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Abstract
Piezoelectric actuators (PEAs) are the pivotal components of many nanopositioning systems because of their superiorities in
bandwidth, mechanical force, and precision. Unfortunately, the intrinsic nonlinear property, hysteresis, makes it difficult to
achieve the precise control of PEAs. Considering this drawback, diversified feedback control approaches have been studied
in the literature. Inspired by the idea that the involvement of feedforward terms can upgrade the tracking performance,
our previous conference paper proposed a novel feedforward–feedback control approach (model predictive control with
hysteresis compensation). Following the previous work, an adaptive fuzzy predictive controller with hysteresis compensation
is further studied in this paper. The major improvement of the proposed method is the employment of adaptive fuzzy model,
by which the dynamic model of PEAs is able to adjust in real time, resulting in a better control performance. To validate the
effectiveness of the proposed method, extensive experiments are conducted on a Physik Instrumente P-753.1CD piezoelectric
nanopositioning stage. Comparisons with several existing control approaches are carried out, and the root mean square
tracking error of the proposed method is reduced to 30% of that under the previously proposed neural network model–based
predictive control, when tracking 100 Hz sinusoidal reference.

Keywords Adaptive fuzzy model · Feedforward–feedback control · Hysteresis compensation · Model predictive control
(MPC) · Piezoelectric actuators (PEAs)

Introduction

Nanotechology is one of the fundamental techniques in
both academia and industries. Possessing plenty of merits
such as ultrahigh precision, rapid response, and large
mechanical force, piezoelectric actuators (PEAs) have been
extensively adopted as the core components in many
nanopositioning applications like atomic force microscopes
[1], hard disk drives [2], high-precision mechanisms [3,
4], and micromanipulations [5]. Unfortunately, despite
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the advantages of PEAs, they generally exhibit some
strong nonlinear characteristics like hysteresis, creep, and
vibration, which greatly decrease the control accuracy.
Among all the demerits of PEAs, hysteresis is the dominant
nonlinear property, which is a memory effect that the current
output of PEAs is affected by their historical operations.
What’s worse, hysteresis is a rate-dependent nonlinearity
that the dynamic characteristic of PEAs changes with
the input frequency. Because of the existence of these
issues, precise control of PEAs is challenging and attracts
considerable attentions.

In the literature, different kinds of control approaches are
proposed to suppress the hysteresis nonlinearity in order to
achieve precise tracking control of PEAs, which are broadly
categorized into the feedforward control scheme, feedback
control scheme, and feedforward–feedback control scheme.
Feedforward control scheme is based on a simple and
direct idea that the hysteresis nonlinearity can be eliminated
by constructing its inverse model. The feedforward model
of hysteresis, generally expressed as Duhem model [6],
Bouc-Wen model [7], Preisach model [8], Prandtl–Ishlinskii
model [9], and Maxwell-slip model [10], needs to be
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attained first. However, an accurate hysteresis model is
difficult to obtain, and feedforward control is an open-loop
control scheme where the performance and stability of the
control system cannot be assured. For the feedback control
scheme, the hysteresis nonlinearity is regarded as bounded
nonlinear disturbance, and diversified control methods
like the proportional-integral-derivative control [11], robust
control [12], active disturbance rejection control [13],
sliding-mode control [14], and adaptive control [15] are
adopted to eliminate the disturbance. The main shortcoming
of feedback control is so-called low-gain-margin problem
[16]. When tracking high-frequency references, the gain of
feedback controller needs to be sufficiently high, which
tends to destabilize the control system. Combining the
ideas of feedforward control scheme and feedback control
scheme, feedforward–feedback control scheme turns out
to be a better control strategy, where feedforward control
compensates the hysteresis nonlinearity and feedback
control suppresses the external disturbances and model
inaccuracy. Based on this control strategy, combinations of
different inverse hysteresis models and different feedback
control methods are studied [17–20]. However, the tracking
accuracy of these control methods is insufficient for some
advanced applications like atom manipulation, where the
required accuracy is less than 10 nm [21]. Therefore, more
effective control approaches need to be developed.

Model predictive control (MPC) is believed to be a
promising method for the precise control of PEAs due to
its robustness, disturbance rejection property, and the ability
of handling physical constrains, which has demonstrated
its superiority in many industrial applications [22–26].
In [27, 28], a neural network–based nonlinear model
predictive control is proposed for the tracking control of
PEAs, where a complicated nonlinear optimization problem
needs to be solved to get the control law. In order to
accelerate the computation speed, dynamic linearization is
applied to the neural network model of PEAs [29], where
analytic predictive control laws can be attained. Considering
the online model adjustment ability, an adaptive Takagi–
Sugeno (T-S) fuzzy model–based predictive controller is
developed for PEAs [30, 31], then a predictive controller is
designed based on this adjustable model to achieve a better
control performance. All of these methods are based on
feedback control schemes. Inspired by the idea that adding
feedforward terms can improve the tracking performance
of PEAs, our previous conference paper [32] developed a
composite controller with the neural network model–based
predictive control and the hysteresis compensation.

In this paper, an adaptive fuzzy predictive control
with hysteresis compensation is proposed for the tracking
control of PEAs. First, a feedforward compensator, the
inverse Duhem hysteresis model, is applied to mitigate

the hysteresis nonlinearity. Then, the T-S fuzzy model
is adopted to describe the dynamic behavior of PEAs.
The parameter adaption law is employed to adjust the
T-S fuzzy model of PEAs in real time. Based on this
adaptive model, the predictive sub-controller is designed
for each fuzzy rule, and the overall model predictive
controller is obtained by combining all sub-controllers.
Extensive experiments are carried out to validate the
effectiveness of the proposed method on a piezoelectric
nanopositioning stage (P-753.1CD, Physik Instrumente).
Comparisons between the proposed method and some
existing approaches are also conducted, which demonstrate
the superiority of the proposed method to the majority of
control approaches in the literature.

The organization of this paper is as follows. The second
section depicts the model of PEAs and the proposed
adaptive fuzzy controller in detail. Experiments and
comparisons with existing control approaches are provided
in the third section to show the superiority of the proposed
method. Finally, a conclusion is given in the fourth section.

Adaptive Fuzzy Predictive Control with
Hysteresis Compensation for PEAs

The detailed description of the adaptive fuzzy predictive
control with hysteresis compensation for PEAs is provided
in this section. The hysteresis compensator is constructed
by the inversion of the Duhem model first. Then, the
fuzzy model of PEAs is established, and the adaptive law
is adopted to increase the model accuracy. Based on this
model, the adaptive fuzzy predictive controller is designed,
and the composite controller is obtained by integrating the
hysteresis compensator.

Hysteresis Compensator

The inversion of Duhem hysteresis model is applied as the
hysteresis compensator to mitigate the hysteresis nonlin-
earity. The forward Duhem hysteresis model is required
before attaining its inversion, which is given in [33]:

ḟ = |v̇| (c1v + c3f ) + c2v̇, (1)

where v, f ∈ R are the input and output of the Duhen
model, respectively; and | · | denotes the absolute operator.
Model parameters c1, c2, and c3 need to be identified
experimentally. The discrete-time form of (1) is derived as
follows for the digital implementation.

If v̇ > 0 (monotonically increasing input), the
discrete-time Duhem hysteresis model can be deduced

737Cogn Comput  (2020) 12:736–747



with the trapezoid estimation [34], which is expressed as
follows:

f (k + 1) = c1
χ(k + 1)

2 − c3γ (k + 1)
+ 2 + c3γ (k + 1)

2 − c3γ (k + 1)
f (k)

+c2
2γ (k + 1)

2 − c3γ (k + 1)
, (2)

where

χ(k + 1) = v2(k + 1) − v2(k),

γ (k + 1) = v(k + 1) − v(k).

Equation (2) can be transformed into a quadratic function
of v(k + 1):

c1v
2(k + 1) + σ1v(k + 1) − ζ1 = 0, (3)

where

σ1 = c3f (k + 1) + c3f (k) + 2c2,

ζ1 = c1v
2(k) + σ1v(k) + 2 [f (k + 1) − f (k)] .

Then, the inversion of Duhem hysteresis model is obtained
by solving (3), which is (see [35] for details)

v(k + 1) =
−σ1 +

√
σ 2
1 + 4c1ζ1

2c1
. (4)

If v̇ < 0 (monotonically decreasing input), likewise, the
discrete-time Duhem model is described by the following:

f (k + 1) = c1
−χ(k + 1)

2 + c3γ (k + 1)
+ 2 − c3γ (k + 1)

2 + c3γ (k + 1)
f (k)

+c2
2γ (k + 1)

2 + c3γ (k + 1)
,

and the inversion of Duhem hysteresis model is derived as
follows:

v(k + 1) =
σ2 −

√
σ 2
2 − 4c1ζ2

2c1
, (5)

where

σ2 = −c3f (k + 1) − c3f (k) + 2c2,

ζ2 = −c1v
2(k) + σ2v(k) + 2 [f (k + 1) − f (k)] .

To sum up, (4) and (5) form the discrete-time inversion
of the hysteresis model, which is adopted as the hysteresis
compensator.

Remark 1 In the literature, the hysteresis can be approxi-
mated by many models such as the Duhem model, Bouc-
Wen model, Preisach model, Prandlt–Ishlinskii model, and
Maxwell-slip model. The reason of choosing the Duhem
model is that the inversion of the Duhem model has an
explicit form. Therefore, the inversion of the hysteresis can
be calculated by (4) and (5) directly. The inversions of
other hysteresis models require tremendous computation,

which cannot satisfy the real-time control requirement of
the peizoelectric actuator.

Remark 2 The undetermined parameters of the Duhem
model are c1, c2, and c3 in (4) and (5). By conducting the
system identification experiment, a series of input–output
pairs f (k) and v(k) can be collected. Then c1, c2, and c3 can
be determined through the forgetting factor recursive least
squares algorithm [32, 42].

Adaptive Fuzzy Model of PEAs

Fuzzy modeling and fuzzy control methods are effective
weapons when dealing with complex nonlinear system [36–
38], so the fuzzy model is adopted to describe the dynamic
behavior of PEAs. Borrowing the similar idea proposed in
[31], the adaptive fuzzy model of PEAs is developed as
follows. Since the output of the PEAs depends not only on
the current input but also on their historical operations, the
input vector of the T-S fuzzy model is defined as follows:

�(k) = [y(k − 1), · · · , y(k − Ny), v(k), · · · , v(k − Nv)],
(6)

where v(k) is the input voltage and y(k) is the output
displacement of PEAs. Nv and Ny are nonnegative integers,
representing the maximum time delays for v(k) and y(k),
respectively. Then, the dynamic behavior of PEAs can be
described as follows:

y(k) = G (�(k)). (7)

According to [31], the T-S fuzzy model is able to express
the complicated nonlinear relation (7) between the input
voltage and the output displacement of PEAs because of its
strong approximation ability, which has the following fuzzy
rules [39]:

Rj : IF �(k) is Aj

THEN yj (k) = Gj (�(k)), j = 1, 2, · · · , Nr, (8)

where Rj is the j th fuzzy rule and Nr is the total number
of fuzzy rules. Aj denotes the antecedent fuzzy set of
the j th fuzzy rule, which is defined by a membership
function μAj

(�(k)) ∈ R
Nv+Ny+1 → [0, 1]. The input

vector �(k) defined in (6) is employed as the antecedent
variable, and yj (k) is the corresponding consequent
variable. The antecedent proposition “�(k) is Aj” is
generally unfolded as a logical combination of simple
propositions, where each component (denoted as xi(k), i =
1, 2, · · · , Nv + Ny + 1) of �(k) has a univariate fuzzy set.
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Then, the fuzzy rules (8) are rewritten as follows:

Rj : IF x1(k) is Aj1

x2(k) is Aj2

and · · ·
and xNv+Ny+1(k) is Aj(Nv+Ny+1)

THEN yj (k) = Gj (�(k)), j = 1, 2, · · · , Nr .

The consequent function Gj (�(k)) is chosen as follows:

yj (k) = Gj (�(k)) =
Ny∑
i=1

−aji(k)y(k − i)

+
Nv∑
i=0

bji(k)v(k − i) + δj (9)

for each fuzzy rule, where aji(k) and bji(k) are the
coefficients of (9), and δj is a bias term.

Before inferring the output of the T-S fuzzy model,
the degree of fulfillment (denoted by βj (�(k))) of the
antecedent needs to be determined, which is simply set as
the membership degree of the input vector �(k), expressed
by the following:

βj (�(k)) = μAj
(�(k)). (10)

Considering the element of the input vector, (10) is rewritten
as a combination of individual propositions:

βj (�(k)) = μAj1(x1(k))∧· · ·∧μAj(Ny+Nv+1) (xNy+Nv+1(k)).

Then, the following defuzzification function is used to
generate the output of the T-S fuzzy model:

y(k) =

Nr∑
j=1

βj (�(k))yj (k)

Nr∑
j=1

βj (�(k))

=
Nr∑
j=1

β̂j (�(k))yj (k),

where β̂j (�(k))=βj (�(k))

/
Nr∑
j=1

βj (�(k)) is the normal-

ized degree of fulfillment.
Furthermore, in order to increase the model adjustment

ability, the adaptive law is applied to adjust the parameters
of the T-S fuzzy model online. Specifically, the coefficients
aji(k) and bji(k) of the consequent function are adjusted in
real time. For simplicity, define the following:

θj (k) = [aj1(k), aj2(k), · · · , ajNy (k), bj0(k),

bj1(k), · · · , bjNv (k)],
Hj (k)[−yj (k − 1), −yj (k − 2), · · · , −yj (k − Ny),

vj (k), vj (k − 1), · · · , vj (k − Nv)].

Based on the optimal recursive estimation method [40],
θj (k) is updated through the following equations:

θ̃j (k) = θ̃j (k − 1) + 
j(k)[yj (k) − θ̃j (k − 1)Hj (k)],

j (k) = Bj (k − 1)Hj (k)[Hj(k)T Bj (k−1)Hj (k) + τj ]−1,

Bj (k) = Bj (k − 1) − Bj (k − 1)Hj (k)Hj (k)T Bj (k − 1)

Hj (k)T Bj (k − 1)Hj (k) + τj

+εj ,

where θ̃j (k) = [ãj1(k), ãj2(k), · · · , ãjNy (k), b̃j0(k), b̃j1(k),

· · · , b̃jNv (k)] is the estimation of θj (k), and 
j(k) and

Fig. 1 Schematic diagram of the adaptive fuzzy controller with hysteresis compensation
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Bj (k) are adjustment gains and covariance matrix, respec-
tively. Parameters τj and εj should be positive. At the
beginning, θ̃j (0) is selected to be the offline training result
of the T-S fuzzy model, and Bj (0) is chosen as a unity
matrix.

Adaptive Fuzzy Model Predictive Controller
with Hysteresis Compensation

The overall schematic diagram of the proposed adaptive
fuzzy controller with hysteresis compensation is provided
in Fig. 1, which consists of a feedforward term and
a model predictive feedback controller. The feedforward
compensator is constructed by the inverse Duhem hysteresis
model given in the second section to compensate the
hysteresis nonlinearity. When it comes to the feedback
controller, the distributed control structure is adopted.
Several sub-controllers are designed based on the local
fuzzy rules, and the overall predictive controller can be
obtained by integrating all the sub-controllers.

First, the adaptive fuzzy model of PEAs is adopted as the
displacement predictor, which is denoted by (9). The bias
term δj can be eliminated by converting (9) into its adjacent
difference form [41], which is expressed as follows:

ỹj (k + P) = (1 − ãj1(k))ỹj (k + P − 1)

+(ãj1(k) − ãj2(k))ỹj (k + P − 2) + · · ·
+ãjNy (k)ỹj (k + P − Ny − 1)

+b̃j0(k)vj (k + P) + · · ·
+b̃jNv (k)vj (k + P − Nv),

where ỹj (k) is the predicted displacement, and P is the
prediction horizon and the control horizon. vj (k) is
the difference value of the input voltage, defined by the
following:

vj (k) = vj (k) − vj (k − 1). (11)

Next, let’s define the following:

Ỹj (k)=

⎡⎢⎢⎢⎢⎢⎢⎣
ỹj (k + 1)
ỹj (k + 2)

...
ỹj (k + P)

⎤⎥⎥⎥⎥⎥⎥⎦,Yj (k)=

⎡⎢⎢⎢⎢⎢⎢⎣
yj (k)

yj (k − 1)
...

yj (k − Ny)

⎤⎥⎥⎥⎥⎥⎥⎦,

Ṽj (k)=

⎡⎢⎢⎢⎢⎢⎢⎣
vj (k + 1)
vj (k + 2)

...
vj (k + P)

⎤⎥⎥⎥⎥⎥⎥⎦,Vj (k)=

⎡⎢⎢⎢⎢⎢⎢⎣
vj (k)

vj (k − 1)
...

vj (k − Nv + 1)

⎤⎥⎥⎥⎥⎥⎥⎦,

Aj (k) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

b̃j1(k) b̃j2(k) ··· b̃jNv (k)

b̃j2(k) b̃j3(k) ··· 0

...
...

. . .
...

b̃jNv (k) 0 ··· 0
0 0 ··· 0
...

...
. . .

...
0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
∈R

P×Nv , Bj (k)=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b̃j0(k) 0 0 ··· 0 ··· ··· 0

b̃j1(k) b̃j0(k) 0 ··· 0 ··· ··· 0

b̃j2(k) b̃j1(k) b̃j0(k) ··· 0 ··· ··· 0

...
...

...
. . .

...
. . .

. . .
...

b̃iNv (k) b̃j (Nv−1)(k) b̃j (Nv−2)(k) ··· b̃j0(k) ··· ··· 0

0 b̃jNv (k) b̃j (Nv−1)(k) ··· b̃j1(k) ··· ··· 0

...
...

...
. . .

...
. . .

. . .
...

0 0 0 ··· b̃j (Nv−1)(k) ··· ··· b̃j0(k)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈R

P×P ,

Cj (k) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1−ãj1(k) ãj1(k)−ãj2(k) ãj2(k)−ãj3(k) ··· ··· ãjNy (k)

ãj1(k)−aj2(k) ãj2(k)−ãj3(k) ãj3(k)−ãj4(k) ··· ··· 0
ãj2(k)−ãj3(k) ãj3(k)−ãj4(k) ãj4(k)−ãj5(k) ··· ··· 0

...
...

...
. . .

. . .
...

ãj (Ny−1)(k)−ãjNy (k) ãjNy (k) 0 ··· ··· 0
ãjNy (k) 0 0 ··· ··· 0

0 0 0 ··· ··· 0
...

...
...

. . .
. . .

...
0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ R

P×(Ny+1),

Tj (k) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 ······ 0 ··· ··· 0
ãj1(k)−1 1 0 ······ 0 ··· ··· 0

ãj2(k)−ãj1(k) ãj1(k)−1 1 ······ 0 ··· ··· 0

...
...

...
. . .

. . .
...

. . .
. . .

...
ãjNy (k)−ãj (Ny−1)(k) ãj (Ny−1)(k)−ãj (Ny−2)(k) ãj (Ny−2)(k)−ãj (ny−3)(k) ······ 0 ··· ··· 0

−ãjNy (k) ãjNy (k)−ãj (Ny−1)(k) ãj (Ny−1)(k)−ãj (Ny−2)(k) ······ 1 ··· ··· 0
0 −ãjNy (k) ãjNy (k)−ãj (Ny−1)(k) ······ ãj1(k)−1 ··· ··· 0

...
...

...
. . .

. . .
...

. . .
. . .

...
0 0 0 ······ ãj (Ny−1)(k)−ãj (Ny−2)(k) ··· ··· 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ R

P×P ,
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Fig. 2 Experimental setup of the
piezoelectric nanopositioning
system

and the predicted displacements up to the P th step can be
obtained by the following:

Ỹj (k) = Bj Ṽj (k) + AjVj (k) + CjYj (k),

where Aj (k) = T −1
j (k)Aj (k), Bj (k) = T −1

j (k)Bj (k), and

Cj (k) = T −1
j (k)Cj (k).

Then, the performance index function is designed
as follows, aiming to minimize the difference between
the predicted displacement and the desired reference. In
addition, considering to reduce the voltage changing rate, a
regulation term is added to the performance index function.

J (k) = [D(k) − Ỹj (k)]T [D(k) − Ỹj (k)] + ρṼj (k)T Ṽj (k),

where D(k) = [d(k + 1), d(k + 2), . . . , d(k + P)]T
represents the desired reference and a penalty parameter
ρ is used to diminish the voltage variation. The predictive
control law can be attained by solving the following convex
quadratic programming problem

∂J (k)

∂Ṽj (k)
= 0,

resulting in

Ṽj (k) = (BT
j (k)Bj (k) + ρI)−1BT

j (k)D(k)

+(BT
j (k)Bj (k) + ρI)−1BT

j (k)(−Aj (k)Vj (k)

−Cj (k)Yj (k)).

Finally, the control voltage is generated by the following:

vj (k + 1) = vj (k) + vj (k + 1),

where vj (k + 1) is the voltage increment for the next
sampling interval.

Remark 3 Compared to the feedforward controllers, the
controller proposed in this paper has the displacement
error feedback, which has a better ability of rejecting
the hysteresis inversion error and external disturbances.
Compared to the MPC-based inversion-free controllers
proposed in [27–31], the proposed controller combines
the MPC-based feedback term and the hysteresis inversion
feedforward term. Therefore, the feedforward term can
compensate most effects of hysteresis in PEAs, which leads
to the improvement of the control performance. Compared
to the previously published paper [32], the model used in
[32] is the dynamic linearized neural network model–based
predictive control. The advantage of the adaptive T-S fuzzy
model used in this paper is that the model’s parameters can
be updated online by the real-time measurements of the
displacement of PEAs. Therefore, the model’s performance
can be improved online. With a relatively accurate model,
the model predictive controller is expected to have a better
performance.

Experiments and Comparisons

To demonstrate the effectiveness of the proposed adaptive
fuzzy model predictive controller for PEAs, experiments

Table 1 Parameters of the consequent function

j th rule aj1(0) aj2(0) bj0(0) bj1(0) δj

1 − 0.6878 1.4640 − 1.4711 2.0330 0.0406

2 1.8188 − 0.8290 − 0.0087 0.0226 0.0021

3 − 0.6046 1.4094 − 1.7830 2.0496 − 0.0039
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Table 2 Parameters of the membership function

1st rule z
(1)
1i (0) z

(2)
1i (0) z

(3)
1i (0) z

(4)
1i (0)

i = 1 − 0.4489 1.1790 1.1852 6.6513

i = 2 − 0.5190 1.2735 1.2815 7.5104

i = 3 − 0.0017 0.0020 0.0044 0.0153

i = 4 − 4.0000 − 4.0000 0.2809 6.3455

2nd rule z
(1)
2i (0) z

(2)
2i (0) z

(3)
2i (0) z

(4)
2i (0)

i = 1 − 5.2657 − 5.2657 16.4131 16.4131

i = 2 − 5.2657 − 5.2657 16.4131 16.4131

i = 3 − 4.0000 − 4.0000 12.0000 12.0000

i = 4 − 4.8158 1.8567 12.0000 12.0000

3rd rule z
(1)
3i (0) z

(2)
3i (0) z

(3)
3i (0) z

(4)
3i (0)

i = 1 − 1.0649 3.1867 3.2048 3.3932

i = 2 − 1.0391 3.4389 3.4623 4.9618

i = 3 − 0.0058 0.0079 0.0079 0.4766

i = 4 − 4.0000 − 4.0000 0.2809 4.8993

have been carried out on a commercially available
piezoelectric nanopositioning stage, as shown in Fig. 2.
A host computer is used to generate the control voltage
and collect the displacement sensor signal through an I/O
board PCI-1716 (Advantech Co., Ltd.), and the proposed
algorithm is implemented via SIMULINK programs with
Real-Time Windows Target Toolbox. The control voltage
generated by the I/O board ranges from 0 to 10 V, and
then the voltage amplifier E-665.CR (Physik Instrumente)
is applied to produce a sufficiently high voltage to drive the
PEA with a fixed amplification rate of 10. The displacement
sensor signal is provided by the built-in capacitive sensor,
which has a range of 0 to 10 V, corresponding to the
displacement range (up to 12μm) of the PEA. The sampling
frequence of the system is set to be 500 kHz.

Model Identification

The Duhem hysteresis model is identified first to construct
the hysteresis compensator. When driven by low-frequency
voltage, the dynamic behavior of the PEA is dominantly
determined by the hysteresis nonlinearity. Therefore, a 80 V
sinusoidal voltage of 1 Hz is used to activate the PEA,
and the corresponding displacement is measured. Then, the
parameters of the Duhem hysteresis model is identified as
c1 = 0.7016, c2 = 1.0346, and c3 = − 0.4821.

According to [31], several structure parameters of the
fuzzy model are chosen as Ny = 2, Nv = 1, and Nr = 3.
The membership function is set as follows:

μAj i(xi) =
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The parameters of the consequent function and the
membership function can be identified through the Toolbox
proposed in [43], which is given in Tables 1 and 2.

Verification of the AFPC with Hysteresis
Compensation

After all the parameters are determined, the proposed
adaptive fuzzy controller with hysteresis compensation
is examined by abundant experiments with the penalty
parameter ρ = 100 and prediction horizon P = 7.

Tracking constant reference: To begin with, the proposed
method is tested following a constant reference (5 μm).
Figure 3 shows that the proposed method is able to track the
constant reference quickly and accurately. The maximum

Fig. 3 Tracking performance of
the PEA under constant
references
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Fig. 4 Tracking performance of
the PEA under different
references: a 10 Hz; b 50 Hz; c
100 Hz; d 200 Hz
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Fig. 5 Tracking performance of
the PEA under hybrid frequency
references: a hybrid
low-frequency reference; b
hybrid high-frequency reference
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steady-state tracking error is 0.0064 μm, and the steady-
state root mean square error is only 0.0018 μm.

Tracking fixed-frequency sinusoidal reference: Fixed-
frequency reference 4sin(2πf t −π/2)+5 (μm) is used next,
with f varying from 1 to 200 Hz, which are illustrated in
Fig. 4. For the low-frequency references (less than 50 Hz),
an ultra-precision tracking performance is achieved, and
the maximum steady-state tracking error is within 10 nm.
When tracking high-frequency trajectories (from 50 to
200 Hz), the tracking performance of the proposed method
is also satisfactory. For instance, the maximum steady-state
tracking error for the reference of 200 Hz is 0.0326 μm,

Table 3 Comparison between the proposed method and the inversion-
based MPC in [35]: the RMSE

The reference’s The inversion-based The proposed method

frequency MPC(RMSE, μm) (RMSE, μm)

f = 1 Hz 0.0083 μm 0.0013 μm

f = 10 Hz 0.0201 μm 0.0015 μm

f = 50 Hz 0.1669 μm 0.0022 μm

which is still small enough for many practical applications
such as molecule operation and DNA manipulation [21].

Tracking mixed-frequency sinusoidal references: Further
experiments are also conducted with two mixed-frequency
references, which are set in (12). Figure 5 shows the results
of tracking the mixed-frequency signals yd1(t) and yd2(t),
respectively. For the reference signal yd1(t), the steady-
state error range is [− 0.0075, 0.0074]μm. When tracking

Table 4 Comparison between the proposed method and the inversion-
free MPC in [29]: the RMSE and the MAXE

The reference’s The inversion-free The proposed method

frequency MPC(RMSE/MAXE, (RMSE/MAXE, μm)

μm)

f = 1 Hz 0.0022/0.0094 0.0013/0.0050

f = 5 Hz 0.0042/0.0125 0.0014/0.0057

f = 10 Hz 0.0080/0.0184 0.0015/0.0067

f = 50 Hz 0.0395/0.0618 0.0022/0.0093

f = 100 Hz 0.0794/0.1189 0.0037/0.0161

f = 150 Hz 0.1182/0.1771 0.0051/0.0231
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Table 5 Comparison between the proposed method and the inversion-
free MPC in [31]: the RMSE and the MAXE

The reference’s The inversion-free The proposed method

frequency MPC (RMSE/MAXE, (RMSE/MAXE, μm)

μm)

f = 1 Hz 0.0014/0.0048 0.0013/0.0050

f = 5 Hz 0.0018/0.0063 0.0014/0.0057

f = 10 Hz 0.0031/0.0080 0.0015/0.0067

f = 50 Hz 0.0152/0.0264 0.0022/0.0093

f = 100 Hz 0.0298/0.0509 0.0037/0.0161

f = 150 Hz 0.0438/0.0712 0.0051/0.0231

yd2(t), which contains high-frequency signals, the steady-
state error range is [− 0.0097, 0.0093]μm. These results
demonstrate that the proposed control method is capable of
tracking complex mixed-frequency reference signals with a
relatively high accuracy.

yd1(t) = sin(14πt − 0.1π) + sin(32πt + 0.5π)

+2 sin(58πt − π) + 4,

yd2(t) = 2.2 sin(30πt − 0.6π) + sin(224πt + 0.8π)

+0.5 sin(400πt − 0.9π) + 4. (12)

Comparisons with ExistingMethods

To further validate the effectiveness and superiority of the
adaptive fuzzy control with hysteresis compensator, com-
parisons are made between the proposed control method
and several other control approaches in the literature.

Comparisonwith Inversion-basedMPC: An inversion-based
model predictive control with an integral-of-error state
variable was proposed in [35], where an inverse Duhem
hysteresis model is connected to the PEA to cancel the
hysteresis nonlinearity and then a linear MPC is adopted
as feedback controller. Considering the similarity that both
MPC and inverse hysteresis model are utilized in this
control scheme, comparisons are conducted and the root
mean square errors (RMSE) of two methods are given in
Table 3, where the reference signal in [35] is 4sin(2πf t −
π/2)+5 (μm). It can be found that when tracking 10 Hz

Table 6 Comparison between the proposed method and the adaptive
fuzzy internal model control in [44]: the RMSE and the MAXE

References The adaptive fuzzy The proposed method

internal model control (RMSE/MAXE, μm)

(RMSE/MAXE, μm)

yd3(t) 0.0033/0.0058 0.0016/0.0079

yd4(t) 0.0085/0.0290 0.0016/0.0071

Table 7 Comparison between the proposed method and the previous
conference paper [32]: the RMSE and the MAXE

The reference’s The previous method The proposed method

frequency (RMSE/MAXE, μm) (RMSE/MAXE, μm)

f = 1 Hz 0.0014/0.0058 0.0013/0.0050

f = 5 Hz 0.0015/0.0064 0.0014/0.0057

f = 10 Hz 0.0018/0.0075 0.0015/0.0067

f = 50 Hz 0.0060/0.0217 0.0022/0.0093

f = 100 Hz 0.0122/0.0460 0.0037/0.0161

f = 150 Hz 0.0194/0.0741 0.0051/0.0231

f = 200 Hz 0.0285/0.1113 0.0068/0.0326

reference trajectory, the root mean square error is reduced
by 92.5%.

Comparisonwith Inversion-FreeMPC: In [29], an inversion-
free predictive controller based on a dynamic linearized
neural network model is provided for PEAs, which
belongs to the feedback control scheme. Considering the
superiority of the feedforward–feedback control scheme,
the proposed control method is expected to achieve a
better tracking performance. Experimental results support
this point, which is listed in Table 4. Under a sinusoidal
reference 4sin(2πf t − π/2)+5 (μm), the tracking error
of the proposed method is much smaller than that of the
inversion-free model predictive control, especially when
tracking high-frequency references. For example, under
100 Hz sinusoidal reference, the maximum tracking error
(MAXE) of the proposed method is only 13.5% of that of
the inversion-free model predictive control. Experiments are
also conducted to make comparison with another inversion-
free MPC (the adaptive T-S fuzzy model predictive
controller proposed in [31]). The experimental results are
shown in Table 5, which also demonstrates the better control
performance of the proposed controller.

Comparison with Adaptive Fuzzy Internal Model Control:
Further comparison was conducted with a feedforward–
feedback control approach proposed in [44], where an
adaptive fuzzy hysteresis internal model tracking control is
developed for PEAs. The references used in [44] include
a fixed-frequency signal yd3(t) = 0.8sin(100πt) + 1
and a mixed-frequency signal yd4(t) = 0.5sin(100πt) +
0.35sin(50πt) + 1.1. From the experimental results shown
in Table 6, for the fix-frequency signal, the root mean
square error of the proposed method is smaller, but the
maximum error of the adaptive fuzzy internal model control
is slightly lower than that of the proposed method. Under
the mixed-frequency reference, the proposed method has a
significantly better tracking performance than the adaptive
fuzzy internal model control.
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Comparison with the previous conference paper: At the
end, the proposed adaptive fuzzy controller with hysteresis
compensation is compared to the previous work, a com-
posite approach with the model predictive control and the
hysteresis compensation, to show the improvement of the
proposed method. Table 7 gives the tracking performances
of these two methods under the sinusoidal references
4sin(2πf t − π/2)+5 (μm). When tracking low-frequency
references (less than 50 Hz), the tracking errors of these two
methods are quite similar, and the tracking performance is
slightly improved by the proposed method in this paper. The
experimental results show that the proposed method demon-
strates its strength under high-frequency references. Taking
the 200 Hz sinusoidal reference as an example, the root
mean square error of the proposed adaptive fuzzy controller
is only 23.9% of that of the previously proposed method.

Conclusion

This paper proposes an adaptive fuzzy model predictive
controller with hysteresis compensation for the tracking
control of PEAs, which belongs to a feedforward–feedback
control scheme. First, in order to eliminate the hystere-
sis nonlinearity of PEAs, the inverse Duhem hysteresis
model is adopted as a feedforward compensator. Then, a
fuzzy model is adopted to describe the relation between the
input voltage and the output displacement of PEAs, and an
adaptive method is developed to increase the model accu-
racy. Based on this adaptive fuzzy model, sub-controllers
are designed for each rule and the overall predictive con-
troller can be obtained by integrating all the sub-controllers.
Extensive experiments are conducted to demonstrate the
effectiveness of the proposed method. Furthermore, com-
parisons with inversion-based MPC, inversion-free MPC,
and adaptive fuzzy internal model controller are also car-
ried out to show the superiority of the proposed method.
This paper is a further study of previous conference paper
[32], the improvement is that the root mean square track-
ing error of the proposed method is reduced by 70% under
100 Hz sinusoidal reference. In the future, more advanced
positioning/tracking control algorithms [45–49] are to be
employed to further improve the control performance
of PEAs.
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