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Abstract
Intuitionistic fuzzy set (IFS) is one of the most robust and trustworthy tools for portraying the imprecise information with 
the help of the membership degrees. Similarity measure, one of the information measures, plays an important role in treating 
imperfect and ambiguous information to reach the final decision by determining the degree of similarity between the pairs of 
the numbers. Motivated by these, this paper aims to present a novel distance/ similarity among the IFSs based on the trans-
formation techniques with their characteristics. To explore the study, the given IFSs are transformed into the right-angled 
triangle over a unit square area, and hence based on the intersection of the triangles, novel distance and similarity measures 
are proposed. An algorithm to solve the decision-making problems with the proposed similarity measure is developed and 
implemented to execute their performance over the numerous examples such as pattern recognition and clustering analysis. 
The reliability of the developed measure is investigated by applying it in clustering and the pattern recognition problems and 
their results are compared with some prevailing studies. From the investigation, we conclude that several existing measures 
fail to give classification results under the different instances such as “division by zero problems” or “counter-intuitive cases” 
while the proposed measure successfully overcomes this drawback.

Keywords Pattern recognition · Fuzzy set · Right-angled triangle · Intuitionistic fuzzy set · Similarity measure · Clustering 
algorithm

Introduction

Nowadays, decision making (DM) is one of the most frequently 
used processes of our daily life, whose target is to decide the best 
alternative out of the available ones under the numerous known 
or unknown criteria. Multicriteria decision making (MCDM) 
is a part of the DM and is credited as a cognitive-based human 
action. In order to handle and aggregate the information 
gathered from several resources, the most important step is of 
data collection. Traditionally, all the information is given in 
the form of a crisp number. But in human cognition devices, it 
is often felt challenging to show the working situations using 
the crisp number-based primitive data handling techniques. 

These methods lead the decision-makers to vague conclusions 
as well as uncertain decisions. Therefore, to deal with such risks 
and to examine the process, a large-scale family of theories 
such as fuzzy set (FS) [1] and its extensions as intuitionistic 
FS (IFS) [2], interval-valued IFS [3], linguistic interval-valued 
IFS [4] are proposed by the researchers. Under the utilization 
of such theories, decision-makers maintain their DM criteria 
in accordance with the particular situation whether it is human 
cognition or pattern recognition. In these theories, each element 
is represented using two degrees namely membership degree 
(MD) and non-membership degree (NMD) such that their sum 
does not exceed one.

Recently, DM problems with uncertain information have 
become a hot research topic, which requires the three influ-
ential phases:

1. how to arrange the information using a suitable scale to 
read the data.

2. how to aggregate the distinct attribute benefits and accu-
mulate the overall preference value.

3. how to order things to find the finest alternative(s).
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 In phase 1), an IFS is one of the most widely used medi-
ums to assess the information in terms of ordered pair of 
MDs and NMDs. This representation is more reliable and 
also gives the hesitancy degree within the pairs of MDs. In 
phase 2), information measures (IMs) play a noteworthy role 
in treating imperfect and ambiguous information to reach 
the final decision. Different kinds of IMs such as distance, 
similarity, inclusion, entropy, etc., exist in the literature and 
among them, the notion of the similarity measure (SM) is 
one of the effective tools to estimate the similarity degree 
between the pairs of the objects. Finally, in the phase 3), the 
combined values acquired from the foregoing phases are 
ordered with suitable measures.

Up to now, IFSs have been applied by many researchers to 
address the decision-making problems (DMPs) by adopting 
the notion of the SMs. Chen et al. [5] gave the notion of 
measuring the degree of similarity among vague sets and 
put forth two SMs. Authors in [6] pointed out that the 
measures given in [5] do not fit well in some instances with 
some counterintuitive cases. To resolve it, they gave a set 
of modified SMs and showed the validity of their proposed 
measures with the aid of examples. Authors in [7] presented 
SMs for both discrete and continuous sets and used them to 
solve the pattern recognition problems. Mitchell [8] pointed 
out that the SM given in [7] may give irrational results in 
some instances and hence they modified it and employed the 
modified measure to solve the pattern recognition problems. 
Authors in [9] presented a SM by improving some of the 
existing measures and validated it with the help of several 
numerical cases. In [10], the authors presented distance 
and SMs among IFSs using the concept of Hausdorff 
distance and studied their related features. In [11], authors 
presented SMs for IFSs and gave their application in medical 
diagnostic reasoning. In [12], the authors presented some 
IMs for IFSs to solve pattern recognition problems and 
also discussed the relationship between the SMs and the 
distance measures. Liu [13] pointed out that the measures 
recommended in [6] produce illogical results in some cases 
and consequently, proposed another SM and proved the 
related properties. Xu [14] presented SMs for IFSs. Song 
et al. [15] put forward the weighted SMs along with its 
application in pattern recognition problems. Chen et al. 
[16] developed SM by transforming the IFSs into right-
angled triangular numbers and showed the effectiveness 
of the recommended measure by applying it to various 
pattern recognition problems. Garg [17] developed an 
improved cosine SM for IFSs. In [18], authors presented 
some SMs for IFSs based on the connection numbers of set 
pair analysis theory. In [19], the authors proposed distance 
measures to calculate the separation within the pairs of IFSs 
by transforming them into isosceles triangles. In [20], they 
proposed SM based on transformation techniques and gave 
its applications in various pattern recognition problems. In 

[21], authors presented distance measures for cubic IFSs 
and applied them to solve the pattern recognition and 
medical diagnosis problems. Furthermore, IMs are applied 
by the various scholars and researchers in many other areas 
too. For more details, we refer to read [22–34] and their 
corresponding references.

From the existing studies, it can be worth noticed that 
SMs are essential tools for processing the uncertainty 
associated with FSs and IFSs. Although, till now, different 
MCDM methods based on the SMs among IFSs have been 
explored and used in real-life problems such as pattern 
recognition and clustering analysis but most of the measures 
fail to give classification results in some situations. On 
account of having counterintuitive aspects [5–13, 15, 16, 
22–26, 28] of some existing intuitionistic fuzzy MCDM 
methods, the decision makers may have encountered 
difficulties in reaching at conclusion due to “division by 
zero problem” or indistinguishable results. Therefore, in 
order to overcome the drawbacks of the prevailing SM-based 
MCDM methods, there is a requirement of more optimized 
measures to handle the DMPs under diverse circumstances. 
Henceforth, the presented paper intends to present some 
novel distance and similarity measures by transforming IFSs 
into right-angled triangles and consequently the proposed 
measure-based MCDM methods to address the above issues.

To address these problems, the fundamental objectives of 
the presented research are given as follows:

1. to transform the collective IFSs information into right-
angled triangles over a unit square area.

2. to propose new distance and similarity measures for 
IFSs, based on diagonal of the unit square and the 
intersection of transformed right-angled triangles, to 
overcome the drawbacks of the several existing studies 
[5–13, 15, 16, 22–26, 28, 32];

3. to present a novel decision-making algorithm based 
on proposed SMs and validate it by several numerical 
examples.

4. to develop the clustering algorithm based on proposed 
SMs to distinguish the things of the same pattern.

 To complete the above four goals, we divide the paper 
into 6 sections. In Section 2, we review the fundamental 
prevailing works on IFS and the SMs. In Section 3, we 
first transform the given collective data into the right-
angled triangles over a unit square area. Based on this 
transformation, we introduce a novel distance and similarity 
measure among IFSs to estimate the degree of separation 
and similarity, respectively, among the pairs of IFSs. 
The comprehensive description of their origin is also 
described and explained. In Section 4, the superiority of 
the recommended SM over the existing SMs [5–13, 15, 
16, 22–26, 28, 32] is shown through several illustrative 
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examples. From their results, it is proved that the proposed 
measures perform well in the instances where the existing 
measures suffer from “division by zero problem” or 
“counter-intuitive cases”. Section 5 presents an algorithm 
based on proposed SMs to solve the diverse kinds of 
problems such as pattern recognition and clustering analysis 
and comparative studies with several existing algorithms to 
demonstrate the effectiveness of the developed measure. 
Also, a clustering algorithm based on proposed similarity 
measure is applied to classify the objects with distinct 
values of confidence level of the expert. Finally, concluding 
remarks are stated in Section 6.

Preliminaries

This section reviews some basic concepts related to IFSs. 
For it, we denote the universal set by U and let Φ(U) be the 
set of all IFSs.

Definition 1 [1] A FS F  on U is stated as

where �F ∶ U → [0, 1] represents the degree of extent an 
element belongs to the FS F  and is named as membership 
function.

Definition 2 [2, 35] An IFS I  is given as

where �I, �I ∶ U → [0, 1] represents the MD and NMD with 
0 ≤ �I(x) + �I(x) ≤ 1    ∀ x and hI(x) = 1 − �I(x) − �I(x) 
gives the hesitation degree of x in I .

Definition 3 [2] For two IFSs I = {⟨x, �I(x), �I(x)⟩ ∣ x ∈ U} 
and J = {⟨x, �J(x), �J(x)⟩ ∣ x ∈ U} defined on U , we have 

 (i) I ⊆ J  if �I(x) ≤ �J(x) and �I(x) ≥ �J(x)  ∀ x.
 (ii) I = J  ⇔ I ⊆ J  and J ⊆ I .

Definition 4 [8] A function S ∶ Φ(U) × Φ(U) → [0, 1] is 
called SM, if it satisfies the following characteristics: 

(P1) 0 ≤ S(I,J) ≤ 1.
(P2) S(I,J) = 1 ⇔ I = J .
(P3) S(I,J) = S(J, I).
(P4) If  I ⊆ J ⊆ K then,  S(I,K) ≤ S(I,J) and 

S(I,K) ≤ S(J,K) where I,J,K ∈ Φ(U).

Later on, the axiomatic definition of distance measure D 
[12] is introduced. Distance measure, which is complement 
of SM, is a function satisfying the following axioms: 

(1)F = {(x, �F(x) ∣ x ∈ U}

(2)I = {⟨x, �I(x), �I(x)⟩ ∣ x ∈ U}

(P1) 0 ≤ D(I,J) ≤ 1.
(P2) D(I,J) = 0 ⇔ I = J .
(P3) D(I,J) = D(J, I).
(P4) If I ⊆ J ⊆ K then, D(I,K) ≥ D(I,J) and 

D(I,K) ≥ D(J,K) where I,J,K ∈ Φ(U).
Under IFS environment, several authors [5–13, 15, 16, 

22–26, 28] have outlined the numerous SMs to estimate the 
degree of similarity among IFSs. These measures are sum-
marized in Table 1. From these existing studies, it has been 
investigated that most of the prevailing measures fail to solve 
the real-world DMPs due to “division by zero problem” or 
“counter-intuitive cases”. Therefore, the existing measures 
give biased and contradictory outputs which concludes that 
the decision made cannot be optimal. Motivated by this fact, 
in this work, we propose a novel distance and similarity 
measure by applying the concept of transforming the given 
IFSs into right-angled triangles. The detailed description of 
the proposed measures is given in the next section.

Novel Proposed Distance and Similarity 
Measure Between IFSs

L e t  P =
{⟨

xj, �P(xj), �P(xj)
⟩
∣ j = 1, 2,… , n

}
 a n d 

Q =
{⟨

xj, �Q(xj), �Q(xj)
⟩
∣ j = 1, 2,… , n

}
 be two IFSs 

defined on universal set U . Then clearly we can obtain that [
�P(xj), 1 − �P(xj)

]
 is the intuitionistic fuzzy (IF) value of 

the element xj ∈ U in the IFS P . For convenience, we repre-
sent the IF values 

[
�P(xj), 1 − �P(xj)

]
 and 

[
�Q(xj), 1 − �Q(xj)

]
 

of IFSs P and Q are represented as [p1(xj), p2(xj)] and 
[q1(xj), q2(xj)] in the universal set [0, 1] on the y-axis and 
x-axis, respectively, as shown in Fig. 1a. We denote the 
distance among the points p1(xj) and p2(xj) as lp(xj), i.e., 
lp(xj) = p2(xj) − p1(xj) = 1 − �P(xj) − �P(xj) = hP(xj) and 
the distance between the points q1(xj) and q2(xj) as lq(xj), 
i .e.,lq(xj) = q2(xj) − q1(xj) = 1 − �Q(xj) − �Q(xj) = hQ(xj) . 
Thus, based on it, the vertices of transformed right-angled 
triangles of IFSs P and Q are denoted by OP and OQ, respec-
tively, as depicted in Fig. 1a.

During the formulation, we transform the given IFSs to 
the right-angled triangles in a square area and construct the 
SM based on the intersection of the transformed triangles. 
The distance measure between the IFSs is defined as half of 
the sum of lengths of straight lines X1Y1 and X2Y2 as shown 
in Fig. 1a. Moreover, Fig. 1b depicts that when two IFSs P 
and Q are equal, i.e., P = Q then, the point X1 coincides with 
Y1 and X2 point coincides with Y2 . This gives that lengths of 
X1Y1 and X2Y2 are zero and hence, distance among IFSs P 
and Q becomes zero.

Since, the co-ordinates of the points p1 , p2 , q1 , q2 , OP and 
OQ are 

(
0, p1(xj)

)
 , 
(
0, p2(xj)

)
 , 
(
q1(xj), 0

)
 , 
(
q2(xj), 0

)
 , 
(
1, p1(xj)

)
 

and 
(
q1(xj), 1

)
, respectively. Therefore, the equations of the 

straight lines p1OP , p2OP , q1OQ , q2OQ are y = p1(xj) , 
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Table 1  Existing similarity measures between IFSs

Ref. I =
{⟨

x, �I(x),�I(x)
⟩
∣ x ∈ U

}
 and J =

{⟨
x, �J(x),�J(x)

⟩
∣ x ∈ U

}
  

[5]
SC(I,J) = 1 −

n∑
j=1
(�(�I(xj)−�J(xj))−(�I(xj)−�J(xj))�)

2n   
[6]

SHK(I, J) = 1 −

n∑
j=1

�
��I (xj)−�J (xj)�+��I (xj)−�J (xj)�

�

2n   
[7]

SDC(I,J) = 1 −

�
1

n

n∑
j=1

����
�
�I(xj)−�I(xj)

�
−

�
�J(xj)−�J(xj)

�
2

���
p
�� 1

p

  
[9]

SLS1(I,J) = 1 −
1

n

1

p

�
n∑
j=1

� ��I(xj)−�J(xj)�+��I(xj)−�J(xj)�
2

�p

� 1

p

  

SLS2(I,J) = 1 −
1

n

1

p

�
n∑
j=1

���
�mP1(xj)−mQ1(xj)�−�mP2(xj)−mQ2(xj)�

2

���
p

� 1

p

     where    mP1(xj) =
�I(xj)−mI(xj)

2
;   mQ1(xj) =

�J(xj)−mJ(xj)

2
  

mP2(xj) =
mI(xj)+1−�I(xj)

2
;   mQ2(xj) =

mJ(xj)+1−�J(xj)

2
;   mP(xj) =

�I(xj)+1−�I(xj)

2
;   mQ(xj) =

�J(xj)+1−�J(xj)

2
  

[8]

SM(I,J) = 1 −
1

2

⎛
⎜⎜⎜⎝

n∑
j=1

�
��I(xj)−�J(xj)�

�p

n

⎞
⎟⎟⎟⎠

1

p

−
1

2

⎛
⎜⎜⎜⎝

n∑
j=1

�
��I(xj)−�J(xj)�

�p

n

⎞
⎟⎟⎟⎠

1

p

  
[11]

SSK(I,J) =
1

n

n∑
j=1

⎛⎜⎜⎝
min

�
��I(xj)−�J(xj)�+��I(xj)−�J(xj)�+�hI(xj)−hJ(xj)�,��I(xj)−�J(xj)�+��I(xj)−�J(xj)�+�hI(xj)−hJ(xj)�

�

max

�
��I(xj)−�J(xj)�+��I(xj)−�J(xj)�+�hI(xj)−hJ(xj)�,��I(xj)−�J(xj)�+��I(xj)−�J(xj)�+�hI(xj)−hJ(xj)�

�
⎞⎟⎟⎠  

[10]

SHY1(I,J) = 1 − DHY (I,J)   where   DHY (I,J) =

n∑
j=1

�
max

�
��I(xj)−�J(xj)�,��I(xj)−�J(xj)�

��

n
;

SHY2(I,J) =
e−DHY (I,J)−e−1

1−e−1
;   SHY3(I,J) =

1−DHY (I,J)

1+DHY1(I,J)
  

[12]

SWX(I,J) = 1 − DWX(I,J)   where   

DWX(I,J) =
n∑
j=1

⎛⎜⎜⎝
��I(xj)−�J(xj)�+��I(xj)−�J(xj)�

4
+

max

�
��I(xj)−�J(xj)�,��I(xj)−�J(xj)�

�

2

⎞⎟⎟⎠  
[13]

SL(I,J) = 1 −

�
n∑
j=1

��
�I(xj)−�J(xj)

�2

+

�
�I(xj)−�J(xj)

�2

+

�
hI(xj)−hJ(xj)

�2
�

2n   
[22]

SVS(I,J) = 1 − DVS(I,J)   where   DVS(I,J) = I(I,J) + I(J, I);   
I(I,J) =

n∑
j=1

�
�I(xj) ln

�
2�I(xj)

�I(xj)+�J(xj)

�
+ �I(xj) ln

�
2�I(xj)

�I(xj)+�J(xj)

��
  

[23]

SHY4(I,J) =
2

1

p −Dp(I,J)

2

1

p

;

   

SHY5(I,J) =
e−Dp (I,J)−e−(2)

1

p

1−e−(2)

1

p

;

  

SHY6(I,J) =
2

1

p −Dp(I,J)

2

1

p
(
1+Dp(I,J)

)
  

where   
Dp(I,J) =

1

n

n∑
j=1

���I(xj) − �J(xj)�p + ��I(xj) − �J(xj)�p
� 1

p

  
[24]

SHY7(I,J) =
1

n

n∑
j=1

�
min

�
�I(xj),�J(xj)

�
+min

�
�I(xj),�J(xj)

�
max

�
�I(xj),�J(xj)

�
+max

�
�I(xj),�J(xj)

�
�
;

   
SHY8(I,J) =

1

n

n∑
j=1

�
1 −

1

2

���I(xj) − �J(xj)� + ��I(xj) − �J(xj)�
��

  

SHY9(I,J) =

n∑
j=1

�
min

�
�I(xj),�J(xj)

�
+min

�
�I(xj),�J(xj)

��

n∑
j=1

�
max

�
�I(xj),�J(xj)

�
+max

�
�I(xj),�J(xj)

�� ;
     

SHY10(I,J) = 1 −

n∑
j=1

�
��I(xj)−�J(xj)�+��I(xj)−�J(xj)�

�

n∑
j=1

�
��I(xj)+�J(xj)�+��I(xj)+�J(xj)�

�
  

[25]
SY (I,J) =

1

n

n∑
j=1

�
�I(xj)�J(xj)+�I(xj)�J(xj)√
�2
I
(xj)+�

2

I
(xj)
√

�2
J
(xj)+�

2

J
(xj)

�
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y = −xlp(xj) + p2(xj) , x = q1(xj) and y = q2(xj)−x

lq(xj)
, respectively. 

Now, in order to find out the lengths of the straight lines 
X1Y1 and X2Y2 , we need to compute the co-ordinates of the 
points X1 , X2 , Y1 and Y2.

X1 point: Since X1 is the point of intersection of the 
straight lines p1OP and q1OQ therefore, x-coordinate of 
the point X1 is q1(xj) and the y-coordinate of the point X1 
is p1(xj) . Hence, co-ordinates of the point X1 are 

(
q1(xj) , 

p1(xj)
)
.

X2 point: As X2 is the intersection point of the straight 
lines p2OP and q2OQ . Therefore, the x-coordinate corre-
sponding to the point X2 is given as:

Further, the y-coordinate corresponding to the point X2 is 
obtained as:

(3)
−xlp(xj) + p2(xj) =

q2(xj)−x

lq(xj)

⇒ x =
q2(xj)−p2(xj)lq(xj)

1−lp(xj)lq(xj)

Hence, the co-ordinates of the point X2 are

Y1 point: Since Y1 is the point of intersection of the straight 
lines OZ and q1OQ therefore, x-coordinate of the point Y1 is 
same as the x− coordinate of the point X1, i.e., q1(xj) . Also, 
since straight line OZ is one of the diagonals of the unit 
square therefore, for any point on the line OZ, x−coordinate 
= y− coordinate. Hence, the co-ordinates of the point Y1 are (
q1(xj), q1(xj)

)
.

Y2 point: Y2 is the point on the diagonal OZ and Fig. 1a 
depicts that x− coordinate of the point X2 and Y2 is same. 
Therefore, x−coordinate of the point Y2 is

q2(xj)−p2(xj)lq(xj)

1−lp(xj)lq(xj)
 . Also, as explained earlier, y− coordinate of 

the point Y2 = x− coordinate of the point Y2 = q2(xj)−p2(xj)lq(xj)
1−lp(xj)lq(xj)

 . 

Hence, the coordinates of the point Y2 are

(4)
y = − lp(xj)

(
q2(xj)−p2(xj)lq(xj)

1−lp(xj)lq(xj)

)
+ p2(xj)

=
p2(xj)−q2(xj)lp(xj)

1−lp(xj)lq(xj)

(
q2(xj)−p2(xj)lq(xj)

1−lp(xj)lq(xj)
,
p2(xj)−q2(xj)lp(xj)

1−lp(xj)lq(xj)

)
.

Table 1  (continued)

Ref. I =
{⟨

x, �I(x),�I(x)
⟩
∣ x ∈ U

}
 and J =

{⟨
x, �J(x),�J(x)

⟩
∣ x ∈ U

}
  

[26]

SBA(I,J) = 1 −

�
n∑
j=1

����t
�
�I(xj)−�J(xj)

�
−

�
�I(xj)−�J(xj)

���+��t
�
�I(xj)−�J(xj)

�
−

�
�I(xj)−�J(xj)

���
�

2n(t+1)p

�� 1

p

  
[15]

SS(I,J) =
1

2n

n∑
j=1

��
�I(xj)�J(xj) + 2

�
�I(xj)�J(xj) +

�
hI(xj)hJ(xj) +

��
1 − �I(xj)

��
1 − �J(xj)

��
  

[16]
SCL(I,J) = 1 −

||2
(
�I(xj)−�J(xj)

)
−

(
�I(xj)−�J(xj)

)||
3

×

(
1 −

(
hI(xj)−hJ(xj)

)
2

)
−

||2
(
�I(xj)−�J(xj)

)
−

(
�I(xj)−�J(xj)

)||
3

×

((
hI(xj)−hJ(xj)

)
2

)

  
[28]

SN (I,J) = 1 − DN (I,J)  where   
DN(I,J) =

1

3n

n∑
j=1

����I(xj) − �J(xj)
�� + ���I(xj) − �J(xj)

�� + ��max
�
�I(xj),�J(xj)

�
−max

�
�J(xj),�I(xj)

���
�
  

Fig. 1  The transformed right-
angled triangles of IFSs P and 
Q

(a) (b)
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Finally, assume that X1Y1(xj) and X2Y2(xj) denote the lengths 
of the straight lines X1Y1 and X2Y2, respectively correspond-
ing to the element xj of universal set U . Then,

Based on the above discussion and calculation, we outline 
the new distance measure among two IFSs P and Q (descrip-
tion as shown in Fig. 1a as follows:

Definition 5 The distance measure between two IFSs 
P =

{⟨
x, �P(x), �P(x)

⟩
∣ x ∈ U

}
 a n d  Q =

{⟨
x, �Q(x)  , 

�Q(x)
⟩
∣ x ∈ U

}
 on U = {x1, x2,… , xn} is:

where hP(xj)hQ(xj) ≠ 1 for all xj ∈ U.

Next, for IFSs P and Q defined on U = {x1, x2,… , xn} 
satisfying hP(xj)hQ(xj) ≠ 1 , the distance measure D(P,Q) , 
given in Eq. (5), has the following characteristics.

Theorem 1 The proposed distance measure D satisfies the 
inequality given as: 0 ≤ D(P , Q) ≤ 1.

Proof For IFSs P and Q and from Fig. 1a, it is depicted that 
minimum and maximum values of X1Y1 , X2Y2 are 0 and 1, 
respectively. Therefore,

(
q2(xj)−p2(xj)lq(xj)

1−lp(xj)lq(xj)
,
q2(xj)−p2(xj)lq(xj)

1−lp(xj)lq(xj)

)
.

X1Y1(xj) =
||y-coordinate of Y1 − y-coordinate of X1

||
=||q1(xj) − p1(xj)

|| = ||�Q(xj) − �P(xj)
||

and X2Y2(xj) =
||y-coordinate of Y2 − y-coordinate of X2

||
=
||||
q2(xj)−p2(xj)lq(xj)

1−lp(xj)lq(xj)
−

p2(xj)−q2(xj)lp(xj)

1−lp(xj)lq(xj)

||||
=
||||
q2(xj)−p2(xj)lq(xj)−p2(xj)+q2(xj)lp(xj)

1−lp(xj)lq(xj)

||||

=

|||||||||||

�P(xj) − �Q(xj) + hP(xj) − hQ(xj)+

hQ(xj)�P(xj) − hP(xj)�Q(xj)

1−hP(xj)hQ(xj)

|||||||||||

(5)

D(P,Q) =
1

2n

n�
j=1

�
X1Y1(xj) + X2Y2(xj)

�

=
1

2n

n�
j=1

⎡⎢⎢⎢⎢⎢⎣

���Q(xj) − �P(xj)
�� +

�����������

�P(xj) − �Q(xj) + hP(xj) − hQ(xj)+

hQ(xj)�P(xj) − hP(xj)�Q(xj)

1−hP(xj)hQ(xj)

�����������

⎤⎥⎥⎥⎥⎥⎦

which implies that

Hence, 0 ≤ D(P,Q) ≤ 1.Hence, the result.

Theorem 2 D(P,Q) = 0 ⇔ P = Q.

Proof P = Q implies �P(xj) = �Q(xj) , �P(xj) = �Q(xj) and 
hP(xj) = hQ(xj)  ∀ j = 1, 2,… , n . Then, clearly, D(P,Q) = 0 . 
Conversely,

Now, Eq. (6) gives that �P(xj) = �Q(xj)  ∀ j. Further, using 
�P(xj) = �Q(xj) in Eq. (7), we obtain that

Thus, we have two possibilities: 

 (i) When �P(xj) = �Q(xj) . Also, from Eq. (6) we have, 
�P(xj) = �Q(xj)  ∀ j. Hence, P = Q.

0 ≤
1

2

(
X1Y1(xj) + X2Y2(xj)

)
≤ 1

0 ≤
1

2n

n�
j=1

⎡
⎢⎢⎢⎢⎢⎢⎣

���Q(xj) − �P(xj)
�� +

�������������

�P(xj) − �Q(xj) + hP(xj) − hQ(xj)+

hQ(xj)�P(xj) − hP(xj)�Q(xj)

1−hP(xj)hQ(xj)

�������������

⎤
⎥⎥⎥⎥⎥⎥⎦

≤ 1.

(6)

D(P,Q) = 0

⇒
1

2n

n�
j=1

⎡⎢⎢⎢⎢⎢⎢⎣

���Q(xj) − �P(xj)
�� +

�������������

�P(xj) − �Q(xj) + hP(xj) − hQ(xj)+

hQ(xj)�P(xj) − hP(xj)�Q(xj)

1−hP(xj)hQ(xj)

�������������

⎤⎥⎥⎥⎥⎥⎥⎦

= 0

⇒ �Q(xj) − �P(xj) = 0

(7)and

(
�P(xj) − �Q(xj) + hP(xj) − hQ(xj)+

hQ(xj)�P(xj) − hP(xj)�Q(xj)

)
= 0 ∀ j

⎛⎜⎜⎝
�P(xj) − �Q(xj) +

�
1 − �P(xj) − �P(xj)

�
−
�
1 − �P(xj) − �Q(xj)

�

+
�
1 − �P(xj) − �Q(xj)

�
�P(xj) −

�
1 − �P(xj) − �P(xj)

�
�Q(xj)

⎞⎟⎟⎠
= 0

⇒

�
�P(xj) − �Q(xj))

�
1 − �P(xj)

�
= 0

⇒ �P(xj) = �Q(xj) or �P(xj) = 1 ∀ j
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 (ii) When �P(xj) = 1 . It implies that �P(xj) = 0 . Also, 
�P(xj) = �Q(xj) gives that �Q(xj) = 1 and hence, 
�Q(xj) = 0  ∀ j. Thus, we have P = Q.

Theorem 3 The proposed distance measure is symmetric, 
i.e., D(P,Q) = D(Q,P).

Proof From Eq. (5), we have

Theorem  4 If P ⊆ Q ⊆ R then, D(P,R) ≥ D(P,Q) and 
D(P,R) ≥ D(Q,R).

Proof P ⊆ Q ⊆ R signif ies that �P ≤ �Q ≤ �R and 
�P ≥ �Q ≥ �R ∀ x. From Eq. (5), we have

Since, �P(xj) ≤ �Q(xj) and �P(xj) ≥ �Q(xj) .  It gives 
t ha t  �Q(xj) − �P(xj) ≥ 0  t he re fo re ,  ||�Q(xj) − �P(xj)

|| 
= �Q(xj) − �P(xj)  .  A l s o ,  w e  o b t a i n  t h a t (
1 − �P(xj)

)(
1 − �Q(xj)

)
≥
(
1 − �Q(xj)

)(
1 − �P(xj)

)
 ⇒ 

�Q(xj) − �P(xj) + �P(xj) − �Q(xj) + �P(xj)�Q(xj)  −�Q(xj)�P(xj) ≥ 0

D(P,Q) =
1

2n

n�
j=1

⎡
⎢⎢⎢⎢⎢⎣

���Q(xj) − �P(xj)
�� +

�����������

�P(xj) − �Q(xj) + hP(xj) − hQ(xj)+

hQ(xj)�P(xj) − hP(xj)�Q(xj)

1−hP(xj)hQ(xj)

�����������

⎤
⎥⎥⎥⎥⎥⎦

=
1

2n

n�
j=1

⎡
⎢⎢⎢⎢⎢⎣

���P(xj) − �Q(xj)
�� +

�����������

�Q(xj) − �P(xj) + hQ(xj) − hP(xj)+

hP(xj)�Q(xj) − hQ(xj)�P(xj)

1−hQ(xj)hP(xj)

�����������

⎤
⎥⎥⎥⎥⎥⎦

= D(Q,P)

D(P,Q) =
1

2n

n�
j=1

⎡
⎢⎢⎢⎢⎢⎣

���Q(xj) − �P(xj)
�� +

�����������

�P(xj) − �Q(xj) + hP(xj) − hQ(xj)+

hQ(xj)�P(xj) − hP(xj)�Q(xj)

1−hP(xj)hQ(xj)

�����������

⎤
⎥⎥⎥⎥⎥⎦

=
1

2n

n�
j=1

⎡⎢⎢⎢⎢⎢⎣

���Q(xj) − �P(xj)
�� +

�����������

�P(xj) − �Q(xj) +
�
1 − �P(xj) − �P(xj)

�
−
�
1 − �Q(xj) − �Q(xj)

�

+
�
1 − �Q(xj) − �Q(xj)

�
�P(xj) −

�
1 − �P(xj) − �P(xj)

�
�Q(xj)

1−hP(xj)hQ(xj)

�����������

⎤⎥⎥⎥⎥⎥⎦

=
1

2n

n�
j=1

⎡⎢⎢⎢⎢⎢⎣

���Q(xj) − �P(xj)
�� +

�����������

�Q(xj) − �P(xj) + �P(xj) − �Q(xj)+

�P(xj)�Q(xj) − �Q(xj)�P(xj)

1−hP(xj)hQ(xj)

�����������

⎤⎥⎥⎥⎥⎥⎦

Hence,

⇒

��������

�Q(xj) − �P(xj)+

�P(xj) − �Q(xj)+

�P(xj)�Q(xj) − �Q(xj)�P(xj)

��������
=

⎛⎜⎜⎜⎝

�Q(xj) − �P(xj)+

�P(xj) − �Q(xj)+

�P(xj)�Q(xj) − �Q(xj)�P(xj)

⎞⎟⎟⎟⎠
.

D(P,Q) =
1

2n

n�
j=1

⎡
⎢⎢⎢⎢⎢⎢⎣

�
�Q(xj) − �P(xj)

�
+

⎛
⎜⎜⎜⎜⎜⎜⎝

�Q(xj) − �P(xj) + �P(xj) − �Q(xj)+

�P(xj)�Q(xj) − �Q(xj)�P(xj)

1−hP(xj)hQ(xj)

⎞
⎟⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎥⎦

.
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In the similar manner, using the given conditions, we have

Now,

where Aj = �R(xj) − �Q(xj) and

Further, to show that D(P,R) −D(P,Q) ≥ 0 , it is sufficient 
to prove that Aj,Bj ≥ 0 ∀ j. Since, �R(xj) ≥ �Q(xj) therefore, 
Aj ≥ 0 . Now,

Thus Aj,Bj ≥ 0 ∀ j. Hence, the result.

D(Q,R) =
1

2n

n�
j=1

⎡
⎢⎢⎢⎢⎢⎣

�
�R(xj) − �Q(xj)

�
+

⎛
⎜⎜⎜⎜⎜⎝

�R(xj) − �Q(xj) + �Q(xj) − �R(xj)

+�Q(xj)�R(xj) − �R(xj)�Q(xj)

1−hQ(xj)hR(xj)

⎞
⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎦

and

D(P,R) =
1

2n

n�
j=1

⎡⎢⎢⎢⎢⎢⎣

�
�R(xj) − �P(xj)

�
+

⎛⎜⎜⎜⎜⎜⎝

�R(xj) − �P(xj) + �P(xj) − �R(xj)+

�P(xj)�R(xj) − �R(xj)�P(xj)

1−hP(xj)hR(xj)

⎞⎟⎟⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎦

D(P,R) −D(P,Q) =
1

2n

n�
j=1

⎡⎢⎢⎢⎢⎣

�
�R(xj) − �Q(xj)

�

+

�
�R(xj)−�P(xj)+�P(xj)−�R(xj)+�P(xj)�R(xj)−�R(xj)�P(xj)

1−hP(xj)hR(xj)

�

−

�
�Q(xj)−�P(xj)+�P(xj)−�Q(xj)+�P(xj)�Q(xj)−�Q(xj)�P(xj)

1−hP(xj)hQ(xj)

�

⎤⎥⎥⎥⎥⎦
=

1

2n

n�
j=1

�
Aj + Bj

�

Bj =

⎛
⎜⎜⎜⎜⎜⎝

�R(xj) − �P(xj) + �P(xj) − �R(xj)

+ �P(xj)�R(xj) − �R(xj)�P(xj)

1−hP(xj)hR(xj)

⎞
⎟⎟⎟⎟⎟⎠

−

⎛
⎜⎜⎜⎜⎜⎝

�Q(xj) − �P(xj) + �P(xj) − �Q(xj)

+ �P(xj)�Q(xj) − �Q(xj)�P(xj)

1−hP(xj)hQ(xj)

⎞⎟⎟⎟⎟⎟⎠

Bj =

⎛
⎜⎜⎜⎜⎜⎝

�R(xj) − �P(xj) + �P(xj) − �R(xj)

+ �P(xj)�R(xj) − �R(xj)�P(xj)

1−hP(xj)hR(xj)

⎞
⎟⎟⎟⎟⎟⎠

−

⎛
⎜⎜⎜⎜⎜⎝

�Q(xj) − �P(xj) + �P(xj) − �Q(xj)

+ �P(xj)�Q(xj) − �Q(xj)�P(xj)

1−hP(xj)hQ(xj)

⎞
⎟⎟⎟⎟⎟⎠

=

�
�R(xj)�Q(xj) − �Q(xj)�R(xj)

��
�P(xj) + �P(xj) − 1

��
�Q(xj) + �Q(xj) − 1

�

+
�
2 − �P(xj) − �P(xj)

��
�P(xj)

�
�R(xj) − �Q(xj)

�
+ �P(xj)

�
�Q(xj) − �R(xj)

��
�
1−hP(xj)hR(xj)

��
1−hP(xj)hQ(xj)

�

≥ 0
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Further, based on the distance measure, we can define a 
novel SM as given in the following definition:

Definition 6 A SM between two IFSs P and Q is given as

where hP(xj)hQ(xj) ≠ 1 ∀ xj ∈ U.

Theorem 5 For P,Q,R ∈ Φ(U) , a similarity measure S 
between P and Q , denoted by S(P,Q) , satisfies the follow-
ing properties: 

(P1) 0 ≤ S(P,Q) ≤ 1.
(P2) S(P,Q) = 1 ⇔ P = Q.
(P3) S(P,Q) = S(Q,P).
(P4) If P ⊆ Q ⊆ R then, S(P,R) ≤ S(P,Q) and S(P,R) ≤

S(Q,R).

Proof For IFSs P,Q,R and by Definition 6, we can obtain 
that S(P,Q) = 1 −D(P,Q) . Thus, from it, we have 

( P 1 )  A s  0 ≤ D(P,Q) ≤ 1  .  T h e r e f o r e , 
0 ≤ 1 −D(P,Q) ≤ 1 . Hence, 0 ≤ S(P,Q) ≤ 1.

(P2) Since, D(P,Q) = 0 ⇔ P = Q . It implies that 
1 −D(P,Q) = 1 ⇔ P = Q which gives that S(P,Q) = 1 ⇔ 
P = Q.

( P 3 )  D(P,Q) = D(Q,P)  g i v e s  t h a t 
1 −D(P,Q) = 1 −D(Q,P) . It implies S(P,Q) = S(Q,P)

(P4) For P ⊆ Q ⊆ R we have, D(P,R) ≥ D(P,Q) 
a n d  D(P,R) ≥ D(Q,R)  w h i c h  g i v e s  t h a t 
1 −D(P,R) ≤ 1 −D(P,Q) and 1 −D(P,R) ≤ 1 −D(Q,R) . 
It implies S(P,R) ≤ S(P,Q) and S(P,R) ≤ S(Q,R).

Superiority Analysis of the Stated Measure

In this section, we analyze the drawbacks of the several 
existing SMs [5–13, 15, 16, 22–26, 28] of IFSs with the 
help of some numerical examples. The existing SMs for IFSs 
are summarized in Table 1.

In the following, we give some “counterintuitive cases” 
to illustrate the drawbacks of the existing SMs [5, 7, 11, 
22, 25].

(8)

S(P,Q) = 1 −

�
1

2n

n�
j=1

�
X
1
Y
1
(xj) + X

2
Y
2
(xj)

��

= 1 −

�
1

2n

n�
j=1

����Q(xj) − �P(xj)
��

+

�����������

�P(xj) − �Q(xj) + hP(xj) − hQ(xj)+

hQ(xj)�P(xj) − hP(xj)�Q(xj)

1−hP(xj)hQ(xj)

�����������

⎤⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎠

Example 1 Consider three IFSs P = {⟨x, 0.00, 0.00⟩} , 
Q = {⟨x, 0.49, 0.51⟩} and R = {⟨x, 0.50, 0.50⟩} defined on 
U = {x} . From these given sets, it is obvious that the similar-
ity between the IFSs Q and R is more than the IFSs P and 
R . Now, in order to show the superiority of the presented 
SM S , we apply the prevailing similarity measures SC [5], 
SDC [7], SSK [11], SVS [22], SY [25] and the proposed simi-
larity measure S on these IFSs, and tabulate the obtained 
results in Table 2.

From this table, it is evident that the similarity measures 
SC [5], SDC [7] provides that the similarity degree between 
P and R is higher than the Q and R . On the other hand, the 
measure SSK [11] draws that the SM degree between P and 
R is identical with Q and R . The measures SVS [22] and 
SY [25] fail to determine the SM degree between P and R 
due to “division by zero problem,” whereas on applying the 
proposed SM we get that the similarity degree between Q and 
R is greater than between P and R . Thus, we obtain that the 
prevailing measures SC [5], SDC [7] and SSK [11] give that the 
IFSs P and R are more similar which is counter to the fact 
that Q and R are more alike whereas the proposed measure S 
gives the accurate results. Therefore, the proposed measure 
S gives the better and reliable results as compared to existing 
SMs [5, 7, 11, 22, 25]. Moreover, the similarity measures 
[5, 7, 11] calculate the degree of similarity between P and 
R to be exactly 1 whereas P and R are not equal. Thus the 
similarity measures [5, 7, 11] do not satisfy the property (P2) 
of SM as stated in Theorem 5. Hence, from this analysis, we 
can conclude that the existing SMs have some drawbacks that 
it does not satisfy certain characteristics.

Next, we utilize the 6 groups of IFSs to verify the superi-
ority of the stated SMs over the various existing SMs [5–13, 
15, 16, 22–26, 28].

Example 2 Consider the 6 groups of diverse IFSs P and Q 
in order to compare the results of the proposed SMs over 
the existing SMs [5–13, 15, 16, 22–26, 28]. The obtained 
results for each group are tabulated in Table 3. From this 
table, it is analyzed that the developed SM S can work well 
over these existing SMs and overcome their drawbacks. In 
this table, we can notice that there occur indistinguishable 
results for the different pairs of input data corresponding to 

Table 2  Similarity measure results for IFSs P , Q and R

Measure S(P,R) S(Q,R) Relation

SC [5] 1.0000 0.9900 S(P,R) > S(Q,R)

SDC [7] 1.0000 0.9900 S(P,R) > S(Q,R)

SSK [11] 1.0000 1.0000 S(P,R) = S(Q,R)

SVS [22] NaN 0.9900 Cannot be determined
SY [25] NaN 0.9998 Cannot be determined
Proposed 0.7500 0.9900 S(P,R) < S(Q,R)
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the existing SMs, which drives to the conclusion that these 
measures are inadequate to discriminate the different input 
samples precisely. The following are the drawbacks of the 
existing SMs over the proposed SM:

1. The different input cases 1,  4 and 5 cannot be identified 
using similarity measure SC [5] because of the indistin-
guishable results. Besides this, it is seen that measure-
ment values obtained using SC [5] are exactly 1 for input 
cases 1,  4 and 5, i.e., SC(P,Q) = 1 when P = (0.3, 0.3) , 
Q = (0.4, 0.4) (Case 1), P = (0.5, 0.5) , Q = (0.0, 0.0) 
(Case 4), P = (0.4, 0.2) , Q = (0.5, 0.3) (Case 5), which 
are not identical to each other, i.e., P ≠ Q . In addition 
to these, the similarity measures SDC [7], SSK [11] and SY 
[25] also suffer from the same problem for the different 
cases group. Thus, the existing SMs [5, 7, 11, 25] do 
not satisfy the property (P2) as stated in Theorem 5 and 

hence this is the cause of the failure of these measures 
in some particular cases.

2. It is also seen from the table that the measure of similarity 
SHK [6] fails to discriminate the cases 1, 2, 5 and the cases 
2, 3, i.e., SHK(P,Q) = SHK(P1,Q1) = SHK(P2,Q2) = 0.9 
when  P = (0.3, 0.3) ,  Q = (0.4, 0.4) (Case  1) , 
P1 = (0.3, 0.4) ,  Q1 = (0.4, 0.3) (Case  2 )  and 
P2 = (0.4, 0.2) , Q2 = (0.5, 0.3) (Case 5). In the similar 
manner, similarity measures given in [5–13, 16, 22–24, 
26, 28] yield illogical results as these measures produce 
the identical outcomes for different input values and hence 
they are incapable to distinguish the pairs.

3. Some of the existing SMs fail to deal with the “division 
by zero” problem and thus they are incapable to clas-
sify or rank the objects. For instance, the measures SVS 
[22], SY [25] when P = (1, 0) , Q = (0, 0) (Case 3) and 
P = (0.5, 0.5) , Q = (0, 0) (Case 4).

Table 3  Comparative study 
results of SMs of Example 2 (
p = 1, t = 2 in SBA and p = 1 in 
SDC, SM , SLS

)

“Bold denotes unreasonable results, NaN denotes that similarity cannot be computed due to division by 
zero problem”

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
P = {⟨x, 0.3, 0.3⟩} {⟨x, 0.3, 0.4⟩} {⟨x, 1.0, 0.0⟩} {⟨x, 0.5, 0.5⟩} {⟨x, 0.4, 0.2⟩} {⟨x, 0.4, 0.2⟩}
Q = {⟨x, 0.4, 0.4⟩} {⟨x, 0.4, 0.3⟩} {⟨x, 0.0, 0.0⟩} {⟨x, 0.0, 0.0⟩} {⟨x, 0.5, 0.3⟩} {⟨x, 0.5, 0.2⟩}
SC [5] 1.0000 0.9000 0.5000 1.0000 1.0000 0.9500
SHK [6] 0.9000 0.9000 0.5000 0.5000 0.9000 0.9500
SDC [7] 1.0000 0.9000 0.5000 1.0000 1.0000 0.9500
SLS1 [9] 0.9000 0.9000 0.5000 0.5000 0.9000 0.9500
SLS2 [9] 0.9000 0.9000 0.5000 0.5000 0.9000 0.9500
SM [8] 0.9000 0.9000 0.5000 0.5000 0.9000 0.9500
SSK [11] 1.0000 0.0000 1.0000 1.0000 0.6667 0.3333
SHY1 [10] 0.9000 0.9000 0.0000 0.5000 0.9000 0.9000
SHY2 [10] 0.8495 0.8495 0.0000 0.3775 0.8495 0.8495
SHY3 [10] 0.8182 0.8182 0.0000 0.3333 0.8182 0.8182
SWX [12] 0.9000 0.9000 0.2500 0.5000 0.9000 0.9250
SL [13] 0.8268 0.9000 0.0000 0.1340 0.8268 0.9000
SVS [22] 0.9857 0.9857 NaN NaN 0.9844 0.9844
SHY4 [23] 0.9000 0.9000 0.5000 0.5000 0.9000 0.9500
SHY5 [23] 0.7904 0.7904 0.2689 0.2689 0.7904 0.8899
SHY6 [23] 0.7500 0.7500 0.2500 0.2500 0.7500 0.8636
SHY7 [24] 0.7500 0.7500 0.0000 0.0000 0.7500 0.8571
SHY8 [24] 0.9000 0.9000 0.5000 0.5000 0.9000 0.9500
SHY9 [24] 0.7500 0.7500 0.0000 0.0000 0.7500 0.8571
SHY10 [24] 0.8571 0.8571 0.0000 0.0000 0.8571 0.9231
SY [25] 1.0000 0.9600 NaN NaN 0.9971 0.9965
SBA [26] 0.9667 0.9000 0.5000 0.8333 0.9667 0.9500
SS [15] 0.9851 0.9937 0.5000 0.3536 0.9841 0.9968
SCL [16] 0.9667 0.9000 0.1667 0.8333 0.9667 0.9350
SN [28] 0.9333 0.9000 0.3333 0.6667 0.9000 0.9333
Proposed 0.9500 0.8786 0.0000 0.7500 0.9341 0.9045
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Therefore, from this analysis, we conclude that the pre-
vailing measures [5–13, 16, 22–26, 28] fail to make the 
accurate decision for the considered input data whereas the 
presented SM is consistent for each group. The developed 
SM S and the SM SS [15] have “no counter-intuitive cases”, 
which is presented in Table 3 for each group. Hence, the pre-
sented SM overcomes the drawbacks of existing measures.

In the next, we illustrate one example from the pattern 
recognition field to prove that proposed SM gives the valid 
outcomes over the existing SMs in the literature.

Example 3 Consider three given patterns P1 , P2 and P3 rep-
resented by IFSs, defined on U = {x1, x2, x3} as:

Further, consider an unknown pattern Q whose rating are 
summarized in IFSs as

and the main target is to recognize unknown pattern Q with 
one of the known classes Pi (i = 1, 2, 3).

To achieve it, we estimate the degree of similarity among 
Pi and Q using the proposed SM S and the prevailing SMs 
[5–13, 15, 16, 22–26, 28]. The results corresponding to each 
measure are outlined in Table 4. From this table, it is seen 
that the unknown pattern Q is classified with pattern P3 by 
using the proposed measure S . However, from the exist-
ing SMs, we identify that most of the SMs create identical 
outcomes due to which unknown pattern “Cannot be recog-
nized”. For example, the measures SC [5], SDC [7], SHY1 [10], 
SHY2 [10], SHY3 [10], SWX [12], SL [13] give similar results 
for S(P1,Q) and S(P3,Q) and the measure SN [28] produces 
same outcomes for SN(P2,Q) and SN(P3,Q) . Besides these, 
the measures SHK [6], SLS1 [9], SLS2 [9], SM [8], SSK [11], SHY4 
[23], SHY5 [23], SHY6 [23], SHY7 [23], SHY8 [24], SHY9 [24] and 
SHY10 [24] produce identical values for S(P1,Q) , S(P2,Q) 
and S(P3,Q) . Apart from these, it is seen that the measure 
SVS [22] becomes unsuccessful in computing the degree of 
similarity of Q with all the three known patterns Pi due to 
“division by zero problem”. Hence, it is concluded the pre-
vailing SMs [5–13, 22–25, 28] fail to reach at any decision 
in this case whereas the proposed measure S is effective in 
giving better results and to make optimal decisions in such 
cases as well.

P1 =
�⟨x1, 0.2, 0.3⟩, ⟨x2, 0.1, 0.4⟩, ⟨x3, 0.2, 0.6⟩

�
P2 =

�⟨x1, 0.3, 0.2⟩, ⟨x2, 0.4, 0.1⟩, ⟨x3, 0.5, 0.3⟩
�

P3 =
�⟨x1, 0.2, 0.3⟩, ⟨x2, 0.4, 0.1⟩, ⟨x3, 0.5, 0.3⟩

�

Q =
�⟨x1, 0.1, 0.2⟩, ⟨x2, 0.4, 0.5⟩, ⟨x3, 0.0, 0.0⟩

�

Applications

In this section, we present an approach to solve the DMPs 
using proposed SMs followed by several illustrative 
examples.

Proposed DM Approach

Consider a set of alternatives P1 , P2 …Pm which needs to 
be evaluated to find the finest among them over the differ-
ent parameters xj of the universal set U . Each alternative is 
assessed under the IFS environment where an expert give 
their preferences to each Pi as IFN given by (�ij, �ij) where 
1 ≤ i ≤ m ; 1 ≤ j ≤ n such that �ij, �ij, �ij + �ij ∈ [0, 1] . Then 
the various steps involved to find the finest alternative based 
on the proposed SM are summarized as 

Table 4  Comparative analysis of Example 3 
(
p = 1 in SDC, SM , SLS

)

Bold denotes unreasonable results, NaN denotes that similarity can-
not be computed due to division by zero problem

Measures S(P1,Q) S(P2,Q) S(P3,Q) Classification result

SC [5] 0.9000 0.8667 0.9000 Cannot be recognized
SHK [6] 0.7667 0.7667 0.7667 Cannot be recognized
SDC [7] 0.9000 0.8667 0.9000 Cannot be recognized
SLS1 [9] 0.7667 0.7667 0.7667 Cannot be recognized
SLS2 [9] 0.7333 0.7333 0.7333 Cannot be recognized
SM [8] 0.7667 0.7667 0.7667 Cannot be recognized
SSK [11] 1.0000 1.0000 1.0000 Cannot be recognized
SHY1 [10] 0.6667 0.6333 0.6667 Cannot be recognized
SHY2 [10] 0.5516 0.5144 0.5516 Cannot be recognized
SHY3 [10] 0.5000 0.4634 0.5000 Cannot be recognized
SWX [12] 0.7167 0.7000 0.7167 Cannot be recognized
SL [13] 0.5239 0.5204 0.5239 Cannot be recognized
SVS [22] NaN NaN NaN Cannot be recognized
SHY4 [23] 0.7667 0.7667 0.7667 Cannot be recognized
SHY5 [23] 0.5687 0.5687 0.5687 Cannot be recognized
SHY6 [23] 0.5227 0.5227 0.5227 Cannot be recognized
SHY7 [24] 0.3852 0.3852 0.3852 Cannot be recognized
SHY8 [24] 0.7667 0.7667 0.7667 Cannot be recognized
SHY9 [24] 0.3636 0.3636 0.3636 Cannot be recognized
SHY10 [24] 0.5333 0.5333 0.5333 Cannot be recognized
SY [25] NaN NaN NaN Cannot be recognized
SN [28] 0.7778 0.8000 0.8000 Cannot be recognized
Proposed 0.7983 0.7585 0.8137 P3
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Step 1: Prepare the collective information in the decision 
matrix.

Step 2: Transform the given IFSs to the right-angled trian-
gle information.

Step 3: Compute the degree of similarity Si between the 
alternative Pi and the ideal set by using proposed SM.

Step 4: Rank the given alternative with index as computed 
by k = arg max

1≤i≤m
{Si}.

Applications in Pattern Recognition

To demonstrate the functionality of the proposed SM in 
various fields such as pattern recognition and clustering 
analysis, we solved some standard benchmark problems and 
compare its results with some of the existing SMs [5–13, 15, 
16, 22–26, 28] to prove its superiority over them as follows.

Example 4 [7, 16, 24, 25] Consider the three patterns Pi 
(i = 1, 2, 3) represented by IFSs as:

Consider an unknown pattern Q given by

which needs to be classified with one of the given patterns 
Pi . To recognize Q into Pi , we compute measure of similar-
ity between Pi and Q by using proposed SM S and existing 
SMs [5–13, 15, 16, 22–26, 28]. The results computed cor-
responding to them are given in Table 5. From these results, 
it is analyzed that the unknown pattern Q is classified with 
known pattern P3 by the proposed SM. Although the existing 
measures also recognize Q with P3 but most of the SMs [5–
10, 12, 22, 23, 26, 28] produce identical outcomes with other 
patterns which leads to unreasonable results. For instance, 
the SMs SC [5], SHK [6], SDC [7], SLS1 [9], SLS2 [9], SM [8], 
SHY1 [10], SHY2 [10], SHY3 [10], SWX [12], SHY4 [23], SHY5 
[23], SHY6 [23], SHY8 [24], SBA [26] and SN [28] give the same 
results for patterns P1 and P2 , i.e., S(P1,Q) = S(P2,Q) . 
But it is clearly seen that P1 ≠ P2 . Besides this, the SM SVS 
[22] fails to provide any valid result due to division by zero 
problem. Thus, the proposed SM S gives the better results 
and overcomes the drawbacks of some of existing measures 
[5–10, 12, 16, 22, 23, 26, 28].

Example 5 Consider three patterns Pi (i = 1, 2, 3) represented 
by IFSs as:

P1 =
�⟨x1, 1.0, 0.0⟩, ⟨x2, 0.8, 0.0⟩, ⟨x3, 0.7, 0.1⟩

�
P2 =

�⟨x1, 0.8, 0.1⟩, ⟨x2, 1.0, 0.0⟩, ⟨x3, 0.9, 0.0⟩
�

P3 =
�⟨x1, 0.6, 0.2⟩, ⟨x2, 0.8, 0.0⟩, ⟨x3, 1.0, 0.0⟩

�

Q =
�⟨x1, 0.5, 0.3⟩, ⟨x2, 0.6, 0.2⟩, ⟨x3, 0.8, 0.1⟩

�

Further, consider an unknown pattern Q which is to be clas-
sified in one of the given patterns Pi and it is represented as:

In order to recognize the unknown pattern Q , the prevailing 
similarity measures [5–13, 15, 16, 22–26, 28] and the pro-
posed measure S are utilized and the corresponding results 
are tabulated in Table 6. From this table, it is analyzed that 
most of the existing SMs fail to reach at any decision due to 
various shortcomings which are outlined as follows:

P1 =
�⟨x1, 0.34, 0.34⟩, ⟨x2, 0.19, 0.48⟩, ⟨x3, 0.02, 0.12⟩

�
P2 =

�⟨x1, 0.35, 0.33⟩, ⟨x2, 0.20, 0.47⟩, ⟨x3, 0.00, 0.14⟩
�

P3 =
�⟨x1, 0.33, 0.35⟩, ⟨x2, 0.21, 0.46⟩, ⟨x3, 0.01, 0.13⟩

�

Q =
�⟨x1, 0.37, 0.31⟩, ⟨x2, 0.23, 0.44⟩, ⟨x3, 0.04, 0.1⟩

�

Table 5  Comparative analysis of Example 4 
(
p = 1, t = 2 in SBA and 

p = 1 in SDC, SM , SLS
)

Bold denotes unreasonable results, NaN denotes that similarity can-
not be computed due to division by zero problem

Measures S(P1,Q) S(P2,Q) S(P3,Q) Classification result

SC [5] 0.7833 0.7833 0.8500 P3

SHK [6] 0.7833 0.7833 0.8500 P3

SDC [7] 0.7833 0.7833 0.8500 P3

SLS1 [9] 0.7833 0.7833 0.8500 P3

SLS2 [9] 0.7833 0.7833 0.8500 P3

SM [8] 0.7833 0.7833 0.8500 P3

SSK [11] 0.3968 0.4083 0.2963 P2

SHY1 [10] 0.7333 0.7333 0.8333 P3

SHY2 [10] 0.6297 0.6297 0.7571 P3

SHY3 [10] 0.5789 0.5789 0.7143 P3

SWX [12] 0.7583 0.7583 0.8417 P3

SL [13] 0.7172 0.7418 0.8367 P3

SVS [22] NaN NaN NaN “Cannot be recognized”
SHY4 [23] 0.7833 0.7833 0.8500 P3

SHY5 [23] 0.5933 0.5933 0.7003 P3

SHY6 [23] 0.5465 0.5465 0.6538 P3

SHY7 [24] 0.6245 0.6152 0.7017 P3

SHY8 [24] 0.7833 0.7833 0.8500 P3

SHY9 [24] 0.5938 0.6061 0.7000 P3

SHY10 [24] 0.7451 0.7547 0.8235 P3

SY [25] 0.9353 0.9519 0.9724 P3

SBA [26] 0.7833 0.7833 0.8500 P3

SS [15] 0.8868 0.9134 0.9361 P3

SCL [16] 0.7650 0.7639 0.8439 P3

SN [28] 0.7667 0.7667 0.8444 P3

Proposed 0.7264 0.7288 0.8208 P3

458 Cognitive Computation (2021) 13: –465447



1 3

1. The SMs SC [5], SHK [6], SDC [7], SLS1 [9], SLS2 [9], SM 
[8], SHY1 [10], SHY2 [10], SHY3 [10], SWX [12], SL [13], 
SHY4 [23], SHY5 [23], SHY6 [23], SHY8 [24], SHY9 [24], 
SHY10 [24], SBA [26], SCL [16], SN [28] give the identi-
cal values of S(P1,Q) , S(P2,Q) and S(P3,Q), i.e., 
S(P1,Q) = S(P2,Q) = S(P3,Q) as a result of which 
pattern Q cannot be recognized.

2. The SM SVS [22] fails to assess the similarity degrees 
between patterns P2 and Q due to “division by zero prob-
lem”.

3. The prevailing measures SSK [11], SHY7 [24], SY [25] and 
SS [15] recognize unknown pattern Q with known pattern 
P1 which coincides with the proposed measure results.

 This investigation leads to the conclusion that the proposed 
measure S can be applied on those real-life pattern recogni-
tion problems also while solving which most of the existing 
SMs [5–10, 12, 13, 16, 22, 23, 26, 28] fail.

Example 6 [16, 26] Consider three patterns Pi (i = 1, 2, 3) 
given in IFSs as

Consider an unknown pattern Q whose rating values are rep-
resented as an IFS given by

and the target is to classify Q in one of the classes Pi . For 
this, we compute the degree of similarity between Pi and Q 
by utilizing some of the existing measures [5–13, 15, 16, 
22–26, 28] along with the proposed SM S and tabulate the 
corresponding results in Table 7.

P1 =
�⟨x1, 0.5, 0.3⟩, ⟨x2, 0.7, 0.0⟩, ⟨x3, 0.4, 0.5⟩, ⟨x4, 0.7, 0.3⟩

�
P2 =

�⟨x1, 0.5, 0.2⟩, ⟨x2, 0.6, 0.1⟩, ⟨x3, 0.2, 0.7⟩, ⟨x4, 0.7, 0.3⟩
�

P3 =
�⟨x1, 0.5, 0.4⟩, ⟨x2, 0.7, 0.1⟩, ⟨x3, 0.4, 0.6⟩, ⟨x4, 0.7, 0.2⟩

�

Q =
�⟨x1, 0.4, 0.3⟩, ⟨x2, 0.7, 0.1⟩, ⟨x3, 0.3, 0.6⟩, ⟨x4, 0.7, 0.3⟩

�

Table 6  Comparative analysis results of Example 5 
(
p = 1, t = 2 in 

SBA and p = 1 in SDC, SM , SLS
)

Bold denotes unreasonable results, NaN denotes that similarity can-
not be computed due to division by zero problem

Measures S(P1,Q) S(P2,Q) S(P3,Q) Classification result

SC [5] 0.9700 0.9700 0.9700 Cannot be recognized
SHK [6] 0.9700 0.9700 0.9700 Cannot be recognized
SDC [7] 0.9700 0.9700 0.9700 Cannot be recognized
SLS1 [9] 0.9700 0.9700 0.9700 Cannot be recognized
SLS2 [9] 0.9700 0.9700 0.9700 Cannot be recognized
SM [8] 0.9700 0.9700 0.9700 Cannot be recognized
SSK [11] 0.4700 0.3417 0.3068 P1

SHY1 [10] 0.9700 0.9700 0.9700 Cannot be recognized
SHY2 [10] 0.9532 0.9532 0.9532 Cannot be recognized
SHY3 [10] 0.9417 0.9417 0.9417 Cannot be recognized
SWX [12] 0.9700 0.9700 0.9700 Cannot be recognized
SL [13] 0.9689 0.9689 0.9689 Cannot be recognized
SVS [22] 0.9916 NaN 0.9854 Cannot be recognized
SHY4 [23] 0.9700 0.9700 0.9700 Cannot be recognized
SHY5 [23] 0.9326 0.9326 0.9326 Cannot be recognized
SHY6 [23] 0.9151 0.9151 0.9151 Cannot be recognized
SHY7 [24] 0.8509 0.8042 0.8260 P1

SHY8 [24] 0.9700 0.9700 0.9700 Cannot be recognized
SHY9 [24] 0.8861 0.8861 0.8861 Cannot be recognized
SHY10 [24] 0.9396 0.9396 0.9396 Cannot be recognized
SY [25] 0.9892 0.9745 0.9820 P1

SBA [26] 0.9700 0.9700 0.9700 Cannot be recognized
SS [15] 0.9990 0.9958 0.9984 P1

SCL [16] 0.9700 0.9700 0.9700 Cannot be recognized
SN [28] 0.9700 0.9700 0.9700 Cannot be recognized
Proposed 0.9439 0.9250 0.9345 P1

Table 7  Comparative analysis results of Example 6 
(
p = 1, t = 2 in 

SBA and p = 1 in SDC, SM , SLS
)

Bold denotes unreasonable results, NaN denotes that similarity can-
not be computed due to division by zero problem

Measures S(P1,Q) S(P2,Q) S(P3,Q) Classification result

SC [5] 0.9500 0.9375 0.9750 P3

SHK [6] 0.9500 0.9375 0.9500 Cannot be recognized
SDC [7] 0.9500 0.9375 0.9750 P3

SLS1 [9] 0.9500 0.9375 0.9500 Cannot be recognized
SLS2 [9] 0.9375 0.9375 0.9375 Cannot be recognized
SM [8] 0.9500 0.9375 0.9500 Cannot be recognized
SSK [11] 0.2857 0.2292 0.3833 P3

SHY1 [10] 0.9250 0.9250 0.9250 Cannot be recognized
SHY2 [10] 0.8857 0.8857 0.8857 Cannot be recognized
SHY3 [10] 0.8605 0.8605 0.8605 Cannot be recognized
SWX [12] 0.9375 0.9313 0.9375 Cannot be recognized
SL [13] 0.9134 0.9134 0.8882 Cannot be recognized
SVS [22] NaN 0.9666 0.9700 Cannot be recognized
SHY4 [23] 0.9500 0.9375 0.9500 Cannot be recognized
SHY5 [23] 0.8899 0.8641 0.8899 Cannot be recognized
SHY6 [23] 0.8636 0.8333 0.8636 Cannot be recognized
SHY7 [24] 0.8875 0.8562 0.8944 P3

SHY8 [24] 0.9500 0.9375 0.9500 Cannot be recognized
SHY9 [24] 0.8889 0.8611 0.8919 P3

SHY10 [24] 0.9412 0.9254 0.9429 P3

SY [25] 0.9906 0.9871 0.9959 P3

SBA [26] 0.9500 0.9375 0.9667 P3

SS [15] 0.9844 0.9957 0.9807 P2

SCL [16] 0.9492 0.9338 0.9658 P3

SN [28] 0.9500 0.9333 0.9583 P3

Proposed 0.9478 0.9188 0.9650 P3
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It is analyzed from this table that the proposed SM S has 
some advantages over the shortcomings of the several exist-
ing SMs which are outlined as follows.

1. The existing SMs are unsuccessful in recognizing the 
unknown pattern Q in any of the classes Pi due to identi-
cal outcomes. For instance, the measures SHK [6], SM [8], 
SWX [12], SHY4 [23], SHY5 [23], SHY6 [23] and SHY8 [24] 
give the same values of S(P1,Q) and S(P3,Q) and the 
measure SL [13] give the identical results for S(P1,Q) 
and S(P2,Q).

2. Another counter-intuitive case can be provided for the 
SMs SLS2 [9], SHY1 [10], SHY2 [10] and SHY3 [10]. It is 
noticed from the table that, these existing measures give 
the similar results for S(P1,Q) , S(P2,Q) and S(P3, Q) , 
i.e., S(P1,Q) = S(P2,Q) = S(P3,Q) and thus, we are 
unable to recognize the pattern Q.

3. The measure SVS [22] fails to determine the similarity 
degree between patterns P1 and Q due to “division by 
zero problem”.

4. The prevailing measures such as SC [5], SDC [7], SSK 
[11], SHY7 [24], SHY9 [24], SHY10 [24], SY [25], SBA [26], 
SS [15], SCL [16], SN [28] classify pattern Q with known 
pattern P3 as the degree of similarity obtained, using 
these measures, among P3 and Q is maximum. It also 
coincides with the results of proposed measure. Thus, 
the proposed measure and these existing measures have 
“no counter-intuitive cases” as shown in Table 7.

 Therefore, it is concluded that the proposed SM S is more 
efficient than some of the prevailing measures [6, 8–10, 12, 
22–24] as in some cases, these existing SMs are unable to 
reach at any decision. Also, it has been computed that the 
overall time complexity of the proposed decision making 
approach is O(mn) where m is the number of the alterna-
tives and n represents the number of the criteria for a given 
MCDM problem. Furthermore, to discuss the comparison 
from the perspective of computational cost, we have com-
puted the time elapsed and the memory utilized by CPU 
during the execution of the proposed decision making algo-
rithm and the several existing approaches. The CPU memory 
utilized by the proposed method is found to be 5.8746 × 10−4 
mega bytes. However, the time corresponding to each algo-
rithm is noted and listed in Table 8, which gives a quantita-
tive analysis of computational cost of the proposed and the 
existing methods. Although, it is seen that there is no much 
significant difference among the execution time of the pro-
posed measure and the prevailing approaches, but we figure 
out that the proposed measure has the following benefits: 
(i) obtain the finest alternative without counter-intuitive 
cases [5–10, 12, 16, 22, 23, 26, 28]; (ii) without division 
by zero problem [22, 25], over the other existing SM-based 
algorithm.

Application in Clustering Problem

In this section, we demonstrate the application of the stated 
measure in the clustering problem.

Definition 7 For a collection of “m” IFSs, Pi , a similarity 
matrix is given as: C = (cik)m×m , where cik = S(Pi,Pk) rep-
resents the SM among Pi and Pk and satisfies 0 ≤ cik ≤ 1 ; 
cii = 1 and cik = cki.

Definition 8 [32] A matrix C2 = C◦C = (c̄ik)m×m where 
c̄ik = max

u

(
min(ciu, cuk)

)
 is called similarity composition 

matrix.

Definition 9 [32] If C2 ⊆ C, i.e., max
u

(
min(ciu, cuk)

)
≤ cik ∀ 

i, k, then C2 is termed as “equivalent similarity matrix 
(ESM)”.

Table 8  Comparative study results of computational cost

Measure used Time elapsed in seconds while obtaining results of

Example 2 Example 3 Example 5 Example 6

SC [5] 0.0028 0.0024 0.0031 0.0026
SHK [6] 0.0040 0.0030 0.0027 0.0023
SDC [7] 0.0030 0.0033 0.0028 0.0025
SLS1 [9] 0.0141 0.0038 0.0026 0.0030
SLS2 [9] 0.0041 0.0033 0.0030 0.0037
SM [8] 0.0035 0.0044 0.0040 0.0029
SSK [11] 0.0131 0.0042 0.0035 0.0042
SHY1 [10] 0.0028 0.0023 0.0046 0.0024
SHY2 [10] 0.0035 0.0033 0.0025 0.0038
SHY3 [10] 0.0043 0.0031 0.0027 0.0037
SWX [12] 0.0034 0.0035 0.0035 0.0047
SL [13] 0.0030 0.0031 0.0031 0.0034
SVS [22] 0.0181 0.0029 0.0025 0.0047
SHY4 [23] 0.0023 0.0028 0.0030 0.0031
SHY5 [23] 0.0034 0.0035 0.0032 0.0034
SHY6 [23] 0.0035 0.0029 0.0030 0.0035
SHY7 [24] 0.0035 0.0031 0.0029 0.0027
SHY8 [24] 0.0028 0.0024 0.0026 0.0031
SHY9 [24] 0.0029 0.0025 0.0024 0.0028
SHY10 [24] 0.0019 0.0018 0.0017 0.0020
SY [25] 0.0070 0.0024 0.0024 0.0023
SBA [26] 0.0034 0.0031 0.0031 0.0037
SS [15] 0.0044 0.0030 0.0036 0.0030
SCL [16] 0.0053 0.0052 0.0046 0.0043
SN [28] 0.0036 0.0028 0.0026 0.0034
S (proposed) 0.0025 0.0019 0.0017 0.0020
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Theorem 6 [32] For similarity matrix C = (cik)m×m , and 
in the compositions C → C2 → C4 → … → C2

z

→ … , if ∃ 
z ∈ �

+ such that C2
z

= C2
z+1

 and then C2
z

 is also an ESM.

Definition 10 [32] For an ESM C = (cik)m×m , the matrix 
C� = (c�

ik
)m×m is termed �−cutting matrix of C , where

and � ∈ [0, 1] is the “confidence level”.

Example 7 [32] Consider the dataset of ten cars Pi 
(i = 1, 2,… , 10) . These cars are characterized by the six 
criteria Qj (j = 1, 2,… , 6) namely: Q1 ∶ Fuel company, Q2 ∶ 
Aerodynamic degree, Q3 ∶ Price, Q4 ∶ Comfort, Q5 ∶ Design 
and Q6 ∶ Safety. The data of the cars Pi are tabulated in 
Table 9. Now, we utilize the proposed SM S to cluster the 
cars Pi , which involves the subsequent steps:

Step 1: By using Eq. (8), calculate the degrees of similar-
ity between the cars, i.e., S(Pi,Pk) (i,k=1,2, ..., 10). Thus, a 
similarity matrix C is obtained as:

Step 2: Compute the matrix C2 , using Definition 8, given as:

(9)c𝜆
ik
=

{
1 ; cik ≥ 𝜆

0 ; cik < 𝜆

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.0000 0.6537 0.6235 0.7311 0.6047 0.8738 0.6553 0.5731 0.6841 0.5708

0.6537 1.0000 0.9007 0.6567 0.6811 0.6731 0.9033 0.7994 0.6623 0.6867

0.6235 0.9007 1.0000 0.7298 0.7306 0.6463 0.8929 0.7835 0.7342 0.6855

0.7311 0.6567 0.7298 1.0000 0.6667 0.6764 0.6647 0.6271 0.9075 0.6254

0.6047 0.6811 0.7306 0.6667 1.0000 0.6522 0.7381 0.8188 0.6790 0.8930

0.8738 0.6731 0.6463 0.6764 0.6522 1.0000 0.6777 0.5871 0.6563 0.6233

0.6553 0.9033 0.8929 0.6647 0.7381 0.6777 1.0000 0.8254 0.6666 0.7125

0.5731 0.7994 0.7835 0.6271 0.8188 0.5871 0.8254 1.0000 0.6295 0.8202

0.6841 0.6623 0.7342 0.9075 0.6790 0.6563 0.6666 0.6295 1.0000 0.6349

0.5708 0.6867 0.6855 0.6254 0.8930 0.6233 0.7125 0.8202 0.6349 1.0000

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Table 9  Input data of Example 7

Q1 Q2 Q3 Q4 Q5 Q6

P1 ⟨0.30, 0.40⟩⟨0.20, 0.70⟩⟨0.40, 0.50⟩⟨0.80, 0.10⟩⟨0.40, 0.50⟩⟨0.20, 0.70⟩
P2 ⟨0.40, 0.30⟩⟨0.50, 0.10⟩⟨0.60, 0.20⟩⟨0.20, 0.70⟩⟨0.30, 0.60⟩⟨0.70, 0.20⟩
P3 ⟨0.40, 0.20⟩⟨0.60, 0.10⟩⟨0.80, 0.10⟩⟨0.20, 0.60⟩⟨0.30, 0.70⟩⟨0.50, 0.20⟩
P4 ⟨0.30, 0.40⟩⟨0.90, 0.00⟩⟨0.80, 0.10⟩⟨0.70, 0.10⟩⟨0.10, 0.80⟩⟨0.20, 0.80⟩
P5 ⟨0.80, 0.10⟩⟨0.70, 0.20⟩⟨0.70, 0.00⟩⟨0.40, 0.10⟩⟨0.80, 0.20⟩⟨0.40, 0.60⟩
P6 ⟨0.40, 0.30⟩⟨0.30, 0.50⟩⟨0.20, 0.60⟩⟨0.70, 0.10⟩⟨0.50, 0.40⟩⟨0.30, 0.60⟩
P7 ⟨0.60, 0.40⟩⟨0.40, 0.20⟩⟨0.70, 0.20⟩⟨0.70, 0.10⟩⟨0.10, 0.80⟩⟨0.20, 0.80⟩
P8 ⟨0.90, 0.10⟩⟨0.70, 0.20⟩⟨0.70, 0.10⟩⟨0.40, 0.50⟩⟨0.40, 0.50⟩⟨0.80, 0.00⟩
P9 ⟨0.40, 0.40⟩⟨1.00, 0.00⟩⟨0.90, 0.10⟩⟨0.60, 0.20⟩⟨0.20, 0.70⟩⟨0.10, 0.80⟩
P10⟨0.90, 0.10⟩⟨0.80, 0.00⟩⟨0.60, 0.30⟩⟨0.50, 0.20⟩⟨0.80, 0.10⟩⟨0.60, 0.40⟩

Since C2 ≠ C . Therefore, we compute C4.

Also C4 ≠ C2 . Therefore, we compute C8.

Also C8 ≠ C4 . Therefore, we compute C16.

As C16 = C8 . Therefore, C16 is an ESM.
Step 3: Assume � = 0.8202 , and by Definition 10, C� 

becomes

C2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.0000 0.6731 0.7298 0.7311 0.6790 0.8738 0.6777 0.6553 0.7311 0.6553

0.6731 1.0000 0.9007 0.7298 0.7994 0.6777 0.9033 0.8254 0.7342 0.7994

0.7298 0.9007 1.0000 0.7342 0.7835 0.6777 0.9007 0.8254 0.7342 0.7835

0.7311 0.7298 0.7342 1.0000 0.7298 0.7311 0.7298 0.7298 0.9075 0.6855

0.6790 0.7994 0.7835 0.7298 1.0000 0.6777 0.8188 0.8202 0.7306 0.8930

0.8738 0.6777 0.6777 0.7311 0.6777 1.0000 0.6777 0.6777 0.6841 0.6777

0.6777 0.9033 0.9007 0.7298 0.8188 0.6777 1.0000 0.8254 0.7342 0.8208

0.6553 0.8254 0.8254 0.7298 0.8202 0.6777 0.8254 1.0000 0.7342 0.8202

0.7311 0.7342 0.7342 0.9075 0.7306 0.6841 0.7342 0.7342 1.0000 0.6855

0.6553 0.7994 0.7835 0.6855 0.8930 0.6777 0.8202 0.8202 0.6855 1.0000

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

C4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.0000 0.7311 0.7311 0.7311 0.7306 0.8738 0.7311 0.7311 0.7311 0.7298

0.7311 1.0000 0.9007 0.7342 0.8202 0.7298 0.9033 0.8254 0.7342 0.8202

0.7311 0.9007 1.0000 0.7342 0.8202 0.7311 0.9007 0.8254 0.7342 0.8202

0.7311 0.7342 0.7342 1.0000 0.7342 0.7311 0.7342 0.7342 0.9075 0.7342

0.7306 0.8202 0.8202 0.7342 1.0000 0.7298 0.8202 0.8202 0.7342 0.8930

0.8738 0.7298 0.7311 0.7311 0.7298 1.0000 0.7298 0.7298 0.7311 0.6855

0.7311 0.9033 0.9007 0.7342 0.8202 0.7298 1.0000 0.8254 0.7342 0.8202

0.7311 0.8254 0.8254 0.7342 0.8202 0.7298 0.8254 1.0000 0.7342 0.8202

0.7311 0.7342 0.7342 0.9075 0.7342 0.7311 0.7342 0.7342 1.0000 0.7342

0.7298 0.8202 0.8202 0.7342 0.8930 0.6855 0.8202 0.8202 0.7342 1.0000

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

C8 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.0000 0.7311 0.7311 0.7311 0.7311 0.8738 0.7311 0.7311 0.7311 0.7311

0.7311 1.0000 0.9007 0.7342 0.8202 0.7311 0.9033 0.8254 0.7342 0.8202

0.7311 0.9007 1.0000 0.7342 0.8202 0.7311 0.9007 0.8254 0.7342 0.8202

0.7311 0.7342 0.7342 1.0000 0.7342 0.7311 0.7342 0.7342 0.9075 0.7342

0.7311 0.8202 0.8202 0.7342 1.0000 0.7311 0.8202 0.8202 0.7342 0.8930

0.8738 0.7311 0.7311 0.7311 0.7311 1.0000 0.7311 0.7311 0.7311 0.7311

0.7311 0.9033 0.9007 0.7342 0.8202 0.7311 1.0000 0.8254 0.7342 0.8202

0.7311 0.8254 0.8254 0.7342 0.8202 0.7311 0.8254 1.0000 0.7342 0.8202

0.7311 0.7342 0.7342 0.9075 0.7342 0.7311 0.7342 0.7342 1.0000 0.7342

0.7311 0.8202 0.8202 0.7342 0.8930 0.7311 0.8202 0.8202 0.7342 1.0000

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

C16 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.0000 0.7311 0.7311 0.7311 0.7311 0.8738 0.7311 0.7311 0.7311 0.7311

0.7311 1.0000 0.9007 0.7342 0.8202 0.7311 0.9033 0.8254 0.7342 0.8202

0.7311 0.9007 1.0000 0.7342 0.8202 0.7311 0.9007 0.8254 0.7342 0.8202

0.7311 0.7342 0.7342 1.0000 0.7342 0.7311 0.7342 0.7342 0.9075 0.7342

0.7311 0.8202 0.8202 0.7342 1.0000 0.7311 0.8202 0.8202 0.7342 0.8930

0.8738 0.7311 0.7311 0.7311 0.7311 1.0000 0.7311 0.7311 0.7311 0.7311

0.7311 0.9033 0.9007 0.7342 0.8202 0.7311 1.0000 0.8254 0.7342 0.8202

0.7311 0.8254 0.8254 0.7342 0.8202 0.7311 0.8254 1.0000 0.7342 0.8202

0.7311 0.7342 0.7342 0.9075 0.7342 0.7311 0.7342 0.7342 1.0000 0.7342

0.7311 0.8202 0.8202 0.7342 0.8930 0.7311 0.8202 0.8202 0.7342 1.0000

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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Step 4: From Eq. (10), we divide Pi into three classes as 
{P1,P6} , {P4,P9} , {P2,P3,P5,P7,P8,P10}

Since different values of � will produce different �− cut-
ting matrices and consequently we will obtain different clus-
tering outcomes. Accordingly, a comprehensive sensitivity 
investigation for � is provided in Table 10. We take the value 
of confidence level � from the least one to the highest one. 
By observing the obtained outcomes, for different values of 
� , we conclude that as the value of � increases then more and 
more patterns become differentiated. Besides this, for a par-
ticular cluster number, there is only one case. For instance, if 
the cars Pi are classified into four classes then, the obtained 
outcomes are {P1,P6} , {P2,P3,P7,P8} , {P4,P9} , {P5,P10} . 
This is useful in taking final decision as it reduces uncer-
tainty in choosing �.

Furthermore, the clustering distribution of ten cars Pi is 
given in Fig. 2. This figure gives that the software Pi are 
principally separated into two groups which are: {P2,P3,P4 , 
P5 , P7 , P8,P9,P10} , {P1,P6} . Furthermore, when the 

(10)C� =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 1 0 0 0 0

0 1 1 0 1 0 1 1 0 1

0 1 1 0 1 0 1 1 0 1

0 0 0 1 0 0 0 0 1 0

0 1 1 0 1 0 1 1 0 1

1 0 0 0 0 1 0 0 0 0

0 1 1 0 1 0 1 1 0 1

0 1 1 0 1 0 1 1 0 1

0 0 0 1 0 0 0 0 1 0

0 1 1 0 1 0 1 1 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

confidence level stays in the relaxed level, the overall trend 
can be found using Fig. 2.

The clustering results tabulated in Table 10 are confirmed 
by the existing works. For instance, the clustering outcomes 
with two clusters {P1,P6} , {P2,P3,P4,P5,P7,P8,P9,P10} 
are supported by [32] and [19]. The results with three clus-
ters {P1,P6} , {P4,P9} , {P2,P3,P5,P7,P8,P10} are vali-
dated by [27] and [19]. The four cluster outcomes {P1,P6} , 
{P4,P9} , {P5,P10} , {P2,P3,P7,P8} are identical with 
the results of [19, 27, 29]. The outcomes of five clusters 
{P1,P6} , {P4,P9} , {P5 , P10} , {P2,P3,P7} , {P8} , seven clus-
ters {P1} , {P6} , {P4 , P9} , {P5} , {P10} , {P2,P3,P7} , {P8} , 
eight clusters {P1} , {P6} , {P4,P9} , {P5} , {P10} , {P2,P7} , 
{P3} , {P8} are supported by [19]. Nine cluster results {P1} , 
{P6} , {P4,P9} , {P5} , {P10} , {P2} , {P7} , {P3} , {P8} are vali-
dated by [32].

Example 8 [29] Consider the dataset of fifteen pat-
terns Pi (i = 1, 2,… , 15) , given as P1 = ⟨0.910, 0.080⟩ , 
P2 = ⟨0.930, 0.070⟩  ,  P3 = ⟨0.870, 0.120⟩  , 
P4 = ⟨0.850, 0.140⟩  ,  P5 = ⟨0.790, 0.200⟩  , 
P6 = ⟨0.190, 0.800⟩  ,  P7 = ⟨0.100  ,  0.820⟩  , 
P8 = ⟨0.450, 0.550⟩ , P9 = ⟨0.030, 0.820⟩ , P10 = ⟨0.070 , 
0.730⟩  ,  P11 = ⟨0.500, 0.500⟩  ,  P12 = ⟨0.910, 0.080⟩  , 
P13 = ⟨0.400, 0.500⟩ , P14 = ⟨0.420, 0.480⟩ , P15 = ⟨0.460 , 
0.460⟩.

Now, we utilize the proposed SM S in order to cluster the 
patterns Pi , which involves the subsequent steps:

Step 1: By using Eq. (8), calculate the similarity matrix 
as:

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.0000 0.9803 0.9598 0.9397 0.8794 0.2764 0.1888 0.5373 0.1212 0.1635 0.5875 1.0000 0.4912 0.5114 0.5507

0.9803 1.0000 0.9403 0.9204 0.8603 0.2604 0.1728 0.5200 0.1052 0.1470 0.5700 0.9803 0.4735 0.4935 0.5328

0.9598 0.9403 1.0000 0.9799 0.9196 0.3166 0.2304 0.5773 0.1643 0.2076 0.6275 0.9598 0.5333 0.5534 0.5923

0.9397 0.9204 0.9799 1.0000 0.9397 0.3367 0.2512 0.5973 0.1858 0.2296 0.6475 0.9397 0.5543 0.5744 0.6131

0.8794 0.8603 0.9196 0.9397 1.0000 0.3970 0.3136 0.6573 0.2503 0.2957 0.7075 0.8794 0.6173 0.6374 0.6756

0.2764 0.2604 0.3166 0.3367 0.3970 1.0000 0.9379 0.7428 0.8959 0.9236 0.6925 0.2764 0.7524 0.7322 0.7002

0.1888 0.1728 0.2304 0.2512 0.3136 0.9379 1.0000 0.6720 0.9586 0.9466 0.6200 0.1888 0.6776 0.6567 0.6243

0.5373 0.5200 0.5773 0.5973 0.6573 0.7428 0.6720 1.0000 0.6213 0.6750 0.9500 0.5373 0.9725 0.9725 0.9680

0.1212 0.1052 0.1643 0.1858 0.2503 0.8959 0.9586 0.6213 1.0000 0.9313 0.5675 0.1212 0.6236 0.6020 0.5691

0.1635 0.1470 0.2076 0.2296 0.2957 0.9236 0.9466 0.6750 0.9313 1.0000 0.6200 0.1635 0.6804 0.6582 0.6239

0.5875 0.5700 0.6275 0.6475 0.7075 0.6925 0.6200 0.9500 0.5675 0.6200 1.0000 0.5875 0.9250 0.9450 0.9800

1.0000 0.9803 0.9598 0.9397 0.8794 0.2764 0.1888 0.5373 0.1212 0.1635 0.5875 1.0000 0.4912 0.5114 0.5507

0.4912 0.4735 0.5333 0.5543 0.6173 0.7524 0.6776 0.9725 0.6236 0.6804 0.9250 0.4912 1.0000 0.9789 0.9428

0.5114 0.4935 0.5534 0.5744 0.6374 0.7322 0.6567 0.9725 0.6020 0.6582 0.9450 0.5114 0.9789 1.0000 0.9637

0.5507 0.5328 0.5923 0.6131 0.6756 0.7002 0.6243 0.9680 0.5691 0.6239 0.9800 0.5507 0.9428 0.9637 1.0000

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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Step 2: Compute C2 , C4 , ...until C2
z

= C2
z+1

 for some positive 
integer z. We observe that C8 = C4 . Therefore C8 is an ESM 
and given by

C
8
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.0000 0.9803 0.9598 0.9598 0.9397 0.7075 0.7075 0.7075 0.7075 0.7075 0.7075 1.0000 0.7075 0.7075 0.7075

0.9803 1.0000 0.9598 0.9598 0.9397 0.7075 0.7075 0.7075 0.7075 0.7075 0.7075 0.9803 0.7075 0.7075 0.7075

0.9598 0.9598 1.0000 0.9799 0.9397 0.7075 0.7075 0.7075 0.7075 0.7075 0.7075 0.9598 0.7075 0.7075 0.7075

0.9598 0.9598 0.9799 1.0000 0.9397 0.7075 0.7075 0.7075 0.7075 0.7075 0.7075 0.9598 0.7075 0.7075 0.7075

0.9397 0.9397 0.9397 0.9397 1.0000 0.7075 0.7075 0.7075 0.7075 0.7075 0.7075 0.9397 0.7075 0.7075 0.7075

0.7075 0.7075 0.7075 0.7075 0.7075 1.0000 0.9379 0.7524 0.9379 0.9379 0.7524 0.7075 0.7524 0.7524 0.7524

0.7075 0.7075 0.7075 0.7075 0.7075 0.9379 1.0000 0.7524 0.9586 0.9466 0.7524 0.7075 0.7524 0.7524 0.7524

0.7075 0.7075 0.7075 0.7075 0.7075 0.7524 0.7524 1.0000 0.7524 0.7524 0.9680 0.7075 0.9725 0.9725 0.9680

0.7075 0.7075 0.7075 0.7075 0.7075 0.9379 0.9586 0.7524 1.0000 0.9466 0.7524 0.7075 0.7524 0.7524 0.7524

0.7075 0.7075 0.7075 0.7075 0.7075 0.9379 0.9466 0.7524 0.9466 1.0000 0.7524 0.7075 0.7524 0.7524 0.7524

0.7075 0.7075 0.7075 0.7075 0.7075 0.7524 0.7524 0.9680 0.7524 0.7524 1.0000 0.7075 0.9680 0.9680 0.9800

1.0000 0.9803 0.9598 0.9598 0.9397 0.7075 0.7075 0.7075 0.7075 0.7075 0.7075 1.0000 0.7075 0.7075 0.7075

0.7075 0.7075 0.7075 0.7075 0.7075 0.7524 0.7524 0.9725 0.7524 0.7524 0.9680 0.7075 1.0000 0.9789 0.9680

0.7075 0.7075 0.7075 0.7075 0.7075 0.7524 0.7524 0.9725 0.7524 0.7524 0.9680 0.7075 0.9789 1.0000 0.9680

0.7075 0.7075 0.7075 0.7075 0.7075 0.7524 0.7524 0.9680 0.7524 0.7524 0.9800 0.7075 0.9680 0.9680 1.0000

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Step 3: Assume � = 0.9397 , �− cutting matrix C� is obtained 
by applying Definition 10 as:

Table 10  Clustering results for 
different confidence levels in 
Example 7

Class Confidence level Clustering results

10 0.9075 < 𝜆 ≤ 1.0000 {P1} , {P2} , {P3} , {P4} , {P5} , {P6} , {P7} , {P8} , {P9} , {P10},
9 0.9033 < 𝜆 ≤ 0.9075 {P1} , {P2} , {P3} , {P4,P9} , {P5} , {P6} , {P7} , {P8} , {P10}

8 0.9007 < 𝜆 ≤ 0.9033 {P1} , {P2,P7} , {P3} , {P4,P9} , {P5} , {P6} , {P8} , {P10}

7 0.8930 < 𝜆 ≤ 0.9007 {P1} , {P2,P3,P7} , {P4,P9} , {P5} , {P6} , {P8} , {P10}

6 0.8738 < 𝜆 ≤ 0.8930 {P1} , {P2,P3,P7} , {P4,P9} , {P5,P10} , {P6} , {P8}

5 0.8254 < 𝜆 ≤ 0.8738 {P1,P6} , {P2,P3,P7} , {P4,P9} , {P5,P10} , {P8}

4 0.8202 < 𝜆 ≤ 0.8254 {P1,P6} , {P2,P3,P7,P8} , {P4,P9} , {P5,P10}

3 0.7342 < 𝜆 ≤ 0.8202 {P1,P6} , {P2,P3,P5,P7,P8,P10} , {P4,P9}

2 0.7311 < 𝜆 ≤ 0.7342 {P1,P6} , {P2,P3,P4,P5,P7,P8,P9,P10}

1 0.0000 ≤ � ≤ 0.7311 {P1,P2,P3,P4,P5,P6,P7,P8,P9,P10}

Fig. 2  The clustering effect 
diagram of ten cars Pi
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Step 4: By using Eq. (11), the given Pi are categorized as: 
{P1,P2,P3,P4,P5,P12} , {P6} , {P7,P9,P10} , and {P8 , P11 , 
P13 , P14 , P15}.

Apart from these, the complete results for different values 
of � are listed in Table 11.

Conclusion

The key contribution of this work is outlined below:

1. A notion of novel SM between the pairs of IFSs is 
explained by transforming the given IFSs into the right-
angled triangle in a square area and hence investigated 
their several properties. In particular, comparative stud-
ies with several existing SMs, given in Table 1, are done 
to prove the superiority of the proposed measure over 
these existing SMs.

(11)C� =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 0 0 0 0 0 0 1 0 0 0

1 1 1 1 1 0 0 0 0 0 0 1 0 0 0

1 1 1 1 1 0 0 0 0 0 0 1 0 0 0

1 1 1 1 1 0 0 0 0 0 0 1 0 0 0

1 1 1 1 1 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 1 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 1 0 1 1 1

0 0 0 0 0 0 1 0 1 1 0 0 0 0 0

0 0 0 0 0 0 1 0 1 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 1 0 1 1 1

1 1 1 1 1 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0 1 0 1 1 1

0 0 0 0 0 0 0 1 0 0 1 0 1 1 1

0 0 0 0 0 0 0 1 0 0 1 0 1 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

2. The validity as well as superiority of the proposed SM 
over the existing SMs is summarized in Section 4 which 
demonstrates that the existing SMs fail to give classifica-
tion results under the different instances such as “divi-
sion by zero problems” or “counter-intuitive cases” and 
hence decision makers may have faced obstacles in mak-
ing the optimal choice.

3. An algorithm to solve the DMPs with the proposed SM 
is developed and implemented to show its performance 
in numerous examples such as pattern recognition, clus-
tering analysis, etc. As compared to the other existing 
SM-based algorithm, we figure out that the proposed 
measure has the following benefits: (i) obtain the finest 
alternative without counter-intuitive cases [5–10, 12, 16, 
22, 23, 26, 28]; (ii) without division by zero problem 
[22, 25].

4. Further, based on the proposed SM, a novel clustering 
algorithm is given to classify the given objects under the 
different confidence levels of the expert.

 In the future, there is a scope of extending this research to 
some uncertain environment. Also, in the present work, the 
interactions between the different attributes are not considered. 
These drawbacks will be studied in our future work. Also, we 
will try to define some more generalized algorithms in order 
to solve more complex problems such as brain hemorrhage, 
healthcare, nonlinear systems, control systems, and others.
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Table 11  Results for different confidence levels of Example 8

Class Confidence level Clustering results

14 0.9803 < 𝜆 ≤ 1.0000 {P1,P12} , {P2} {P3} , {P4} {P5} {P6} , {P7},{P8} , {P9} , {P10} , {P11} , {P13} , {P14} {P15}

13 0.9800 < 𝜆 ≤ 0.9803 {P1,P2,P12} , {P3} , {P4} {P5} {P6} , {P7},{P8} , {P9} , {P10} , {P11} , {P13} , {P14} {P15}

12 0.9799 < 𝜆 ≤ 0.9800 {P1,P2,P12} , {P3} , {P4} {P5} {P6} , {P7},{P8} , {P9} , {P10} , {P11,P15} , {P13} , {P14}

11 0.9789 < 𝜆 ≤ 0.9799 {P1,P2,P12} , {P3,P4} {P5} {P6} , {P7} , {P8} , {P9} , {P10} , {P11,P15} , {P13} , {P14}

10 0.9725 < 𝜆 ≤ 0.9789 {P1,P2,P12} , {P3,P4} {P5} {P6} , {P7} , {P9} , {P10} , {P8} , {P11,P15} , {P13,P14}

9 0.9680 < 𝜆 ≤ 0.9725 {P1,P2,P12} , {P3,P4} {P5} {P6} , {P7} , {P9} , {P10} , {P8,P13,P14} {P11,P15}

8 0.9598 < 𝜆 ≤ 0.9680 {P1,P2,P12} , {P3,P4} {P5} {P6} , {P7} , {P9} , {P10} , {P8,P11,P13,P14,P15}

7 0.9586 < 𝜆 ≤ 0.9598 {P1,P2,P3,P4,P12} , {P5} {P6} , {P7} , {P9} , {P10} , {P8,P11,P13,P14,P15}

6 0.9466 < 𝜆 ≤ 0.9586 {P1,P2,P3,P4,P12} , {P5} {P6} , {P7,P9} , {P10} , {P8,P11,P13,P14,P15}

5 0.9397 < 𝜆 ≤ 0.9466 {P1,P2,P3,P4,P12} , {P5} {P6} , {P7,P9,P10} , {P8,P11,P13,P14,P15}

4 0.9379 < 𝜆 ≤ 0.9397 {P1,P2,P3,P4,P5,P12} , {P6} , {P7,P9,P10} , {P8,P11,P13,P14,P15}

3 0.7524 < 𝜆 ≤ 0.9379 {P1,P2,P3,P4,P5,P12} , {P6,P7,P9,P10} , {P8,P11,P13,P14,P15}

2 0.7075 < 𝜆 ≤ 0.7524 {P1,P2,P3,P4,P5,P12} , {P6,P7,P8,P9,P10,P11,P13,P14,P15}

1 0.0000 ≤ � ≤ 0.7075 {P1,P2,P3,P4,P5,P6,P7,P8,P9,P10,P11,P12,P13,P14,P15}  
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