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Abstract
In recent algorithmic family simulates different biological processes observed in Nature in order to efficiently address
complex optimization problems. In the last years the number of bio-inspired optimization approaches in literature has grown
considerably, reaching unprecedented levels that dark the future prospects of this field of research. This paper addresses this
problem by proposing two comprehensive, principle-based taxonomies that allow researchers to organize existing and future
algorithmic developments into well-defined categories, considering two different criteria: the source of inspiration and the
behavior of each algorithm. Using these taxonomies we review more than three hundred publications dealing with nature-
inspired and bio-inspired algorithms, and proposals falling within each of these categories are examined, leading to a critical
summary of design trends and similarities between them, and the identification of the most similar classical algorithm for
each reviewed paper. From our analysis we conclude that a poor relationship is often found between the natural inspiration
of an algorithm and its behavior. Furthermore, similarities in terms of behavior between different algorithms are greater than
what is claimed in their public disclosure: specifically, we show that more than one-third of the reviewed bio-inspired solvers
are versions of classical algorithms. Grounded on the conclusions of our critical analysis, we give several recommendations
and points of improvement for better methodological practices in this active and growing research field.
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Introduction

In years, a great variety of nature- and bio-inspired
algorithms has been reported in the literature. This many
real-world optimization problems, no exact solver can
be applied to solve them at an affordable computational
cost or within a reasonable time, due to their complexity
or the amount of data to use. In such cases the use
of traditional techniques has been widely proven to be
unsuccessful, thereby calling for the consideration of
alternative optimization approaches.

In this context, complexity is not unusual in Nature:
a plethora of complex systems, processes and behaviors
have evinced a surprising performance to efficiently address
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intricate optimization tasks. The most clear example can be
found in the different animal species, which have developed
over generations very specialized capabilities by virtue of
evolutionary mechanisms. Indeed, evolution has allowed
animals to adapt to harsh environments, foraging, very
difficult tasks of orientation, and to resiliently withstand
radical climatic changes, among other threats. Animals,
when organized in independent systems, groups or swarms
or colonies (systems quite complex in their own) have
managed to colonize the Earth completely, and eventually
achieve a global equilibrium that has permitted them to
endure for thousands of years.

This renowned success of biological organisms has
inspired all kinds of solvers for optimization problems,
which have been so far referred to as bio-inspired
optimization algorithms. This family of optimization
methods simulate biological processes such as natural
evolution, where solutions are represented by individuals
that reproduce and mutate to generate new, potentially
improved candidate solutions for the problem at hand.
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Similarly, some other bio-inspired algorithms hinge on
mimicking a collective behavior springing from the
collaboration and interaction between simple agents, giving
rise to the concept of Swarm Intelligence [1]. These are
inspired by different biological animals: the movement
of birds [2], bats [3], small insects such as fireflies [4],
grasshoppers [5]; mechanisms to locate food exhibited by
colony animals such as ants in Ant Colony Optimization
(ACO, [6, 7]), or bees in Artificial Bee Colony algorithms
(ABC, [8]); hunting mechanisms used by different animals,
from small ones such as dragonflies [9], to wild wolfs
[10] or marine animals such as dolphins [9] or whales
[11]; or other assorted biological phenomena such as the
reproduction of coral reefs [12], the behavior of very small
animals such as krill [13] or bacteria [14], to name a few.
Inspiration in Nature could also stem from the observation
and study of physical processes, without any biological
motif. This is the case of rain [15], electromagnetism [16,
17], astronomy concepts like planets [18] or galaxies [19,
20], music [21], gases movement [22], or thermodynamics
[23], among others. More recently, algorithms inspired in
human activities have also entered the scene, like sports [24,
25], decision-making [26], or political systems [27, 28].

Disregarding their source of inspiration, there is clear
evidence of the increasing popularity and notoriety gained
by nature- and bio-inspired optimization algorithms in the
last two decades. This momentum finds its reason in the
capability of these algorithms to learn, adapt and provide
good solutions to complex problems that otherwise would
have remained unsolved. Many overviews have capitalized
on this spectrum of algorithms applied to a wide range of

problem casuistry, from combinatorial [29] to large-scale
optimization [30], evolutionary data mining [1] and other
alike. As a result, almost all business sectors have leveraged
this success in recent times.

From a design perspective, nature- and bio-inspired opti-
mization algorithms are usually conceived after observing
a natural process or the behavioral patterns of biological
organisms, which are then converted into a computational
optimization algorithm. New discoveries in Nature and the
undoubted increase of worldwide investigation efforts have
ignited the interest of the research community in biological
processes and their extrapolation to computational prob-
lems. As a result, many new bio-inspired meta-heuristics
have appeared in the literature, unchaining an outbreak of
proposals and applications every year. Nowadays, every nat-
ural process can be thought to be adaptable and emulated
to produce a new meta-heuristic approach, yet with dif-
ferent capabilities of reaching global optimum solutions to
optimization problems.

The above statement is quantitatively supported by
Fig. 1, which depicts the increasing number of papers/book
chapters published in the last years with bio-inspired
optimization and nature-inspired optimization in their
title, abstract and/or keywords. We have considered
both bio-inspired and nature-inspired optimization because
sometimes both terms are confused and indistinctly
used, although the nature-inspiration includes bio-inspired
inspiration and complements it with other sources of
inspirations (like physics-based optimization, chemistry-
based optimization). A major fraction of the publications
comprising this plot proposed new bio-inspired algorithms

Fig. 1 Number of papers with bio-inspired optimization and nature-inspired optimization in the title, abstract and/or keywords, over the period
2005–2019 (Scopus database)
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at their time. From this rising number of nature- and bio-
inspired algorithms one can easily conclude that it would
convenient to organize them into a taxonomy with well-
defined criteria where to classify both the existing bio-
inspired algorithms and new proposals to appear in the
future. Unfortunately, the majority of such publications
do not include any type of taxonomy, nor do they
perform an exhaustive analysis of the similarity of their
proposed algorithms with respect to other counterparts.
Instead, they only focus on the nature or biological
metaphor motivating the design of their meta-heuristic.
This metaphor-driven research trend has been already
denounced in several contributions [31–33], which have
unleashed hot debates around specific meta-heuristic
schemes that remain unresolved to date [34, 35]. It is
our firm belief that this controversy could be lessened
by a comprehensive taxonomy of nature- and bio-inspired
optimization algorithms that settled the criteria to justify
the novelty and true contributions of current and future
advances in the field.

In this paper we have analyzed more than three hundred
papers of different types of meta-heuristics and using that
knowledge we present two different taxonomies for nature-
and bio-inspired optimization algorithms:

• The first taxonomy classifies algorithms based on its
natural or biological inspiration, so that given a specific
algorithm, we can find its category quickly and without
any ambiguity. The goal of this first taxonomy is to
allow easily group the upsurge of solvers published in
the literature.

• The second taxonomy classifies the reviewed algo-
rithms based exclusively on their behavior, i.e., how
they generate new candidate solutions for the function
to be optimized. Our aim is to group together algo-
rithms with a similar behavior, without considering its
inspirational metaphor.

We believe that this dual criterion can be very useful
for researchers. The first one helps classify the different
proposals by its origin of inspiration, whereas the second
one provides valuable information about their algorithmic
similarities and differences. This double classification
allows researchers to identify each new proposal in the
adequate context. To the best of our knowledge, there has
been no previous attempt as ambitious as the one presented
in this overview to organize the existing literature on nature-
and bio-inspired optimization.

Considering the classifications obtained in our wide
study, we have critically examined the reviewed literature
classification in the different taxonomies proposed in this
work. The goal is to analyze if there is a relationship

between the algorithms classified in a same category in
one category and the classification on the other taxonomy.
Next, similarities detected among algorithms will allow
us to discover the most influential meta-heuristics, whose
behavior has inspired many other nature- and bio-inspired
proposals.

Finally, we do a critical analysis and provide several
recommendations towards improving research practices in
this field. The growing number of nature-inspired proposals
could be seen as a symptom of the active status of this field;
however, its sharp evolution suggests that research efforts
should be also invested towards new behavioral differences
and verifiable performance evidences in practical problems.

The rest of this paper is organized as follows. In the
“Related Literature Studies” section, we examine previ-
ous surveys, taxonomies and reviews of nature- and bio-
inspired algorithms reported so far in the literature. The
“Taxonomy by Source of Inspiration” section delves the
taxonomy based on the inspiration of the algorithms. In
the “Taxonomy by Behavior” section, we present and popu-
late the taxonomy based on the behavior of the algorithm. In
the “Taxonomies Analysis: Comparison and More Influen
tial Algorithms” section, we analyzes similarities and differ-
ences found between both taxonomies, ultimately identify-
ing the most influential algorithms in our reviewed papers.
In the “Lessons Learnt and Critical Analysis: Recommenda
tions on Research Practices” section, some conclusions and
suggestions for improvement are given, remarking that the
behavior of algorithms is more relevant than their natural
inspiration. We thereby encourage researchers to be more
focused on applying these algorithms to more problems, and
to participate in competitions to assess their good perfor-
mance. Finally, in the “Conclusions” section, we summarize
our main conclusions.

Related Literature Studies

The diversity of bio-inspired algorithms and their flexibility
to tackle optimization problems for many research fields
have inspired several surveys and overviews to date. Most
of them have focused on different types of problems [36,
37], including continuous [38], combinatorial [29], or multi-
objective optimization problems [39]. For specific real-
world problems, the prolific literature about nature- and
bio-inspired algorithms has sparked specific state-of-the-
art studies revolving on their application to different fields,
such as telecommunications [40], robotics [41], data mining
[42], structural engineering [39] or transportation [43]. Even
specific real-world problems have been dedicated exclusive
overviews due to the vast research reported around the
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topic, like power systems [44], the design of computer
networks [45], automatic clustering [46], face recognition
[47], molecular docking [48], or intrusion detection [49], to
mention a few.

Seen from the algorithmic perspective, many particular
bio-inspired solvers have been modified along the years
to yield different versions analyzed in surveys devoted to
that type of algorithms, from classical approaches such
as PSO [50] and DE [51–53] to more modern ones, e.g.,
ABC [54, 55], Bacterial Foraging Optimization Algorithm
(BFOA, [56]) or the Bat Algorithm [57]. From a more
general albeit still algorithmic point of view, [31] explains
how the metaphor and the biological idea is used to create
a bio-inspired meta-heuristic optimization algorithm. In this
study the reader is also provided with some examples and
characteristics of this design process. Books like [58] or
[59] show many nature-inspired algorithms. However, they
are more focused on describing the different algorithms
available in the literature than on classifying and analyzing
them in depth.

Several comparison studies among bio-inspired algo-
rithms with very different behaviors can be found in the
current literature, which mostly aim at deciding which
approach to use for solving a problem. In [60], the popular
PSO and DE versions are compared. This research line is
followed by [61], which compared the performance of dif-
ferent bio-inspired algorithms, again with prescribing which
one to use as its primary goal. More recently, [62] exam-
ined the features of several recent bio-inspired algorithms,
suggesting, on a concluding note, to which type of prob-
lem each of the examined algorithms should be applied.
More specific is the work in [63], which compares several
different algorithms considering its parallel implementa-
tion on GPU devices. More recently, the focus has shifted
towards comparing groups of algorithms instead of making
a comparison between individual solvers: this is the case of
[64], which compares Swarm Intelligence and Evolutionary
Computation methods in order to assess their properties and
behavior (e.g., their convergence speed). Once again, the
main purpose of this recent literature strand is to compare
bio-inspired algorithms, not to classify them nor to find sim-
ilarities and design patterns among them. In [65], foraging
algorithms (such as the aforementioned BFOA) are com-
pared against other evolutionary algorithms. In that paper,
algorithms are classified in two large groups: algorithms
with and without cooperation. In [66, 67], PSO was proven
to outperform other bio-inspired approaches (namely, DE,
GA and ABC) when used for efficiently training and con-
figuring Echo State Networks.

It has not been until relatively recent times when the
community has embraced the need for arranging the myriad

of existing bio-inspired algorithms and classifying them
under principled, coherent criteria. In 2013, [68] presented
a classification of meta-heuristic algorithms as per their
biological inspiration that discerned categories with similar
approaches in this regard: Swarm Intelligence, Physics
and Chemistry Based, Bio-inspired algorithms (not SI-
based), and an Other algorithms category. However, the
classification given in this paper is not actually hierarchical,
so it can not be regarded as a true taxonomy. Another
classification was proposed in [69, 70], composed by
Evolution-Based Methods, Physics-Based Methods, Swarm-
Based Methods, and Human-Based Methods. With respect
to the preceding classification, a new Human-Based
category is proposed, which collectively refers to algorithms
inspired in the human behavior. The classification criteria
underneath these categories is used to build up a catalog
of more than 40 algorithmic proposals, obtaining similar
groups in size. In this case, there is no miscellaneous
category as in the previous classification. Similarly to [68],
categories are disjoint groups without subcategories.

Recently, [71] offers a review of meta-heuristics from
the 1970s until 2015, i.e., from the development of
neural networks to novel algorithms like Cuckoo Search.
Specifically a broad view of new proposals is given, but
without proposing any category. The most recent survey
to date is that in [72], in which nature-inspired algorithms
are classified not in terms of their source of inspiration,
but rather by their behavior. Consequently, algorithms are
classified as per three different principles. The first one
is learning behavior, namely, how solutions are learned
from others preceding them. The learning behavior can
be individual, local (i.e., only inside a neighborhood),
global (between all individuals), and none (no learning).
The second principle is interaction-collective behavior,
denoting whether individuals cooperate or compete between
them. The third principle is referred to as diversification-
population control, by which algorithms are classified based
on whether the population has a converging tendency,
a diffuse tendency, or no specific tendency. Then, 22
bio-inspired algorithms are classified by each of these
principles, and approaches grouped by each principle are
experimentally compared.

The prior related work reviewed above indicates that
the community widely acknowledges (with more emphasis
in recent times) the need for properly organizing the
plethora of bio- and nature-inspired algorithms in a coherent
taxonomy. However, the majority of them are only focused
on the natural inspiration of the algorithms for creating
the taxonomy, not giving any attention to their behavior.
Only [72] considers this aspect, but does not propose
a real taxonomy, but rather different independent design
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principles. On the contrary, as will be next described, our
proposed taxonomies consider (1) the source of inspiration;
and (2) the procedure by which new solutions are produced
over the search process of every algorithm (behavior).
Furthermore, we note that efforts invested in this regard to
date are not up to the level of ambition and thoroughness
pursued in our study. In addition, no study published so
far has been specifically devoted to unveiling structural
similarities among classical and modern meta-heuristics.
There lies the novelty and core contribution of our
study, along with the aforementioned novel behavior-based
taxonomy.

Taxonomy by Source of Inspiration

In this section, we propose a novel taxonomy based on
the inspirational source in which nature- and bio-inspired
algorithms are claimed to find their design rationale in
the literature. This allows classifying the great amount and
variety of contributions reported in related fora.

The proposed taxonomy presented in what follows was
developed reviewing more than 300 papers over different
years, starting from the most classical proposals in the late
1980s (such as Simulated Annealing [23] or PSO [2]) to
more novel techniques appearing in the literature until 2018
[73] and 2019 [74]. Thus, to our knowledge, this exercise
can be considered the most exhaustive review in the area to
date.

Taking in account all the reviewed papers, we group
the proposals therein in a hierarchy of categories. In the
hierarchy, not all proposals of a category must fit in one of
its subcategories. In our classification, categories laying at
the same level are disjoint sets, which involves that each
proposed algorithm can be only a member of one of these
categories. To this end, for each algorithm we select the
category considered to be most suitable considering the
nuances of the algorithm that allow us to differentiate it
from its remaining counterparts.

Methodologically, a classification of all nature- and bio-
inspired algorithms that can be found in the literature can
become complicated, considering the different sources of
inspiration as biological, physical, human-being, ... In some
papers, authors suggest a possible categorization of more
well-established groups, but not in all of them. Also, its
classification could not be the more appropriate and become
eventually obsolete, since the number of proposals—
and thereby, the diversity of sources of inspiration
motivating them—increases over time. Algorithms within
each proposed category were selected by their relative
importance in the field, considering the number of citations,

the number of algorithmic variants that were inspired by that
algorithm, and other similar factors.

When establishing a hierarchical classification, it is
important to achieve a good trade-off between information
and simplicity by the following criteria:

• When to establish a new division of a category into
subcategories: a coarse split criterion for the taxonomy
can imply categories of little utility for the subsequent
analysis, since in that case, the same category would
group very different algorithms. On the other hand,
a fine-grained taxonomy can produce very complex
hierarchies and, therefore, with little usefulness. For
keeping the taxonomy simple yet informative for our
analytical purposes, we decided that a category should
have at least four algorithms in order to be kept in
the taxonomy. Thus, a category is only decomposed
in subcategories if each of them has coherence and
a minimum representativeness (as per the number of
algorithms it contains).

• Which number of subcategories into which to divide
a category: the criterion followed in this regard must
produce meaningful subcategories. In order to ensure a
reduced number of subcategories, we consider that not
all algorithms inside one category must be a member
of one of its subcategories. In that way, we avoid
introducing mess categories that lack cohesion.

Figure 2 depicts the classification we have reached, indi-
cating, for the more than 300 reviewed algorithms, the num-
ber and ratio of proposals classified in each category and sub-
category. It can be observed that the largest group of all is
Swarm Intelligence category (near the half of the proposed,
47%), inspired in the Swarm Intelligence concept [58],
followed by the Physics and Chemistry category, inspired
by different physical behaviors or chemical reactions (19%
of proposals). Other relevant categories are Social Human
Behavior Algorithms (12%), inspired by human aspects, and
Breeding-based Evolution (8%), inspired by the Theory of
Evolution over a population of individuals, that includes
very renowned algorithms such as Genetic Algorithms. A
new category emerges from our study—Plants Based—
which has not been included in other taxonomies. Nearly
10% of proposals are so different between them that they
cannot be grouped in new categories. The percentage of
classification of each category is visually displayed in
Fig. 3.

For the sake of clarity regarding the classification criteria,
in the next subsections we provide a brief description of the
different categories in this first taxonomy, including their
main characteristics, an example, and a table listing the
algorithms belonging to each category.
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Fig. 2 Classification of the
reviewed papers using the
inspiration source based
taxonomy

Breeding-Based Evolutionary Algorithms

This category comprises population-based algorithms
inspired in the principles of natural evolution. Each individ-
ual in the population represents a solution of the problem,
and has an associated fitness value (namely, the value of the

problem objective function for that solution). In these algo-
rithms, a process of reproduction (also referred to breeding
or crossover) and survival iterated over successive genera-
tions makes the population of solutions potentially evolve to-
wards regions of higher optimality (as told by the best solution
in the population). Thus, this category is characterized by

Fig. 3 Ratio of reviewed
algorithms by its category (first
taxonomy)
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the fact of being inspired by the concept of breeding-based
evolution, without considering other operators performed on
individuals than reproduction (e.g., mutation).

More in detail, in these algorithms we have a population
with individuals that have the ability to breed and produce
new offspring. Therefore, from the parents we get children,
which introduce some variety with respect to their parents.
These characteristics allow them to adapt to the environment
which, translated to the optimization realm, permits to
search more efficiently over the solution space of the
problem at hand. By virtue of this mechanism we have
a population that evolves through generations and, when
combined with a selection (survival) and—possibly—other
operators, results are improved. Nevertheless, the breeding
characteristic is what makes algorithms within this category
unique with respect to those in other categories.

Table 1 compiles all reviewed algorithms that fall within
this category. As could have been a priori expected,

well-known classical Evolutionary Computation algorithms
can be observed in this list, such as Genetic Algorithm
(GA), Evolution Strategies (ES) and Differential Evolution
(DE). However, other algorithms based in the reproduction
of different biological organisms are also notable, such as
queen bees and weeds.

Swarm Intelligence-Based Algorithms

Swarm Intelligence (SI) is already a consolidated term in
the community, which was first introduced by Gerardo
Beni and Jing Wang in 1989 [41]. It can be defined
as the collective behavior of decentralized, self-organized
systems, in either natural or artificial environments. The
expression was proposed in the context of robotic systems,
but has generalized over the years to denote the emergence
of collective intelligence from a group of simple agents,
governed by simple behavioral rules. Thus, bio-inspired

Table 1 Nature- and bio-inspired meta-heuristics within the Breeding-based Evolution category.

Breeding-based Evolution

Algorithm name Acronym Year Reference

Artificial Infections Disease Optimization AIDO 2016 [75]

Asexual Reproduction Optimization ARO 2010 [76]

Biogeography Based Optimization BBO 2008 [77]

Bird Mating Optimization BMO 2014 [78]

Bean Optimization Algorithm BOA 2011 [79]

Coral Reefs Optimization CRO 2014 [12]

Dendritic Cells Algorithm DCA 2005 [80]

Differential Evolution DE 1997 [81]

Ecogeography-Based Optimization EBO 2014 [82]

Eco-Inspired Evolutionary Algorithm EEA 2011 [83]

Earthworm Optimization Algorithm EOA 2018 [84]

Evolution Strategies ES 2002 [85]

Genetic Algorithms GA 1989 [86]

Gene Expression GE 2001 [87]

Immune-Inspired Computational Intelligence ICI 2008 [88]

Improved Genetic Immune Algorithm IGIA 2017 [89]

Weed Colonization Optimization IWO 2006 [90]

Marriage In Honey Bees Optimization MHBO 2001 [91]

Queen-Bee Evolution QBE 2003 [92]

SuperBug Algorithm SuA 2012 [93]

Stem Cells Algorithm SCA 2011 [94]

Sheep Flock Heredity Model SFHM 2001 [95]

Swine Influenza Models Based Optimization SIMBO 2013 [96]

Self-Organizing Migrating Algorithm SOMA 2004 [97]

Variable Mesh Optimization VMO 2012 [98]

Virulence Optimization Algorithm VOA 2016 [99]
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meta-heuristics based on Swarm Intelligence are those
inspired on the collective behavior of animal societies, such
as insect colonies or bird flocks, wherein the collective
intelligence emerging from the swarm permits to efficiently
undertake optimization problems. The seminal bio-inspired
algorithm relying on SI concepts was PSO [2], followed
shortly thereafter by ACO [6]. These early findings around

SI concepts applied to optimization spurred many SI-based
algorithms in subsequent years, such as ABC [8] and
more recently, Firefly Algorithm (FA, [4]) and Grasshopper
Optimization Algorithm (GOA, [5]).

Reviewed algorithms that fall under the Swarm Intelli-
gence umbrella are shown in Tables 2, 3, 4, and 5. This is
the most populated category of all our study, characterized

Table 2 Nature- and bio-inspired meta-heuristics within the Swarm Intelligence category (I)

Swarm Intelligence (I)

Algorithm name Acronym Subcategory Type Year Reference

Artificial Algae Algorithm AAA Micro Movement 2015 [101]

Artificial Beehive Algorithm ABA Flying Foraging 2009 [102]

Artificial Bee Colony ABC Flying Foraging 2007 [8]

Animal Behavior Hunting ABH Other Foraging 2014 [103]

African Buffalo Optimization ABO Terrestrial Foraging 2016 [104]

Andean Condor Algorithm ACA Flying Foraging 2019 [105]

Ant Colony Optimization ACO Terrestrial Foraging 1996 [6]

Ant Lion Optimizer ALO Terrestrial Foraging 2015 [106]

Artificial Searching Swarm Algorithm ASSA Other Movement 2009 [107]

Artificial Tribe Algorithm ATA Other Movement 2009 [108]

African Wild Dog Algorithm AWDA Terrestrial Foraging 2013 [109]

Bald Eagle Search BES Flying Foraging 2019 [110]

Bees Algorithm BA Flying Foraging 2006 [111]

Bumblebees BB Flying Foraging 2009 [112]

Bison Behavior Algorithm BBA Terrestrial Movement 2019 [113]

Bee Colony-Inspired Algorithm BCIA Flying Foraging 2009 [114]

Bee Colony Optimization BCO Flying Foraging 2005 [115]

Bacterial Colony Optimization BCO.1 Micro Foraging 2012 [116]

Bacterial Chemotaxis Optimization BCO.2 Micro Foraging 2002 [117]

Biomimicry Of Social Foraging
Bacteria for Distributed Opti-
mization

BFOA Micro Foraging 2002 [14]

Bacterial Foraging Optimization BFOA.1 Micro Foraging 2009 [56]

Bacterial-GA Foraging BGAF Micro Foraging 2007 [118]

BeeHive Algorithm BHA Flying Foraging 2004 [119]

Bees Life Algorithm BLA Flying Foraging 2018 [120]

Bat Intelligence BI Flying Foraging 2012 [121]

Bat Inspired Algorithm BIA Flying Foraging 2010 [3]

Biology Migration Algorithm BMA Other Movement 2019 [122]

Blind, Naked Mole-Rats Algorithm BNMR Terrestrial Foraging 2013 [123]

Butterfly Optimizer BO Flying Movement 2015 [124]

Bee System BS Flying Foraging 1997 [125]

Bee System BS.1 Flying Foraging 2002 [126]

Bird Swarm Algorithm BSA Flying Movement 2016 [127]

Bee Swarm Optimization BSO Flying Foraging 2010 [128]

Bioluminiscent Swarm Optimization Algorithm BSO.1 Flying Foraging 2011 [129]

Bees Swarm Optimization Algorithm BSOA Flying Foraging 2005 [130]

Binary Whale Optimization Algorithm BWOA Aquatic Foraging 2019 [131]
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Table 3 Nature- and bio-inspired meta-heuristics within the Swarm Intelligence category (II)

Swarm Intelligence (II)

Algorithm name Acronym Subcategory Type Year Reference

Collective Animal Behavior CAB Other Foraging 2012 [132]

Cheetah Based Algorithm CBA Terrestrial Movement 2018 [133]

Catfish Optimization Algorithm CAO Aquatic Movement 2011 [134]

Cricket Behavior-Based Algorithm CBBE Terrestrial Movement 2016 [135]

Cultural Coyote Optimization Algorithm CCOA Terrestrial Movement 2019 [136]

Chaotic Dragonfly Algorithm CDA Flying Foraging 2018 [137]

Cuttlefish Algorithm CFA Aquatic Movement 2013 [138]

Consultant Guide Search CGS Other Movement 2010 [139]

Cuckoo Optimization Algorithm COA Flying Foraging 2011 [140]

Camel Travelling Behavior COA.1 Terrestrial Movement 2016 [141]

Coyote Optimization Algorithm COA.2 Terrestrial Movement 2018 [142]

Cuckoo Search CS Flying Foraging 2009 [143]

Crow Search Algorithm CSA Flying Movement 2016 [144]

Cat Swarm Optimization CSO Terrestrial Movement 2006 [145]

Chicken Swarm Optimization CSO.1 Terrestrial Movement 2014 [146]

Dragonfly Algorithm DA Flying Foraging 2016 [9]

Dolphin Echolocation DE.1 Aquatic Foraging 2013 [147]

Dolphin Partner Optimization DPO Aquatic Movement 2009 [148]

Elephant Herding Optimization EHO Terrestrial Movement 2016 [149]

Eagle Strategy ES.1 Flying Foraging 2010 [150]

Elephant Search Algorithm ESA Terrestrial Foraging 2015 [151]

Egyptian Vulture Optimization Algorithm EV Flying Foraging 2013 [152]

Firefly Algorithm FA Flying Foraging 2009 [4]

Flocking Base Algorithms FBA Flying Movement 2006 [153]

Fast Bacterial Swarming Algorithm FBSA Micro Foraging 2008 [154]

Frog Call Inspired Algorithm FCA Terrestrial Movement 2009 [155]

Flock by Leader FL Flying Movement 2012 [156]

Fruit Fly Optimization Algorithm FOA Flying Foraging 2012 [157]

Fish Swarm Algorithm FSA Aquatic Foraging 2011 [158]

Fish School Search FSS Aquatic Foraging 2008 [159]

Group Escape Behavior GEB Aquatic Movement 2011 [160]

Good Lattice Swarm Optimization GLSO Other Movement 2007 [161]

Grasshopper Optimisation Algorithm GOA Terrestrial Foraging 2017 [5]

Glowworm Swarm Optimization GSO Micro Movement 2013 [20]

Group Search Optimizer GSO.1 Other Movement 2009 [162]

Goose Team Optimization GTO Flying Movement 2008 [163]

Grey Wolf Optimizer GWO Terrestrial Foraging 2014 [164]

by a first category that relates to the type of animal that
have inspired each algorithm: as such, we find (i) flying ani-
mals, namely, algorithms inspired in the flying movement of
birds and flying animals like insects; (ii) terrestrial animals,
inspired by the foraging and hunter mechanisms of land
animals; (iii) aquatic animals, whose inspiration emerges
from the movement of fish schools or other aquatic animals

like dolphins; and (iv) microorganisms, inspired by virus,
bacteria, algae and others alike.

Inside each subcategory, we have also distinguished
whether they are inspired by the foraging action of
the inspired living creature—Foraging-inspired is in fact
another popular term related to this type of inspiration
[100]—or, instead, by its movement patterns in general.
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Table 4 Nature- and bio-inspired meta-heuristics within the Swarm Intelligence category (III)

Swarm Intelligence (III)

Algorithm name Acronym Subcategory Type Year Reference

Harry’s Hawk Optimization Algorithm HHO Flying Foraging 2019 [74]

Hoopoe Heuristic Optimization HHO.1 Flying Foraging 2012 [165]

Hunting Search HuS Other Foraging 2010 [166]

Honeybee Social Foraging HSF Flying Foraging 2007 [167]

Hierarchical Swarm Model HSM Other Movement 2010 [168]

Hypercube Natural Aggregation Algorithm HYNAA Other Movement 2019 [169]

Improved Raven Roosting Algorithm IRRO Flying Movement 2018 [170]

Invasive Tumor Optimization Algorithm ITGO Micro Movement 2015 [171]

Jaguar Algorithm JA Terrestrial Foraging 2015 [172]

Krill Herd KH Aquatic Foraging 2012 [13]

Killer Whale Algorithm KWA Aquatic Foraging 2017 [173]

Lion Algorithm LA Terrestrial Foraging 2012 [174]

Seven-Spot Labybird Optimization LBO Flying Foraging 2013 [175]

Laying Chicken Algorithm LCA Terrestrial Movement 2017 [176]

Lion Optimization Algorithm LOA Terrestrial Foraging 2016 [177]

Locust Swarms Optimization LSO Aquatic Foraging 2009 [178]

Magnetotactic Bacteria Optimization Algorithm MBO Micro Movement 2013 [179]

Monarch Butterfly Optimization MBO.1 Flying Movement 2017 [180]

Migrating Birds Optimization MBO.2 Flying Movement 2012 [181]

Mouth Breeding Fish Algorithm MBF Aquatic Foraging 2018 [182]

Modified Cuckoo Search MCS Flying Foraging 2009 [183]

Modified Cockroach Swarm Optimization MCSO Terrestrial Foraging 2011 [184]

Moth Flame Optimization Algorithm MFO Flying Movement 2015 [185]

Mosquito Flying Optimization MFO.1 Flying Foraging 2016 [186]

Meerkats Inspired Algorithm MIA Terrestrial Movement 2018 [187]

Mox Optimization Algorithm MOX Flying Movement 2011 [188]

Monkey Search MS Terrestrial Foraging 2007 [189]

Natural Aggregation Algorithm NAA Other Movement 2016 [190]

Naked Moled Rat NMR Terrestrial Movement 2019 [191]

Nomadic People Optimizer NPO Other Movement 2019 [192]

OptBees OB Flying Foraging 2012 [193]

Optimal Foraging Algorithm OFA Other Foraging 2017 [194]

Pity Beetle Algorithm PBA Terrestrial Foraging 2018 [195]

Pigeon Inspired Optimization PIO Flying Movement 2014 [196]

Population Migration Algorithm PMA Other Movement 2009 [197]

Prey Predator Algorithm PPA Other Foraging 2015 [198]

Particle Swarm Optimization PSO Flying Movement 1995 [2]

Penguins Search Optimization Algorithm PSOA Aquatic Foraging 2013 [199]

Regular Butterfly Optimization Algorithm RBOA Flying Foraging 2019 [200]

When the behavior of the algorithm is inspired in both the
movement and the foraging behavior of the animal, it is
cataloged as foraging inside our first taxonomy. We will
next examine in depth each of these subcategories.

Subcategories of SI-Based Algorithms by the Environment

As mentioned previously, the global set of Swarm
Intelligence algorithms can be divided as a function of the
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Table 5 Nature- and bio-inspired meta-heuristics within the Swarm Intelligence category (IV)

Swarm Intelligence (IV)

Algorithm name Acronym Subcategory Type Year Reference

Red Deer Algorithm RDA Terrestrial Movement 2016 [201]
Rhino Herd Behavior RHB Terrestrial Movement 2018 [202]
Roach Infestation Problem RIO Terrestrial Foraging 2008 [203]
Reincarnation Concept Optimization Algorithm ROA Other Movement 2010 [204]
Shark Search Algorithm SA Aquatic Foraging 1998 [205]
Simulated Bee Colony SBC Flying Foraging 2009 [206]
Satin Bowerbird Optimizer SBO Flying Movement 2017 [207]
Sine Cosine Algorithm SCA.2 Other Movement 2016 [208]
Snap-Drift Cuckoo Search SDCS Flying Foraging 2016 [209]
Shuffled Frog-Leaping Algorithm SFLA Terrestrial Movement 2006 [210]
Spotted Hyena Optimizer SHO Terrestrial Foraging 2017 [211]
Swarm Inspired Projection Algorithm SIP Flying Foraging 2009 [212]
Slime Mould Algorithm SMA Micro Foraging 2008 [213]
Spider Monkey Optimization SMO Terrestrial Foraging 2014 [214]

Seeker Optimization Algorithm SOA Other Movement 2007 [215]

Symbiosis Organisms Search SOS Other Movement 2014 [216]

Social Spider Algorithm SSA Terrestrial Foraging 2015 [217]

Squirrel Search Algorithm SSA.1 Flying Movement 2019 [218]

Salp Swarm Algorithm SSA.2 Aquatic Foraging 2017 [219]

Shark Smell Optimization SSO Aquatic Foraging 2016 [220]

Swallow Swarm Optimization SSO.1 Flying Foraging 2013 [221]

Social Spider Optimization SSO.2 Terrestrial Foraging 2013 [222]

See-See Partidge Chicks Optimization SSPCO Flying Movement 2015 [223]

Surface-Simplex Swarm Evolution Algorithm SSSE Other Movement 2017 [224]

Sperm Whale Algorithm SWA Aquatic Movement 2016 [225]
Termite Hill Algorithm TA Terrestrial Foraging 2012 [226]
Termite Colony Optimization TCO Terrestrial Foraging 2010 [227]
The Great Salmon Run Algorithm TGSR Aquatic Movement 2013 [228]
Virtual Ants Algorithm VAA Flying Foraging 2006 [229]
Virtual Bees Algorithm VBA Flying Foraging 2005 [230]
Virus Colony Search VCS Micro Movement 2016 [231]
Virus Optimization Algorithm VOA .1 Micro Movement 2009 [232]
Viral Systems Optimization VSO Micro Movement 2008 [233]
Wasp Colonies Algorithm WCA Flying Foraging 1991 [10]
Wolf Colony Algorithm WCA.1 Terrestrial Foraging 2011 [234]
Worm Optimization WO Micro Foraging 2014 [235]
Whale Optimization Algorithm WOA Aquatic Foraging 2016 [11]
Wolf Pack Search WPS Terrestrial Foraging 2007 [236]
Weightless Swarm Algorithm WSA Other Movement 2012 [237]
Wolf Search Algorithm WSA.1 Terrestrial Foraging 2012 [238]
Wasp Swarm Optimization WSO Flying Foraging 2005 [239]
Zombie Survival Optimization ZSO Other Foraging 2012 [240]

type of animals. Between the possible categories stemming
from this criteria, we have grouped them according to the
environmental medium inhibited by the inspiring animal
(aquatic, terrestrial or aerial). This criterion not only is
very intuitive, since it inherits a criterion already applied
in animal taxonomies, but also relies on the fact that these
environments condition the movement and hunting mode of

the different species. As such, the following subcategories
have been established:

• Flying animals: This category comprises meta-
heuristics based on the concept of Swarm Intelligence
in which the trajectory of agents is inspired by flying
movements, as those observed in birds, bats, or other
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Table 6 Nature- and bio-inspired meta-heuristics within the Physics based category (I)

Physics based (I)

Algorithm Name Acronym Year Reference

Artificial Electric Field Algorithm AEFA 2019 [242]

Artificial Physics Optimization APO 2009 [243]

Big Bang Big Crunch BBBC 2006 [244]

Black Hole Optimization BH 2013 [241]

Colliding Bodies Optimization CBO 2014 [245]

Crystal Energy Optimization Algorithm CEO 2016 [246]

Central Force Optimization CFO 2008 [247]

Charged Systems Search CSS 2010 [248]

Electromagnetic Field Optimization EFO 2016 [16]

Electromagnetism Mechanism Optimization EMO 2003 [17]

Galaxy Based Search Algorithm GBSA 2011 [19]

Gravitational Clustering Algorithm GCA 1999 [249]

Gravitational Emulation Local Search GELS 2009 [250]

Gravitational Field Algorithm GFA 2010 [251]

Gravitational Interactions Algorithm GIO 2011 [252]

General Relativity Search Algorithm GRSA 2015 [253]

Gravitational Search Algorithm GSA 2009 [18]

Galactic Swarm Optimization GSO.2 2016 [254]

Harmony Elements Algorithm HEA 2009 [255]

Hysteresis for Optimization HO 2002 [256]

Hurricane Based Optimization Algorithm HO.2 2014 [257]

Harmony Search HS 2005 [21]

Intelligence Water Drops Algorithm IWD 2009 [258]

Light Ray Optimization LRO 2010 [259]

Lightning Search Algorithm LSA 2015 [260]

Magnetic Optimization Algorithm MFO.2 2008 [261]

Method of Musical Composition MMC 2014 [262]

Melody Search MS.1 2011 [263]

Multi-Verse Optimizer MVO 2016 [264]

Optics Inspired Optimization OIO 2015 [265]

Particle Collision Algorithm PCA 2007 [266]

PopMusic Algorithm PopMusic 2002 [267]

Quantum Superposition Algorithm QSA 2015 [268]

Rain-Fall Optimization Algorithm RFOA 2017 [269]

River Formation Dynamics RFD 2007 [270]

Radial Movement Optimization RMO 2014 [271]

Ray Optimization RO 2012 [272]

Space Gravitational Algorithm SGA 2005 [273]

flying insects. The most well-known algorithms in this
subcategory are PSO [2] and ABC [8].

• Terrestrial animals: Meta-heuristics in this category
are inspired by foraging or movements in terrestrial
animals. The most renowned approach within this
category is the classical ACO meta-heuristic [6], which
replicates the stigmergic mechanism used by ants to
locate food sources and inform of their existence to

their counterparts in the colony. This category also
includes other popular algorithms like Grey Wolf
Optimization (GWO, [164]), inspired in the wild wolf
hunting strategy; Lion Optimization Algorithm (LOA,
[177]), which imitates hunting methods used by these
animals; or the more recent Grasshopper Optimization
Algorithm (GOA, [5]), which finds its motivation in the
jumping motion of grasshoppers.
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Table 7 Nature- and bio-inspired meta-heuristics within the Physics based category (II)

Physics based (II)

Algorithm name Acronym Year Reference

Sonar Inspired Optimization SIO 2017 [274]

States Matter Optimization Algorithm SMS 2014 [275]

Spiral Dynamics Optimization SO 2011 [276]

Spiral Optimization Algorithm SPOA 2010 [277]

Self-Driven Particles SPP 1995 [278]

Vibrating Particle Systems Algorithm VPO 2017 [279]

Vortex Search Algorithm VS 2015 [280]

Water Cycle Algorithm WCA.2 2012 [281]

Water Evaporation Optimization WEO 2016 [282]

Water Flow-Like Algorithms WFA 2007 [283]

Water-Flow Algorithm WFA.1 2007 [284]

Water Flow Algorithm Optimization WFO 2011 [285]

Water Wave Optimization Algorithm WWA 2015 [286]

• Aquatic animals: This type of meta-heuristic algorithms
focuses on aquatic animals. The aquatic ecosystem
in which they live have inspired different exploration
mechanisms. It contains popular algorithms as Krill
Herd (KH, [13]), Whale Optimization Algorithm
(WOA, [11]), and algorithms based on the echolocation
used by dolphins to detect fish like Dolphin Partner
Optimization (DPO, [148]) and Dolphin Echolocation
[147].

• Microorganisms: Meta-heuristics based on microorgan-
isms are related with the food search performed by
bacteria. A bacteria colony performs a movement to
search for food. Once they have found and taken it,
they split to search again in the environment. Other
types of meta-heuristics that can be part of this category
are the ones related with virus, which usually repli-
cate the infection process of the cell by virus. The most
known algorithm of this category is Bacterial Foraging
Optimization Algorithm (BFOA, [14]).

Subcategories of SI-Based Algorithms by the Inspirational
Behavior

Another criterion to group SI-based algorithms is the
specific behavior of the animal that captured the attention of
researchers and inspired the algorithm. This second criterion
is also reflected in Tables 2, 3, 4, and 5, classifying each
algorithm as belonging to one of the following behavioral
patterns:

• Movement: We have considered that an algorithm
belongs to the movement inspiration subcategory if

the biological inspiration resides mainly in the way
the animal inspiring the algorithm regularly moves
around its environment. As such, the differential aspect
of the movement could hinge on the dynamics of
the movement itself (e.g. the flying movement of
birds in PSO [2], jumping actions as in Shuffled
Frog-Leaping Algorithm, SFLA [210], or by aquatic
movements as in DPO [148]), or by the movement of
the population (correspondingly, swarming movements
as in Bird Swarm Algorithm, BSA [127], the migration
of populations like Population Migration Algorithm,
PMA [197], or the migration of particular animals like
salmon [228], among others).

• Foraging: Rather than the movement strategy, in some
other algorithmic variants it is the mechanism used
to obtain their food what drives the behavior of the
animal and, ultimately, the design of the meta-heuristic
algorithm. This foraging behavior can in turn be
observed in many flavors, from the tactics used by the
animal at hand to surround its food source (as in the
aforementioned GWO [164] and LA [174]), inspired in
breeding nutrition (as Cuckoo Search [143]), inspired
in hunting techniques observed in grey wolves and
lions, respectively), particular mechanisms to locate
food sources and communicate its existence to the rest
of the swarm (as in ACO [6]), or other exploration
strategies such as the echolocation in dolphins [147],
or the flashing attraction between partners observed
in fireflies [4]. Sometimes, the movement of the
animal also obeys to food search and retrieval. In this
case, we consider that the algorithm belongs to the
foraging inspiration type, rather than to the movement
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type. Nowadays, inspiration by foraging mechanisms is
becoming more and more consolidated in the research
community, appearing explicitly in the name of several
bio-inspired algorithms.

Physics/Chemistry-Based Algorithms

Algorithms under this category are characterized by the fact
that they imitate the behavior of physical or chemical phe-
nomena, such as gravitational forces, electromagnetism,
electric charges and water movement (in relation with
physics-based approaches), and chemical reactions and
gases particles movement as for chemistry-based optimiza-
tion algorithms.

The complete list of reviewed algorithms in this category
is provided in Tables 6 and 7 (physics-based algorithms) and
Table 8 (chemistry-based methods). In this category we can
find some well-known algorithms reported in the last cen-
tury such as Simulated Annealing [23], or one of the most
important algorithms in physics-based meta-heuristic opti-
mization, Gravitational Search Algorithm (GSA, [18]). Inte-
restingly, a variety of space-based algorithms are rooted on
GSA, such as Black Hole optimization (BH, [241]) or Galaxy
Based Search Algorithm (GBSA, [19]). Other algorithms
such as Harmony Search (HS, [21]) relate to the music
composition process, a human invention that has more in
common with other physical algorithms in what refers to the
usage of sound waves than with Social Human Behavior-
based algorithms, the category discussed in what follows.

Social Human Behavior-Based Algorithms

Algorithms falling in this category are inspired by human
social concepts, such as decision-making and ideas related

to the expansion/competition of ideologies inside the soci-
ety as ideology (Ideology Algorithm (IA), [297]), or politi-
cal concepts such as the Imperialist Colony Algorithm (ICA,
[28]). This category also includes algorithms that emulate
sport competitions such as the Soccer League Competition
Algorithm (SLC, [24]). Brainstorming processes have also
laid the inspirational foundations of several algorithms such
as Brain Storm Optimization algorithm (BSO.2, [26]) and
Global-Best Brain Storm Optimization algorithm (GBSO,
[298]). The complete list of algorithms in this category is
given in Table 9.

Plants-Based Algorithms

This category essentially gathers all optimization algorithms
whose search process is inspired by plants. In this
case, as opposed to other methods within the Swarm
Intelligence category, there is no communication between
agents. One of the most well-known is Forest Optimization
Algorithms (FOA.1, [329]), inspired by the process of
plant reproduction. Table 10 details the specific algorithms
classified in this category.

Algorithms with Miscellaneous Sources
of Inspiration

In this category there are include the algorithms that do
not fit in any of the previous categories, i.e., we can
find algorithms of diverse characteristics such as the Ying-
Yang Pair Optimization (YYOP, [338]). Although this
defined category is heterogeneous and does not exhibit any
uniformity among the algorithms it represents, its inclusion
in the taxonomy serves as an exemplifying fact of the very
different sources of inspiration existing in the literature. The

Table 8 Nature- and bio-inspired meta-heuristics within the Chemistry based category

Chemistry based

Algorithm name Acronym Year Reference

Artificial Chemical Process ACP 2005 [287]

Artificial Chemical Reaction Optimization Algorithm ACROA 2011 [288]

Artificial Reaction Algorithm ARA 2013 [289]

Chemical Reaction Optimization Algorithm CRO.1 2010 [290]

Gases Brownian Motion Optimization GBMO 2013 [22]

Ions Motion Optimization Algoirthm IMO 2015 [291]

Integrated Radiation Optimization IRO 2007 [292]

Kinetic Gas Molecules Optimization KGMO 2014 [293]

Photosynthetic Algorithm PA 1999 [294]

Simulated Annealing SA.1 1989 [23]

Synergistic Fibroblast Optimization SFO 2017 [295]

Thermal Exchange Optimization TEO 2017 [296]
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Table 9 Nature- and bio-inspired meta-heuristics within the Social Human Behavior based category

Social Human Behavior

Algorithm name Acronym Year Reference

Anarchic Society Optimization ASO 2012 [27]

Brain Storm Optimization Algorithm BSO.2 2011 [26]

Bus Transportation Behavior BTA 2019 [299]

Collective Decision Optimization Algorithm CDOA 2017 [300]

Cognitive Behavior Optimization Algorithm COA.3 2016 [301]

Competitive Optimization Algorithm COOA 2016 [302]

Cultural Algorithms CA 1999 [303]

Duelist Optimization Algorithm DOA 2016 [304]

Football Game Inspired Algorithms FCA.1 2009 [305]

FIFA World Cup Competitions FIFAAO 2016 [306]

Golden Ball Algorithm GBA 2014 [307]

Global-Best Brain Storm Optimization Algorithm GBSO 2017 [298]

Group Counseling Optimization GCO 2010 [308]

Group Leaders Optimization Algorithm GLOA 2011 [309]

Greedy Politics Optimization Algorithm GPO 2014 [310]

Human Evolutionary Model HEM 2007 [311]

Human Group Formation HGF 2010 [312]

Human-Inspired Algorithms HIA 2009 [313]

Ideology Algorithm IA 2016 [297]

Imperialist Competitive Algorithm ICA 2007 [28]

League Championship Algorithm LCA .1 2014 [25]

Leaders and Followers Algorithm LFA 2015 [314]

Old Bachelor Acceptance OBA 1995 [315]

Oriented Search Algorithm OSA 2008 [316]

Parliamentary Optimization Algorithm POA 2008 [317]

Queuing Search Algorithm QSA.1 2018 [318]

Social Behavior Optimization Algorithm SBO.1 2003 [319]
Social Cognitive Optimization Algorithm SCOA 2010 [320]
Social Emotional Optimization Algorithm SEA 2010 [321]

Stochastic Focusing Search SFS 2008 [322]

Soccer Game Optimization SGO 2012 [323]

Soccer League Competition SLC 2014 [24]
Teaching-Learning Based Optimization Algorithm TLBO 2011 [324]
Tug Of War Optimization TWO 2016 [325]
Unconscious Search US 2012 [326]
Volleyball Premier League Algorithm VPL 2017 [327]
Wisdom of Artificial Crowds WAC 2011 [328]

ultimate goal to reflect this miscellaneous set of algorithms
is to spawn new categories once more algorithms are created
by recreating similar inspirational concepts that the assorted
ones already present in this category.

The complete list of algorithms in this category is in
Table 11. In this regard, we stress on this pressing need
for grouping assorted algorithms in years to come so as to
give rise to new categories. Otherwise, if we just stockpile
new algorithms without a clear correspondence to the
aforementioned categories in this miscellaneous group, the

overall taxonomy will not evolve and will eventually lack its
main purpose: to systematically sort and ease the analysis of
future advances and achievements in the field.

Taxonomy by Behavior

We now proceed with our second proposed taxonomy. In
this case we sort the different algorithmic proposals reported
by the community by its behavior, without any regards
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Table 10 Nature- and bio-inspired meta-heuristics within the Plants based category.

Plants based

Algorithm name Acronym Year Reference

Artificial Plants Optimization Algorithm APO.1 2013 [330]

Forest Optimization Algorithm FOA.1 2014 [329]

Flower Pollination Algorithm FPA 2012 [331]

Natural Forest Regeneration Algorithm NFR 2016 [332]

Plant Propagation Algorithm PPA.1 2009 [333]

Paddy Field Algorithm PFA 2009 [334]

Runner Root Algorithm RRA 2015 [335]

Saplings Growing Up Algorithm SGA.1 2007 [336]

Self-Defense Mechanism Of The Plants Algorithm SDMA 2018 [73]

Tree Growth Algorithm TGA 2019 [337]

to their source of inspiration. To this end, a clear sorting
criterion is needed that, while keeping itself agnostic with
respect to its inspiration, could summarize as much as
possible the different behavioral procedures characterizing
the algorithms under review. The criterion adopted for this
purpose is the mechanisms used for creating new solutions,
or for changing existing solutions to the optimization
problem. These are the main features that define the search
process of each algorithm.

First, we have divided the reviewed optimization
algorithms in two categories:

• Differential Vector Movement, in which new solutions
are produced by a shift or a mutation performed onto
a previous solution. The newly generated solution
could compete against previous ones, or against other
solutions in the population to achieve a space and
remain therein in subsequent search iterations. This
solution generation scheme implies selecting a solution
as the reference, which is changed to explore the space
of variables and, effectively, produce the search for the
solution to the problem at hand. The most representative
method of this category is arguably PSO [2], in which
each solution evolves with a velocity vector to explore
the search domain. Another popular algorithm with
differential movement at its core is DE [53], in which
new solutions are produced by adding differential
vectors to existing solutions in the population. Once a
solution is selected as the reference one, it is perturbed
by adding the difference between other solutions. The
decision as to which solutions from the population
are influential in the movement is a decision that has
an enormous influence on the behavior of the overall
search. Consequently, we further divide this category
by that decision. The movement—thus, the search—
can be guided by (i) all the population (Fig. 4a); (ii)

only the significant/relevant solutions, e.g., the best
and/or the worst candidates in the population (Fig. 4b);
or (iii) a small group, which could stand for the
neighborhood around each solution or, in algorithms
with subpopulations, only the subpopulation to which
each solution belongs (Fig. 4c).

• Solution creation, in which new solutions are not
generated by mutation/movement of a single reference
solution, but instead by combining several solutions
(so there is not only a single parent solution), or
other similar mechanism. Two approaches can be
utilized for creating new solutions. The first one is by
combination, or crossover of several solutions (Fig. 4d).
The classical GA [86] is the most straightforward
example of this type. Another approach is by stigmergy
(Fig. 4e), in which there is an indirect coordination
between the different solutions or agents, usually using
an intermediate structure, to generate better ones. A
classical example of stigmergy for creating solutions is
ACO [7], in which new solutions are generated by the
trace of pheromones left by different agents on a graph
representing the solution space of the problem under
analysis.

Bearing the above criteria in mind, Fig. 5 shows the
classification reached after our literature analysis. The plot
indicates, for the 323 reviewed algorithms, the number
and ratio of proposals classified in each category and
subcategory. It can be observed that in most nature- and
bio-inspired algorithms, new solutions are generated by
differential vector movement over existing ones (64% vs
36%). Among them, the search process is mainly guided
by representative solutions (near 52% in global, almost 82
% from this category), mainly the so-called current best
solution (in a very similar fashion to the naive version of
the PSO solver). Thus, the creation of new solutions by
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Table 11 Nature- and bio-inspired meta-heuristics within the Miscellaneous category

Miscellaneous

Algorithm name Acronym Year Reference

Atmosphere Clouds Model ACM 2013 [339]

Artificial Cooperative Search ACS 2012 [340]

Across Neighborhood Search ANS 2016 [341]

Bar Systems BS.2 2008 [342]

Backtracking Search Optimization BSO.3 2012 [343]

Cloud Model-Based Algorithm CMBDE 2012 [344]

Chaos Optimization Algorithm COA .4 1998 [345]

Clonal Selection Algorithm CSA .1 2000 [346]

Differential Search Algorithm DSA 2012 [347]

Exchange Market Algorithm EMA 2014 [348]

Extremal Optimization EO 2000 [349]

Fireworks Algorithm Optimization FAO 2010 [350]

Grenade Explosion Method GEM 2010 [351]

Golden Sine Algorithm GSA.1 2017 [352]

Heart Optimization HO.1 2014 [353]

Interior Search Algorithm ISA 2014 [354]

Keshtel Algorithm KA 2014 [355]

Kaizen Programming KP 2014 [356]

Membrane Algorithms MA 2005 [357]

Mine Blast Algorithm MBA 2013 [358]

Neuronal Communication Algorithm NCA 2017 [359]

Pearl Hunting Algorithm PHA 2012 [360]

Passing Vehicle Search PVS 2016 [361]

Artificial Raindrop Algorithm RDA .1 2014 [15]

Scientifics Algoritmhs SA.2 2014 [362]

Social Engineering Optimization SEO 2017 [363]

Stochastic Fractal Search SFS.1 2015 [364]

Search Group Algorithm SGA.2 2015 [365]

Simple Optimization SOPT 2012 [366]

Small World Optimization SWO 2006 [367]

The Great Deluge Algorithm TGD 1993 [368]

Wind Driven Optimization WDO 2010 [369]

Ying-Yang Pair Optimization YYOP 2016 [338]

movement vectors oriented towards the best solution is the
search mechanism found in more than half (52%) of all the
323 reviewed proposals.

The following subsections provide a brief global view of
the different categories introduced above. For each category
we describe its main characteristics, an example, and a table
with the algorithms belonging to that category.

Differential Vector Movement

This category of our behavior-based taxonomy amounts
up to 64% of the analyzed algorithms. In all of them,

new solutions are obtained by a movement departing from
existing solutions. By using a solution as the reference,
a differential vector is used to move from the reference
towards a new candidate, that could replace the previous one
or instead compete to be included into the population.

The crucial decision in differential vector movement
is how the differential vector (namely, the intensity and
direction of the movement) is calculated. This differential
vector could be calculated so as to move the reference
solution to another solution (usually a better one), or as a
lineal combination of other different solutions, allowing the
combination of attraction vectors (towards best solutions)
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Fig. 4 Schematic diagrams of the different algorithmic behaviors on
which our second taxonomy relies. The upper plots illustrate the pro-
cess of generating new solutions by Differential Vector Movement
from a given solution xA, using a the entire population; b relevant
individuals (in the example, the movement results from a weighted

combination—ω—of the current best solution in the population and
the best solution found so far by the algorithm); and c neighboring
solutions in the population to the reference individual. The lower plots
show the same process using solution creation by d combination; and
e stigmergy

with repulsion vectors (away from worse ones, or from
other solutions, to enforce diversity). The mathematical
nature of this operation usually restricts the domain of
the representation to a numerical, usually real-valued
representation.

This category is further divided into subcategories as a
function of the above decision, i.e., which solutions are
considered to create the movement vector. It should be
noted that some algorithms can be classified into more
than one subcategory. For instance, a particle’s update in
the PSO solver is affected by the global best particle
behavior and certain local best particle(s) behavior. The

local best behavior can be either dependent on the particle’s
previous behavior or the behavior of some particles in
its neighborhood. This makes PSO a possible member of
two of the subcategories, namely, Differential Vector as
a Function of Representative Solutions and Differential
Vector as a Function of a Group of Solutions. Nevertheless,
we have considered the classical PSO as a member of
Representative Solutions because the influence of the
best algorithm is stronger than the influence of the
neighborhood. In any case, following the above rationale
other PSO variants could fall within any other subcategory.
We now describe each of such subcategories.

Fig. 5 Classification of the
reviewed papers using the
behavior taxonomy
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Differential Vector as a Function of the Entire Population

One possible criterion is used all the individuals in the
population to generate the movement of each solution. In
these algorithms, all individuals have a degree of influence
on the movement of the other solutions. Such a degree
is usually weighted according to the fitness difference
and/or distance between solutions. A significant example
is FA [4], in which a solution suffers a moving force
towards better solutions as a function of their distance.
Consequently, solutions closer to the reference solution will
have a stronger influence than more distant counterparts. As
shown in Table 12, algorithms in this subcategory belong to
different categories in the previous inspiration source based
taxonomy.

Differential Vector as a Function of Representative
Solutions

In this group (the most populated in this second taxonomy),
the different movement of each solution is only influenced
by a small group of representative solutions. It is often the
case that these representative solutions are selected to be
best solutions found by the algorithm (as per the objective
of the problem at hand), being able to be guided only by,
e.g., the current best individual of the population.

Tables 13, 14, 15, 16, and 17 show the different algo-
rithms in this subcategory. An exemplary algorithm of this
category that has been a major meta-heuristic solver in the
history of the field is PSO [2]. In this solver, each solu-
tion or particle is guided by the global current best solution

and the best solution obtained by that particle during the
search. Another classical algorithm in this category is the
majority of the family of DE approaches [53]. In most of the
variants of this evolutionary algorithm, the influence of
the best solution(s) is hybridized with a differential vector
that perturbs the new solution towards random individuals
for the sake of an increased diversity along the search. How-
ever, this subcategory also includes many other algorithms
with differences as considering nearly better solutions (as
in the Bat Inspired Algorithm [3] or the Brain Storm Opti-
mization Algorithm [26]) or the worse solutions (to avoid
less promising regions), as in the Grasshopper Optimization
Algorithm (GOA, [5]). More than half of all algorithmic
proposals dwell into this subcategory, with a prominence of
Swarm Intelligence solvers due to their behavioral inspira-
tion in PSO and DE. We will revolve on these identified
similarities in the “Taxonomies Analysis: Comparison and
More Influential Algorithms” section.

Differential Vector as a Function of a Group of Solutions

Algorithms within this category do not resort to representa-
tive solutions of the entire population (such as the current
best), but they only consider solutions of a subset or group of
the solutions in the population. When the differential move-
ment considers both a group and a representative of all the
population, the algorithm under analysis is considered to
belong to the previous subcategory, because the representa-
tive has usually the strongest influence over the search. Two
different subcategories hold when a group of solutions is
used for computing the differential movement vector:

Table 12 Nature- and bio-inspired meta-heuristics within the Differential Vector Movement category, wherein the differential vector is influenced
by the entire population

Influenced by the entire population

Algorithm Name Acronym Year Reference

Artificial Electric Field Algorithm AEFA 2019 [242]

Artificial Plants Optimization Algorithm APO.1 2013 [330]

Chaotic Dragonfly Algorithm CDA 2018 [137]

Central Force Optimization CFO 2008 [247]

Charged Systems Search CSS 2010 [248]

Electromagnetism Mechanism Optimization EMO 2003 [17]

Firefly Algorithm FA 2009 [4]

Gravitational Clustering Algorithm GCA 1999 [249]

Group Counseling Optimization GCO 2010 [308]

Gravitational Search Algorithm GSA 2009 [18]

Human Group Formation HGF 2010 [312]

Hoopoe Heuristic Optimization HHO.1 2012 [165]

Integrated Radiation Optimization IRO 2007 [292]
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Table 13 Nature- and bio-inspired meta-heuristics within the Differential Vector Movement category, wherein the differential vector is influenced
by representative solutions (I)

Influenced by representative solutions (I)

Algorithm name Acronym Year Reference

Artificial Algae Algorithm AAA 2015 [101]

Artificial Bee Colony ABC 2007 [8]

Animal Behavior Hunting ABH 2014 [103]

African Buffalo Optimization ABO 2016 [104]

Atmosphere Clouds Model ACM 2013 [339]

Ant Lion Optimizer ALO 2015 [106]

Across Neighborhood Search ANS 2016 [341]

Anarchic Society Optimization ASO 2012 [27]

Artificial Searching Swarm Algorithm ASSA 2009 [107]

Artificial Tribe Algorithm ATA 2009 [108]

African Wild Dog Algorithm AWDA 2013 [109]

Bison Behavior Algorithm BBA 2019 [113]

Big Bang Big Crunch BBBC 2006 [244]

Bacterial Chemotaxis Optimization BCO.2 2002 [117]

Bacterial Colony Optimization BCO.1 2012 [116]

Bald Eagle Search Optimization BES 2019 [110]

Black Hole Optimization BH 2013 [241]

Bat Intelligence BI 2012 [121]

Bat Inspired Algorithm BIA 2010 [3]

Biology Migration Algorithm BMA 2019 [122]

Blind, Naked Mole-Rats Algorithm BNMR 2013 [123]

Butterfly Optimizer BO 2015 [124]

Bird Swarm Algorithm BSA 2016 [127]

Bee Swarm Optimization BSO 2010 [128]

Bioluminiscent Swarm Optimization Algorithm BSO.1 2011 [129]

Brain Storm Optimization Algorithm BSO.2 2011 [26]

Binary Whale Optimization Algorithm BWOA 2019 [131]

Collective Animal Behavior CAB 2012 [132]

Catfish Optimization Algorithm CAO 2011 [134]

Cheetah Based Algorithm CBA 2018 [133]

Cricket Behavior-Based Algorithm CBBE 2016 [135]

Collective Decision Optimization Algorithm CDOA 2017 [300]

Cloud Model-Based Algorithm CMBDE 2012 [344]

Camel Traveling Behavior COA.1 2016 [141]

Coyote Optimization Algorithm COA.2 2018 [142]

Cognitive Behavior Optimization Algorithm COA.3 2016 [301]

Chaos Optimization Algorithm COA.4 1998 [345]

Competitive Optimization Algorithm COOA 2016 [302]

Crow Search Algorithm CSA 2016 [144]

Cat Swarm Optimization CSO 2006 [145]

• Subpopulation-based differential vector: In algorithms
belonging to this subcategory (listed in Table 18) the
population is divided in several subpopulations, such
that the movement of each solution is only affected
by the other solutions in the same subpopulation.

Examples of algorithms in this subcategory are LA
[174] or the Monarch Butterfly Optimization algorithm
(MBO, [180]).

• Neighborhood-based differential vector: In this sub-
category, each solution is affected only by solutions
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Table 14 Nature- and bio-inspired meta-heuristics within the Differential Vector Movement category, wherein the differential vector is influenced
by representative solutions (II)

Influenced by representative solutions (II)

Algorithm name Acronym Year Reference

Dragonfly Algorithm DA 2016 [9]

Differential Evolution DE 1997 [81]

Dolphin Partner Optimization DPO 2009 [148]

Differential Search Algorithm DSA 2012 [347]

Elephant Herding Optimization EHO 2016 [149]

Elephant Search Algorithm ESA 2015 [151]

Eagle Strategy ES.1 2010 [150]

Fireworks Algorithm Optimization FAO 2010 [350]

Flocking Base Algorithms FBA 2006 [153]

Fast Bacterial Swarming Algorithm FBSA 2008 [154]

Football Game Inspired Algorithms FCA.1 2009 [305]

FIFA World Cup Competitions FIFAAO 2016 [306]

Flock by Leader FL 2012 [156]

Fruit Fly Optimization Algorithm FOA 2012 [157]

Flower Pollination Algorithm FPA 2012 [331]

Fish Swarm Algorithm FSA 2011 [158]

Fish School Search FSS 2008 [159]

Gases Brownian Motion Optimization GBMO 2013 [22]

Global-Best Brain Storm Optimization Algorithm GBSO 2017 [298]

Group Escape Behavior GEB 2011 [160]

Grenade Explosion Method GEM 2010 [351]

Gravitational Field Algorithm GFA 2010 [251]

Gravitational Interactions Algorithm GIO 2011 [252]

Good Lattice Swarm Optimization GLSO 2007 [161]

Grasshopper Optimisation Algorithm GOA 2017 [5]

General Relativity Search Algorithm GRSA 2015 [253]

Golden Sine Algorithm GSA.1 2017 [352]

Glowworm Swarm Optimization GSO 2013 [20]

Galactic Swarm Optimization GSO.2 2016 [254]

Goose Team Optimization GTO 2008 [163]

Grey Wolf Optimizer GWO 2014 [164]

Harry’s Hawk Optimization Algorithm HHO 2019 [74]

Heart Optimization HO.1 2014 [353]

Hurricane Based Optimization Algorithm HO.2 2014 [257]

Hunting Search HuS 2010 [166]

in its local neighborhood. Table 19 compiles all algo-
rithms that are classified in this subcategory. A notable
example in this list is BFOA [14], in which all solu-
tions in the neighborhood impact on the computation
of the movement vector, either by attracting the solu-
tion (if the neighboring solution has better fitness than
the reference solution) or in a repulsive way (when
the neighboring solution is worse than the one to be
moved).

Solution Creation

This category is composed of algorithms that explore the
domain search by generating new solutions, not by moving
existing ones. This group is a significant ratio (36%) of all
proposals, and includes many classical algorithms like GA
[86]. A very widely exploited advantage of these methods
is the possibility to adapt the generation method to the
particular problem, hence allowing for different possible
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Table 15 Nature- and bio-inspired meta-heuristics within the Differential Vector Movement category, wherein the differential vector is influenced
by representative solutions (III)

Influenced by representative solutions (III)

Algorithm name Acronym Year Reference

Honeybee Social Foraging HSF 2007 [167]

Ideology Algorithm IA 2016 [297]

Imperialist Competitive Algorithm ICA 2007 [28]

Interior Search Algorithm ISA 2014 [354]

Jaguar Algorithm JA 2015 [172]

Kinetic Gas Molecules Optimization KGMO 2014 [293]

Krill Herd KH 2012 [13]

Killer Whale Algorithm KWA 2017 [173]

Seven-Spot Ladybird Optimization LBO 2013 [175]

League Championship Algorithm LCA .1 2014 [25]

Leaders and Followers Algorithm LFA 2015 [314]

Lightning Search Algorithm LSA 2015 [260]

Locust Swarms Optimization LSO 2009 [178]

Membrane Algorithms MA 2005 [357]

Mine Blast Algorithm MBA 2013 [358]

Magnetotactic Bacteria Optimization Algorithm MBO 2013 [179]

Mouth Breeding Fish Algorithm MBF 2018 [182]

Modified Cuckoo Search MCS 2009 [183]

Modified Cockroach Swarm Optimization MCSO 2011 [184]

Moth Flame Optimization Algorithm MFO 2015 [185]

Magnetic Optimization Algorithm MFO.2 2008 [261]

Meerkats Inspired Algorithm MIA 2018 [187]

Monkey Search MS 2007 [189]

Multi-Verse Optimizer MVO 2016 [264]

Naked Moled Rat NMR 2019 [191]

Nomadic People Optimizer NPO 2019 [192]

OptBees OB 2012 [193]

Optimal Foraging Algorithm OFA 2017 [194]

Optics Inspired Optimization OIO 2015 [265]

Oriented Search Algorithm OSA 2008 [316]

Paddy Field Algorithm PFA 2009 [334]

Pigeon Inspired Optimization PIO 2014 [196]

Population Migration Algorithm PMA 2009 [197]

Parliamentary Optimization Algorithm POA 2008 [317]

Prey Predator Algorithm PPA 2015 [198]

Plant Propagation Algorithm PPA.1 2009 [333]

Particle Swarm Optimization PSO 1995 [2]

Penguins Search Optimization Algorithm PSOA 2013 [199]

representations and, therefore, easing its application to a
wider range of problems. In the following, we describe
the different subcategories that result from the diverse
mechanisms by which solutions can be created.

Creation by Combination

The most common option to generate new solution is
to combine existing ones. In these algorithms, different
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Table 16 Nature- and bio-inspired meta-heuristics within the Differential Vector Movement category, wherein the differential vector is influenced
by representative solutions (IV)

Influenced by representative solutions (IV)

Algorithm name Acronym Year Reference

Passing Vehicle Search PVS 2016 [361]

Queuing Search Algorithm QSA.1 2018 [318]

Regular Butterfly Optimization Algorithm RBOA 2019 [200]

Artificial Raindrop Algorithm RDA .1 2014 [15]

Roach Infestation Problem RIO 2008 [203]

Radial Movement Optimization RMO 2014 [271]

Ray Optimization RO 2012 [272]

Runner Root Algorithm RRA 2015 [335]

Satin Bowerbird Optimizer SBO 2017 [207]

Stem Cells Algorithm SCA 2011 [94]

Sine Cosine Algorithm SCA.2 2016 [208]

Social Cognitive Optimization Algorithm SCOA 2010 [320]

Social Emotional Optimization Algorithm SEA 2010 [321]

Synergistic Fibroblast Optimization SFO 2017 [295]

Stochastic Focusing Search SFS 2008 [322]

Stochastic Fractal Search SFS.1 2015 [364]

Space Gravitational Algorithm SGA 2005 [273]

Soccer Game Optimization SGO 2012 [323]

Spotted Hyena Optimizer SHO 2017 [211]

Swarm Inspired Projection Algorithm SIP 2009 [212]

Soccer League Competition SLC 2014 [24]

Slime Mould Algorithm SMA 2008 [213]

Spider Monkey Optimization SMO 2014 [214]

States Matter Optimization Algorithm SMS 2014 [275]

Spiral Dynamics Optimization SO 2011 [276]

Spiral Optimization Algorithm SPOA 2010 [277]

Self-Driven Particles SPP 1995 [278]

Seeker Optimization Algorithm SOA 2007 [215]

Symbiosis Organisms Search SOS 2014 [216]

Social Spider Algorithm SSA 2015 [217]

Squirrel Search Algorithm SSA.1 2019 [218]

Shark Smell Optimization SSO 2016 [220]

Swallow Swarm Optimization SSO.1 2013 [221]

Social Spider Optimization SSO.2 2013 [222]

See-See Partridge Chicks Optimization SSPCO 2015 [223]

Surface-Simplex Swarm Evolution Algorithm SSSE 2017 [224]

solutions are selected and combined using a crossover
operator or combining method to give rise to new solutions.
The underlying idea is that by combining good solutions,
even better solutions can be eventually generated.

The combining method can be specific for the problem to
be solved or instead, be conceived for a more general family
of problems. In fact, combining methods are usually devised

to be adaptable to many different solution representations.
As mentioned before, the most popular algorithm in
this category is GA [86]. However, many other bio-
inspired algorithms exhibit a similar behavior when creating
solutions, yet they are inspired by other phenomena, such
as Cultural Optimization (CA, [303]) (in the Social Human
Behavior category), LA [177] (in the Swarm Intelligence
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Table 17 Nature- and bio-inspired meta-heuristics within the Differential Vector Movement category, wherein the differential vector is influenced
by representative solutions (V)

Influenced by representative solutions (V)

Algorithm name Acronym Year Reference

Termite Colony Optimization TCO 2010 [227]

The Great Salmon Run Algorithm TGSR 2013 [228]

Teaching-Leaning Based Optimization Algorithm TLBO 2011 [324]

Tug Of War Optimization TWO 2016 [325]

Unconscious Search US 2012 [326]

Virus Colony Search VCS 2016 [231]

Variable Mesh Optimization VMO 2012 [98]

Volleyball Premier League Algorithm VPL 2017 [327]

Vibrating Particle Systems Algorithm VPO 2017 [279]

Vortex Search Algorithm VS 2015 [280]

Wolf Colony Algorithm WCA.1 2011 [234]

Water Cycle Algorithm WCA.2 2012 [281]

Wind Driven Optimization WDO 2010 [369]

Water Evaporation Optimization WEO 2016 [282]

Whale Optimization Algorithm WOA 2016 [11]

Wolf Pack Search WPS 2007 [236]

Weightless Swarm Algorithm WSA 2012 [237]

Wolf Search Algorithm WSA.1 2012 [238]

Water Wave Optimization Algorithm WWA 2015 [286]

Zombie Survival Optimization ZSO 2012 [240]

category), Particle Collision Algorithm (PCA, [266], in
the chemistry-based category) or Light Ray Optimization
(LRO, [259], in the physics-based category). Tables 20, 21,
and 22 show the algorithms that rely on combination when
creating new solutions along their search.

Creation by Stigmergy

Another popular option of creating new solutions relies
on stigmergy, namely, an indirect communication and
coordination between the different solutions or agents used
to create new solutions. This communication is usually done
using an intermediate structure, with information obtained
from the different solutions, used to generate new solutions
oriented towards more promising areas of the search space.
This is indeed the search mechanism used in the most
representative algorithm of this category, ACO [7], which
is inspired by the foraging mechanism of ant colonies.
Each ant of the colony describes a trajectory over a graph
representation of the search space of the problem at hand,
and leaves a trace of pheromone along its way whose
intensity depends, in part, on the fitness value corresponding
to the solution encoded by the trajectory of the ant.
In subsequent iterations, new solutions are generated,
dimension by dimension, considering the pheromones trail

left by preceding ants, enforcing the search around most
promising values for each dimension.

Table 23 lists the reviewed algorithms that employ stig-
mergy when creating new solutions. This is a reduced
list when comparing with preceding categories, with the
majority of the algorithms relying on Swarm Intelligence
among insects (similarly to ACO). However, other algo-
rithms inspired in physics have also a stigmertic behavior
when producing new solutions, such as methods inspired
by water flow dynamics [285] and the natural formation of
rivers [270].

Taxonomies Analysis: Comparison andMore
Influential Algorithms

We now proceed by critically examining the reviewed
literature as per the different taxonomies proposed in this
overview. First, we are going to study the similarities
between the results of the classifications following each
taxonomy. Later, we identify the most influential algorithms
over the rest, based on the behavior of the algorithms.

Comparing the different taxonomies with each other and
the algorithms falling in each of their categories, it can
be observed that there is not a strong relationship between
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Table 18 Nature- and bio-inspired meta-heuristics within the Differential Vector Movement category, wherein the differential vector is influenced
by subpopulations

Influenced by subpopulations

Algorithm name Acronym Year Reference

Artificial Chemical Process ACP 2005 [287]

Artificial Cooperative Search ACS 2012 [340]

Artificial Physics Optimization APO 2009 [243]

Bee Colony-Inspired Algorithm BCIA 2009 [114]

Colliding Bodies Optimization CBO 2014 [245]

Cuttlefish Algorithm CFA 2013 [138]

Cuckoo Optimization Algorithm COA 2011 [140]

Chicken Swarm Optimization CSO.1 2014 [146]

Exchange Market Algorithm EMA 2014 [348]

Greedy Politics Optimization Algorithm GPO 2014 [310]

Group Search Optimizer GSO.1 2009 [162]

Hierarchical Swarm Model HSM 2010 [168]

Ions Motion Optimization Algorithm IMO 2015 [291]

Lion Optimization Algorithm LOA 2016 [177]

Monarch Butterfly Optimization MBO.1 2017 [180]

Social Behavior Optimization Algorithm SBO.1 2003 [319]

Sperm Whale Algorithm SWA 2016 [225]

Thermal Exchange Optimization TEO 2017 [296]

Wisdom of Artificial Crowds WAC 2011 [328]

Worm Optimization WO 2014 [235]

them. Interestingly, this unveils that features characterizing
one algorithm are loosely associated with its inspirational
model. For instance, algorithms inspired by very different
concepts such as the gravitational forces (GFA, [251])
or animal evolution (ABO, [104]) exhibit a significant
similarity with PSO [2]. This statement is supported by
the fact that, in the second taxonomy, each category is
composed by algorithms that, as per the first taxonomy, are
inspired by diverse phenomena. The contrary also holds in
general: proposals with very similar natural inspiration fall
in the same category of the first taxonomy (as expected),
but their search procedures differ significantly from each

other, thereby being classified in different categories of the
second taxonomy. An illustrative example is the Delphi
Echolocation algorithm (DE, [147]) and the Dolphin Partner
Optimization [148]. Both are inspired in the same animal
(dolphin) and its mechanism to detect fishes (echolocation),
but they are very different algorithms: the former creates
new solutions by combination, whereas the latter resembles
closely the movement performed in the PSO solver, mainly
guided by the best solution.

In this same line of reasoning, the largest subcategory
of the second taxonomy (Differential Vector Movements
guided by representative solutions) not only contains more

Table 19 Nature- and bio-inspired meta-heuristics within the Differential Vector Movement category, wherein the differential vector is influenced
by neighborhoods

Influenced by neighborhoods

Algorithm Name Acronym Year Reference

Bees Algorithm BA 2006 [111]

Biomimicry Of Social Foraging Bacteria for Distributed Optimization BFOA 2002 [14]

Bacterial Foraging Optimization BFOA.1 2009 [56]

Gravitational Emulation Local Search GELS 2009 [250]

Neuronal Communication Algorithm NCA 2017 [359]

921Cogn Comput (2020) 12:897–939



Table 20 Nature- and bio-inspired meta-heuristics within the Solution Creation-Combination category (I)

Creation-Combination category (I)

Algorithm name Acronym Year Reference

Artificial Beehive Algorithm ABA 2009 [102]

Andean Condor Algorithm ACA 2019 [105]

Artificial Chemical Reaction Optimization Algorithm ACROA 2011 [288]

Artificial Infections Disease Optimization AIDO 2016 [75]

Artificial Reaction Algorithm ARA 2013 [289]

Asexual Reproduction Optimization ARO 2010 [76]

Bacterial-GA Foraging BGAF 2007 [118]

Bumblebees BB 2009 [112]

Biogeography Based Optimization BBO 2008 [77]

Bee Colony Optimization BCO 2005 [115]

BeeHive Algorithm BHA 2004 [119]

Bees Life Algorithm BLA 2018 [120]

Bird Mating Optimization BMO 2014 [78]

Bean Optimization Algorithm BOA 2011 [79]

Bee System BS 1997 [125]

Bar Systems BS.2 2008 [342]

Backtracking Search Optimization BSO.3 2012 [343]

Bees Swarm Optimization Algorithm BSOA 2005 [130]

Bus Transportation Behavior BTA 2019 [299]

Cultural Algorithms CA 1999 [303]

Cultural Coyote Optimization Algorithm CCOA 2019 [136]

Crystal Energy Optimization Algorithm CEO 2016 [246]

Consultant Guide Search CGS 2010 [139]

Coral Reefs Optimization CRO 2014 [12]

Chemical Reaction Optimization Algorithm CRO.1 2010 [290]

Cuckoo Search CS 2009 [143]

Clonal Selection Algorithm CSA .1 2000 [346]

Dendritic Cells Algorithm DCA 2005 [80]

Dolphin Echolocation DE.1 2013 [147]

Duelist Optimization Algorithm DOA 2016 [304]

Ecogeography-Based Optimization EBO 2014 [82]

Eco-Inspired Evolutionary Algorithm EEA 2011 [83]

Electromagnetic Field Optimization EFO 2016 [16]

Extremal Optimization EO 2000 [349]

Earthworm Optimization Algorithm EOA 2018 [84]

Evolution Strategies ES 2002 [85]

Egyptian Vulture Optimization Algorithm EV 2013 [152]

Frog Call Inspired Algorithm FCA 2009 [155]

Forest Optimization Algorithm FOA.1 2014 [329]

than half of the reviewed algorithms (52% ), but it also
comprises algorithms from all the different categories in
the first taxonomy: Social Human Behavior (as Anarchic
Society Optimization (ASO), [27]), microorganisms (Bac-
terial Colony Optimization, [116]), Physics/Chemistry cat-
egory (correspondingly, Fireworks Algorithm Optimization

(FAO), [350]), Breeding-based Evolution (as Variable Mesh
Optimization (VMO), [98]), or even Plants-Based (such as
Flower Pollination Algorithm (FPA), [331]). This inspira-
tional diversity is not exclusive of this subcategory. Others,
such as Solution Creation, also include algorithms relying
on an heterogeneity of natural concepts.
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Table 21 Nature- and bio-inspired meta-heuristics within the Solution Creation-Combination category (II)

Creation-Combination category (II)

Algorithm name Acronym Year Reference

Genetic Algorithms GA 1989 [86]

Golden Ball Algorithm GBA 2014 [307]

Galaxy Based Search Algorithm GBSA 2011 [19]

Gene Expression GE 2001 [87]

Group Leaders Optimization Algorithm GLOA 2011 [309]

Harmony Search HS 2005 [21]

Harmony Elements Algorithm HEA 2009 [255]

Human Evolutionary Model HEM 2007 [311]

Human-Inspired Algorithms HIA 2009 [313]

Hysteresis for Optimization HO 2002 [256]

Hypercube Natural Aggregation Algorithm HYNAA 2019 [169]

Immune-Inspired Computational Intelligence ICI 2008 [88]

Improved Genetic Immune Algorithm IGIA 2017 [89]

Improved Raven Roosting Algorithm IRRO 2018 [170]

Invasive Tumor Optimization Algorithm ITGO 2015 [171]

Weed Colonization Optimization IWO 2006 [90]

Keshtel Algorithm KA 2014 [355]

Kaizen Programming KP 2014 [356]

Lion Algorithm LA 2012 [174]

Laying Chicken Algorithm LCA 2017 [176]

Light Ray Optimization LRO 2010 [259]

Migrating Birds Optimization MBO.2 2012 [181]

Mosquito Flying Optimization MFO.1 2016 [186]

Marriage In Honey Bees Optimization MHBO 2001 [91]

Method of Musical Composition MMC 2014 [262]

Mox Optimization Algorithm MOX 2011 [188]

Melody Search MS.1 2011 [263]

Natural Aggregation Algorithm NAA 2016 [190]

Natural Forest Regeneration Algorithm NFR 2016 [332]

Old Bachelor Acceptance OBA 1995 [315]

Photosynthetic Algorithm PA 1999 [294]

Pity Beetle Algorithm PBA 2018 [195]

Particle Collision Algorithm PCA 2007 [266]

Pearl Hunting Algorithm PHA 2012 [360]

PopMusic Algorithm PopMusic 2002 [267]

Queen-Bee Evolution QBE 2003 [92]

Quantum Superposition Algorithm QSA 2015 [268]

Red Deer Algorithm RDA 2016 [201]

Rain-Fall Optimization Algorithm RFOA 2017 [269]

Rhino Herd Behavior RHB 2018 [202]

Reincarnation Concept Optimization Algorithm ROA 2010 [204]

Considering the previous examples, it is clear that the
real behavior of the algorithm is much more informative
than its natural or biological inspiration. Even more, we
have observed that in our first proposed taxonomy, built

upon the review of more than three hundred proposals, the
huge diversity of inspirational sources does not correspond
with the lower number of algorithmic behaviors on which
our second taxonomy is based. This observation is in
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Table 22 Nature- and bio-inspired meta-heuristics within the Solution Creation-Combination category (III)

Creation-Combination category (III)

Algorithm name Acronym Year Reference

Shark Search Algorithm SA 1998 [205]

Simulated Annealing SA.1 1989 [23]

Scientifics Algorithms SA.2 2014 [362]

SuperBug Algorithm SuA 2012 [93]

Simulated Bee Colony SBC 2009 [206]

Snap-Drift Cuckoo Search SDCS 2016 [209]

Self-Defense Mechanism Of The Plants Algorithm SDMA 2018 [73]

Social Engineering Optimization SEO 2017 [363]

Sheep Flock Heredity Model SFHM 2001 [95]

Shuffled Frog-Leaping Algorithm SFLA 2006 [210]

Saplings Growing Up Algorithm SGA.1 2007 [336]

Search Group Algorithm SGA.2 2015 [365]

Swine Influenza Models Based Optimization SIMBO 2013 [96]

Sonar Inspired Optimization SIO 2017 [274]

Self-Organizing Migrating Algorithm SOMA 2004 [97]

Simple Optimization SOPT 2012 [366]

Salp Swarm Algorithm SSA.2 2017 [219]

Tree Growth Algorithm TGA 2019 [337]

The Great Deluge Algorithm TGD 1993 [368]

Small World Optimization SWO 2006 [367]

Virulence Optimization Algorithm VOA 2016 [99]

Virus Optimization Algorithm VOA .1 2009 [232]

Viral Systems Optimization VSO 2008 [233]

Wasp Colonies Algorithm WCA 1991 [10]

Water Flow-Like Algorithms WFA 2007 [283]

Water Flow Algorithm WFA.1 2007 [284]

Wasp Swarm Optimization WSO 2005 [239]

Ying-Yang Pair Optimization YYOP 2016 [338]

accordance with previous works in the literature, which have
put to question whether the novelty in the natural inspiration
of the algorithm actually yields different algorithms that
could produce competitive results [370, 371].

We further elaborate on the above statement: our
literature analysis revealed that the majority of proposals
(more than a half, 52%) generates new solutions based
on differential vector forces over existing ones, as in the
classical PSO or DE. A complementary analysis can be done
by departing from this observation towards discriminating
which of the classical algorithms (PSO, DE, GA, ACO,
ABC or SA) can be declared to be most similar to modern
approaches. The results of this analysis are conclusive: 37%
of all reviewed algorithms (122 out of 323) were found to
be so influenced by classical algorithms that, without their
biological inspiration, they could be regarded as incremental
variants. The other 201 solvers (about 62%) have enough

differences to be considered a new proposal by themselves,
instead of another version of an existing algorithm.

Identification of theMost Influential Algorithms

In order to know of which are the most influential reference
algorithms used to design other bio-inspired algorithms, we
have grouped together reviewed proposals that could be
considered to be versions of the same classical algorithm.
Figure 6 shows the classification of each algorithm based
on its behavior, and the number of proposals in each
classification are summarized in Table 24.

Very insightful conclusions can be drawn from this
grouping. To begin with, in Table 24 the most influential
algorithm was identified to be PSO, appearing in 17% of
the reviewed literature (which corresponds to 46% of the
proposals that were clearly based on a previous algorithm).
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Table 23 Nature- and bio-inspired meta-heuristics within the Solution Creation-Stigmergy category

Solution Creation-Stigmergy

Algorithm name Acronym Year Reference

Ant Colony Optimization ACO 1996 [6]

Bee System BS.1 2002 [126]

Intelligence Water Drops Algorithm IWD 2009 [258]

River Formation Dynamics RFD 2007 [270]

Termite Hill Algorithm TA 2012 [226]

Virtual Ants Algorithm VAA 2006 [229]

Virtual Bees Algorithm VBA 2005 [230]

Water-Flow Algorithm Optimization WFO 2011 [285]

This bio-inspired solver is one of the most prominent
and historically acknowledged algorithms in the Swarm
Intelligence category, and is the reference of many bio-
inspired algorithms contributed since its inception. The
simplicity of this algorithm and its ability to reach an
optimum quickly—as has been comparatively assessed
in many application scenarios (see, e.g., [66, 67])—
have inspired many authors to create new meta-heuristics
characterized by similar solution movement dynamics to
those defined by PSO. Thus, many algorithms whose
authors claim to simulate the behavior of a biological system
eventually perform their search process through movements
strongly influenced by PSO (in some cases, without any
significant difference).

The second, and third most influential algorithms are
GA, a very classic algorithm, and DE, a well-known
algorithm whose natural inspiration resides only on to the
evolution of a population. Both have been used by around
7% of all reviewed nature-inspired algorithms, and they
are the most representative approach in the Evolutionary
Algorithms category. The search mechanism of GA is
solution creation by combination, and the search mechanism
of DE is to create new solutions with a lineal combination
of existing ones in the population, which is used by 7% of
all reviewed proposals, maybe by its superior performance
reported for many optimization problems [38].

When inspecting the influential approaches from a higher
perspective, two are the categories whose algorithms have

Fig. 6 Classification of
proposals by its original
algorithm
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Table 24 Percentages of similar algorithms in the reviewed literature

Classical algorithm Number of papers with similar algorithms Percentage over the total

PSO 57 17.65%

DE 24 7.43%

GA 24 7.43%

ACO 7 2.17%

ABC 7 2.17%

SA 3 0.93%

Total 122 37.77%

been more frequently used to create new nature-based
algorithms. The first one is Swarm Intelligence: about 20%
of all studied nature-inspired algorithms are variations of
SI algorithms (PSO, ACO, and ABC). The second one is
shared between Evolutionary Algorithms and GA, whose
represented algorithms are both used in 7% of the reviewed
cases. It is noteworthy to highlight that it appears that the
influence of more classic algorithms like GA and SA is
declining when compared with other algorithms, such as DE
and PSO.

In summary, although in the last years many nature-
inspired algorithms have been proposed by the community
and their number grows steadily every year, more than half
of the proposals reviewed in our work are incremental,
minor versions of only three very classical algorithms (PSO,
DE, and GA). We therefore conclude that a huge number of
natural and biological sources of inspiration used so far to
justify the design of new optimization solvers have not led to
significantly disruptive algorithmic behaviors. This closing
note will be at the heart of our critical analysis exposed in
the next section.

Lessons Learnt and Critical Analysis:
Recommendations on Research Practices

After reviewing the proposals, we have extracted several
issues that we consider to be challenges and recommen-
dations that the community working on nature- and bio-
inspired optimization should deal with in forthcoming years.
We next outline them in no particular order:

• The behavior is more relevant than the natural inspi-
ration: As was exposed in the “Taxonomies Analysis:
Comparison and More Influential Algorithms” section,
the current literature is flooded with a huge number of
nature- and bio-inspired algorithms. However, as has
been spotted by our proposed taxonomies, several algo-
rithms belonging to categories with different sources of
inspiration result to be very similar in terms of behavior.

This disparity is a controversial topic in recent years
[32, 370]. Therefore, we call for more research efforts
around the design of optimization algorithms that focus
on their behavior and properties (e.g., good perfor-
mance, simplicity, ability to run it in parallel or their
suitability to a specific type of problems) rather than on
new inspiration sources.

• Nature-based terminology can make it more difficult
to understand the proposal: A great deal of papers
presenting new bio-inspired solvers are difficult to
understand and replicate due to the extended usage of
vocabulary related to the natural source of inspiration.
It is logical to use the semantic of the biological
or natural domain, but to an extent. It would be
desirable that the description of the algorithm could
be defined in an inspiration-agnostic fashion, resorting
to mathematical terms to describe each component,
agent and/or phase of the optimization process (e.g.,
optimum/a, individuals or solutions). An excessive
usage of the domain terminology (without explicitly
indicating the correspondences) could make it difficult
to follow the details of the algorithm for researchers
not acquainted with such a terminology. To overcome
this issue, the correspondence between the domain
terminology and the optimization terminology should
be explicitly indicated.

• Good comparisons are crucial for new proposals:
The lack of fair comparisons is another important
drawback of many proposals published to date. When
new algorithms are proposed, unfortunately many of
them are only compared with very basic and classical
algorithms (such as GA or PSO). These algorithms
have been widely surpassed by more advanced versions
over the years which, so obtaining better performance
than naive version of classical algorithms is relatively
easy to achieve, and it does not imply a competitive
performance [371]. In some cases, the proposed
algorithm is compared with similar algorithms but
not with competitive algorithms outside that semantic
niche [371, 372]. This methodological practice must be
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regarded as a very serious barrier for their application
to real-world problems. We encourage researchers to
increase the algorithms used in their experimental
section, including more competitive or state-of-the-
art algorithms: until they are prove to be competitive
respect to the state of the art, new nature- and bio-
inspired solvers will not be used in practice either will
attract enough attention of the research community.

• Many proposals have a very limited influence: By
examining in depth the historical trajectory followed
by each reviewed algorithm, an intriguing trend is
revealed: a fraction of the proposals has a very limited
influence in new papers after the original publication.
For them, there is almost no new papers with improved
versions, or applying it to new problems. Fortunately,
other few algorithms have a stronger influence.
In view of this dichotomy, the researchers should
evaluate their proposals to diverse problems, including
widely acknowledged benchmark functions and real-
world practical problems, to grasp the interest of the
community in considering their proposed algorithms for
tackling other applications.

• The interest of making source code available: Related
to the previous one, it is very interesting, in order to gain
more visibility, to make the source code of the proposed
algorithm available for the community. It is true that the
paper presenting the new algorithm should be detailed
enough to allow for a clean implementation of the
proposal from the provided specification. However, it
is widely acknowledged that, in many occasions, there
are important details that even though they have a
strong influence on the results, are not remarked in the
description [373, 374]. A publicly available reference
implementation could not only improve its visibility,
but could also offer other researchers the chance to
undertake more thorough performance comparisons.
In addition, there are a huge number of software
frameworks for Evolutionary Computation and Swarm
Intelligence programmed in different languages (such
as C++, Java, MATLAB, or Python), some of them
very popular in the current research landscape. To cite
a few: Evolutionary Computation Framework (ECF)1

and ParadisEO [375] in C++; jMetal [376] and MOEA2

in Java; NiaPy[377], jMetalPy [378] and PyGMO3

in Python; or PlatEMO [379] in MATLAB, among
others. Each of them implements the most popular
algorithms (GA, DE, PSO, ABC, ...). A reference

1http://ecf.zemris.fer.hr/
2http://moeaframework.org/
3http://esa.github.io/pygmo/index.html

implementation could also favor the inclusion of
the proposal in frameworks as the ones exemplified
previously. Otherwise, different implementations of
the allegedly same algorithm could produce diverging
results from the original proposal (in part due to the
ambiguity of the description).

• The role of bio-inspired algorithms in competitions:
Finally, we also stress on the fact that meta-heuristic
algorithms that have scored best in many competitions
are far from being biologically inspired, although
some of them retain their nature-inspired roots (mostly,
DE) [38]. This fact was expected for the lack
of good methodological practices when comparing
nature- and bio-inspired algorithms, which was pointed
out previously in our analysis. This issue has not
encouraged participants in competitions to embrace
them as reference algorithms to design better solvers.
The rising trend of the community to generate an
ever-growing number of bio-inspired proposals can
be counterproductive and deviate efforts towards
developments of a reduced number of proposals but
with a better performance.

• Work in more specific challenges: Most proposals aim
to address general single-objective optimization prob-
lems. However, other types of optimization problems
still deserve further attention from the community,
unfolding vast opportunities for the development of spe-
cial flavors of nature- and bio-inspired algorithms as the
ones collected in our taxonomies:

– Dynamic and stochastic optimization, prob-
lems in which the problem definition varies
over time.

– Multi- and many-objective optimization,
wherein the goal is to simultaneously optimize
several conflicting objectives.

– Multimodal optimization, in which there may
be several global optima to be found and
retained during the search.

– Large-Scale Global Optimization, in which
the number of variables (dimensionality of
the search space) is huge, in the order of
thousands.

– Memetic Algorithms, where the algorithmic
proposal is combined with other search tech-
niques to further improve its performance.

– Parameter tuning, which refers to the search
for the values of the parameters of the
optimization algorithm itself that lead to its
best search performance.

– Parameter adaptation, i.e., the design of
adaptive parameters that allow solver to adapt
themselves to the problem during the search.
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We suggest [32] to the reader interested in further
information and prospects on the future of the above
type of problems.

• Hybridization might produce new algorithmic behav-
iors: In our bibliographic study we have noted the
tendency in the literature to propose combinations
(hybridizations) of two or more nature- and bio-inspired
algorithms into a single solver [380, 381]. However, in
the different proposals a solid proof is required to verify
that the results compensate for the increase in com-
plexity when compared with existing approaches. When
this proof is eventually achieved, the community should
gradually incorporate these new hybrid approaches into
existing taxonomies. This could require widening the
criteria followed in taxonomies to also account for
the mixture of algorithmic behaviors present in hybrid
search techniques. Taxonomies reported to date do not
explicitly take into account this possibility. Once hybrid
schemes are verified to provide significant gains over
traditional methods, it will be time for the research com-
munity to start modifying the existing taxonomies to
reflect their importance in the field.

Conclusions

Nature and biological organisms have been a source of
inspiration of many optimization algorithms. During the
last years, this family of solvers has grown considerably
in size, achieving unseen levels of diversity in regards
to their source of inspiration. This explosion of literature
has made it difficult for the community to appraise the
general trajectory followed by the field, which is a necessary
step towards identifying research trends and challenges
of scientific value and practical impact. Some efforts
have been dedicated so far towards classifying the state
of the art on nature- and bio-inspired optimization in a
taxonomy with well-defined criteria, allowing researchers to
classify existing algorithms and newly proposed schemes.
Unfortunately, the few attempts at furnishing this desired
taxonomy have not succeeded through the years, relying
mostly on the source of inspiration (metaphor) or in
taxonomies with narrow algorithmic coverage.

In this work, we have reviewed more than three hun-
dred nature- and bio-inspired algorithms, and classified
them in two taxonomies that group the different proposals
in categories and subcategories. The first proposed taxon-
omy considers its source of inspiration, whereas the second
taxonomy discriminates among algorithm by their algo-
rithmic behavior, namely, by the procedure by which new
candidate solutions to the optimization problem are gener-
ated. Remarkably, our second taxonomy leaves aside any
aspect related to the source of inspiration behind the design

of the algorithm to strictly focus on algorithmic aspects
of its search procedure. We have provided clear descrip-
tions of the classification criterion, illustrative examples and
an enumeration of the reviewed nature- and bio-inspired
approaches that fall within each of the categories of both
proposed taxonomies.

Once the taxonomies have been presented and populated,
our study has also critically examined the reviewed
literature by identifying and discussing on the similarities
and differences among them. We have concluded that a
very loose connection exists between the natural inspiration
of an algorithm and its algorithmic behavior. Likewise,
many algorithms, even if claiming to be inspired by very
different natural and biological phenomena, result to be
algorithmically more similar than one could expect as per
their design rationale. Even more serious is the noted
fact that more than 50% of all proposals follow a very
similar behavior, namely, the exploration of the search
space by moving a reference solution with a differential
vector towards the current best solution. Yet another finding
that goes in this line of discussion: 32% of the reviewed
proposals were identified to be versions of classical
algorithms such as PSO, DE, or GA. Specially PSO, with
more than 17% of the nature- and bio-inspired algorithms
proposed in the last years that can be regarded as versions
of this solver. To a lesser albeit also illustrative extent,
7% of the studied proposals were versions of GA. These
findings bring light to the longstanding discussion held
within the nature- and bio-inspired community around the
questionable algorithmic contributions of recent advances in
the field.

On a note summarizing our above challenges and
recommendations, we stress on our main three conclusions:

1. The growing number of nature- and bio-inspired
proposals must be regarded as a symptomatic fact of the
vivid status of this field [32], as well as a clear exponent
of the possibilities brought by Nature to solve complex
optimization problems.

2. Its evolution suggest that research efforts should aim
at devising new algorithms with truly new behavioral
differences with respect to the state of the art, providing
verifiable evidences of a superior performance in
practical problems.

3. Good methodological practices must be followed in
forthcoming studies when designing, describing, and
comparing new algorithms.

All in all, there are exciting times for research on nature-
and bio-inspired optimization, which should depart from a
consensus on which research avenues should be pursued
collectively by the community. We hope that the double
taxonomy proposed in this overview and the critical analysis
made thereafter take a sensible step in this direction,
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and contribute to achieving the scientific soundness and
technical rigor that this field deserves.
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