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Abstract
The differentiation procedure of intuitionistic fuzzy sets (IFSs) is very important in multiple criteria decision-making (MCDM).
The aim here is to introduce a fruitful class of knowledge measures related to the information provided in terms of IFSs. We
present a class of knowledge measures of IFSs that are based on the two notions: the fuzziness and the intuitionism of an IFS. An
experimental problem is employed to illustrate the weight determination method based on the proposed knowledge measures.
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Introduction

Nowadays, social cognitive procedures significantly influence
multiple criteria decision-making (MCDM) [1–4] where the
high uncertainty and complexity of socioeconomic environ-
ments are taken into consideration. For instance, Yang and
Jiang [5] investigated the effect of social cognitive activities
on the consistency convergence rate of group decision-
making and also the consensus level of that group.
Moreover, in order to show the impact of social cognition on
the social decision-making, Lee and Harris [6] reviewed and
discussed thoroughly a number of decision-making-based
studies. Likewise, there have been several other contributions
concerning the study of cognitive information of human be-
ings in social cognitive procedures. Furthermore, the theory of
cognitive information of fuzzy sets and their extensions has
also come to perform important notes in fruitful research. For
example, Farhadinia and Xu [4] introduced ordered weighted
hesitant fuzzy sets to characterize cognitive information.
Meng et al. [7] proposed linguistic interval hesitant fuzzy sets
to elicit cognitive information with emphasis on the applica-
tion of decision-making process. Zhao et al. [8] developed the
concept of dual hesitant fuzzy preferences for extracting cog-
nitive information.Moreover, Liu and Tang [9] concluded that

interval neutrosophic uncertain linguistic variables can be
used in handling the uncertainty in the cognitive processes.

Generally, in aMCDMproblem, we are usually interested in
finding the optimal alternative among a set of alternatives with
reference to a number of criteria. In the decision-making pro-
cess, the evaluation of criteria weights plays a considerable role,
and it definitely impacts on the final ranking of alternatives.
Conceptually, the techniques of determining criteria weights
can be divided into three known classes on the basis of infor-
mation acquisition entailing: objective technique, subjective
technique and the integrated technique of both objective and
subjective decision information. Using the objective technique,
we may specify the criteria weights from the objective informa-
tion involved in a decision matrix. The most applied objective
technique is entropy technique [10]. The subjective technique
reflects the subjective intuition or judgement in accordancewith
the preference information of criteria which is provided by the
decision-maker employing the trade-off interrogation, question-
naires or interviews. Among a variety of subjective techniques,
we may cite analytic hierarchy process (AHP) [11] and linear
programming technique for multidimensional analysis of pref-
erence (LINMAP) [12]. The integrated technique, indeed, spec-
ifies the weights of criteria with the help of both objective and
subjective decision information [13]. What should be consid-
ered here is the fact that all the above-mentioned classes are
mainly based on the decision information provided in the form
of real values, while representing the cognitive information in
the form of intuitionistic fuzzy sets (IFSs) enables us to cope
well with a situation where a decision organization describes
uncertain information by the use of membership and nonmem-
bership functions.
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Of information measures, the entropy measure [6, 7, 9] is
mostly used for determining the weights of criteria, and this is
when the entropy measure is not always able to discriminate the
information being represented in the form of IFSs. For example,
if we consider the IFSs (μA(x1), νA(x1)) = (0.4,0.4) and
(μA(x2), νA(x2)) = (0, 0), then the exiting entropy measures of
them are all, or mostly, associated with the same result.
Meanwhile, the IFS (μA(x2), νA(x2)) = (0, 0) returns no informa-
tion, that is, we absolutely know nothing about that. It is worth
mentioning that the two given IFSs are clearly different from a
decision-making viewpoint. However, we observe that the igno-
rance of such a shortage in the discrimination of informationmay
lead to consider an unreasonable weight for the criteria which
results subsequently in unreliable order of alternatives. Such a
deficiency was recently solved by Szmidt et al. [14], using an
efficient measure known as knowledge measure. Szmidt et al.’s
[14] knowledgemeasure is indeed constructed by taking both the
hesitation index and the entropy measure of an IFS into account.

What is needed to be highlighted is that the entropy mea-
sure is not indeed the dual form of knowledge measure. This is
because, in some cases, the entropy measure does not provide
the answer to the question of how the fuzziness is distributed.
However, we will be able to solve the complex real-world
optimization problems with this accessible knowledge mea-
sure more easily. This fact encourages us to develop those
weight determination methods which are established on the
ground of knowledge measure for IFSs.

Up to now, a number of different kinds of knowledge mea-
sures for IFSs have been introduced. Szmidt at el. [14] claimed
that the entropy measure may not be seen as the dual form of
knowledge measure, and then they secondly introduced a
knowledge measure of IFSs involving both the hesitation mar-
gin and the entropy measure of IFSs. In this line, Nguyen [15]
pointed out that a knowledge measure should describe the
difference of an IFS from the most IFS, and then they intro-
duced a knowledge measure of IFSs by taking both the fuzz-
iness and the intuitionism concepts into account. Das et al.
[16] categorized some classes of extended forms of Szmidt
at el.’s [14] knowledge measure for IFSs, and then they devel-
oped a method of determining the criteria weights in cases
which information about weights is partly known or complete-
ly unknown. Guo [17] presented an axiomatic framework for
measuring the amount of knowledge of IFSs, and then he
developed the knowledge theory by introducing a robust mod-
el based on the distance between an IFS and its complement.

Delving into the exiting axiomatic frameworks for the
knowledge measure of IFSs, we can observe that the only
difference between them is related to the fourth axiom, and
this difference traces back to the considered parameters in
defining the knowledge measure of IFSs. In this study, we
set out to introduce another kind of axiomatic framework for
a knowledge measure of IFSs pertinent to the notions of
fuzziness and intuitionism of an IFS. The real fact of the matter

is that the fuzziness of an IFS returns the closeness parameter
of membership and nonmembership degrees and the intuition-
ism of an IFS reflects the amount value of hesitancy degree.

This study is mainly structured into the following sections:
Section 2 briefly reviews the concept of existing knowledgemea-
sures for IFSs with emphasis on their limitations. In Section 3, a
class of new knowledgemeasures for IFSs is presented. Then, we
compare the proposed knowledge measures with the existing
ones using procedures given in two subsections: Part I and Part
II. We provide a MCDM problem in Section 4 to examine the
performance of the proposed knowledge measures in a model of
optimization. Finally, some conclusions are offered in Section 5.

Existing Knowledge Measures and Their
Limitations

Below are some definitions and concepts that can be used to
frame the subsequent discussions.

Definition 1 (see, e.g. [11]) Suppose that X is the reference
set on which an intuitionistic fuzzy set (IFS) A is defined by:

A ¼ x;μA xð Þ; νA xð Þh ijx∈Xf g ð1Þ

in which μA : X→ [0, 1] and νA : X→ [0, 1] denote, respec-
tively, the membership and nonmembership degrees of the
object x belonging to A.

Furthermore, the mappings μA and νA satisfy 0 ≤ μA(x) +
νA(x) ≤ 1 for any x ∈ X. An intuitionistic index of x ∈ X is gen-
erally defined by πA(x) = 1 − μA(x) − νA(x) such that it satisfies
the property 0 ≤ πA(x) ≤ 1. Specially, in the case where πA(x) =
0 for any x ∈ X, the corresponding IFS A reduces to a fuzzy set.

Definition 2 (see, e.g. [11]) Suppose that X is the reference
set on which the two IFSs: A = {〈x, μA(x), νA(x)〉| x ∈ X} and
B = {〈x, μB(x), νB(x)〉| x ∈ X} are to be considered. Then, it is
defined:

Ac ¼ x; νA xð Þ;μA xð Þh ijx∈Xf g; ð2Þ
A⊆B if and only if μA xð Þ≤μB xð ÞandνA xð Þ≥νB xð Þ;∀x∈X : ð3Þ
Aþ B ¼ x;μA xð Þ þ μB xð Þ−μA xð ÞμB xð Þ; νA xð ÞνB xð Þh ijx∈Xf g: ð4Þ
A:B ¼ x;μA xð ÞμB xð Þ; νA xð Þ þ νB xð Þ−νA xð ÞνB xð Þh ijx∈Xf g: ð5Þ

The concept of entropy for IFSs, which captures the intui-
tive comprehension of fuzziness degree, was first presented by
Szmidt and Kacprzyk [23] as follows:

Definition 3 [18] Suppose that X is the reference set on
which the two IFSs A = {〈x, μA(x), νA(x)〉 | x ∈ X} and
B = {〈x, μB(x), νB(x)〉| x ∈ X} are defined. Then, the real-
valued function E which satisfies

(E1) E(A) = 0 if and only if A is a crisp set.
(E2) E(A) = 1 if and only if μA(x) = νA(x) for any x ∈ X.

E3ð Þ E Að Þ ¼ E Acð Þ:
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(E4) E(A) ≤ E(B) if A ⊆ B for μB(x) ≤ νB(x) or B ⊆ A for
μB(x) ≥ νB(x) where x ∈X is defined as the entropymeasure of A.

Several studies were conducted regarding the subject of
entropy measures for IFSs. Among them, we may refer to
the work of Nguyen [15] in which

Ebb Að Þ ¼ ∑n
i¼1πA xið Þ; ð6Þ

Eα
hc Að Þ ¼

1

α� 1
1� μα

A þ ναA þ παA
� �� �

; α ≠ 1; α > 0;

� μALn μAð Þ þ νALn νAð Þ þ πALn πAð Þð Þ; α ¼ 1;

(

ð7Þ

Eβ
r Að Þ ¼ 1

1−β
Ln μβ

A þ νβA þ πβ
A

� �
; 0 < α < 1; ð8Þ

Esk Að Þ ¼ 1

n
∑n

i¼1

min μA xið Þ; νA xið Þf g þ πA xið Þ
max μA xið Þ; νA xið Þf g þ πA xið Þ ; ð9Þ

Evs1 Að Þ ¼ −
1

nLn2
∑n

i¼1

μA xið ÞLn μA xið Þð Þ þ νA xið ÞLn νA xið Þð Þ

− 1−πA xið Þð ÞLn 1−πA xið Þð Þ−πA xið ÞLn2

2
64

3
75;
ð10Þ

Evs2 Að Þ ¼ 1

n
∑n

i¼1

2μA xið ÞνA xið Þ þ π2
A xið Þ

μ2
A xið Þ þ ν2A xið Þ þ π2

A xið Þ : ð11Þ

Although various entropy measures for IFSs have been intro-
duced so far, they suffer some limitations in the comparison
framework, specifically, in the case whereμA(x) = νA(x) for some
x ∈X. For instance, it is expected that the amount of an entropy
measure for two distinct elements (μA(x1), νA(x1)) = (0, 0) (i.e.
there is no information at all) and (μA(x2), νA(x2)) = (0.4,0.4)
(i.e. there is a positive amount of information as large as negative
one) should be different. This is while the existing entropy mea-
sures of IFSs cannot differentiate accurately between these two
IFSs.

Motivated by this fact, we feel that revisiting the counter-
part of entropy measure, known as the knowledge measure,
can be still significant and fruitful.

As seen in what follows, we are not able to say that the
knowledge measure is the inverse of entropy measure. This is
evident from the forth property which varies from one knowl-
edge measure to another.

Nguyen’s Knowledge Measure [15]

Nguyen [15] defined a knowledge measure of IFSs as the
normalized Euclidean distance measure from that IFS to the
most IFS 〈x, 0, 0〉 in the form of

KNg Að Þ ¼ 1

n
ffiffiffi
2

p ∑n
i¼1 μA xið Þ−0ð Þ2 þ νA xið Þ−0ð Þ2 þ πA xið Þ−1ð Þ2
h i1

2

ð12Þ

which satisfies the following axiomatic properties:
(k1) K(A) = 1 if and only if A is a crisp set.
(k2) K(A) = 0 if and only if πA(x) = 1 for any x ∈ X.

k3ð Þ K Að Þ ¼ K Acð Þ:

(k ′ 4) K(A) ≤K(B) if and only if A is less fuzzy than B, that
is, μA(x) ≤ μB(x) and νA(x) ≤ νB(x) for any x ∈ X.

Remark 1 Taking the property (k’4) into account, one can
easily find that the term “is less fuzzy than” is not in accor-
dance with that of “fuzziness” which was explained priory by
the property (E4) in Definition 3.

Nguyen [15] also characterized an entropy measure based
on its relationship with the knowledge measure KNg given by
(12) as:

ENg Að Þ≔1−KNg Að Þ ¼ −
1

n
ffiffiffi
2

p ∑n
i¼1 μ2

A xið Þ þ ν2A xið Þ þ 1−πA xið Þð Þ2
h i1

2
:

ð13Þ

Keeping Remark 1 into consideration, it is not far from the
truth to say that the knowledge-based entropy measure ENg

(shown in [15] as the more logical choice of entropy) produces
the results that are not completely in accordance with the
intuitionism (refers to the last row of Table 1 in the current
contribution)

Szmidt et al.’s Knowledge Measure [14]

Das et al. [16] reviewed firstly the following entropy measures
of IFSs

ESK1 Að Þ ¼ d A;Anearð Þ
d A;Afar
� � ¼ Esk Að Þ: ð14Þ

ESK2 Að Þ ¼ 1−
1

2n
∑n

i¼1 μA xið Þ−νA xið Þj j: ð15Þ

EHL Að Þ ¼ 1

n
∑n

i¼1

1− μA xið Þ−νA xið Þj j þ πA xið Þ
1þ μA xið Þ−νA xið Þj j þ πA xið Þ : ð16Þ

EWL Að Þ ¼ Esk Að Þ: ð17Þ

EZJ Að Þ ¼ 1

n
∑n

i¼1

min μA xið Þ; νA xið Þf g
max μA xið Þ; νA xið Þf g : ð18Þ

EZL Að Þ ¼ 2ESK2 Að Þ: ð19Þ

EGS Að Þ ¼ 1

n
∑n

i¼1 1−jμA xið Þ−νA xið Þjð Þ 1þ πA xið Þ
2

; ð20Þ

where in the first entropy formula, the notation d serves to
indicate the following distance measure

d A;Bð Þ ¼ 1

2n
∑
n

i¼1
jμA xið Þ−μB xið Þj þ jνA xið Þ−νB xið Þj þ jπA xið Þ−πB xið Þjð Þ:

ð21Þ
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Secondly, Das et al. [16] investigated the knowledge mea-
sure of IFSs introduced by Szmidt et al. [14] as:

KSKB Að Þ ¼ 1

n
∑n

i¼1 1−
1

2
ESK1 xið Þ þ πA xið Þð Þ

	 

; ð22Þ

in order for computing the weights of criteria.
Keeping the knowledge measure KSKB in the mind, Das

et al. [16] deduced that the bigger knowledge value of a cri-
terion is assigned to that with the more weight.

Guo’s Knowledge Measure [17]

Guo [17] introduced firstly the following axiomatic definition
of knowledge measure for IFSs:

(k1) K(A) = 1 if and only if A is a crisp set.
(k2) K(A) = 0 if and only if πA(x) = 1 for any x ∈ X.

k3ð Þ K Að Þ ¼ K Acð Þ:

(k4) K(A) ≥K(B) if and only if A ⊆ B for μB(x) ≤ νB(x), or
B ⊆ A for μB(x) ≥ νB(x) for any x ∈ X.

It deserves to pay attention that the property (k4) of a
knowledge measure is more similar to the property (E4) de-
scribing the concept of “fuzziness” for an entropy measure in
Definition 2.

Then, Guo [17] defined the following knowledge measure
of IFSs:

KG Að Þ ¼ 1−
1

n
∑n

i¼1 1−jμA xið Þ−νA xið Þjð Þ 1þ πA xið Þ
2

¼ 1−EGS Að Þ: ð23Þ

By using the knowledge measure of Szmidt et al. [14]
given by (22), Guo [13] showed that for the two IFSs A =
〈x, 0.0,0.3〉 and B = 〈x, 0.41,0.3〉 where A ⊂ B (that is, μA(x) =
0.0 ≤ μB(x) = 0.41 and νA(x) = 0.3 ≥ μB(x) = 0.3 for
μB(x) ≥ νB(x)), it is concluded that

ESK1 Að Þ ¼ 0:7 < 0:843 ¼ ESK1 Bð Þ;
KSKB Að Þ ¼ 0:3 < 0:434 ¼ KSKB Bð Þ;
KG Að Þ ¼ 0:405 < 0:426 ¼ KG Bð Þ:

Clearly, the above results imply that the Guo’s [17] prop-
erty (k4) is not satisfied, and therefore, we cannot judge cor-
rectly about the priority of knowledge measure based on the
Guo’s axioms.

Moreover, Guo [17] expressed that no fixed numerical re-
lationships exist between knowledge and entropy measures
unless the above-mentioned property (k4) is to be satisfied.

By the way, in the next section, we observe that the coun-
terpart of Guo’s axiom (k4), denoted there by the axiom (K4),
is defined differently, and it endows the proposed knowledge
measures with the reasonable performance but not like that of
the questionable existing knowledge measures. These out-
comes have been documented in Table 1.

A New Class of Knowledge Measures for IFSs

Throughout this section, we are going to present a new con-
cept of knowledge measure for IFSs on the basis of known
parameters that describe the uncertainty involved in the input
variables of a model.

Before any more progress can be made, let us first review
some acceptable axioms about a logical definition of knowl-
edge measure for IFSs.

When dealing with a knowledge measure of IFSs, we ex-
pect that:

(i) Everything should be known for sure, that is, the knowl-
edge measure should obtain the maximum value 1 in the case
where the IFS is crisp, and vice versa.

(ii) In the case where we do not know any more about the
IFS, that is, μA(xi) = νA(xi) = 0, the knowledge measure should
obtain the minimum value 0.

Table 1 The comparison of some entropy measures and proposed entropy measures

IFS Ebb E
1
2
hc E1

hc E2
hc E3

hc E
1
3
r E

1
2
r Esk Evs1 Evs2 ENg Eθ1 Eθ2 E

θ
1
2
3

Eθ24

A1 = 〈x, 0.7,0.2〉 0.10 1.20 0.80 0.46 0.32 0.99 0.94 0.38 0.79 .54 0.18 0.27 0.22 0.31 0.25

A2 = 〈x, 0.5,0.3〉 0.20 1.40 1.03 0.62 0.42 1.08 1.06 0.71 0.96 .89 0.30 0.48 0.44 0.49 0.47

A3 = 〈x, 0.5,0.0〉 0.50 0.83 0.69 0.50 0.38 0.69 0.69 0.50 0.50 .50 0.50 0.37 0.33 0.40 0.36

A4 = 〈x, 0.5,0.5〉 0.00 0.83 0.69 0.50 0.38 0.69 0.69 1.00 1.00 1.00 0.13 0.50 0.50 0.50 0.50

A5 = 〈x, 0.5,0.4〉 0.10 1.31 0.94 0.58 0.41 1.04 1.01 0.83 0.99 .98 0.22 0.49 0.47 0.51 0.49

A6 = 〈x, 0.6,0.2〉 0.20 1.34 0.95 0.56 0.38 1.05 1.02 0.50 0.85 .64 0.28 0.36 0.31 0.39 0.34

A7 = 〈x, 0.4,0.4〉 0.20 1.42 1.05 0.64 0.43 1.08 1.08 1.00 1.00 1.00 0.31 0.60 0.60 0.60 0.60

A8 = 〈x, 1.0,0.0〉 0.00 0.00 N/A 0.00 0.00 0.00 0.00 0.00 N/A .00 0.00 0.00 0.00 0.00 0.00

A9 = 〈x, 0.0,0.0〉 1.00 0.00 N/A 0.00 0.00 0.00 0.00 1.00 N/A .00 1.00 1.00 1.00 1.00 1.00

A10 = 〈x, 0.0,1.0〉 1.00 2.00 N/A -1.00 -0.50 1.04 1.39 0.50 N/A 0.50 0.29 0.00 0.00 0.00 0.00

The notation of “N/A” stands for the “division by zero” case
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(iii) The knowledge measure should be symmetrical with
respect to any IFS and its complement.

But for stating the property (iv), we cannot certainly say
that if an IFS A is “less fuzzy” than an IFS B, then the IFS A
possesses a larger amount of knowledge compared to the IFS
B.

Up to now, we have formulated two different axioms (k’4)
and (k4) which discuss this property from different points of
view.

Now, let us develop the concept of knowledge measure for
IFSs which satisfies the three first properties (k1), (k2) and (k3)
together with a different forth property compared to the above-
mentioned ones.

By taking the IFS A = {〈x, μA(x), νA(x)〉| x ∈ X} into ac-
count, we introduce the two concepts

△A xð Þ ¼ jμA xð Þ−νA xð Þj ð24Þ

∇A xð Þ ¼ μA xð Þ þ νA xð Þ
2

; ð25Þ

where the notations △A and ∇A return the fuzziness and
intuitionism of an IFS, respectively.

From the above convention, we observe that the notation
△A denotes the closeness parameter of membership and non-
membership degrees and the notation ∇A denotes the amount
value of hesitancy degree.

What needs to be highlighted is that the value of ∇A xð Þ
¼ μA xð ÞþνA xð Þ

2 determines only the information concerning on
an element x ∈ A, while the amount value of knowledge is
expected to be influenced by the amount value of distant mea-
sure between μA(x) and νA(x). This is clearly observable from
the case where ∇A(x) remains fixed, but the amount value of
distant measure is varied. For instance, from the cases μA(x) =
0.4, νA(x) = 0.4, μB(x) = 0.3 and νB(x) = 0.5, we observe that
∇A(x) = 0.4 = ∇B(x), while we expect that the knowledge mea-
sure for μA(x) = 0.4 and νA(x) = 0.4 is smaller that for μB(x) =
0.3 and νB(x) = 0.5. This is exactly the reason that we should
consider the term △A(x) = ∣ μA(x) − νA(x)∣ in defining the
knowledge measure of an IFS A.

Definition 4 Suppose that X is the reference set on which
the IFS A = {〈x, μA(x), νA(x)〉| x ∈ X} is defined. Then, we in-
troduce the real-valued function

K A xð Þð Þ ¼ ℵ θ ℵ ∇A xð Þ½ �;ℵ △A xð Þ½ �ð Þ½ �; for any x∈X ; ð26Þ

in which ℵ : [0, 1] × [0, 1]→ [0, 1] represents the negation
(or the complement) operator, and it satisfies the following
axiomatic requirements:

(N1) ℵ(0) = 1 and ℵ(1) = 0.
(N2) If x ≤ y, then ℵ(x) ≥ℵ(y) for any x, y ∈ [0, 1].
(N3) ℵ(ℵ(x)) = x for any x ∈ [0, 1].
and the functional θ : [0, 1] × [0, 1]→ [0, 1] satisfies
(θ1) θ(x, y) = 0 if and only if x = 0 or y = 0;

(θ2) θ(x, y) = 1 if and only if x = 1 and y = 1;
(θ3) θ(x, y) is monotonically non-decreasing in both x,

y ∈ [0, 1].
The above measureK, which is defined on a single-element

IFS A can be extended to that defined on a general IFS
A = {〈xi, μA(xi), νA(xi)〉| xi ∈ X} as the following

K Að Þ ¼ 1

n
∑n

i¼1ℵ θ ℵ ∇A xið Þ½ �;ℵ △A xið Þ½ �ð Þ½ �: ð27Þ

It is interesting to note that the above function K satisfies
the following axiomatic properties:

Theorem 1 Suppose thatX is the reference set onwhich the
IFS

A = {〈x, μA(x), νA(x)〉| x ∈ X} is defined. Then, the real-
valued function K introduced by (27) is a knowledge measure
of A, and it satisfies

(K1) K(A) = 1 if and only if A is a crisp set;
(K2) K(A) = 0 if and only if πA(x) = 1 for any x ∈ X;

K3ð Þ K Að Þ ¼ K Acð Þ;

(K4) If ∇A(x) (or △A(x)) is fixed, then K(A) increases as
△A(x) (or ∇A(x)) increases.

Proof.We need to prove that the measure K satisfies all the
properties (K1)–(K4).

Proof of (K1): From the definition of negation operator, it is
easily seen that K(A) = 1 or ℵ[θ(ℵ[∇A(xi)],ℵ[△A(xi)])] = 1 for
any xi ∈ X if and only if θ(ℵ[∇A(xi)],ℵ[△A(xi)]) = 0. Thus, from
the property (θ1), we conclude that ℵ[∇A(xi)] = 0 or
ℵ[△A(xi)] = 0 for any xi ∈ X. These relations are held if and
only if ∇A(xi) = 1 or △A(xi) = 1 for any xi ∈ X. Since for any x-

i ∈ X, we have 0≤∇A xið Þ ¼ μA xið ÞþνA xið Þ
2 ≤ 1

2; hence it must be
held △A(xi) = ∣ μA(xi) − νA(xi) ∣ = 1 for any xi ∈ X. Therefore,
we result in K(A) = 1 if and only if μA(xi) = 1 and νA(xi) = 0 or
μA(xi) = 0 and νA(xi) = 1 for any xi ∈ X which verifies that the
IFS A is a crisp set.

Proof of (K2): The relation K(A) = 0 holds if and only if
ℵ[θ(ℵ[∇A(xi)], ℵ[△A(xi)])] = 0 for any xi ∈ X, that is,

θ(ℵ[∇A(xi)],ℵ[△A(xi)]) = 1, or by the use of property (θ2), we
get ℵ[∇A(xi)] = 1 and ℵ[△A(xi)] = 1. This relation holds if and
only if ∇A(xi) = 0 and △A(xi) = 0 for any xi ∈ Xwhich imply that
μA(xi) = νA(xi) = 0. That is, it yields that πA(xi) = 1 − μA(xi)
− νA(xi) = 1 for any xi ∈ X.

Proof of (K3): From definition of K(A), we can easily find

t h a t K Að Þ ¼ 1
n ∑

n

i¼1
ℵ θ ℵ ∇A xið Þ½ �;ℵ △A xið Þ½ �ð Þ½ � ¼ 1

n

∑
n

i¼1
ℵ θ ℵ ∇Ac xið Þ½ �;ℵ △Ac xið Þ½ �ð Þ½ � ¼ K Acð Þ:
Proof of (K4): Let A = {〈xi, μA(xi), νA(xi)〉| xi ∈ X} and
B = {〈xi, μB(xi), νB(xi)〉| xi ∈ X} be two IFSs such that

∇A(xi) ≤ ∇B(xi) and △A(xi) = △B(xi). Then, we conclude that
ℵ[∇A(xi)] ≥ℵ[∇B(xi)] and ℵ[△A(xi)] =ℵ[△B(xi)]. By the use
of proper ty (θ3) , we can reach a t θ (ℵ [∇A (x i ) ] ,
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ℵ[△A(xi)]) ≥ θ(ℵ[∇B(xi)],ℵ[△B(xi)]) for any xi ∈ X, and further,
ℵ[θ(ℵ[∇A(xi)],ℵ[△A(xi)])] ≤ℵ[θ(ℵ[∇B(xi)],ℵ[△B(xi)])]. This
means that K(A) ≤K(B).

The other assertion which in turn implies ∇A(xi) = ∇B(xi)
and △A(xi) ≤ △B(xi) is proved similarly.

Now, we are able to extend the class of knowledge mea-
sures by considering the following family of negation opera-
tors ℵ and functionals θ:

ℵ xð Þ ¼ 1−x: ð28Þ

ℵ ζ xð Þ ¼ 1−x
1−ζx

; ζ∈ −1;∞ð Þ: ð29Þ

ℵ ξ xð Þ ¼ 1−xξ
� �1

ξ ; ξ∈ 0;∞ð Þ: ð30Þ

and

θ1 x; yð Þ ¼ xy; ð31Þ
θ2 x; yð Þ ¼ xy

1þ 1−xð Þ 1−yð Þ : ð32Þ

θη3 x; yð Þ ¼ xy
ηþ 1−ηð Þ xþ y−xyð Þ ; η > 0 ð33Þ

θς4 x; yð Þ ¼ logς 1þ ςx−1ð Þ ςy−1ð Þ
ς−1

� �
; ς > 1: ð34Þ

Let us here generate a number of knowledge measures for
IFSs by the use of standard complement ℵ(x) = 1 − x together
with the latter kinds of operations θ as the followings:

Kθ1 Að Þ ¼ 1

n
∑n

i¼1 1− 1−∇A xið Þð Þ 1−△A xið Þð Þ½ �: ð35Þ

Kθ2 Að Þ ¼ 1

n
∑n

i¼1 1−
1−∇A xið Þð Þ 1−△A xið Þð Þ
1þ ∇A xið Þ△A xið Þ

	 

: ð36Þ

K
θ
1
2
3

Að Þ ¼ 1

n
∑n

i¼1 1−
1−∇A xið Þð Þ 1−△A xið Þð Þ

1

2
þ 1

2
1−∇A xið Þð Þ þ 1−△A xið Þð Þ− 1−∇A xið Þð Þ 1−△A xið Þð Þ½ �

2
64

3
75:

ð37Þ

Kθ24
Að Þ ¼ 1

n
∑n

i¼1 1−log2 1þ 2 1−∇A xið Þð Þ−1
� �

2 1−△A xið Þð Þ−1
� �� �h i

:

ð38Þ

Comparative Study

What needs to be considered here is that the proposed axiom-
atic framework for measuring the knowledge value of IFSs is
independent of the two frameworks given by Szmidt et al. [14]
and Guo [17].

If we take a look at the proposed knowledge measures, then
it will be obvious that the main intention of presenting such
measures is to consider a combination of two acceptable

factors, including the degree of fuzziness (i.e. the distance
measure of membership and nonmembership) and the lack
of knowledge (i.e. the hesitancy or the non-specificity of an
IFS). Actually, the first factor, which shows the amount of
fuzziness for an IFS, measures how far the distance between
the IFS and a crisp set is. The second factor, which shows the
amount of non-specificity associated with an IFS, measures
how much the unknown data is collected by the use of sum-
mation of membership and nonmembership values.

However, in order to draw a complete picture on the im-
plementation of proposed knowledge measures, we divide the
comparison section into the following two parts:

Part I

Before going more in details, let us define the following en-
tropy measures which are constructed based on their relation-
ship with the knowledge measures Kθ1 , Kθ2 , K

θ
1
2
3

and Kθ24

given by (35)–(38):

Eθ1 Að Þ ¼ 1−Kθ1 Að Þ ¼ 1−
1

n
∑n

i¼1 1− 1−∇A xið Þð Þ 1−△A xið Þð Þ½ �: ð39Þ

Eθ2 Að Þ ¼ 1−Kθ2 Að Þ ¼ 1−
1

n
∑n

i¼1 1−
1−∇A xið Þð Þ 1−△A xið Þð Þ
1þ ∇A xið Þ△A xið Þ

	 

: ð40Þ

E
θ
1
2
3

Að Þ ¼ 1−K
θ
1
2
3

Að Þ ¼ 1−
1

n
∑n

i¼1

1−
1−∇A xið Þð Þ 1−△A xið Þð Þ

1

2
þ 1

2
1−∇A xið Þð Þ þ 1−△A xið Þð Þ− 1−∇A xið Þð Þ 1−△A xið Þð Þ½ �

2
64

3
75:

ð41Þ

Eθ24
Að Þ ¼ 1−Kθ24

Að Þ ¼ 1−
1

n
∑n

i¼1

1−log2 1þ 2 1−∇A xið Þð Þ−1
� �

2 1−△A xið Þð Þ− 1
� �� �h i

:

ð42Þ

It is interesting to note that the above entropy measures
satisfy the following axiomatic properties:

Theorem 2 Suppose thatX is the reference set onwhich the
IFS

A = {〈x, μA(x), νA(x)〉| x ∈ X} is defined. Then, the real-
valued functions Eθ1 , Eθ2 , E

θ
1
2
3

and Eθ24
introduced by

(39)–(42) are entropy measures of A, and they satisfy:
Eθ(A) = 0 if and only if A is a crisp set.
Eθ(A) = 1 if and only if πA(x) = 1 for any x ∈ X.

Eθ Að Þ ¼ Eθ Acð Þ:

If ∇A(x) (or △A(x)) is fixed, then Eθ(A) increases as △A(x) (or
∇A(x)) decreases.
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Proof. The proof of the above axioms are immediate from
all the properties (K1)-(K4) in Theorem 3.

In this part, we compare the proposed entropy measures
with some existing entropy measures that previously given
by (6)–(11) and (13).

Nguyen [15] considered a number of nine single-element
IFSs as A1 = 〈x, 0.7,0.2〉, A2 = 〈x, 0.5,0.3〉, A3 = 〈x, 0.5,0〉, A4 =
〈x, 0.5,0.5〉, A5 = 〈x, 0.5,0.4〉, A6 = 〈x, 0.6,0.2〉, A7 = 〈x,
0.4,0.4〉, A8 = 〈x, 1.0,0.0〉 and A9 = 〈x, 0.0,0.0〉.

In order to further analyse, we append to the above set of
nine IFSs, another single-element IFS, which has not been
considered by Nguyen [15]. This single-element IFS is noth-
ing else except A10 = 〈x, 0.0,1.0〉.

As shown in Table 1, we use the bold type to distinguish
the unreasonable cases which are as the followings:

• Measuring Ebb for the IFSs A1 = 〈x, 0.7,0.2〉 and A5 = 〈x,
0.5,0.4〉 results inEbb(A1) = Ebb(A5) = 0.1, andmoreover, mea-
suring Ebb for the IFSs A2 = 〈x, 0.5,0.3〉, A6 = 〈x, 0.6,0.2〉 and
A7 = 〈x, 0.4,0.4〉 give rise to Ebb(A2) = Ebb(A6) = Ebb(A7) = 0.2.
Furthermore, Ebb cannot differentiate between A9 = 〈x,
0.0,0.0〉 and A10 = 〈x, 0.0,1.0〉, and it returns the same value
1.00 for both of them. These results are unreasonable, and
they are come from the fact that the calculation of Ebb is only
based on the hesitation margin, and it does not return the
relation between membership and nonmembership degrees
known as the fuzziness factor;

• Measuring E
1
2
hc for the IFSs A3 = 〈x, 0.5,0.0〉 and A4 = 〈x,

0.5,0.5〉 results in E
1
2
hc A3ð Þ ¼ E

1
2
hc A4ð Þ ¼ 0:83, and moreover,

measuring E
1
2
hc for the IFSs A9 = 〈x, 0.0,0.0〉 and A10 = 〈x,

0.0,1.0〉 give rise to, respectively, E
1
2
hc A9ð Þ ¼ 0:00 and E

1
2
hc

A10ð Þ ¼ 2:00 which are obviously unreasonable.
Referring again to Table 1, we observe that similar draw-

back occurs when the entropy measures E1
hc, E

2
hc, E

3
hc, E

1
3
r and

E
1
2
r are applied to the IFSs A3 = 〈x, 0.5,0.0〉 and A4 = 〈x,

0.5,0.5〉.
•Measuring Esk, Evs1 and Evs2 for the IFSs A4 = 〈x, 0.5,0.5〉

and A7 = 〈x, 0.4,0.4〉 results in the same value of 1, while the
IFSs are clearly different. Therefore, the outcomes Esk(A4) =
Esk(A7) = 1.00, Evs1(A4) = Evs1(A7) = 1.00 and Evs2(A4) =
Evs2(A7) = 1.00 are not rational.

•Measuring ENg for the IFS A10 = 〈x, 0.0,1.0〉 results in the
unreasonable outcome ENg(A10) = 0.29.

In view of the above results, one can easily observe that the
outcomes of the proposed entropy measures Eθ1 , Eθ2 , E

θ
1
2
3

and

Eθ24
are in agreement with intuition.

Part II

In this part, we consider once again the problem which was
examined by Guo [17] and Das et al. [16] to show the

performance of proposed knowledge measures compared to
the other existing ones.

Suppose that A = {〈x, μA(x), νA(x)〉| x ∈ X} is an IFS whose
power of σ is defined by Aσ = {〈x, (μA(x))

σ, 1 − (1 − νA(x))
σ〉|

x ∈ X}. In the case where A is treated as the linguistic variable
large, we may thus interpret

• A
1
2 as the more or less large concept

• A2 as the very large concept
• A3 as the quite very large concept
• A4 as the very large concept
Case 1. Let A = {〈6,0.1,0.8〉, 〈7,0.3,0.5〉, 〈8,0.6,0.2〉,

〈9,0.9,0.0〉, 〈10,1.0,0.0〉} be considered for the price evalua-
tion of five houses indexed by 6, 7, 8, 9 and 10. In this regard,
we will be able to form X = {6, 7, 8, 9, 10}. From a mathemat-
ical point of view, the ranking order of entropy measures of Aσ

should be:

E A
1
2

� �
> E A1

� �
> E A2

� �
> E A3

� �
> E A4

� �
or E A1

� �
> E A

1
2

� �
> E A2

� �
> E A3

� �
> E A4

� �
: ð43Þ

With the above relationship at hand, we are not still able to
be assured that there is a reverse order between the amount
values of knowledgemeasure. However, we often expect from
the viewpoint of linguistic treating that

k A
1
2

� �
< k A1

� �
< k A2

� �
< k A3

� �
< k A4

� �
or k A1

� �
< k A

1
2

� �
< k A2

� �
< k A3

� �
< k A4

� �
: ð44Þ

Table 2 represents the results of some entropy measures,
the existing knowledge measures and the proposed knowl-
edge measures.

Following from Table 2, we observe that the results of
entropy measure Esk and knowledge measure KG are quite in
accordance with the facts (43) and (44), while the entropy
measure EZJ and knowledge measure KSKB do not perform
well. This is while all the proposed knowledge measures
Kθ1 , Kθ2 , K

θ
1
2
3

and Kθ24
do as expected of them. As discussed

before, here notice that the performance of knowledge mea-
sures should not be recognized as a necessity in accordance
with the entropy measures.

Case 2. In this case, we only change the middle point of
A = {〈6,0.1,0.8〉, 〈7,0.3,0.5〉, 〈8,0.6,0.2〉, 〈9,0.9,0.0〉,

〈10,1.0,0.0〉} to 〈8,0.5,0.4〉 for reducing the degree of hesitan-
cy of 8, and therefore the resulted IFS will be denoted by

B ¼ 6; 0:1; 0:8h i; 7; 0:3; 0:5h i; 8; 0:5; 0:4h i; 9; 0:9; 0:0h i; 10; 1:0; 0:0h if g:
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As all we know, the greater amount value of entropy of an
IFS results in the higher degree of fuzziness, and conversely,
the greater amount value of knowledge of an IFS results in the
lower degree of fuzziness. This is exactly what we find in the
data provided in Table 3.

Case 3. Again, we change only the middle point of
A = {〈6,0.1,0.8〉, 〈7,0.3,0.5〉, 〈8,0.6,0.2〉, 〈9,0.9,0.0〉,

〈10,1.0,0.0〉} to 〈8,0.5,0.5〉 for reducing the degree of hesitancy
of 8, and thus, the resulted IFS is denoted by C = {〈6,0.1,0.8〉,
〈7,0.3,0.5〉, 〈8,0.5,0.5〉, 〈9,0.9,0.0〉, 〈10,1.0,0.0〉}. Similar to
Case 2, the behaviour of all data presented in Table 4 are as
expected for the value of entropies Esk and EZJ, knowledge
measures KSKB and KG, and the proposed knowledge measures
Kθ1 , Kθ2 , K

θ
1
2
3

and Kθ24
at the IFS C.

Determination of Criteria Weights in MCDM
with Respect to Knowledge Measures

Here, we are going to investigate a MCDM problem in which
a single expert evaluates the alternative A = {A1,…, Am} with
respect to the criteria C = {C1,…,Cn} corresponding to the

weight w = (w1,…,wn) satisfying 0 ≤wj ≤ 1 and ∑
n

j¼1
wj ¼ 1.

In this regard, the decision matrix is formed as

D ¼
d11 ¼ μd11 ; νd11

� �
d12 ¼ μd12 ; νd12

� �
⋯ d1n ¼ μd1n ; νd1n

� �
⋮ ⋯ ⋯ ⋮
dm1 ¼ μdm1 ; νdm1

� �
dm2 ¼ μdm2 ; νdm2

� �
⋯ dmn ¼ μdmn ; νdmn

� �
0
BB@

1
CCA

where dij ¼ μdij ; νdij
� �

denotes the evaluation value of

alternative Ai with respect to the criterion Cj given by the
single expert.

In the next step of decision-making process, the aim is to
determine the weights of criteria by the use of proposed
knowledge measures. To do this end, we suppose that the
knowledge-based decision matrix K ≔K(D) is in the form of

K Dð Þ ¼
k11 k12 ⋯ k1n
⋮ ⋯ ⋯ ⋮
km1 km2 ⋯ kmn

0
BB@

1
CCA;

where [kij]m × n ≔ [K(dij)]m × n, and each array kij indicates
the knowledge measure value of each IFS dij belonging to
the above-mentioned decision matrix D.

What is noteworthy to mention is that the information of
criteria weights is usually partly known or even completely
unknown. To cope with this situation, we consider here two
cases: one is the partly known information case and the other
is the case of completely unknown information on criteria
weights.

Case of Partly Known Information

In most of the real-world decision-making problem, the
decision-maker may access to only partial information about
the weights of criteria. In this case, the optimal weights can be
obtained using the following knowledge-based optimization
problem

Pð Þ maxKw ¼ ∑
n

j¼1
∑
m

i¼1
kijw j

Table 2 The comparison of some entropy, knowledge measures and proposed knowledge measures

IFS Esk EZJ KSKB KG Kθ1 Kθ2 K
θ
1
2
3

Kθ24

A
1
2 0.319 0.249 0.794 0.785 0.785 0.811 0.696 0.796

A 0.307 0.212 0.786 0.788 0.788 0.816 0.701 0.799

A2 0.301 0.226 0.783 0.805 0.805 0.821 0.738 0.812

A3 0.212 0.095 0.827 0.854 0.854 0.874 0.798 0.862

A4 0.176 0.046 0.844 0.877 0.877 0.898 0.829 0.886

Table 3 The comparison of some entropy, knowledge measures and proposed knowledge measures

IFS Esk EZJ KSKB KG Kθ1 Kθ2 K
θ
1
2
3

Kθ24

B
1
2 0.345 0.285 0.787 0.767 0.767 0.795 0.671 0.778

B 0.374 0.305 0.763 0.761 0.761 0.784 0.670 0.770

B2 0.197 0.104 0.852 0.865 0.865 0.891 0.796 0.876

B3 0.131 0.038 0.888 0.911 0.911 0.932 0.859 0.920

B4 0.109 0.016 0.899 0.926 0.926 0.942 0.887 0.933
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w∈W ;

∑
n

j¼1
wj ¼ 1;

0≤wj≤1 for j ¼ 1;…; n;

where the set ofW describes the information on the weights
of criteria.

Case of Completely Unknown Information

This case describes the situation where the information on the
weights of criteria is completely unknown. In this case, the
knowledge-based weights can be determined as

wj ¼ k j

∑n
j¼1k j

; ð45Þ

in which 0 ≤wj ≤ 1 for j = 1,…, n, ∑n
j¼1wj ¼ 1 and more-

over, k j ¼ ∑m
i¼1kij for j = 1, …, n.

By the weight information at hand, we are now in a posi-
tion to aggregate all the information on each alternative Ai

according to the criteria Cj’s. In the same line of Das et al
[16], we are able to implement the weighted intuitionistic
fuzzy arithmetic mean operator as the following:

AGGi ¼ ⊕n
j¼1wjdij

¼ 1−∏n
j¼1 1−μdij

� �w j

;∏n
j¼1 νdij
� �w j

� �
; for any i

¼ 1;…;m: ð46Þ

Now, we can derive the priority of alternatives by the help
of priority of score functions which are calculated by

S AGGið Þ ¼ 1−∏n
j¼1 1−μdij

� �w j

−∏n
j¼1 νdij
� �w j ; foranyi

¼ 1;…;m:

ð47Þ

Case Study

An investment company is going to invest an amount of money
in the best possible option. For this purpose, a number of com-
panies including A1, car company; A2, food company; A3, com-
puter company; and A4, arm company are taken into consider-
ation. In order to assess these alternatives, it needs to consider
some criteria including C1, the risk; C2, the growth; C3, the
environmental impact; and C4, the social political impact anal-
yses. However, if the above-mentioned alternatives are assessed
by IFSs in accordance with the given criteria, then the experts
will face to the weights of criteria w = (w1,w2,w3,w4) in the
form of partially known or completely unknown.

Let the decision-making matrix be given by:

D ¼

C1 C2 C3 C4

A1 0:5; 0:5ð Þ 0:6; 0:2ð Þ 0:7; 0:2ð Þ 0:4; 0:3ð Þ
A2 0:2; 0:6ð Þ 0:3; 0:3ð Þ 0:1; 0:8ð Þ 0:5; 0:2ð Þ
A3 0:6; 0:2ð Þ 0:4; 0:4ð Þ 0:4; 0:5ð Þ 0:7; 0:1ð Þ
A4 0:8; 0:2ð Þ 0:5; 0:3ð Þ 0:3; 0:7ð Þ 0:25; 0:75ð Þ

0
BBBBBB@

1
CCCCCCA
:

If we employ the proposed knowledge measures Kθ1 , Kθ2 ,
K

θ
1
2
3

and Kθ24
for the above decision matrix D, then we get

Kθ1 Dð Þ ¼

0:5000 0:6400 0:7250 0:4150
0:6400 0:3000 0:8350 0:5450
0:6400 0:4000 0:5050 0:7600
0:8000 0:5200 0:7000 0:7500

0
BBBB@

1
CCCCA; ð48Þ

Kθ2 Dð Þ ¼

0:5000 0:6897 0:7755 0:4348
0:6897 0:3000 0:8745 0:5882
0:6897 0:4000 0:5263 0:8065
0:8462 0:5556 0:7500 0:8000

0
BBBB@

1
CCCCA; ð49Þ

K
θ
1
2
3

Dð Þ ¼

0:3333 0:5000 0:5849 0:2755
0:5000 0:1765 0:7328 0:4110
0:5000 0:2500 0:3422 0:6471
0:6667 0:3684 0:5385 0:6000

0
BBBB@

1
CCCCA; ð50Þ

Table 4 The comparison of some entropy, knowledge measures and proposed knowledge measures

IFS Esk EZJ KSKB KG Kθ1 Kθ2 K
θ
1
2
3

Kθ24

C
1
2 0.352 0.304 0.790 0.763 0.763 0.791 0.664 0.775

C 0.407 0.345 0.756 0.760 0.760 0.778 0.660 0.768

C2 0.168 0.093 0.878 0.883 0.883 0.909 0.814 0.894

C3 0.110 0.035 0.907 0.923 0.923 0.942 0.875 0.932

C4 0.095 0.015 0.913 0.934 0.934 0.948 0.899 0.940
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Kθ24
Dð Þ ¼

0:5000 0:6598 0:7463 0:4218
0:6598 0:3000 0:8530 0:5612
0:6598 0:4000 0:5126 0:7799
0:8207 0:5330 0:7207 0:7716

0
BBBB@

1
CCCCA: ð51Þ

For the notational simplicity from now on, we will denote
the matrix K∗(D) again by K∗.

Now, by the knowledge measures at hand, we are able to
compute the weights of the criteria in the two following
situations:

Case of Partly Known Information

In the case where the weights of criteria are partly known, we
are able to construct the following linear programming prob-
lem

Pð Þ maxKw ¼ ∑
n

j¼1
∑
m

i¼1
kijw j

w∈W ;

∑
n

j¼1
wj ¼ 1;

0≤wj≤1 for j ¼ 1;…; n;

where the set of W is considered as

W ¼ 0:15≤w1; 0:2≤w2; 0:3≤w3≤0:35;w4≤0:6;w2 þ w4≤0:4f g;

and further, [kij]m × n ≔ [K(dij)]m × n indicates the
knowledge-based decision matrix K ≔K(D). Here, K could
be one of the knowledge measures Kθ1 , Kθ2 , K

θ
1
2
3

and Kθ24
.

The construction of the above linear programming problem
is exactly like that considered by Das et al. [16].

Now, with respect to each knowledge measure matrix of

those given by (48)–(51), we can calculate k j ¼ ∑
4

i¼1
kij for j =

1, 2, 3, 4 as the followings:

kKθ1 ¼ 2:5800; 1:8600; 2:7650; 2:4700ð Þ;
kKθ2 ¼ 2:7255; 1:9452; 2:9264; 2:6295ð Þ;

k
K

θ
1
2
3 ¼ 2:0000; 1:2949; 2:1984; 1:9336ð Þ;

k
Kθ2

4 ¼ 2:6402; 1:8928; 2:8326; 2:5346ð Þ

which each of them gives rise to a linear programming
problem in the form of (P) mentioned above. By the way,
solving these optimization problems using MATLAB R2016
code “x = linprog(f, A, b, Aeq, beq, lb, ub)” results in the fol-
lowing equal vectors of weights:

wKθ1 ¼ wKθ2 ¼ w
K

θ
1
2
3 ¼ w

Kθ2
4≔ 0:45; 0:20; 0:35; 0:0ð Þ:

Case of Completely Unknown Information

Using the rule described by (45), we can now calculate the
weights of the criteria as the followings:

wKθ1 ¼ w
Kθ1
1 ;w

Kθ1
2 ;w

Kθ1
3 ;w

Kθ1
4

� �
¼ 0:2667; 0:1922; 0:2858; 0:2553ð Þ;

wKθ2 ¼ w
Kθ2
1 ;w

Kθ2
2 ;w

Kθ2
3 ;w

Kθ2
4

� �
¼ 0:2665; 0:1902; 0:2862; 0:2571ð Þ;

w
K

θ
1
2
3 ¼ w

K
θ
1
2
3

1 ;w
K

θ
1
2
3

2 ;w
K

θ
1
2
3

3 ;w
K

θ
1
2
3

4

 !

¼ 0:2693; 0:1744; 0:2960; 0:2604ð Þ;

w
Kθ2

4 ¼ w
Kθ2

4
1 ;w

Kθ2
4

2 ;w
Kθ2

4
3 ;w

Kθ2
4

4

� �

¼ 0:2667; 0:1912; 0:2861; 0:2560ð Þ;

where in all four cases, we have

w
Kθ1
3 > w

Kθ1
1 > w

Kθ1
4 > w

Kθ1
2 ;

w
Kθ2
3 > w

Kθ2
1 > w

Kθ2
4 > w

Kθ2
2 ;

w
K

θ
1
2
3

3 > w
K

θ
1
2
3

1 > w
K

θ
1
2
3

4 > w
K

θ
1
2
3

2 ;

w
Kθ2

4
3 > w

Kθ2
4

1 > w
Kθ2

4
4 > w

Kθ2
4

2 :

Now, we are ready to compute the final aggregated values
for each alternative according to the rule of (46), and then
order them. These results are obtained by taking the two cases
of partly known and completely unknown information into
account as follows:

Case of partly known information
Since all weight vectors are the same in this case, that is,

wKθ1 ¼ wKθ2 ¼ w
K

θ
1
2
3 ¼ w

Kθ2
4 , we then get

AGG1 ¼ 0:6381; 0:0ð Þ;AGG2 ¼ 0:3770; 0:0ð Þ;
AGG3 ¼ 0:5701; 0:0ð Þ;AGG4 ¼ 0:6183; 0:0ð Þ:

Case of Completely Unknown Information

In this case, we have four different sub-cases including:
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Case 1. (for wKθ1 )

AGG1 ¼ 0:5663; 0:2832ð Þ;AGG2 ¼ 0:2848; 0:4307ð Þ;
¼ 0:5488; 0:2488ð Þ;AGG4 ¼ 0:5218; 0:4334ð Þ;

Case 2. (for wKθ2 )

AGG1 ¼ 0:5666; 0:2828ð Þ;AGG2 ¼ 0:2845; 0:4301ð Þ;
AGG3 ¼ 0:5479; 0:2497ð Þ;AGG4 ¼ 0:5225; 0:4316ð Þ;

Case 3. (for w
K

θ
1
2
3 )

AGG1 ¼ 0:5665; 0:2845ð Þ;AGG2 ¼ 0:2839; 0:4349ð Þ;
AGG3 ¼ 0:5509; 0:2471ð Þ;AGG4 ¼ 0:5204; 0:4388ð Þ;

Case 4. (for w
Kθ2

4 )

AGG1 ¼ 0:5663; 0:2833ð Þ;AGG2 ¼ 0:2849; 0:4307ð Þ;
AGG3 ¼ 0:5491; 0:2485ð Þ;AGG4 ¼ 0:5217; 0:4338ð Þ:

Now, we are in a stage in which the score function of IFSs,
denoted here by the notation AGG, can be calculated as the
followings:

Case of Partly Known Information

Since in this case we have wKθ1 ¼ wKθ2 ¼ w
K

θ
1
2
3 ¼ w

Kθ2
4 ,

therefore, the result will be:

S AGG1ð Þ ¼ 0:6381; S AGG2ð Þ ¼ 0:3770;

S AGG3ð Þ ¼ 0:5701; S AGG4ð Þ ¼ 0:6183;

which give rise to A1 > A4 > A3 > A2.

Case of Completely Unknown Information

In this case, there exist four distinguished sub-cases which are:
Case 1. (for wKθ1 )

S AGG1ð Þ ¼ 0:2831; S AGG2ð Þ ¼ −0:1459;

S AGG3ð Þ ¼ 0:3001; S AGG4ð Þ ¼ 0:0884;

thus A3 > A1 > A4 > A2.
Case 2. (for wKθ2 )

S AGG1ð Þ ¼ 0:2838; S AGG2ð Þ ¼ −0:1456;

S AGG3ð Þ ¼ 0:2982; S AGG4ð Þ ¼ 0:0909;

thus A3 > A1 > A4 > A2.

Case 3. (for w
K

θ
1
2
3 )

S AGG1ð Þ ¼ 0:2820; S AGG2ð Þ ¼ −0:1510;

S AGG3ð Þ ¼ 0:3038; S AGG4ð Þ ¼ 0:0816;

thus A3 > A1 > A4 > A2.

Case 4. (for w
Kθ2

4 )

S AGG1ð Þ ¼ 0:2830; S AGG2ð Þ ¼ −0:1458;

S AGG3ð Þ ¼ 0:3005; S AGG4ð Þ ¼ 0:0878:

thus A3 > A1 > A4 > A2.
Eventually, there is a tendency to compare the results

of the proposed knowledge measures with those of the
other existing knowledge measures for IFSs which were
previously denoted in this contribution as KNg, KSKB and
KG. Keeping the statement of problem given in the be-
ginning of Section 5.1 in the mind, we consider the two
situations: partly known and completely unknown. Then,
the problem is resolved by the use of the knowledge
measures KNg, KSKB and KG whose results are compared
with that of the proposed knowledge measures in
Table 5.

From the data in Table 5, we can observe that most of
ranking orders are the same for both cases including
partly known and completely unknown weights. The on-
ly different results are related to the knowledge measure
KSKB, and this is not surprising, because we showed pre-
viously that this knowledge measure of Das et al. [16]
bears some drawbacks.

Table 5 Comparing the exiting knowledge measures with the proposed
knowledge measures

Knowledge
measures

Criteria weights Ranking of
alternatives

Partly known weight

KNg w = (0.2,0.2,0.35,0.25) A1 > A3 >A4 > A2
KSKB w = (0.15,0.3,0.35,0.2) A2 > A1 >A3 > A4
KG w = (0.2,0.2,0.35,0.25) A1 > A3 >A4 > A2
Kθ1 w = (0.45,0.20,0.35,0.0) A1 > A4 >A3 > A2
Kθ2 w = (0.45,0.20,0.35,0.0) A1 > A4 >A3 > A2
K

θ
1
2
3

w = (0.45,0.20,0.35,0.0) A1 > A4 >A3 > A2
Kθ24

w = (0.45,0.20,0.35,0.0) A1 > A4 >A3 > A2
Completely unknown weight

KNg w = (0.2667,0.2178,0.2765,0.2390) A3 > A1 >A4 > A2
KSKB w = (0.2429,0.2432,0.2846,0.2293) A1 > A3 >A2 > A4
KG w = (0.2667,0.1922,0.2858,0.2553) A3 > A1 >A4 > A2
Kθ1 w = (0.2667,0.1922,0.2858,0.2553) A3 > A1 >A4 > A2
Kθ2 w = (0.2665,0.1902,0.2862,0.2571) A3 > A1 >A4 > A2
K

θ
1
2
3

w = (0.2693,0.1744,0.2960,0.2604) A3 > A1 >A4 > A2
Kθ24

w = (0.2667,0.1912,0.2861,0.2560) A3 > A1 >A4 > A2
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Conclusions and Future Works

In this contribution, we defined a class of knowledge mea-
sures for IFSs on the basis of different axiomatic framework.
Indeed, the proposed knowledge measures have been provid-
ed to relate the two notions of fuzziness and intuitionism of an
IFS. The former reflects the closeness parameter of member-
ship and nonmembership degrees, and the latter returns the
amount value of hesitancy degree. By the use of a practical
application, we employed the proposed knowledge measures
to deal with a MCDM problem for determining the criteria
weights. The results verify that the proposed knowledge mea-
sures for IFSs are most accurate and confidential compared to
the existing ones and have many possible applications, partic-
ularly, in decision-making situations.
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