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Abstract
As a single hidden layer feed-forward neural network, the extreme learning machine (ELM) has been extensively studied for its
short training time and good generalization ability. Recently, with the deep learning algorithm becoming a research hotspot, some
deep extreme learning machine algorithms such as multi-layer extreme learning machine (ML-ELM) and hierarchical extreme
learning machine (H-ELM) have also been proposed. However, the deep ELM algorithm also has many shortcomings: (1) when
the number of model layers is shallow, the random feature mapping makes the sample features cannot be fully learned and
utilized; (2) when the number of model layers is deep, the validity of the sample features will decrease after continuous
abstraction and generalization. In order to solve the above problems, this paper proposes a densely connected deep ELM
algorithm: dense-HELM (D-HELM). Benchmark data sets of different sizes have been employed for the property of the D-
HELM algorithm. Compared with the H-ELM algorithm on the benchmark dataset, the average test accuracy is increased by
5.34% and the average training time is decreased by 21.15%. On the NORB dataset, the proposed D-HELM algorithm still
maintains the best classification results and the fastest training speed. The D-HELM algorithm can make full use of the features of
hidden layer learning by using the densely connected network structure and effectively reduce the number of parameters.
Compared with the H-ELM algorithm, the D-HELM algorithm significantly improves the recognition accuracy and accelerates
the training speed of the algorithm.
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Introduction

Since the concept of extreme learning machine (ELM) algo-
rithm had been proposed in 2006 [1], ELM algorithm has
rapidly become an attractive area of research spot in the field
of machine learning and artificial intelligence research, after
continuous research and development by scholars. In recent
years, extreme learning machine algorithm based on kernel
function (K-ELM) [2], multi-layer extreme learning machine
algorithm (ML-ELM) [3], hierarchical extreme learning ma-
chine algorithm (H-ELM) [4], local receptive field-based
ELM (ELM-LRF) [5], and kernel multi-layer extreme

learning machine algorithm (ML-KELM) [6] have been suc-
cessively proposed. They are widely used in various fields
such as image classification recognition [7, 8], big data anal-
ysis [9, 10], target detection and tracking [11, 12], and artifi-
cial intelligence [13, 14].

The ELM algorithm is a feed-forward neural network with
a single hidden layer. The most basic structure includes three
layers: input layer, hidden layer, and output layer, as shown in
Fig. 1. The network structure is similar to the single hidden
layer BP neural network [15], but the training methods are
completely different. The BP neural network algorithm ob-
tains the parameters of the learning model by (1) assigning
initial values to the model parameters, (2) then adjusting the
model parameters by non-iterative inverse iteration, (3) until
the loss function has the smallest value. However, the ELM
algorithm obtains the parameters of the learning model by (1)
randomly generating the parameters from the input layer to the
hidden layer and (2) then using the least square method to
solve the parameters from the hidden layer to the output layer.
This avoids repeated iterative calculations when training the
model. Compared with BP neural network, it not only im-
proves the recognition result, but also greatly saves training
time.
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Complex classification or regression problems are often
linearly inseparable in the low-dimensional feature space,
but we map them to high-dimensional feature spaces through
nonlinear mapping, and it is possible to achieve linear separa-
bility in high-dimensional feature spaces. However, if this
mapping technique is used directly for classification or regres-
sion in high-dimensional space, there are problems such as the
form, parameters of the nonlinear mapping function, and fea-
ture space dimension. And the biggest obstacle is the “curse of
dimensionality” that will occur in the calculation of high-
dimensional feature space. Using kernel function technology
[16, 17] can effectively solve these problems. Support vector
machine (SVM) [18, 19] is a typical representative in this
field. With shorter training time and higher recognition accu-
racy, many complex classification and regression problems
that were difficult to solve in the past have been solved. To
compare with SVM, the proposed K-ELM cannot only effec-
tively shorten training time but also has more excellent per-
formance than SVM in the recognition accuracy; above afore-
mentioned properties of K-ELM gradually replace SVM in
various application fields.

But, both the conventional ELM and the K-ELM have a
relatively shallow structure, and even if there are a large num-
ber of hidden nodes, it is difficult to obtain a good learning
effect for images and videos that contain a large amount of
learning characteristics. So, paper [4] proposed an H-ELM
algorithm based on the principle of multi-layer perceptron.
The H-ELM algorithm uses a sparsely self-encoded unsuper-
vised learning method to train the model. After training the
model, supervised feature classification is performed. This
deep learning architecture, with the deepening of the model
structure, continuously extracts effective features in images or
videos, making the classification highly accurate, even

exceeding many classical deep learning models, such as the
StackedAuto Encoders (SAE) [20], the Deep Belief Networks
(DBN) [21], and the Deep Boltzmann Machines (DBM) [22].
However, as the network structure becomes increasingly deep,
a new research problem emerges: as information about the
input or gradient passes through many layers, it can vanish
and “wash out” by the time it reaches the end (or beginning) of
the network. In order to improve the training efficiency of
parameters, some scholars have made intensive connection
of the deep convolutional neural network (DCNN) algorithm
[23], which makes the deep model easier to train and obtain
good results. This paper applies this idea to ELM algorithm
and proposes a learning model (D-HELM) for densely con-
nected learning machines. D-HELM algorithm’s training pro-
cess is similar to that of H-ELM algorithm. It is also structur-
ally divided into two separate phases: (1) unsupervised hier-
archical feature representation and (2) supervised feature clas-
sification. The D-HELM algorithm consists of multiple ELM
auto-encoders (ELM-AE) after dense connection. The weight
parameters and bias parameters between each input layer and
hidden layer are still randomly generated, except that the out-
put parameters of the last layer are solved by least squares
analysis. The output layer parameters of other layers are all
determined by unsupervised sparse self-encoding method.
The output of each feature presentation layer of the D-
HELM algorithm not only serves as an input to the next layer,
but also links with the output of all subsequent feature presen-
tation layers; the structure formation is called densely connect-
ed network. The network structure of D-HELM algorithm
makes full use of the feature results extracted by each feature
extraction layer, so the recognition results are greatly im-
proved compared to H-ELM algorithm. Especially for those
datasets whose characteristic dimension itself is very small, it

Fig. 1 Network structure diagram
of the ELM algorithm
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can still obtain excellent recognition results when the network
structure is not extremely deep.

The following organizational structure of this article is as
follows: “Related Work” briefly introduces the related works
of the article, including the basic structure and trainingmethod
of H-ELM algorithm. “Proposed Learning Algorithm” intro-
duces the proposed D-HELM algorithm network structure and
training process. “Experiment and Evaluation” compares the
proposed D-HELM algorithm and H-ELM algorithm recog-
nition results on some common benchmark data sets and an-
alyzes experimental parameters by plotting. And on the
NORB dataset, the recognition results of the proposed algo-
rithm are compared with other deep learning algorithms.
Finally, the conclusion is given in “Conclusion”.

Related Works

In order to better understand the D-HELM algorithm proposed
in this paper, we will briefly introduce the related knowledge
of ELM algorithm, the network structure, and training process
of H-ELM algorithm in this section.

ELM Algorithm

According to the relevant theories of ELM in the paper [1],
given a training dataset X = [x1, x2,⋯, xN]∈Rd × N ∈ Rd × N ofN
samples with label T = [t1, t2,⋯, tN]∈Rd × N, where d is the
dimension of sample and m is the number of classes. The
output function of an ELM with L hidden nodes can be
expressed as [24]

f ELM x j
� � ¼ ∑L

i¼1βih aix j þ bi
� � ¼ y j; j ¼ 1; 2;⋯;N ð1Þ

where h(∙) is the nonlinear activation function, βi ∈ Rm denotes
the weight vector connecting the hidden nodes and the output
nodes, ai ∈ Rd is the weight vector connecting the hidden
nodes and the input nodes, and bi is the biases of the hidden
nodes, in which ai and bi are randomly generated.

According to the minimization loss function, in order to
reach the smallest training error and the smallest norm of
output weights [25]

Minimize : βk kσ1μ þ C Hβ−Tk kσ2ϑ ð2Þ

where σ1 > 0, σ2 > 0, μ,ϑϑ = 0, 0.5, 1, 2, ⋯, +∞. H is the
hidden layer output matrix (randomized matrix). The resultant
solution is equivalent to the ELM optimization solution with
σ1 = σ2= μ = ϑ = 2, which is more stable and has better gen-
eralization performance.

when Hβ-T = 0, the equation (2) holds, and the value of

βj jj j22 is the smallest. Therefore, equation (1) can be written
in the form of a matrix:

Hβ ¼ T ð3Þ
where

H ¼
g a1⋅x1 þ b1ð Þ ⋯ aL⋅x1 þ bL

⋮ ⋱ ⋮
a1⋅xN þ b1 ⋯ aL⋅xN þ bL

2
4

3
5
N�L

ð4Þ

β ¼
βT
1

⋮
βT
L

2
4

3
5; T ¼

tT1
⋮
tTN

2
4

3
5 ð5Þ

We can derive the least-square solution with minimum
norm by

β ¼ H†T ð6Þ

H† is the Moore–Penrose generalized inverse of matrix H.
We can use the orthogonal projection method to compute

MP inverse

H† ¼ HTH
� �‐1

HT ð7Þ

To have better generalization performance and to make the
solution more robust, we can add a regularization term as
shown in [3].

β ¼ I
C
þHTH

� �‐1

HTT ð8Þ

The corresponding output function of ELM is:

f ELM xð Þ ¼ h xð Þβ ¼ h xð Þ I
C
þHTH

� �‐1

HTT: ð9Þ

H-ELM Algorithm

The H-ELM algorithm framework is similar to the multi-layer
perceptron. It replaces the perceptron structure in the multi-
layer perceptron with the ELM. Each ELM input parameter
and bias are randomly generated. The output parameters are
determined by the ELM sparse autoencoder (ELM-AE). The
network structure of ELM-AE is shown in Fig. 2.

In order to generate more sparse and efficient input fea-
tures, H-ELM adds sparse constraints to ELM-AE to form
an ELM sparse autoencoder. Its mathematical model can be
expressed as the following equation:

oβ ¼ argmin
β

∥Hβ−X∥2 þ C∥β∥ℓ1

� � ð10Þ

The output weight of the hidden layer of the ELM-AE
algorithm is solved using a fast iterative shrinkage-
thresholding algorithm (FISTA) [26]. The FISTA algorithm
converges fast and guarantees a global optimal solution. It
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minimizes a smooth convex function with complexity O(1/j2)
and j is the number of iterations. The detailed iterative process
of the FISTA algorithm is as follows:

(1) Calculate the Lipschitz constant γ of the gradient of
smooth convex function ∇p.

(2) Begin the iteration by taking y1 = β0∈Rn, t1 = 1 as the
initial points. Then, for j (j ≥ 1), the following holds.

(a) β j ¼ sγ y j

� 	
, where sγis given by

sγ ¼ argmin
β

γ
2
∥β− β j−1−

1

γ
∇p β j−1

� �
∥2 þ q βð Þ

� �
 �
ð11Þ

t jþ1 ¼
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4tj

2
q

2
ð12Þ

y jþ1 ¼ β j þ
t j−1
t jþ1

� �
β j−β j−1
� � ð13Þ

By computing the iterative steps above, we can manage to
perfectly recover the data from the corrupted ones. Using the
resultant bases β as the weights of the proposed autoencoder,
the inner product of the inputs and learned features would
reflect the compact representations of the original data.

The H-ELM algorithm is constructed in a multilayer man-
ner, as shown in Fig. 3. Unlike the greedy layerwise training
of the traditional deep learning frameworks, one can see that
the H-ELM training architecture is structurally divided into
two separate phases: (1) unsupervised hierarchical feature rep-
resentation and (2) supervised feature classification. For the
former phase, ELM-based autoencoder is used to extract mul-
tilayer sparse features of the input data, while for the latter one,

Fig. 2 The network structure of
ELM-AE

Fig. 3 H-ELM algorithm
framework. a Overall framework
of H-ELM, which is divided into
two phases: multilayer forward
encoding followed by the original
ELM-based regression. b
Implementation of ELM-
autoencoder. c Layout of one
single layer inside the H-ELM
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the original ELM-based regression is performed for final de-
cision making.

In the unsupervised feature extraction process, first, the
training sample X is standardized, and then, the input
weighta(1)and the biasb(1)are generated randomly, so the out-
put of the first hidden layer can be represented as

H 1ð Þ ¼ g a 1ð ÞXþ b 1ð Þ
� 	

ð14Þ

Then, a N-layer unsupervised learning is performed to
eventual ly obtain the high-level sparse features.
Mathematically, the output of each hidden layer can be repre-
sented as

Fig. 4 A 5-layer D-HELM algo-
rithm network framework

Fig. 5 Schematic diagram of the
training process of the D-HELM
algorithm
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H ið Þ ¼ g β ið Þ
� 	T

H i‐1ð Þ
� �

ð15Þ

where H(i)is the output of the ith layer (i∈[1, K]), H(i ‐ 1)

is the output of the (i − 1)th layer, g(·) denotes the acti-
vation function of the hidden layers, and β(i) represents
the output weights of the ith layer. It should be noted
t h a t t h e m e t h o d o f c a l c u l a t i n g t h e o u t p u t
weightβ(i)between multiple hidden layers and the output
layer of the last layer is different. The output layer
weight βfinal of the last layer is derived from equation
(8). The output weightβ(i)between hidden layers is ob-
tained by the FISTA algori thm of ELM sparse
autoencoder.

Proposed Learning Algorithm

The D-HELM algorithm proposed in this paper connects
each layer to every other layer in a feed-forward fashion.
In the framework of D-HELM algorithm, each layer takes
all preceding feature maps as input, and its own feature maps
are used as inputs into all subsequent layers. The combina-
tion of feature maps is consistent with the Inception module
[27, 28]. The network structure of D-HELM algorithm is
shown in Fig. 4.

The D-HELM algorithm is similar to the training pro-
cess of H-ELM and its training architecture is also struc-
turally divided into two separate phases: (1) unsupervised
hierarchical feature representation and (2) supervised fea-
ture classification. In the unsupervised feature learning
phase, the D-HELM algorithm uses the sparse ELM-AE
to learn the characteristics of the input data and random-
ly maps the features learned by each layer of ELM-AE,
ensuring the universal approximation ability of the D-
HELM algorithm.

During training, the D-HELM algorithm calculates the out-
put weight β(i) of the sparse ELM-AE by using the aforemen-
tioned FISTA algorithm. The input X(i + 1) of the next layer is
represented by the inner product of the expected outputX(i) of
the previous layer and the output weight β(i). The mathemat-
ical formula is as follows:

X iþ1ð Þ ¼ g X ið Þβ ið Þ
� 	

ð16Þ

In the H-ELM algorithm, X(i) represents the output matrix
of the i-th ELM-AE. But in the D-HELM algorithm,X(i)is not
only the output of the i-th ELM-AE, but also the output of the
original input X and the ELM-AE before the i-th layer.

We denote the original input X as X(1), and X(i + 1) can be
expressed by the following form:

X ið Þ¼ X 1ð Þ;X 2ð Þ;⋯;X ið Þ
h i

ð17Þ

[X 1ð Þ;X 2ð Þ;⋯;X ið Þ ] is a matrix composed of

X 1ð Þ;X 2ð Þ;⋯;X ið Þ, their connected mode is similar to the
Inception algorithm [28].

After unsupervised feature learning, supervised feature
classification is performed. The learned sample feature is tak-
en as the outputHfinal of the last layer of the hidden layer. The
output weight βfinal of the last layer of the network is calcu-
lated from the known tagT. The final layer of output weight is
calculated in the same way as the original ELM.

Hfinalβfinal ¼ T ð18Þ

According to the least square method and the generalized
inverse principle, we can calculate

βfinal ¼ Ηfinal
� �†

T

¼ Ηfinal
� �T I

C
þ Ηfinal
� �T

Ηfinal

� �−1

T ð19Þ

Table 1 Properties of benchmark data sets

Category Dataset Features #Instances

Small Balance scale 4 625

Banknote 4 1372

Liver disorders 6 345

Cryotherapy 6 90

E. coli 7 336

Yeast 7 1484

Fertility diagnosis 9 100

Vowel 13 990

Medium SPECT 22 267

WDBC 30 569

WPBC 32 198

Dermatology 34 366

Biodeg 42 1055

SPECTF 44 267

Sonar image 60 208

Libras movement 90 360

Large Urban land cover 148 675

LSVT 309 126

Isolet 618 1560

CNAE 856 1080
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The D-HELM algorithm is detailed in Algorithm 1.

The training process of the D-HELM algorithm is shown in
Fig. 5.

Experiment and Evaluation

In this section, D-HELM algorithm is evaluated over 20 pub-
licly available benchmark data sets from UCI repository [29].
All data sets are, respectively, described in Table 1 and cate-
gorized into small, medium, and large in terms of features in
order to have a thorough evaluation on the training time and
testing accuracy. The model parameters for the best testing
accuracy for all data sets are, respectively, described in
Table 2.

Experiment Setup

In all the simulations below, the testing hardware and soft-
ware conditions are listed as follows: Intel(R) Xeon(R)
2.4G CPU, 128G RAM, Windows 7, MATLAB R2017a.
Following the practice in [3], the number of hidden layers
is set to 3 for all experiments. For H-ELM algorithm and
the proposed D-HELM algorithm, the numbers of hidden
nodes Ni (i = 1 to 3) are, respectively, set as 10 ×m {m = 1,
2, ⋯, 40, 40} (the model parameters for the best testing
accuracy are described in Table 2). For D-HELM

algorithm, it is more sensitive to the change of the regular-
ization parameter C than H-ELM algorithm, respectively,
set as 10x, {x = − 9, − 8, ⋯, 8, 9}, but when x is near the
optimal value, it changes by 0.1. S is the scaling factor of
the activation function, set as {1, 2, ⋯, 60, 60}.

Model Parameter Analysis

From Table 2, when the accuracy of the algorithm model
is highest on the test sample, we can clearly see that the
D-HELM’s number of hidden nodes Ni (i = 1 to 3) is
significantly smaller than the H-ELM algorithm.
Especially when the model is getting deeper and deeper,
this contrast will be more obvious. This shows that deep
ELM models can effectively reduce the number of hid-
den neurons by densely connected networks at the same
network depth. And through Table 3, it can be seen that
densely connected network structure can improve the
recognition accuracy of the ELM algorithm model.

It can be clearly seen from Fig. 6 that in general,
when the coefficient of the penalty term is constant, that
is, the penalty power of the penalty function is constant;
the testing accuracy of the H-ELM and D-HELM algo-
rithms will increase as the number of hidden layer neu-
rons increases. Similarly, when the number of hidden
layer neurons is constant, the testing accuracy of the H-
ELM and D-HELM algorithms will increase as the
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penalty factor increases. From Fig. 6, we will find that
when the penalty coefficient is small and the number of
hidden layer neurons increases, the testing accuracy of
the D-HELM algorithm will firstly increase, and then
decrease; in addition, the over-fitting phenomenon oc-
curs, while H-ELM does not have above problems. The
main reason is that the number of hidden layer neurons
in the D-HELM algorithm and the H-ELM algorithm are
equal; the D-HELM algorithm uses a densely connected

network structure, which increases the number of un-
known parameters of the algorithm. It is more prone to
over-fitting tendencies at the same time. This can also be
seen from Table 2. We can see from Table 2 that when
the H-ELM and D-HELM algorithms are trained, the
penalty coefficient of the D-HELM algorithm is signifi-
cantly larger than that of H-ELM algorithm, which also
shows that the D-HELM algorithm has a tendency to
overfit compared with the H-ELM algorithm. However,

Table 2 The model parameters
for the best testing accuracy Category Dataset H-ELM D-HELM

Small Balance scale N1 =N2 = 100, N3 = 2000, C = 10^1.5,
S = 30

N1 =N2 = 60, N3 = 1500,
C = 10^2.4, S = 55

Banknote N1 =N2 = 200, N3 = 3500,
C = 10^-0.1, S = 22

N1 =N2 = 120, N3 = 3000,
C = 10^1.6, S = 50

Liver disorders N1 =N2 = 100, N3 = 2000,
C = 10^1.4,S = 43

N1 =N2 = 60, N3 = 1400,
C = 10^1.7,S = 54

Cryotherapy N1 =N2 = 120, N3 = 2000,
C = 10^-0.1,S = 5

N1 =N2 = 60, N3 = 1000,
C = 10^1.0,S = 10

E. coli N1 =N2 = 60, N3 = 2500,
C = 10^0.2,S = 21

N1 =N2 = 10, N3 = 1200,
C = 10^1.7,S = 49

Yeast N1 =N2 = 200, N3 = 4000,
C = 10^0.3,S = 55

N1 =N2 = 120, N3 = 3500,
C = 10^2.6,S = 65

Fertility
diagnosis

N1 =N2 = 80, N3 = 200,
C = 10^0.3,S = 10

N1 =N2 = 15, N3 = 110,
C = 10^1.0,S = 20

Vowel N1 =N2 = 120, N3 = 2800,
C = 10^0.7,S = 8

N1 =N2 = 50, N3 = 1800,
C = 10^1.9,S = 9

Medium SPECT N1 =N2 = 10, N3 = 1000,
C = 10^-3.0,S = 2.4

N1 =N2 = 5, N3 = 520,
C = 10^-1.7,S = 1.2

WDBC N1 =N2 = 200, N3 = 3500,
C = 10^0.5,S = 8

N1 =N2 = 100, N3 = 3000,
C = 10^3.6,S = 30

WPBC N1 =N2 = 60, N3 = 1000,
C = 10^1.9,S = 35

N1 =N2 = 40, N3 = 700,
C = 10^2.5,S = 40

Dermatology N1 =N2 = 60, N3 = 1000,
C = 10^0.3,S = 3.3

N1 =N2 = 5, N3 = 500,
C = 10^2.0,S = 1.4

Biodeg N1 =N2 = 50, N3 = 750,
C = 10^-10,S = 5

N1 =N2 = 17, N3 = 700,
C = 10^-0.5,S = 7

SPECTF N1 =N2 = 40, N3 = 1200,
C = 10^-2.3,S = 1.7

N1 =N2 = 20, N3 = 700,
C = 10^-2.2,S = 0.9

Sonar image N1 =N2 = 100, N3 = 2600,
C = 10^1.7,S = 38

N1 =N2 = 30, N3 = 2000,
C = 10^2.9,S = 43

Libras
movement

N1 =N2 = 70, N3 = 1300,
C = 10^0.5,S = 16

N1 =N2 = 30, N3 = 800,
C = 10^1.7,S = 16

Large Urban land
cover

N1 =N2 = 180, N3 = 1200,
C = 10^0.4,S = 22

N1 =N2 = 10, N3 = 800, C = 10^2.1,
s = 25

LSVT N1 =N2 = 120, N3 = 1200,
C = 10^-1.5,S = 3.2

N1 =N2 = 5, N3 = 450, C = 10^1.0,
s = 2.0

Isolet N1 =N2 = 80, N3 = 1600,
C = 10^0.1,S = 13

N1 =N2 = 5, N3 = 1000, C = 10^1,
s = 0.8

CNAE N1 =N2 = 120, N3 = 2600,
C = 10^-1.8,S = 6.6

N1 =N2 = 10, N3 = 950, C = 10^1,
s = 0.3
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it is not necessary to afraid the problem that the pro-
posed D-HELM algorithm reduces the accuracy of the
algorithm recognition because of over-fitting. Because
we can clearly see from Table 2 and Fig. 6b, f, when
the test accuracy of the D-HELM algorithm is the
highest, the number of hidden layer neurons is much
smaller than the H-ELM algorithm. When N3 = 3000,
the testing accuracy curve Fig. 6b and the 3D contour
map 3.6 (f) of D-HELM algorithm tend to be flat, and
the recognition accuracy of D-HELM algorithm has more
significant performance than H-ELM algorithm.

Evaluation of Testing Accuracy

The testing accuracy of H-ELM algorithm and D-HELM
algorithm in Table 3 is the average result of 100 execu-
tions of the algorithm on each benchmark data set under
the best model parameters. From the comparison results
of the testing accuracy of H-ELM algorithm and D-
HELM algorithm in each data set shown in Table 3, D-
HELM algorithm is suitable for the datasets of various
sample feature sizes. Compared with H-ELM algorithm,
D-HELM’s densely connected network structure can
make full use of the features of the sample when the

learning model is shallow (the depth of the model of
H-ELM algorithm and D-HELM algorithm in the exper-
iment was only 3 layers), and the recognition result is
significantly improved.

Evaluation of Average Training Time

By comparing the training times of H-ELM algorithm
and D-HELM algorithm in each data set in Table 4, it
is found that when the number of features of the training
sample is in the medium or small scale, because the
densely connected network structure of D-HELM can
reduce the number of hidden neurons to a certain extent,
it will make the training time of D-HELM shorter than
that of H-ELM. However, when the feature dimension of
the training sample is at a very large scale, such as the
training samples on the Isolet and the CNAE data sets,
even if the number of neurons in each hidden layer of
the D-HELM algorithm is smaller than that of the H-
ELM model. But, with the deepening of the network
structure of D-HELM algorithm, the number of columns
of the feature representation matrix output by each hid-
den layer increases exponentially. Due to the limitations
of computer computing capabilities, the training time of
the D-HELM algorithm is slightly larger than the H-
ELM algorithm.

Comparison with Other Deep Learning Algorithms

In this section, we used more complicated data sets with
image patches to verify the learning performance of D-
HELM algorithm over deep learning algorithms [includ-
ing Stacked Auto Encoders (SAE), Stacked Denoising
Autoencoder (SDA) [30], Deep Belief Networks (DBN),
Deep Boltzmann Machines (DBM), Convolutional
Neural Network (CNN), and ML-ELM]. Note that in
the experiments, the effects of data preprocessing tech-
niques (e.g., data augmentation) are avoided, and we
mainly focused on the verification of learning capability
of different deep learning algorithms. For BP-based mul-
tilayer perceptron training algorithms (SAE, SDA, DBN,
and DBM), the initial learning rate is set as 0.1 with a
decay rate 0.95 for each learning epoch. The pretraining
and fine-tuning are set as 100 and 200 epochs, respec-
tively. Besides, the input corruption rate of SDA is set at
0.5 with a dropout rate 0.2 for hidden layers. The net-
work structure of the CNN algorithm is 96 × 96–24 ×
24 × 6–12 × 12 × 6–8 × 8 × 12–4 × 4 × 12–192–5. 96 × 96
represents the number of neurons in the input layer.
24 × 24 × 6 means six 24 × 24 convolution kernels in
the first layer of convolutional layer, and 12 × 12 × 6

Table 3 The mean of testing accuracy (%) on benchmark data sets

Category Dataset H-ELM (%) D-HELM (%)

Small Balance scale 98.74 ±0.91 99.10 ±0.22

Banknote 86.25 ±1.17 88.60 ±0.54

Liver disorders 65.59 ±3.87 67.33 ±5.8

Cryotherapy 83.76 ±3.68 88.00 ±4

E. coli 81.12 ±4.6 85.57 ±5.8

Yeast 48.94 ±3.19 49.39 ±4.04

Fertility diagnosis 90.96 ±4.8 92.80 ±4

Vowel 48.9 ±5.4 50.58 ±4.8

Medium SPECT 57.47 ±7.76 62.58 ±9.52

WDBC 89.29 ±1.77 93.43 ±2.36

WPBC 71.63 ±7.63 84.17 ±2.07

Dermatology 95.38 ±1.56 96.88 ±0.53

Biodeg 58.34 ±4.72 64.01 ±9.37

SPECTF 52.89 ±6.15 55.28 ±9.72

Sonar image 55.96 ±6.61 63.58 ±8.42

Libras movement 81.50 ±5 84.34 ±5.56

Large Urban land cover 74.67 ±3.73 76.24 ±4.51

LSVT 81.56 ±7.81 90.06 ±6.88

Isolet 75.73 ±2.32 85.76 ±0.52

CNAE 92.84 ±2.23 93.41 ±0.74

Average 74.58 78.57
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means six 12 × 12 convolution kernels in the first
pooling layer. The CNN algorithm has two convolution
layers and two pooling layers. 192 indicates the number
of neurons in the fully connected layer, and 5 indicates
the number of neurons in the output layer. The learning
rate of the CNN algorithm is 0.1, the batch size is 50,
and the number of epochs is 50. The ℓ2 penalty param-
eters of the three-layer ML-ELM are set as 10−1, 103,
and 108, respectively.

NORB Dataset: the NYU Object Recognition Benchmark
(NORB) dataset [31] is used for 3D object shape recognition
experiments, containing images of 50 different 3D toy objects,

5 general categories: (1) four-legged animals, (2) humans, (3)
aircraft, (4) trucks, (5) cars, 10 objects per class. The image of
each object is taken by two left and right cameras under dif-
ferent viewpoints and different lighting conditions. The train-
ing set contains 24,300 pairs of 25 object stereo image pairs (5
pairs per class), while the test set contains the remaining 25
object image pairs.

The testing accuracies of different deep learning algorithms
on NORB dataset are shown in Table 5. It can be seen that
compared with other time-consuming deep learning algo-
rithms, the proposed D-HELM algorithm achieves 91.35%
accuracy with hundreds times faster training time.

Fig. 6 Comparison of testing
accuracy and N3 and C
relationship between H-ELM
algorithm and D-HELM
algorithm. a, b The relationship
between the testing accuracy of
H-ELM algorithm and D-HELM
algorithm and the number N3 of
hidden layer neurons in the last
layer. c, d The relationship
between the testing accuracy of
H-ELM algorithm and D-HELM
algorithm and regularization
parameter C. e, f The relationship
between the testing accuracy of
H-ELM algorithm and D-HELM
algorithm and N3 and C
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Conclusion

Based on the existing deep extreme learning machine algo-
rithm, this paper proposes a densely connected deep extreme
learning machine algorithm: D-HELM. The D-HELM algo-
rithm uses the conventional ELM as the basic structure and
uses ELM-AE for feature learning. Its densely connected net-
work structure maximizes the utilization of features for each
layer of ELM-AE learning. Moreover, the D-HELM algo-
rithm provides a direct path from the shallow layer to the deep

layer in the network structure, which solves the problem that
the feature information is reduced in effectiveness after multi-
layer abstraction and generalization. Therefore, the D-HELM
algorithm significantly improves the classification accuracy
based on the H-ELM algorithm. Because the utilization of
sample features is improved, the training time of the algorithm
can be improved by deleting the number of useless hidden
layer neurons. In general, the D-HELM algorithm improves
the classification accuracy and shortens the training time.
Compared with other deep learning algorithms (CNN, SAE,
SDA, DBN, DBM, etc.), the proposed D-HELM algorithm
not only maintains the advantage of fast training, but also
achieves the best classification accuracy.
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