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Abstract
Saliency detection aims to automatically highlight the most important area in an image. Traditional saliency detection
methods based on absorbing Markov chain only take into account boundary nodes and often lead to incorrect saliency
detection when the boundaries have salient objects. In order to address this limitation and enhance saliency detection
performance, this paper proposes a novel task-independent saliency detection method based on the bidirectional absorbing
Markov chains that jointly exploits not only the boundary information but also the foreground prior and background prior
cues. More specifically, the input image is first segmented into number of superpixels, and the four boundary nodes
(duplicated as virtual nodes) are selected. Subsequently, the absorption time upon transition node’s random walk to the
absorbing state is calculated to obtain the foreground possibility. Simultaneously, foreground prior (as the virtual absorbing
nodes) is used to calculate the absorption time and get the background possibility. In addition, the two aforementioned results
are fused to form a combined saliency map which is further optimized by using a cost function. Finally, the superpixel-level
saliency results are optimized by a regularized random walks ranking model at multi-scale. The comparative experimental
results on four benchmark datasets reveal superior performance of our proposed method over state-of-the-art methods
reported in the literature. The experiments show that the proposed method is efficient and can be applicable to the bottom-up
image saliency detection and other visual processing tasks.
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Introduction

Visual saliency detection simulates the human visual sys-
tem aiming to automatically highlight the most important
area in an image. The process of using an important
part of an image instead of the full image reduces the
computational costs for computer vision systems. There-
fore, saliency detection has become a preprocessing stage
in many applications including image segmentation [46],
image retrieval [16], image classification [15], object detec-
tion [23, 36, 44], object recognition [31], object track-
ing [48], and video segmentation [38].

In the literature, extensive research has been carried out
to develop saliency detection methods. The methods can
be divided into three categories: bottom-up methods [6,
9, 12, 28, 49], top-down methods [8, 14, 27, 39], and

� Bin Kong
bkong@iim.ac.cn

Extended author information available on the last page of the article.

mixed methods [4, 11, 47, 54]. The bottom-up methods
are data-driven and mostly applied to real-time systems,
utilizing color, edge, brightness, texture, and other low-
level features to obtain the saliency maps in an efficient
and effective manner. In the bottom-up methods, there exist
many methods such as random walk-based methods [19, 33,
50] and region contrast models [7, 20]. On the other hand,
the top-down methods are goal-driven (i.e., task dependent),
including some cnn-based deep learning methods [21, 37,
40, 53], making use of high-level features. In general,
top-down methods can get better performance but require
large dataset for supervised training and are computationally
expensive. The mixed methods integrate bottom-up and
top-down methods to obtain final saliency results.

In our paper, we focus on the traditional bottom-up
models. In the existing random walk models, one of an
important work gets saliency detection by using absorbing
Markov chain (MC) [19], which can get good results
by considering boundary nodes as absorbing nodes to
construct an absorbing Markov chain. Actually, background
and foreground prior can play a complementary role in
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enhancing saliency detection. We consider to using both
the boundary information and the foreground prior to
duplicated as absorbing nodes, and propose a bidirectional
absorbing Markov chains–based saliency detection model
to get final saliency maps. Firstly, we use boundary and
foreground prior to get the background and foreground
possibilities. Then, we use an optimized function to fuse
two kinds of information. Finally, we get the final saliency
map by pointing saliency values of superpixels to each
pixels.

In summary, the contributions of our work include:

1. We present a novel bidirectional Markov chains model
(BMC), which uses background and foreground prior
information to construct two absorbing Markov chains.

2. An optimization model is developed to combine
both background and foreground possibilities, which
are acquired through bidirectional absorbing Markov
chains.

RelatedWorks

In this section, we focus on the related state-of-the-art and
other recently proposed models.

The research of saliency detection is originated from
biological disciplines.

The Itti and Koch model [18] first computed saliency
maps by using texture, orientation, intensity, and color con-
trast features. Since then, various models have emerged [13,
17, 22, 32, 51, 52, 55].

Gopalakrishnan et al. [13] used the hitting time to
calculate the most salient seed, then calculated the distance
between the other nodes and the selected seed to get the final
results. In addition, Sun et al. [32] exploited the relationship
between the saliency detection and the Markov absorption
probability for saliency detection. Jiang et al. [19] proposed
a saliency detection model by random walk via absorbing
Markov chain, where absorbing nodes are duplicated from
the four boundaries. Based on geodesic distances, Zhu
et al. [55] integrated boundary connectivity into a cost
function to obtain the final optimized saliency map. Li
et al. [22] used a regularized random walks ranking model
to get the saliency maps. Additionally, Zhang et al. [52]
presented a data-driven salient region detection model based
on absorbing Markov chain via multi-feature. Similarly,
Zhang et al. [51] proposed an approach to detect salient
objects by exploring patch-level and object-level cues via
absorbing Markov chain. Zhang et al. [50] proposed a
learnt transition probability matrix taking into account the
importance of the transition probability matrix based on the
aforementioned work.

Traditional Saliency Detection via Absorbing
Markov Chain

Formally, let X = {x1, x2, . . . , xn} be a dataset containing
n data points, and saliency detection aims to solve the
problem of determining the saliency values. One widely
used approach to address this problem is to use Markov
random walks. Jiang et al [19] introduced an absorbing
Markov chain for the visual saliency detection. The
expected absorbing time of every transient node is computed
to measure its similarity with all-absorbing nodes. The
transient nodes that have similar appearance with absorbing
nodes can be absorbed faster, i.e., have less expected
absorbing time. The saliency detection process is outlined
below:

Step 1. Obtain the affinity matrix A The input image is
segmented into superpixels through the method of simple
linear iterative clustering (SLIC) algorithm [2] which is
based on a spatially localized version of k-means clustering,
decomposing the input image in visually homogeneous
regions, namely superpixels (see Fig. 5b) and then, we
construct a graph G = (V , E), where V denotes the nodes
andE denotes the edges between nodes. There are n original
nodes and l duplicated nodes in V . The edge weight wij

between node vi and vj can be calculated by feature vectors
of two nodes. If node vi is a transient node, the neighbor
node or the neighbor’s neighbor node vj is connected to
node vi . Moreover, we acquire an affinity matrix A: aij =
wij if vi and vj is connected; aii = 1, i = 1, 2, . . . , n;
otherwise, aij = 0.

Step 2. Compute the transition matrix P The degree matrix
that records the sum of the weights connected to each node
is written as D = diag(

∑
j aij ). The transition matrix P is

primitive [5]. Finally, the transition matrix P on the sparsely
connected graph is given as P = D−1 × A.

Step 3. Renumber the nodes in transition matrix P There
are two types of states in an absorbing Markov chain: one is
called the transient state, and another is absorbing state.

In an absorbing Markov chain, if a state is not an
absorbing state, it is called a transient state. For an absorbing
chain having l absorbing states and n transient states, its
transfer matrix P can be written as:

P →
(

Q R

0 Il

)

, (1)

where Q is an n × n matrix giving transient probabilities
between any transient states, R is a nonzero n × l

matrix giving these probabilities from transient state to any
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absorbing state, 0 is an l × n zero matrix, and Il is an l × l

identity matrix.

Step 4. Compute the expected time For an absorbing chain
P , all the transient states can enter the absorbing states in
one or more steps, namely the matrix N with invertible
matrix, where nij denotes the average transfer times
between transient state i to transient state j . Supposing
e = [1, 1, . . . , 1]T1×n and In is an n × n identity matrix, the
absorbed time for each transient state can be expressed as:

Z = (In − Q)−1 × e. (2)

For each node vi , the expected time is si = ∑
j Zij ,

j = 1, 2, . . . , n [19].

The Proposed Approach

The above Markov chain model provides an effective
saliency value for all data points. However, the main lim-
itation of this method is that the output only depends on
the superpixels of four boundaries as absorbing nodes.
It may lead to incorrect prediction especially when the
four boundaries have some salient objects. The limitation
motivated us to develop a bidirectional absorbing Markov
chains–based method, that captures the absorption time of
all nodes to the foreground and background more effec-
tively. Therefore, we implement a saliency optimization on
the results of two types of absorption time to obtain the
saliency detection values of all superpixels. Finally, a regu-
larized random walk ranking based on the pixel-wise graph
is used to diffuse the saliency values from the superpixel
level to pixel level.

The pipeline is described in Fig. 1.

Construction of Three Graphs

The Initial Graph Given an input image I , we use
the SLIC [2] algorithm to segment the image into N

superpixels. We extract visual features of average values

of CIELAB color space and denote them as X =
{x1, x2, . . . , xN } ∈ RN×3, xi = (L∗

i , a
∗
i , b∗

i ), where L∗
denotes the lightness, a∗ and b∗ indicating where the color
falls along the green-red axis and blue-yellow axis. Next, we
define an initial graph G = (V , E) on the dataset in Fig. 2,
where V = {V1, V2, . . . , VN } denotes the node set and E

denotes the edges (weighted by a matrix W ) between two
nodes.

The edge set E is determined as follows: (1) Each node is
connected to its neighbors and also connected to the nodes
that have the same neighbors; (2) All the boundary nodes
are connected. The weight of edge between node vi and vj

is calculated by Eq. 3:

wij = e
−‖xi−xj‖

σ
2

, i, j ∈ V (3)

where σ is a constant, and xi, xj represents the feature
vectors of graph nodes vi and vj respectively. The affinity
matrix A is formulated as Eq. 4:

aij =
⎧
⎨

⎩

wij , if j ∈ M(i) 1 ≤ i ≤ j

1, if i = j

0, otherwise,
(4)

where M(i) is a node set, in which the nodes are all
connected to nodes i. The degree matrix is given as D =
diag(

∑
j aij ).

The Second Graph We construct another graph Gb =
(V b, Eb) with Nb nodes including N primary nodes
and b duplicated nodes in Fig. 3, where V b =
{V1, . . . , VN, VN+1, . . . , VN+b} denotes the node set and
Eb denotes the edges (weighted by a matrix Wb) between
two nodes.

Then, we duplicate b boundary superpixels as background
absorbing nodes, that display outside the blue box with pink
dots (see Fig. 3). Edge Eb is determined as follows:

(1) The nodes (transient or absorbing) are associated
with each other when superpixels in the image are
adjacent or have the same neighbors. Additionally, the

Fig. 1 The pipeline of our proposed method
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Fig. 2 Construction of the initial graph

boundary nodes (i.e., superpixels on the boundary of
the image) are fully connected to reduce the geodesic
distance between similar superpixels;

(2) Any pair of absorbing nodes (which are duplicated
from the boundary nodes) are not connected;

(3) The nodes duplicated from the foreground superpixels
are also connected with the original nodes.

The weight of edge wb
ij between nodes vi and vj is

calculated by Eq. 3, the affinity matrix Ab is formulated
as Eq. 4, and the diagonal (or degree) matrix is given as
Db = diag(

∑
j ab

ij ).

The Third Graph We construct one more graph Gf =
(V f , Ef ) with Nf nodes including N primary nodes
and f duplicated nodes in Fig. 4, where V f =
{V1, . . . , VN, VN+1, . . . , VN+f } denotes the node set and

Fig. 3 Construction of the second graph. The superpixels with the pink
dots are duplicated absorbing nodes, while the nodes in the blue box
are transient nodes

Ef denotes the edges (weighted by a matrix Wf ) between
two nodes.

In order to obtain more effective results, we duplicate
f foreground superpixels as absorbing nodes, which are
shown in the blue points above the image (see Fig. 4). Edge
Ef is determined as follows:

(1) Each transient or absorbing node is connected to the
transient nodes which are the neighbors of it or have
the same boundaries with its neighboring nodes;

(2) All transient nodes on the boundary are connected;
(3) Any pair of absorbing nodes (which are duplicated

from the foreground) are unconnected. The nodes
duplicated from the foreground superpixels are also
connected with the original nodes.

The weight of edge w
f
ij between nodes vi and vj is

calculated by Eq. 3, the affinity matrix Af is formulated
as Eq. 4, and the degree matrix is given as Df =
diag(

∑
j a

f
ij ).

Select Nodes by Foreground Prior

In the third graph, the duplicated nodes are selected by
using the foreground information. The prior information is a
significant cue in saliency detection and many other fields.
There are many methods to obtain prior information. In our
proposed method, we use boundary connectivity [55] to get
the foreground prior.

Boundary connectivity (BC) is the proportion of the
boundary superpixels to the whole same cluster superpixels
(see Fig. 5c), which is defined as follows:

BCi =
∑

j∈H aij
√∑N

j=1 aij

(5)

where N is the number of superpixels, H denotes the
boundary area of image, and wij is the similarity between
nodes i and j . We give an illustrative example of boundary
connectivity in Fig. 5.

Let fi be the foreground prior, it can be calculated by the
following equation:

fi =
N∑

j=1

(1 − exp
( − BC2

j

2σ 2
b

)
)da(i, j)exp

( − d2
s (i, j)

2σ 2
s

)
(6)

where σb = 1, σs = 0.25, da(i, j), and ds(i, j) denote
the CIELAB color feature distance and spatial distance
between the i-th and j -th superpixels respectively.

If superpixel i has a high value of fi , we can set it as
a foreground prior node. Nodes with higher than average
values (i.e., {i|fi > avg(f )}) are selected to form a set,
which is duplicated as the set of absorbing nodes set (a
subset of V f ). The graph Gf is therefore constructed.
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Fig. 4 Construction of the third
graph. The superpixels above
the image with blue dots are
duplicated from the foreground
superpixels as absorbing nodes.
The superpixels in the image
with yellow dots are transient
nodes

Foreground and Background Possibility

Following the aforementioned procedures, the initial input
image is segmented into superpixels by the SLIC method
to form an initial graph G. Moreover, we choose boundary
nodes and foreground nodes, and duplicate them as
absorbing nodes to obtain two graphs Gb and Gf

respectively. Next, we use Eqs. 3 and 4 to get the
affinity matrix A. The degree matrix is written as D =
diag(

∑
j aij ). The transition matrix P is calculated as P =

D−1 × A, which can be reordered as l absorbing nodes and
n transient nodes and broken down into four sub-matrices:
Q, R, O, and Il (See Eq. 1).

Supposing e = [1, 1, . . . , 1]T1×n,
The absorbed time for each node vi can be obtained by

si = ∑
j ((In − Q)−1 × e)ij , i, j = 1, 2, . . . , n, where

e = [1, 1, . . . , 1]T1×n and In is an identity matrix.
In graph Gb, the absorbing nodes are selected from the

boundary. Then for each node vi , if the expected time is
considerable that means it requires more time to transfer to
the border, the node is more likely to be a foreground node;
if the expected time is low, the node is more like to be a
background one. We can set this value as the foreground
possibility sf of node vi .

In graph Gf , the absorbing nodes are selected according
to the foreground prior. Then for each node vi , if the
expected time is considerable, the node is more likely to be
a background node; otherwise, the node is more likely to
be a foreground one. We can set this value as background
possibility sb of node vi .

Superpixel-Level Saliency Optimization

We utilize background and foreground possibilities to obtain
the superpixel-level saliency map. Towards the objective of
assigning the foreground region value 1 and the background
region value 0, the following optimization model presented
in [55] is used:

min
s

N∑

i=1

sb
i s2i +

N∑

i=1

s
f
i (si − 1)2 +

∑

i,j

aij (si − sj )
2 (7)

where si is the superpixel-level saliency value (i.e., the
expected time of absorption), and aij is obtained from
the initial graph. In order to achieve a minimization of
the objective function (7), the first term is designed to
encourage a superpixel i with large background probability
sb to obtain a small value si (close to 0), the second term is
designed to encourage a superpixel i with large foreground

Fig. 5 An illustrative example of boundary connectivity. a Input image. b The superpixels of input image. c The superpixels of similarity in each
pitch. d The intuitive interpretation of boundary connectivity
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probability sf to obtain a large value si (close to 1), and
the third term is designed to encourage the smoothness to
acquire continuous saliency values.

In order to obtain the value s which is represented the
optimal solution of Eq. 7, we rewrite (7) as the matrix form:

sT Dbs + (e − s)T Df (e − s) + 2sT Ds − 2sT As (8)

where e = [1, 1, . . . , 1]T , Db = diag(
∑

j ab
ij ), Df =

diag(
∑

j a
f
ij ), D = diag(

∑
j aij ).

Let F(s) denote the function. To minimize F(s), the
derivative of F(s) with respect to s is:

∂F

∂s
= 2Dbs + 2Df s − 2Df e + 4Ds − 4As (9)

Supposing ∂F
∂s

= 0, we can obtain the superpixel-level
saliency value s as follows:

s = (Db + Df + 2D − 2A)−1e (10)

Robust Pixel-Level Saliency Detection

From the above, we get the superpixel-level saliency
result s. If we assign the value of a superpixel to each
pixel in the superpixel, the most precise pixel-level results
cannot be obtained. In order to obtain more efficient pixel-
level saliency map, we employ a robust saliency ranking
model [22] to get the saliency value. The optimal function of
queries is computed by solving the following optimization
problem:

min
sp

∑

i,j

aij (s
p
i − s

p
j )2 + γ ‖ sp − s̄ ‖2 (11)

where sp is the pixel-level saliency value that needs to be
optimized, and s̄ pixelwise saliency value of s; aij denotes
the edge weight between pixel i and j . The first term
encourages the smoothness to acquire continuous saliency
values. The second term encourages the pixel-level saliency
value sp is close to the superpixel-level saliency value s, γ
is the parameter to adjust the second term, we let γ = μ/2.
μ is the controlling parameter. Y is the pixel-wise vector
obtaining from the ssuperpixel . L is an n × n Laplacian
matrix, n is the pixel number of the input image. If Y >

Thigh, then k = 2, which means Y is foreground label.
Otherwise, if Y < Tlow, then k = 1, which means Y is
background label.

Therefore, we use the SLIC method to segment the image
into superpixels in this work. The number of superpixels
influences the results. In order to keep within limits of this,
we use multi-scale fusion Sf inal = ∑

h (sp)h to obtain
the final saliency map, where h = 1, 2, . . . , H , h means
different scales. The whole algorithm of our proposed
method is summarized in Algorithm 1.

Experiments

The proposed method is evaluated on four widely used
benchmark datasets: ASD [1], CSSD [43], ECSSD [43], and
SED [3]. We compare our model with the following sev-
enteen related state-of-the-art saliency detection algorithms:
CA [12], FT [1], SEG [30], BM [41], SWD [10], SF [29],
GCHC [45], LMLC [42], HS [43], PCA [26], DSR [24],
MC [19], MR [46], MS [34], RBD [55], RR [22], and
MST [35].

Benchmark Datasets and Parameter Setting

The ASD dataset is a subset of the MSRA dataset [25],
which contains 1000 images with the accurate human-
labeled ground truth. The CSSD dataset, namely complex
scene saliency detection, contains 200 complex images. The
ECSSD dataset, an extension of CSSD dataset, contains
1000 images with the accurate human-labeled ground truth.
The SED dataset has two parts of SED1 and SED2: images
in SED1 contain one object, images in SED2 contain two
objects, and in total there are 200 images.

From the experiments, experientially, the tuning param-
eters in the proposed algorithm are set as follows: the edge
weight σ 2 = 0.1 in Eq. 3 to control the strength of weight
between a pair of nodes, we let μ = 0.99, then calcu-
late γ in Eq. 11 to obtain the final saliency value. We have
conducted the experiment for the selection of superpixel
numbers, the process is shown in Fig. 6 that proves the used
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Fig. 6 The selection of superpixel numbers

superpixel numbers N which are 200, 250, 300 and 350 in
the superpixel element is the optimal choice.

Evaluation of the ProposedModel

The precision-recall (PR) curves [1], F-measure curves [1],
and the F-measure values are used as performance metrics.
The precision is defined as the ratio of salient pixels
correctly detected to all the pixels of extracted regions,
while the recall is defined as the ratio of salient pixels
correctly detected to the ground truth. They are formulated
as:

Precision = T P

T P + FP
(12)

Recall = T P

T P + FN
(13)

where T P , FP , and FN represent the true positive, false
positive, and false negative respectively. A PR curve is
obtained by the threshold sliding from 0 to 255 to get
the difference between the predicted saliency map and the
manually labeled ground truth. F-measure is regarded as
the overall performance measurement by calculating the
weighted average between the precision and recall values,
formulated as

Fβ = (1 + β2)P recision × Recall

β2Precision + Recall
, (14)

where β2 = 0.3 is set to stress precision more than recall.
According to different thresholds, we obtain the F-measure
curve.

Quantitative Comparison

First, in ASD dataset, we give the comparison between
our proposed method with the saliency detection via
absorbing Markov chain based on background prior only
and foreground prior only, respectively. From Fig. 7, the PR
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Fig. 7 The comparison with background prior and foreground prior

curve is better than the others, which suggests the effective
of our model.

We also compare the proposed method with superpixel-
level saliency map and pixel-level saliency map on SED
dataset, and the process is shown in Fig. 8 which proves
the pixel-level saliency maps and superpixel-level saliency
maps have similar PR curve, but the F-measures are 0.7877
and 0.7821, respectively; the pixel-level saliency maps are
slightly better than the superpixel-level saliency maps.

Then, the PR curves, F-measure curves, and the F-
measure values on four benchmark datasets are shown
in Figs. 9, 10, 11, and 12, where our proposed method
outperforms 17 state-of-the-art methods. Figures 9 and
11 report the performance comparison on the ASD and
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Fig. 8 The comparison of pixel-level saliency map and superpixel
saliency map in our method
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Fig. 9 The PR curves, F-measure curves, and F-measure values for different methods on ASD dataset
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Fig. 10 The PR curves, F-measure curves, and F-measure values for different methods on ECSSD dataset
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Fig. 11 The PR curves, F-measure curves, and F-measure values for different methods on CSSD dataset
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Fig. 12 The PR curves, F-measure curves, and F-measure values for different methods on SED dataset
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Fig. 13 Examples of output saliency maps results using different algorithms on the ASD, CSSD, ECSSD, and SED datasets

CSSD dataset using the PR curve, F-measure curve, and
the F-measure values. Compared with the 17 state-of-the-art
methods, our method achieves a competitive performance
according to the 3 terms. Figure 10 shows the performance
comparison with the 17 state-of-the-art methods on the
ECSSD dataset, the proposed method achieves a high value
of precision in the recall range from 0.5 to 0.9 and the

highest F-measure value. Figure 12 shows the evaluation
results comparison with the 17 state-of-the-art methods on
the SED dataset; the proposed method achieves a high
precision with recall ranging from 0.7 to 1 and the highest
F-measure value.

Figure 13 presents output of the estimated saliency maps
on sample images selected from the four datasets. It can

Fig. 14 Examples of our failure examples. a Input images. b Ground truth. c Superpixel-level saliency maps. d Final saliency maps
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be seen that our proposed method can overall achieve the
best saliency results as compared with other state-of-the-art
methods.

Failure Cases Analysis

In this work, the idea of bidirectional absorbing Markov
chains is proposed. The proposed method is effective for
most images on the four benchmark datasets, and the final
results are overall better than the superpixel-level saliency
maps (Fig. 14 c and d). However, if the appearances of
four boundaries and the foreground prior are similar to each
other, which forms an overlapping area that has the similar
transient time between the two directions, the model fails to
detect saliency maps with high precision. Furthermore, the
small objects in the first image cannot be detected in the
final saliency map (as shown in Fig. 14), since the objects
encompass a small number of pixels.

Conclusion

In this paper, we propose a novel saliency detection method
based on bidirectional absorbing Markov chains by taking
into account both the boundary and foreground prior cues.
An optimization model is developed to combine background
and foreground possibilities, which are acquired through
bidirectional absorbing Markov chains.

The proposed approach outperforms seventeen recently
proposed state-of-the-art approaches over four benchmark
datasets as a whole.

Although the model can get efficient results, it just
uses the CIELab feature of image. In future, we intend to
employ multimodal features to address this limitation and
improve the overall performance. In addition, we intend
to exploit our proposed saliency detection algorithm to
other vision tasks including video saliency detection, image
segmentation, and object detection.
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