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Abstract
Recently, artificial neural networks (ANNs) have been applied to various robot-related research areas due to their powerful
spatial feature abstraction and temporal information prediction abilities. Decision-making has also played a fundamental role
in the research area of robotics. How to improve ANNs with the characteristics of decision-making is a challenging research
issue. ANNs are connectionist models, which means they are naturally weak in long-term planning, logical reasoning, and
multistep decision-making. Considering that a small refinement of the inner network structures of ANNs will usually lead
to exponentially growing data costs, an additional planning module seems necessary for the further improvement of ANNs,
especially for small data learning. In this paper, we propose a state operator and result (SOAR) improved ANN (SANN)
model, which takes advantage of both the long-term cognitive planning ability of SOAR and the powerful feature detection
ability of ANNs. It mimics the cognitive mechanism of the human brain to improve the traditional ANN with an additional
logical planning module. In addition, a data fusion module is constructed to combine the probability vector obtained by
SOAR planning and the original data feature array. A data fusion module is constructed to convert the information from the
logical sequences in SOAR to the probabilistic vector in ANNs. The proposed architecture is validated in two types of robot
multistep decision-making experiments for a grasping task: a multiblock simulated experiment and a multicup experiment in
a real scenario. The experimental results show the efficiency and high accuracy of our proposed architecture. The integration
of SOAR and ANN is a good compromise between logical planning with small data and probabilistic classification with
big data. It also has strong potential for more complicated tasks that require robust classification, long-term planning, and
fast learning. Some potential applications include recognition of grasping order in multiobject environment and cooperative
grasping of multiagents.
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Introduction

Various kinds of computational cognitive architectures have
been proposed and successfully applied to many cognitive
tasks in the last 40 years [1]. A cognitive architecture should
be capable of processing information related to specific
cognitive functions, such as perception, memory, attention,
or decision-making via interactive learning with humans
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or the outside environment. Any cognitive computational
efforts for these cognitive functions will contribute greatly
to opening the black box of the biological cognitive
system. Three basic types of cognitive architecture have
been proposed and have contributed significantly to the
development of robot intelligence, i.e., the symbolic
(cognitivist) type, emergent (connectionist) type, and hybrid
type, as shown in Fig. 1.

– The symbolic architectures have the characteris-
tics of hand-designed symbolic “if-then” production
rules, which are logically concluded on the basis of
the outside world. These architectures are powerful
in logical inference, planning, reasoning, and other
symbol-related tasks. However, they inevitably have
some weaknesses, such as poor network flexibility
and inadequate extensibility, especially in a changing
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Fig. 1 The three main types of cognitive architectures

environment. ACT-R [2, 3] and SOAR (state, operator,
and result) [4, 5] are the two commonly used logi-
cally oriented architectures. ACT-R aims to define (or
explain) the basic cognitive and perceptual procedures
in the brain, which makes it more psychology-related.
In contrast, SOAR focuses more on symbolic cognitive
processes and usually takes advantage of different types
of memory knowledge for better planning or reasoning;
thus, it is more broadly used on robot-related cognitive
tasks.

– The emergent architectures are parallel-computation-
type architectures, which are usually based on a large
number of nonlinear computational nodes and dis-
tributed synaptic weights. They are powerful in input-
output mapping and short-term decision-making but
weak on the explanation of transparency, slow in learn-
ing efficiency, and easily affected by the catastrophic
forgetting phenomenon in the subsequent learning of
new behaviors [6]. Some of these architectures are deep
neural networks (DNNs), which are mainly inspired by
the structure of the biological brain, while others,such
as SPAUN [7] and HTM [8], are seen as deeper inspi-
rations from the perspectives of both structures and
functions.

– The hybrid architectures attempt to take advantage
of both symbolic and emergent architectures for
the better representation of information, long-term
planning, and reasoning. Considering that implicit
knowledge can be captured by distributed subsymbolic
structures such as neural networks, while explicit
knowledge has a comparatively transparent symbolic
representation, the learning model CLARION [9]
uses symbolic and subsymbolic representations for
explicit factual knowledge and implicit procedural

knowledge respectively. The model named Leabra [10]
uses localist representations for labels and distributed
representations of features in its learning procedure.

DNNs are important emergent architectures that have
good performance on both spatial information abstraction
and temporal information prediction [11]. To date, human-
level classification performance on the ImageNet dataset
(with millions of natural images) has been achieved by
DNNs [12, 13]. Similar progress has been made in the
research areas of image recognition and classification [14],
object identification [15, 16], sequential frame predic-
tion [17], one-step decision-making [18], memory strength-
ened efficient learning [19], and so on. In addition, with the
development of deep reinforcement learning, DNNs have
also been successfully applied to the robot-related tasks,
such as motion planning [20, 21], pose estimation [22,
23], 3D environment sensation [16, 24], robot-human inter-
action [21, 25], and related games, such as Atari 2600
games [26] and DeepMind Go games [27].

However, long-term planning, or even dynamic multistep
planning, is the basic request for intelligent robot control.
ANNs perform poorly in continuous planning and logical
decision making; hence, ANNs cannot handle these kinds of
tasks well. Recurrent neural networks (RNNs), which have
shown advantages in sequential information processing,
are actually designed for short-term temporal prediction
and still cannot handle long-term planning tasks. The
multistep decision-making task has the challenge of both
high-accuracy one-step identification (or classification) and
long-term planning, which requires a hybrid architecture to
integrate these two special kinds of cognitive abilities well.

In this paper, a SOAR improved ANN (SANN)
architecture is proposed, which takes advantage of both
the long-term cognitive planning capability of SOAR and
the powerful feature detection capability of DNNs. The
proposed SANN architecture contains three main modules:
the SOAR module for perceptual description, logical
reasoning, memory, and long-term planning; the multilayer
DNN module for feature selection and decision-making;
and the intelligent data fusion module, which is constructed
for better information conversion from logic to probabilistic
representations and vice versa. In addition, the SANN
architecture will intelligently change the inner loops to map
different inputs to different shallow or deep ANN modules,
which makes possible the integration of architectures with
different levels of complexity.

This paper is organized as follows. The “Related Work”
section introduces related work. “The SANN Architecture”
section introduces the SANN architecture and the three
main modules. The “Experiment” section verifies the
proposed algorithm in the two types of robot multistep
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decision-making tasks. Finally, a conclusion and future
outlook are provided in the “Conclusion” section.

RelatedWork

Most DNN architectures try to handle planning or reasoning
problems by updating their inner structural connections for
better information processing. Yang et al. [28] establish
a learning system for robot motion planning in which
two different seven-layer CNNs are constructed for pattern
recognition and graspability identification. In [15], a real-
time CNN approach is proposed for robotic grasp detection
that can make a direct regression from the raw RGB-D
image to the pose coordinates. To realize a multistep grasp,
the input image is changed to an N × N matrix, and the
output is a 7-dimensional vector. In the input matrix, the
first channel is a heat map, which represents the graspability
probability of the specific region, and the other six channels
represent the predicted grasp coordinates for that region.
In [29], an end-to-end deep Q-network (DQN) is set to
learn a successful strategy directly from high-dimensional
sensory inputs by using end-to-end reinforcement learning.
A visual manipulation relationship network (VMRN) based
on convolutional DNNs is proposed and applied to infer the
relationship between objects and operations in [30].

Other alternative methods attempt to strengthen DNN-
based cognitive architectures by integrating the additional
symbolic modules. A hybrid architecture that contains a
perception module, grasping module, and throwing module
is proposed by Google; TossingBot is then equipped with
the architecture and performs satisfactorily on both the
picking up and throwing tasks in the real environment.
This architecture innovatively integrates symbolic physics
knowledge and DNN architecture and obtains a pickup
time that is twice as fast as that of previous cognitive
architectures [31]. The model based on selective attention

is constructed by adding the cognitive reasoning module
to the networks in the task of smart-phone scenario
recognition [32]. DNNs are strengthened by the visual
reasoning module based on the SOAR architecture and
obtain better performance in human-robot interaction [33]
and service robot controlling tasks [34, 35].

Some methods do not use DNNs to deal with planning
and decision-making problems. Some attempts are inspired
by the human brain mechanism. Zhou et al. [36] design the
principle of long-term and short-term hierarchical asynchro-
nous learning based on an updating and storage mechanism
that imitates human knowledge. To express the subordinate
and nonsubordinate functions in fuzzy information, Liu
et al. [37] propose interval-valued linguistic intuitionistic
fuzzy numbers (IVLIFNs), which consider the subjectivity
of human cognition in decision-making and the difficulty in
using numbers to describe intricate and fuzzy details.

The SANN Architecture

As shown in Fig. 2, the SANN model contains three
submodules: the SOAR module, the multilayer ANN
module, and the data fusion module. First of all, in the
SOAR module, the original information is described as long
and short program knowledge, and the internal operators are
then used to plan and infer the logic sequence. Second, in
the multilayer ANNmodule for decision-making, a shallow-
deep network structure is designed specifically to address
different difficulties in the real task. A part of the network
structure is shared between the modules to improve the
utilization of the network. Finally, the data fusion module
in the SANN model establishes a connection between the
SOAR and the multilayer ANN module. Here, the logical
sequences obtained by SOAR are converted to probabilities,
and data fusion is realized by combining the probability
vector and the original data feature array.
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The SOARModule for Long-term Planning

The cognitive theory underlying SOAR is the problem of
space hypothesis (PSH), which contends that nearly all
goal-oriented behaviors can be cast as a search procedure
through a space of possible states and attempt to achieve a
goal. At each step of the PSH, a single operator is selected
and then applied to the current state, which leads to the
internal updates of the state and the request for a new
operator. Complex activities such as planning can also be
seen as decomposable procedures of PSH, which contains
a sequence of selections or operators. Here, the role of the
SOAR module that we introduced is to provide long-term
logical planning and to provide logical sequences for robotic
behavior decisions in different environments.

Figure 3 shows the functional compositions of SOAR,
where Si represents the current problem-solving state; the
operator, represented by Oi , is the specific transition of the
state; and Gi refers to the desired goal of the problem-
solving activity or the goal of the logical reasoning tasks.

In the SOAR module, there are two different types of
working memory for describing and storing various kinds of
knowledge: short-term memory knowledge (SMK) for the
state set {Si, i ∈ N} and symbolized long-term procedural
knowledge (LPK) for the operator set {Oi, i ∈ N}. The
two memory types will be integrated as a symbolic graph
structure of SOAR. The SMKs and LPKs not only influence
but also depend on each other. On the one hand, the
state elaborations can indirectly affect the selection and
application of the operators by creating the knowledge
that matches the application rules. On the other hand, the
operators will further update the predefined state conditions

with regulations. When the designed state of the WME is
satisfied with the “if-then” production rules, then the LPK
will be matched and updated by the execution operators,
showing the logical programming and long-term memory
characteristics of SOAR.

The logical planning process for SOAR solving problems
is equivalent to the process for updating and changing the
current state Si until it reaches the target Gi , in which
various operations of the operator Oi are utilized. We refer
to the above process as a planning cycle of SOAR, shown
as the left part of Fig. 3. The SOAR planning proceeds
through several logic cycles, and each cycle has five phases.
However, only four planning steps are taken in our model.
Figure 4 shows a simple SOAR planning algorithm.

– Input: The mechanism called “input functions” is
provided in SOAR to receive information from the real
or simulated environments. All inputs are represented as
substructures of the “I/O” attribute that is in the working
memory’s top-level state. We use an attribute to “input-
link” from the “I/O” object of SOAR, and the values
of the “input-link” are identifiers whose augmentations
are the complete set of input working memory elements
(WMEs), such as vision-input-link, text-input-link, and
other input-links related to the external environment.

– State elaboration: In the long-term planning cycle of
the SOAR module, this step changes the perceptual
inputs obtained from the environment to the SOAR
state; that is, SOAR’s internal representation is used
to symbolize all the input information. All knowledge
in the “state elaboration” step is stored in the WM’s
SMK. The WME is constructed as the basic unit of
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Fig. 4 A simple SOAR planning
process SOAR
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the working memory to save different SMKs or LPKs
based on different specific subprocedures in the tasks.
The WME has the following form:

{identifier, attribute, value} → identifier∧ attribute = value
(1)

An object related to the task can be represented as a
set of WMEs with the same first identifier. In addition,
similar knowledge in different tasks will share the
same WME subgraph module for better information
representation.

– The operation of operators: For a task with the goal
Gi , the transition between different states Si is achieved
by a three-step action on the operator Oi , namely,
operator proposal, operator comparison and selection,
and operator application. As the first step, one or
more candidate operators are proposed. All proposed
operators are parallel, and they are triggered by matched
“productions” in parallel. The second step of the SOAR
planning cycle is to compare the proposed candidate
operators to select one or more of them. This selection
can be completed via the production rules to test the
proposed operators and the current state and then to
create some preferences that are stored in the preference
memory. The preferences are used to declare the relative
or absolute merits of the candidate operators. The
production rules are similar to the “if-then” statement
in conventional programming languages. The “if” part
of the production is its condition, and the “then” is
its output action. When the conditions are met in the
current situation, as defined by the working memory,
the production is matched and will fire, which means
that its actions will be executed, and changes will be
made to the working memory. When SOAR solves the

internal problem, it updates and changes the current
state by applying the selected operators.

– Output: As mentioned above, the “output functions”
mechanism is also provided in SOAR for reacting to
the external environment. All outputs are represented
as the substructure of the “I/O” attribute that is in
the working memory’s top-level state. An “output-link”
attribute is used for the “I/O” object in SOAR. The
values of the “output-link” are the identifiers whose
augmentations are the complete set of WMEs, such
as logical-output-link, reasoning-output-link, and other
output-links related to the decision order.

TheMultilayer ANNModule for Robotic Grasping
Decision-making

The cognitive process of the human brain generally includes
three subprocedures: perceptual recognition, logical reason-
ing, and decision-making. Among them, decision-making is
the cognitive externalization that can be seen as the final
output of the whole cognitive process. Generally, human
decisions can be divided into two parts: logical decisions
in the brain and execution decisions for action. Here, the
SANN model established a multilayer ANN module as an
imitation of the decision-making procedure of the human
brain. We did not address decisions related to behavioral
execution.

When the SOAR module is absent from our SANN
model, the ANNmodule can make preliminary decisions by
itself. However, the results often seem to be inaccurate and
inconsistent with real situations. When the SOAR module
is introduced into the SANN model, its long-term planning
ability leads to better decision-making performance by the
ANN module. The ANN module in SANN provides a
judgment decision on the graspability of objects in different
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environments. It makes the final decision according to the
task target and the SOAR reasoning results.

The multilayer ANN module includes one input layer,
some hidden layers, and one output layer. The input
information comes from the fusion module. The number of
neurons is closely related to the dimension of the feature
vectors in the input information. The output layer has two
neurons that show the decisions, that is, whether the object
can be grasped or is not graspable. As shown in Fig. 5,
the multilayer ANN module has a shallow-deep network
structure: one is the shallow ANN, and the other is the
deep ANN. The shallow network is used to receive the
results from the data fusion module to perform the relatively
simple classification task. The deep network is used to make
decisions about complex tasks. All the components of the
shallow structure are part of the deep network structure. The
purpose is to save time in designing the network structure
and to integrate the components into the same module for
various decision tasks.

The Data FusionModule for Feature Conversion and
Combination

The data fusion module serves as a bridge between the
SOAR module and the multilayer ANN module, and it
also plays an important role in feature conversion and
combination. From Fig. 2, we can see that the fusion
module has two input sources: the original information
from different tasks and the logical sequences obtained by
SOAR’s long-term planning. The probability vector, which
is the logical expression of the rational planning of decision
results, is calculated according to the logical sequence
obtained from the planning module. Then, the vector is
combined with the feature vectors of the original data to
complete the fusion.

The raw data can be regarded as a feature array of
M × N , which is composed of M N-dimensional samples.

The SOAR module can obtain several logical planning
sequences related to the decision results of the target.
The fusion module calculates the corresponding logical
probability. The same samples may result in different
logical sequences for the target decision. The probability of
the target is as follows:

Ptarget =
R∑

i=1

p (i) (2)

where R represents the number of sequences corresponding
to the sample obtained by the SOAR reasoning. And the
probability of each logical sequence is as follows:

p =
(

1

Ndr

)To−1

(3)

where Ndr is the number of categories of the target decision
results, and To is the logical execution order of the target
object in a logical sequence.

The calculated logical probability vector of M × 1 is
directly combined with the feature array of M × N . The
fused results of M × (N + 1) are input into the multilayer
ANN module for decision-making.

Experiment

Two robotic grasping experiments as shown in Fig. 6 were
conducted to verify the proposed SANN model. The first
experiment aimed to evaluate the robotic graspability in
the simulated multiblock environment. The second one was
performed in an updated version of the first experiment as
we shifted the task scenario to the actual situation. Then, the
SANN model was used to determine the graspability of the
target coffee cup by the robot. Similar to the psychological
judgment and thinking of human beings before performing a
certain behavior, the expected behavior is logically reasoned
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in relation to the current state of the target to realize the
appropriate cognition before the behavior is output.1

For the robot, the graspability of the object is also a
state prejudgment, which is common in humans’ actual
grasping operations. Humans carry out the analysis of the
environment, objects, and even tasks before the grasping
action is purposefully performed. Especially when grabbing
a specific object in a multiobject environment, logical
reasoning and cognition of the relationship between the
objects are necessary. Only in this way can humans perform
reasonable and effective behavior planning and decision-
making. If the robot is expected to have a human-like
thinking process and cognitive psychology, then we need
to add cognitive planning capability to the robot before
decision-making. The SANN can help the robot obtain this
ability.

Graspability Identification for theMultiblock Task in
the Simulated Environment

In the simulated experiment, the decision and judgment of
SANN were tested on the robotic graspability of blocks.
Cube blocks of sizes 5×5×5 and 10×10×10 were used as
the task objects in this experimental scenario. Several cubes
(up to 26) that were randomly selected from 26 cubes were
placed on the table and arranged in three different ways.
The two datasets D1 and D2 are constructed based on the
individual block and the whole image scenario, respectively.

1https://github.com/thomasaimondy/SoarImprovedANN

– Scattered mode (C1): The blocks were placed in any
position on the table randomly and discretely. There is
no mutual stacking relationship between them.

– Single-column mode (C2): The blocks on the table
were all arranged in a column (one on top of the other).
There was a single and repeated stacking relationship
between them.

– Complex mode (C3): There was a more complicated
positional relationship of the blocks than in the C1 and
C2 modes. The relationship between the blocks and
the stacking situations of different blocks were often
complex and diverse.

– Block dataset (D1): In this dataset, each sample
contained the features of a specific block in an arbitrary
arrangement, including the characteristics of the block
and the relationship between the different blocks.

– Scenario dataset (D2): In this dataset, each sample was
a scenario image, including all the features of the blocks
in an arbitrary arrangement.

The block scenario of any one of the arrangement modes
can be regarded as a set of input data for the SANN model.
Meanwhile, to show the relationship between the object
and its features in each scenario, we used the selected 13
features of the object block to describe its feature attributes.
Table 1 shows different feature attributes and their
values.

Figure 7 is the visualization graph for the cognitive
reasoning procedure in the SOAR module. The descriptors
are divided into two branches: input information and output
information. In the figure, S is the root node of the overall
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Table 1 Descriptor information in the multiblock task

13 Descriptor Features in WM (WME: identifier, attribute, value)

Attribute X Y Z Distance Size Color Target Left, right,
front, backward,
up/down

Value 0–130 0–130 0–130 0–130 5 1 Red 1 Block A <1 None/table

2 Block B 1 Block A

2 Yellow 3 Block C 2 Block B

4 Block D 3 Block C

10 3 Blue ... ... ... ...

24 Block V 24 Block V

4 Green 25 Block W 25 Block W

26 Block X 26 Block X

state description; I/O includes the output information O1

and the input information I1; C1 represents various objects;
R1 shows the task targets; B1 and T1 represent the objects
and tables, respectively; and L1 is used to express the
locations of objects.

The shallow multilayer network in SANN is constructed
for this simulated experiment. The input layer contains 15
neurons, which can be seen as 15 features: one is a logical

item of long-term planning, one is the image ID to which
the block belongs, and the remaining features correspond to
13 features of the block. The hidden layer has five neurons.
The output layer has two neurons, the same as the number
of categories of tasks, i.e., graspability.

We selected 10,000 data points as the training set to
train the ANN and selected 2000 data points as the test
set to conduct multiple iterative experiments both with and
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labeled results. In the figure, the D1 dataset is used in the
simulated environment. The C1 and C2 modes are relatively
simple, and it is easy to make their logical judgments,
so we show the experimental results of D1 only in the
complex mode of C3. The test error can be predicted by the
neural network, which is represented as the proportion of the
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Fig. 9 Test accuracy of datasets in different conditions

wrong predicted samples over the actual labeled samples of
the test set.

Testerror = Number(Test Samplewrong)

Number(Test Sample)
(4)

As shown in Fig. 9a, the experimental results on D1
show that the SANN model has higher decision-making
accuracy than the standard ANN. For multitarget scenarios
in the complex mode, the accuracy of our SANN model
reaches 99.56%, 3% higher than the standard ANN without
long-term planning.

Figure 9 b shows the experimental results on D2.With the
support of long-term planning-based SOAR, the judgment
accuracy significantly improves. The performance of SANN
improves more in the more complicated conditions of C2
and C3 than in simple conditions such as C1.

Graspability Identification for theMulticup Task in
the Real Scenario

To verify the SANN model in the real scenario, a
class of samples was selected from the Doumanoglou
dataset [38], which is the dataset commonly used in the
SIXD Challenge [39]. The Doumanoglou dataset contains
two types of items, takeaway coffee-cups and juice boxes,
and the training set contains 2376 RGB images of a
single object and 2376 depth images. For the test set,
different quantities of coffee cups were randomly placed
in a cardboard box. The same placement scenario contains
multiple RGB images and depth images from different
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Fig. 10 The clustering process of Patch-LineMod

angles, from which 56 images were selected as our test set.
Images with low-quality ground-truth poses were removed
from the dataset, and the ground-truth poses for the
remaining images were refined.

In the experiment, the pose estimation method for
practical application was used to enable the SANN model
to be applied to the real scenario. LineMod [40, 41] is a
classical 6D pose estimation algorithm that can solve the
problem of real-time detection and location of 3D objects

against complex backgrounds. However, as a template-
based algorithm, LineMod requires a large number of
templates and cannot recognize multiple targets in complex
scenarios. Therefore, in view of the multiobject application
background of the SANN model, we used the updated
template clustering algorithm Patch-LineMod to eliminate
the mismatching results according to the size of the
clustering. The clustering process of Patch-LineMod is
shown in Fig. 10.

Fig. 11 The output of the 6D
posture estimation. The first row
is the depth map of the test
image. After processing, our
method labels each object with
the feature points shown in the
second row. The third row shows
the results of all the estimated
poses of detected objects. The
fourth row is the results of the
highest pose estimation score
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Fig. 13 Visualization of the input layer of standard ANN (left) and SANN (right) with t-SNE

-8 -6 -4 -2 0 2 4 6 8
-8

-6

-4

-2

0

2

4

6

8

1
2

-150 -100 -50 0 50 100 150
-200

-150

-100

-50

0

50

100

150

200

1
2

Fig. 14 Visualization of the hidden layer of standard ANN (left) and SANN (right) with t-SNE
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A preprocessing module using the Patch-LineMod
method2 was used to estimate the pose of the object
and to identify each object in the image. Figure 11
shows the identification results for the coffee cups in the
Doumanoglou dataset using the Patch-LineMod module.
After the pose estimation process, a two-dimensional 13∗10
image corresponding to the image was generated. Each row
of the array contained 13 pose estimation features: three
position features, nine rotation features, and one fractional
feature. The number 10 indicates that up to 10 objects were
selected from a single sample image for calculation and
judgment. Figure 12 shows the results of the SANN model
judgment of the real image after pose calculation. It can
be seen from the figure that the test error of the decision
result (purple line) with our SANN model is significantly
lower than that of the decision result (yellow line) with the
standard ANN without long-term planning.

Analyses of the Performance of SANN

The performance of SANN is further analyzed with
the contribution of the SOAR module to the whole
architecture. Here, we use the “t-distributed Stochastic
Neighbor Embedding” (t-SNE) [42, 43], which is a
nonlinear dimensionality reduction algorithm for mining
high-dimensional data to map multidimensional data even
to two or three dimensions, to analyze the information in
different ANN layers.

Figure 13 shows the comparative analyses of the input
layers with and without an additional planning module.

The right side is the results of SANN, while the left
side is the results of the standard ANN. It is evident
that the clustering performance of SANN is far better,
and most samples are well classified. In contrast, the
standard ANN architecture cannot separate the graspable
and nongraspable objects from each other. This results
show that the simple input-output mapping classifier cannot
effectively handle multistep decision-making tasks, while
the SOAR planning module is powerful in performing
logical analysis. Figure 14 shows the t-SNE results of
the hidden layers in SANN and standard ANN, from
which we also observe the clustering power of the SOAR
module.

Conclusion

The multistep decision-making task for a robot is a
major challenge for most symbolic or emergent cognitive
architectures. Hence, there is a great need for integrative

2https://github.com/thomasaimondy/patchlinemod

architecture with the characteristics of high-dimensional
feature abstraction, memory storage, long-term reasoning,
and planning. We propose a SOAR improved artificial
neural network (SANN) architecture to handle this kind of
task. The SANN contains three parts: the SOAR module
for long-term planning, the data fusion module for feature
conversion and combination, and the multilayer ANN
module for decision-making. The SOAR module is used
for perceptual description, logical reasoning, memory, and
long-term planning. The data fusion module calculates
the probability of the vector according to the logical
sequence and then combines the probability vector with the
feature vectors of the original data. The multilayer ANN
module is established as an imitation of the decision-making
procedure of the human brain.

Multistep decision-making tasks were conducted in both
simulation and realistic environments, and the results show
the power of the SANN architecture. Our model consid-
ers only the decision-making process and not the execution
part. Logical planning through environmental information
has completed decision-making in the simulated brain. The
implementation of behaviors is attempted only through tra-
ditional means. In addition, our model can be applied to
multiple decision tasks in a complex scenario, such as
the judgment of grasping order in a multiobject environ-
ment, cooperative grasping, and recognition of multiple
agents.

The SANN architecture can be seen as a standard
hybrid type cognitive architecture that has successfully
integrated both the symbolic (cognitivist) type and emergent
(connectionist) type of architecture, and the data fusion
module of SANN attempts to make possible the conversion
of information from these two sides. How the biological
brain integrates these two different types of information
is still a mystery. However, a deeper analysis of these
two cognitive procedures will provide more hints or
inspirations. Our next research will focus on how the
logical information could be internally represented in a
connectionist network, which may help the robot approach
human-level intelligence.
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