti​c/
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the variables, the differences between the hate speech and non-
hate speech distributions are not pronounced. This indicates that 
these variable are not strong indicators of hate speech if used 
independently, but might still be useful in combination with 
textual features extracted by neural networks.

SenticNet 6

The revisited Hourglass of Emotions model [55] is based on 
empirical evidence obtained in the context of sentiment analysis. 
Each of the four proposed baseline affective dimensions gives 
positive and negative perspective of one emotion: 

1.	 Introspection - the joy versus sadness;
2.	 Temper - the calmness versus anger;
3.	 Attitude - the pleasantness versus disgust, and
4.	 Sensitivity - the eagerness versus fear.

The dataset of affective dimensions was obtained using the 
senticnet Python library8. We used the publicly available 

word level API to obtain the affective dimension values for 
each token separately. We averaged the affective dimension 
and polarity values on the level of each tweet/comment.

We show the distributions of these new dimensions 
for English tweets in Fig.  3. Similarly to SenticNet 4 
framework, the distributions between the hate speech and 
non-hate speech tweets are similar.

Implementation of Prediction Models

We used three types of neural network architectures. As 
a baseline, we used MCD LSTM networks [7], which 
include reliability information obtained with MCD. We 
compared that model with newly proposed BAN and 
MCD BERT. As shown in the right-most column of 
Table 1, the input to MCD LSTM are pre-trained word 
embeddings: sentence encoder for English [20], and 
fastText embeddings9 for Slovene and Croatian. For the 
implementation of BAN, we used the Keras tokenizer10, 
and for MCD BERT, we used the BERT’s tokenizer.

Fig. 2   Distributions of the four 
affective dimensions from the 
original Hourglass of Emo-
tions model, obtained from 
the SenticNet 4 framework for 
the dataset of English tweets. 
Left-hand side shows non-hate 
speech tweets and right-hand 
side shows hate speech tweets

Fig. 3   Distributions of the four 
affective dimensions from the 
revisited Hourglass of Emo-
tions model, obtained from 
the SenticNet 6 framework for 
the dataset of English tweets. 
Left-hand side shows non-hate 
speech tweets and right-hand 
side shows hate speech tweets

8  https​://pypi.org/proje​ct/senti​cnet/
9  https​://fastt​ext.cc
10  https​://keras​.io/prepr​ocess​ing/text/
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We implemented the proposed BANs11 and MCD BERT12 
with the PyTorch library. The main hyper-parameters of the BAN 
architecture are the number of attention heads and the number of 
attention layers. The adaptive classification threshold (described in 
Section 4.2) is computed every time we evaluate the performance 
on the validation set. When a network makes a prediction, we 
deactivate all layers except the dropout layers. In this way, we 
maintain the variance of predictions. Each final prediction consists 
of a set of results obtained by several forward passes.

Other parameters are set as follows. We use the Adamax 
optimizer [63], a variant of Adam based on infinity norm, 
and binary cross-entropy loss function. To automatically stop 
training, we use the stopping step of 10 – if after 10 optimization 
steps the performance on the validation set is not improved, the 
training stops.

We explored the following hyperparameter tuning space: 
the validation percentage (size of the validation set) was 
varied between 5% and 10%. The rationale for testing different 
validation set sizes are relatively small datasets, therefore it 
is difficult to strike a good balance between the training and 
validation set. Given enough data, the validation set shall be on 
the upper margin. The number of epochs was either 30 or 100, 
the number of hidden layers and attention heads was 1 or 2. The 
maximum padding of the input sequences was either 48, 32, or 

64. The learning rate was either 0.001 or 0.0005, and AT was 
either enabled or disabled.

MCD LSTM networks consist of an embedding layer, LSTM 
layer, and a fully connected layer within the word2vec [64] and 
ELMo [65] embeddings. To obtain the best architectures for the 
LSTM and MCD LSTM models, we tested different number of 
units, batch sizes, dropout rates, etc.

For BERT, we used the BERT base model in English and 
the multilingual BERT variant for Croatian and Slovene. 
We used the HuggingFace implementation13. To combine 
the information from the MCD BERT and SenticNet, we 
generated 1000 MCD BERT predictions for each instance. 
We merged them with the four Sentic variables, described 
in Section 5.2, thus obtaining 1004 variables. This data was 
passed as an input to the SVM model. The process used 
5-fold cross-validation.

Prediction Performance Evaluation Measures

Depending on the purpose of the prediction model, we 
might optimize different evaluation measures, such as 
classification accuracy, precision, recall, or F1 score. In the 
hate speech detection, we want to avoid false accusations 
of hate speech. For that aim, we maximize precision on 

Fig. 4   Trade-off between precision and accuracy across various 
hyper-parameters settings of BAN model. Each curve shows one set 
of hyper-parameters, each color depicts one decision threshold (0, 

0.25, 0.5, 0.75, or 1.0). The hyper-parameters contain the number of 
heads, max padding, number of layers, number of epochs, and valida-
tion set ratio

11  https​://githu​b.com/Krist​ianMi​ok/BAN
12  https​://githu​b.com/Krist​ianMi​ok/Bayes​ian-BERT 13  https​://huggi​ngfac​e.co/trans​forme​rs/model​_doc/bert.html
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the validation set during training. As this could negatively 
affect other measure, we alter the decision threshold to 
achieve good precision vs. accuracy balance. In Fig. 4, we 
present the accuracy-precision trade-off.

Calibration Quality Measures

To measure the quality of computed calibration scores, we 
use the expected calibration error (ECE) [66]. To compute 
ECE, we split all n predictions into M equally spaced bins 
B1,B2,… ,BM , that contain instances with prediction scores 
in the given bin. We sum the weighted differences between 
actual prediction accuracies and predicted scores over all 
the bins and normalizes the result with the number of 
instances n.

This measure produces lower scores for better calibrated 
models (lower calibration error).

Results

In this section, we present results of five sets of 
experiments. In Section  6.1, we report calibration of 
different prediction models, and in Section  6.2, their 

(2)ECE =

M∑

m=1

|Bm|
n

|accuracy(Bm) − score(Bm)|

prediction performance. The comparison between the 
reliability of BERT and MCD BERT is presented in 
Section 6.3, while the impact of sentic features is discussed 
in Section 6.4. Finally, we present different visualizations 
of models’ uncertainty in Section 6.5.

Calibration of BAN and BERT

Figure  5 shows how calibration of prediction scores 
changes during the training of BAN. The red line 
represents the performance of the fully trained network. 
It is apparent that an additional calibration is necessary 
– as the perfect calibration corresponds to the dotted line. 
Surprisingly, some of the training iterations show better 
calibrated scores. This is the motivation for AT, presented 
in Section 4.2.

Fig. 5   Calibration plot for 
the BAN English model after 
each epoch (green) based on 
the validation set and the best 
performing architecture. The 
transparency of the green cali-
brations lines decreases with the 
number of epochs (i.e. initial 
stages are the most transparent). 
The final calibration is in red 
and the dotted line shows the 
perfect calibration.

Table 2   The calibration scores of BAN with different calibration 
approaches on the English tweets dataset. We present average clas-
sification accuracy and F1 score with their standard deviations, com-
puted using 5-fold cross-validation

Calibration AT Accuracy F1 ECE

Raw False 0.83 [0.02] 0.82 [0.03] 0.547
Raw True 0.83 [0.01] 0.83 [0.04] 0.539
Isotonic False 0.84 [0.01] 0.82 [0.01] 0.230
Isotonic True 0.83 [0.01] 0.82 [0.02] 0.234
Platt’s False 0.84 [0.02] 0.82 [0.02] 0.225
Platt’s True 0.83 [0.01] 0.82 [0.01] 0.232
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In Tables  2, 3, and 4, the calibration results for 
different calibration settings on the BAN are presented: 
no calibration, isotonic regression, and Platt’s method. 
Each calibration is either combined with AT or not. For 
all three languages, both calibration methods improve 
the ECE score, and Platt’s method produces the best 
calibration scores. The AT slightly improves the ECE 
score for the uncalibrated (raw) results. This is especially 
true for the Slovene comments where the ECE score was 
reduced from 0.794 to 0.621. We can conclude that the 
calibration using AT heuristics might not be beneficial 
when used in combination with the established calibration 
techniques (isotonic regression and Platt’s method) but 
used exclusively.

To compare the calibration of MCD BERT with different 
BAN calibrations, we plotted their ECE scores in Fig. 6. 

It can be observed that calibration methods substantially 
improve the BAN score. However, the MCD BERT model 
is better calibrated even without the usage of an explicit 
calibration methods.

Prediction Performance

We compare the predictive performance of four neural 
network architectures in Table 5. MCD LSTM and BERT 
serve as the baselines for comparison with the proposed 
BAN and MCD BERT. The MCD BERT model provides the 
best results for all three languages. BERT models are pre-
trained on large amounts of text, which makes a significant 
difference compared to LSTM and BAN. MCD BERT is 
slightly better than BERT due to its better performance 

Table 3   The calibration scores of BAN with different calibration 
approaches on the Croatian user news comments dataset

Calibration AT Accuracy F1 ECE

Raw False 0.61 [0.02] 0.47 [0.03] 0.681
Raw True 0.62 [0.02] 0.50 [0.04] 0.663
Isotonic False 0.60 [0.01] 0.49 [0.04] 0.206
Isotonic True 0.61 [0.01] 0.50 [0.03] 0.206
Platt’s False 0.61 [0.02] 0.48 [0.02] 0.198
Platt’s True 0.62 [0.02] 0.49 [0.02] 0.197

Table 4   The calibration scores of BAN with different calibration 
approaches on the Slovene Facebook comments dataset

Calibration AT Accuracy F1 ECE

Raw False 0.59 [0.01] 0.33 [0.05] 0.794
Raw True 0.59 [0.02] 0.48 [0.05] 0.621
Isotonic False 0.58 [0.02] 0.48 [0.03] 0.212
Isotonic True 0.58 [0.02] 0.49 [0.03] 0.213
Platt’s False 0.58 [0.03] 0.475 [0.02] 0.206
Platt’s True 0.59 [0.02] 0.47 [0.04] 0.204

Fig. 6   Calibration plots based 
on English test set performance 
for MCD BERT and BAN with 
different calibration algorithms
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for the instances where BERT is uncertain. Here, multiple 
predictions reduce the prediction variance. MCD LSTM is 
more stable than BAN (see the standard deviation of F1 score 
in (see the standard deviation of F1 scores in Table 5). We 
attribute this to the larger number of parameters in BAN and 
insufficient number of training instances. BERT and MCD 
BERT models compensate for this problem with large scale 
pre-training.

Reliability of BERT and MCD BERT

As established in Section 6.1, BERT models are already 
well-calibrated. In this section, we test if the proposed 
MCD BERT extension is useful beyond the advantage in 
predictive performance, and analyze the ability of MCD 
BERT to detect problematic predictions. For each classifier 
(BERT and MCD BERT), we split the tested instances into 
two groups, uncertain and certain, based on the computed 
prediction scores. As BERT and MCD BERT return most 
of the predictions close to 0 or 1, we used the following 
criteria for the certainty of prediction scores. For MCD 
BERT, the tested instance is declared uncertain if the 
variance computed on 1000 dropout predictions is greater 
then 0.1, otherwise it is declared certain. As BERT returns 
a single prediction score, we have chosen the same number 
of uncertain instances as for MCD BERT, based on the 
criterion that their prediction scores are farthest away from 0 
or 1, i.e. they are least certain to be either hate speech or not.

In Table 6, we show the number of predictions where 
classifiers are correct/incorrect separately for instances 
with certain/uncertain prediction for each of the three 
languages. The ratio of incorrectly to correctly classified 
instances is significantly different between the certain and 
uncertain group, which is a strong indication that both 
BERT and MCD BERT correctly recognize uncertain 
predictions. This ratio is also much larger for MCD BERT 
than for BERT for the English and Croatian dataset, which 
testifies that the reliability of MCD BERT predictions is 
better. The ratio is similar for the Slovene dataset, where 
BERT also has a good ratio.

Using the Chi-square statistical test, we assessed the 
difference in correct/incorrect classifications between the 
certain and uncertain group. For the English dataset, this 
difference is highly significant for both BERT and MCD 
BERT ( p =1.384e-11 and 2.2e-16, respectively). For 
the Croatian dataset, the p-values are 1 and 8.348e-16, 
meaning that we cannot rely on BERT scores to detect 
uncertain classifications, while the distribution returned 
by the MCD BERT is very informative. The p-values for 
the BERT and MCD BERT on Slovene are 0.0037 and 
0.0002, respectively. Again, MCD BERT is much better 
in detecting unreliable classifications.

The observed difference in assessment of reliability can 
have important practical consequences. For example, if 
we are faced with the re-annotation task to improve the 
quality of predictions, MCD BERT would choose much 
better borderline instances compared to BERT.

Combining Emotional Information with MCD BERT

As the experiments in Section 6.2 show, MCD BERT is 
superior to other tested models on the hate speech detection 
task. In this section, we test if additional emotional information 
obtained from the SenticNet framework can complement the 

Table 5   Predictive performance of compared models. We present the average classification accuracy and F
1
 score with their standard deviations 

(in brackets), computed using 5-fold cross-validation. The best accuracy for each language is typeset in bold

English Tweets Croatian Comments Slovene Comments
Model Accuracy F1 Accuracy F1 Accuracy F1

MCD LSTM 81.0 [1.2] 81.9 [1.3] 63.7 [1.0] 51.0 [3.3] 55.3 [0.69] 43.13 [0.8]
BAN 83.3 [1.7] 81.6 [3.4] 61.4 [2.0] 38.1 [8.6] 57.4 [1.7] 35.1 [6.3]
BERT 90.9 [0.7] 90.0 [0.7] 70.8 [1.0] 61.2 [1.5] 66.4 [5.0] 67.8 [2.5]
MCD BERT 91.4 [0.7] 90.4 [0.8] 71.5 [1.2] 62.9 [1.7] 68.4 [1.9] 68.6 [1.6]

Table 6   The number and ratio of predictions where classifiers are 
correct/incorrect is very different for instances where BERT and 
MCD BERT are certain/uncertain. We use three datasets, English 
(ENG), Croatian (CRO), and Slovenian (SLO)

BERT MCD 
BERT

Language Correct Certain Uncertain Certain Uncertain

ENG Yes 880 31 891 24
No 71 18 62 23
N/Y Ratio 0.08 0.58 0.06 0.95

CRO Yes 1176 35 1053 152
No 461 14 336 139
N/Y Ratio 0.39 0.40 0.31 0.91

SLO Yes 576 28 537 55
No 241 27 229 51
N/Y Ratio 0.42 0.96 0.42 0.92
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information about the hate speech extracted by the MCD 
BERT model and further improve its performance. We merge 
the affective dimensions computed based on SenticNet 4 and 
SenticNet 6 with the output vector of MCD BERT predictions, 
described in Section 3.3. Additionally, we investigate if the 
emotional information can help in the interpretation of trained 
hate speech detectors.

For the evaluation, we use 5-fold cross-validation. In 
each iteration, we combine the predictions from MCD 
BERT (1000 of them, sorted in ascending order) with 
the affective dimensions from the original and revised 
variant of the Hourglass of Emotions models as depicted 
in Fig. 7. We obtain four affective dimensions from the 
original Hourglass of Emotions model (pleasantness, 
aptitude, sensitivity, and attention), and four from the 
revisited model (introspection, sensitivity, temper, and 
attitude). Using the dataset obtained in this way, we train 
the SVM model to predict the hate speech. According 
to the results in Table  7, the additional information 
does not improve the hate speech detection. The same 
conclusions can be drawn from Fig. 8, where we plot 
the scores assigned to the used features by the random 
forest algorithm [68]. This learning algorithm can detect 
feature dependencies that affect the prediction variable. 
Thus, the results show that SVM and random forest 
cannot detect any pronounced interactions between 
affective dimensions and MCD BERT predictions that 
would impact the hate speech classification.

The results show that introducing knowledge regarding 
emotional content after the predictions are done cannot 
improve the performance. However, according to the 

authors of the Hourglass of Emotions revisited model 
[55], the full sentence model introduced in SenticNet 
6 [17] can provide superior text classification results 
on problems involving emotions. Thus, the layers that 
can capture emotional information from the text should 
be build within the prediction model architecture. 
Introducing uncertainty component in such architecture 
remains an interesting direction for further research.

To better understand the emotions involved in hate 
speech problem, we further investigated the relation 
between the affective dimensions of the two Hourglass 
of Emotions models (original and revisited) and the hate 
speech prediction probabilities of MCD BERT, separately 
for the non-hate speech and hate speech English tweets.

The top line of Fig. 9 shows results for the affective 
dimensions of the original Hourglass of Emotions models 
(pleasantness, attention, sensitivity, and aptitude). The 
top parts of graphs show that linear regression lines (in 
orange) for the hate speech are almost horizontal, so 
there is no significant correlation between the predicted 
probability of hate speech obtained with MCD BERT and 

Fig. 7   A diagram of merging 
MCD BERT predictions with 
the emotional information based 
on SenticNet 4 and SenticNet 6 
frameworks. The concatenated 
vector is an input to the final 
SVM classifier that predicts the 
hate speech

Table 7   Predictive performance of the MCD BERT model and the 
SVM model trained on the output features of MCD BERT and affec-
tive dimensions from the two Hourglass of Emotions models for the 
English tweets dataset

Model Accuracy F1

MCD BERT 91.4 [0.7] 90.4 [0.8]
MCD BERT + SenticNet 4 + 

SenticNet 6
91.4 [0.5] 90.5 [0.9]
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affective dimensions. In contrast, the correlation between 
the predicted probability and affective dimensions for 
the non-hate speech tweets is significant, as the blue 
regression lines at the bottom parts of the graphs in the 
top row show. Both attention and sensitivity have positive 
correlation with the hate speech prediction probability. 
This is in accordance with the conclusions of the original 
Hourglass of Emotions model that high attention and 
sensitivity lead to aggressiveness (Fig. 5 in [53]).

The bottom line of Fig.  9 shows the affective 
dimensions of the revisited Hourglass of Emotions model 
(sensitivity, temper, attitude and introspection). These 
affective dimensions are all negatively correlated with 

the non-hate speech. It can be observed that there is 
also a slight negative correlation between the affective 
dimensions and hate speech probabilities, especially 
for sensitivity and temper. Thus, tweets that contain 
dominantly positive emotions have a low probability of 
being hate speech which is in accordance with the results 
presented by [55].

Visualization of Uncertainty

Obtaining multiple predictions for a specific instance can 
improve understanding of the final prediction. We used 

Fig. 8   Feature importance 
scores according to the random 
forest algorithm. We show 
scores of 8 affective dimensions 
extracted from the SenticNet 4 
and SenticNet 6 frameworks, 
as well as five most important 
attributes generated by the 
MCD BERT model

Fig. 9   Relationship between 
prediction probability of MCD 
BERT and the Hourglass of 
Emotions affective dimensions. 
Original affective dimensions 
are shown in the top line, while 
revisited dimensions are shown 
in the bottom line of graphs
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the mean of the distribution to estimate the probability. 
The variance informs us about the spread and certainty 
of predictions. We can inspect the actual distribution of 
prediction scores with histogram plots, as illustrated in Fig. 10 
for a few correctly classified instances from the English 
dataset, and on Fig. 11 for a few misclassified instances. We 
analyze distributions produced by the MCD LSTM baseline, 
BAN with 10% and 30% dropout, and MCD BERT.

Histograms in Figs. 10 and 11 visually display the 
prediction certainty for the specific instances. We notice 
that MCD BERT’s predictions are always close to 0 
or 1, especially when the model seems certain of the 
prediction. BAN with 10% dropout provides a similar 
spread of values as MCD BERT. This is expected as 
BERT is also pre-trained with 10% dropout. However, 

30 % of dropout in BAN results in a much larger spread 
of predictions for instances where BAN is uncertain. 
Note that the results of MCD BERT are concentrated 
in a much narrower interval compared to MCD LSTM 
and BAN.

While visualizations of prediction distributions for 
individual instance (see Figs. 10 and 11) are useful in 
the assessment of their prediction reliability, we also 
aggregate results over multiple instances to understand 
more general reliability phenomena. Following [7], we 
visualize the embeddings of the prediction distributions. 
The idea of this visualization is to detect and identify 
clusters of certain and uncertain classifications. First, 
we obtain many predictions (1,000 in our experiments) 
for each instance. The space of prediction distributions 

Fig. 10   Distributions of prediction scores for a few correctly classified English instances. We show histograms for MCD LSTM (first row), BAN 
with 30% dropout (second row), BAN with 10% dropout (third row), and MCD BERT (fourth row). Each tweet is shown in a separate column

367Cognitive Computation (2022) 14:353–371



1 3

across instances is embedded into two dimensions by 
the Uniform Manifold Projections method (UMP) 
[67]. In this way, we obtain a two-dimensional space 
corresponding to the initial 1,000 dimensional space 
of prediction distributions. Next, we use the Gaussian 
kernel estimation to identify equivalent regions and 
connect them with closed curves. Finally, the shapes 
and sizes of individual predictions are chosen based on 
their classification error and certainty of predictions. 
The goal of this visualization is to discover structures 
within the space of probability distributions, possibly 
offering insights into the drawbacks and limitations of 
the analyzed classifier. The resulting visualizations are 
shown in Figs. 12 and  13. In Fig. 12, the plot displays 
the position of certain and uncertain test set instances 

in the embedded space of distributions, while in Fig. 13 
the differences are based on the mean of predicted 
probability scores.

In both Figs.  12 and 13, the probability space is 
distinctly separated into two components, indicating 
that there are predictions for which the neural network 
is certain (and were correctly classified). However, for 
some predictions, especially non hate speech instances, 
the model is less certain (albeit still correct). The two 
visualizations demonstrate how the probability space 
is split into distinct components for a trained neural 
network. The visualizations also shows problematic 
predictions, allowing their identification and potentially 
facilitating the debugging process for developers (e.g., 
an inspection of convergence).

Fig. 11   Distributions of prediction scores for a few incorrectly clas-
sified English instances. We show histograms for MCD LSTM (first 
row), BAN with 30% dropout (second row), BAN with 10% dropout 

(third row), and MCD BERT (fourth row). Each tweet is shown in a 
separate column
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Conclusions and Future Work

In real world scenarios, an automatic detection of hate 
speech requires high precision and reliable decisions. Wrong 
classifications can lower the level of democratic debate and 
damage freedom of speech. In technological terms, NLP 
is witnessing a switch from RNNs with pre-trained word 
embeddings (such as LSTM with fastText) to large pre-
trained transformer models (such as BERT).

We proposed to use the MCD in the attention layers of 
transformer neural networks, and to unfreeze dropout layers 
also during the prediction phase. This resulted in two new 
architectures, BAN and MCD BERT. The BAN models are 

transformer networks trained from scratch, using dropout 
in both training and prediction phase. MCD BERT uses 
pretrained BERT model and uses dropout during fine-tuning 
and prediction phase. We have shown that these approaches are 
useful for estimation of prediction uncertainty. MCD BERT 
significantly improves the prediction performance in the hate 
speech detection task. Its pre-training extracts useful information 
about the language use that can be successfully exploited in the 
fine-tuning to a specific problem. BANs, trained from scratch, 
are not competitive with this. We also empirically investigated 
the calibration of BAN and MCD BERT. The results show that 
MCD BERT is much better calibrated than BAN.

Multiple predictions obtained from MCD BERT not only 
produce better predictive performance compared to BERT, but 
also provide better reliability information. The visualizations 
based on them enable detection of less certain decisions and can 
help moderators or annotators to focus on uncertain instances.

In line with the recent research showing that the affective 
information available in the SenticNet 6 framework provides 
favorable results in the sentiment analysis [55], we tested this 
information on the hate speech detection task. We combined 
affective dimensions from the original and revisited Hourglass 
of Emotions models with predictions generated by the MCD 
BERT model. While our results do not show any improvement 
in predictive performance, we believe inclusion of affective 
information should be incorporated within the prediction model 
together with possibility of obtaining prediction uncertainty. 
Thus, we see an opportunity for further work in this area by 
introducing BERT-based uncertainty estimated into full 
sentence models from the SenticNet 6 framework. Nevertheless, 
the predictions of the MCD BERT model confirm the findings 
of the Hourglass of Emotions model. The affective dimensions 
of the Hourglass of Emotions model are correlated with the 
non-hate speech probabilities returned by the MCD BERT, and 
can potentially explain emotions involved in the hate speech. 
Breaking down a complex offensive language to fundamental 
emotions can bring interesting insights into the hate speech 
problem.

In future work, we aim to adapt other Bayesian approaches, 
such as SWAG, to transformer networks. Reliability enhanced 
classifications could be used in many other domains, such as 
machine translation. One of the tasks where Bayesian text 
classification can be particularly useful is semi-supervised 
learning, which iteratively expands an initial small set of 
manually labeled instances with the most reliably classified 
instances. Data re-annotation is another example where 
reliability scores can be of great use. An initial pilot study on 
Croatian comment filtering showed that human annotators 
decide mostly based on the observed keywords and lack the time 
to detect more subtle expressions of offensive content. These 
circumstances result in low quality of the resulting datasets 
and demand their reannotation. Using the reliability scores of 
the proposed MCD BERT, one could significantly reduce the 

Fig. 12   Visualization of 100 test tweets projected into two dimen-
sional space by the UMP method. Tweets whose classifications seem 
certain are colored in blue while tweets with uncertain classification 
are shown in orange. We can observe clustering of uncertain tweets

Fig. 13   Visualization of the probability space for 100 tweets from the 
test set. The instances are colored green, yellow, or red, depending on 
the mean probability of the 1000 predictions. Predictions with high 
confidence form an isolated part in the probability space
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amount of reannotation and focus on genuinely difficult and 
borderline cases where prediction models may err.
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