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Abstract
Cognitive information in real-world decision-making problems is usually associated with all sorts of ambiguities and uncer-
tainties. Fuzzy sets have been proposed as a general workaround for such information representation. Notwithstanding, there are
cases in which the fuzzy sets and fuzzy numbers have some degree of uncertainty when available data either come from
unreliable sources or refer to events in the future. These situations result in some unreliability of the obtained fuzzy information.
For the modeling of the possible future-event effects on the fuzzy information credibility, the present research presents a novel
risk-based fuzzy cognitive methodology by investigating all possible cases to risk modeling of fuzzy sets and the governing
mathematical equations. The new fuzzy cognitive model is used to develop a multi-criteria decision-making method based on a
fuzzy TOPSIS method so-called RFC-TOPSIS, and the proposed approach was tested on a case study of failure modes and
effects analysis problem. Based on the results, robust outcomes were obtained when the proposed methodology was used,
highlighting the flexibility and the efficiency of the proposed methodology. The present concept can be used to deal with any
problems, where membership function is associated with some risks and errors due to risk factors.
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Introduction

Cognitive computation boosts machine reasoning abilities by
mimicking the human’s cognition in complex situations where
the answers may be ambiguous and uncertain [1]. https://
searchenterpriseai.techtarget.com/definition/cognitive-
computing. The appropriate expression of cognitive
information is essential in cognitive computation [2]. In a
typical decision-making process, it is more efficient for the
decision-makers to use fuzzy sets for expressing their cogni-
tion about the alternatives [3].When adopting the fuzzy sets, it
is important to capture how reliable the available data is, since
the classical fuzzy set is unable to model the unreliability of
the obtained cognitive information due to different mental

factors associated with experts including, age, experience,
knowledge background, character, and risk preference as well
as other external factors [4–6]. Therefore, different innovative
extensions of type 1 fuzzy sets has been proposed in the liter-
ature, such as interval-valued fuzzy sets (IVFSs) [7],
intuitionistic fuzzy sets (IFSs) [8], interval-valued
intuitionistic fuzzy sets (IVIFSs) [9], Pythagorean fuzzy sets
(PFSs) [10], interval-valued intuitionistic hesitant fuzzy sets
(IVIHFSs) [11], Z-numbers [12], hesitant fuzzy sets (HFSs)
[13], hesitant fuzzy linguistic term sets (HFLTS) [14], dual
hesitant fuzzy sets (DHFSs) [15], interval-valued hesitant
fuzzy sets (IVHFSs) [16], probabilistic linguistic term sets
(PLTSs) [17], neutrosophic sets (NSs) [18], neutrosophic hes-
itant fuzzy sets (NHFSs) [19], cognitive cloud model [20],
plithogenic sets (PSs) [21], picture fuzzy sets (PFSs) [22], D
numbers with linguistic term sets (DLTs) [23], D-intuitionistic
hesitant fuzzy sets (DIHFSs) [24], and R-numbers [25].
Associated uncertainty with a fuzzy number is normally rep-
resented by either (i) expressing the reliability of the member-
ship function (e.g., Z-numbers) or (ii) expressing the fuzzy
number as a range (e.g., IFSs, IVFS, and IVIFSs) [25].

In many decision-making problems which are related to
future forecasting, the data to be analyzed are associated
with some percent of error, mainly due to predicted/
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unpredicted effective factors which result in a situation
where the knowledge of present cannot be generalized to
future in a certain and reliable way [25, 26]. Such sources
of error are referred to as risk factors. Indeed, a risk factor
affects the evaluated results by deviating them from the
main values [27]. This paper aims at presenting a new
risk-based fuzzy cognitive model which can be used either
explain or justify the errors and risks associated with fuzzy
sets in future-based decision-making problems. It is worth
noting how different risk and reliability are with regard to
information. The information reliability is usually de-
scribed based on prior performances and knowledge and
experts mental factors, whereas risks deal with unseen pos-
sible situations [28, 29]. In the meantime, both concepts
focus on data accuracy to avoid inappropriate outcomes. In
a risk-based fuzzy approach, when the expert’s fuzzy eval-
uation is obtained, the extra information about his/her risks
of the evaluation may be inferred by asking some questions
in the form of (1) “how much (percent) the occurrence
possibility of your fuzzy prediction might variate (be ex-
posed to risk) due to predicted/unpredicted risk factors” in
best (optimistic) and worst (pessimistic) cases?” and (2)
“how much these variations are acceptable in your opin-
ion?”. Some risk-based fuzzy cognitive information repre-
sentations by the experts can be as follows:

“The profit of the project would be high, but the prediction
might have 50% risk in the optimistic case (50%more likely to
happen) and 40% risk in the pessimistic mode (40% less likely
to happen) and 50% risk of the pessimistic scenario can be
accepted.”

“The travel time by plane from London to Tehran is about 9
hours, but the prediction might have 10% risk in the

pessimistic or optimistic modes (10% more or less likely to
happen) and 30% risk of the pessimistic case can be
accepted.”

Table 1 describes the cognitive information expression of
different extensions of fuzzy sets and the proposed risk-based
approach briefly.

The risk of fuzzy information has been modeled by various
studies in decision-making problems. For example, Gören and
Kulak [30] developed a risk-based fuzzy model for selecting a
supplier. In this research, they considered the risk of the eval-
uation rather than taking it as an attribute. Kulak et al. [31]
suggested a risk-based fuzzy axiomatic design (RFAD) in or-
der to select the most appropriate medical imaging systems
while considering the risk factors. A risk-based model for the
selection of materials of gas turbines using the RFAD method
and Shannon entropy was proposed by Hafezalkotob and
Hafezalkotob [32]. Maghsoodi et al. [33] presented a multi-
criteria decision-making (MCDM) framework based on the
RFAD and Shannon entropy to choose the waste oil technol-
ogy. In this research, different types of risk factors related to
the problem were determined using two categories of techno-
logical and economic criteria. Seiti et al. [26] presented two
pessimistic-optimistic models of risk-taking in fuzzy numbers
using the FADmethod for selecting a maintenance strategy. In
this study, the acceptable risk as a coefficient was used to
determine an acceptable percentage of risk in each assessment.
In another study, Seiti and Hafezalkotob [34] considered dif-
ferent risk scenarios of fuzzy numbers and developed the R-
TOPSIS methodology. The proposed approach was applied
for preventive maintenance planning in a rolling mill compa-
ny. The risk modeling has been also done in the modeling of
the risks of beliefs in fuzzy Demeter-Shafer (DS) structure by

Table 1 Different extensions to fuzzy sets and the proposed risk-based cognitive model

Different fuzzy
models

How to address uncertainty The required cognitive information

HFS Multiple membership functions The profit of the project would be high or very high.

IVFSs Upper and lower membership functions The profit of the project would be between high and very high.

IFSs Membership and non-membership functions The profit of the project would be high and it is 70% true (membership grade
value = 0.7) and 20% is not true (non-membership grade = 0.2).

NSs Truth-membership function,
indeterminacy-membership function,
falsity-membership function

The profit of the project would be high, and it is 70% true (truth-membership
function value = 0.7), 40% not true (falsity-membership function = 0.4), and
50% uncertain (indeterminacy-membership function = 0.5).

PFSs Positive membership function, neutral
membership function, and negative
membership function

The profit of the project would be high, and it is 50% true (positive membership
function = 0.4), 20% not true (negative membership function = 0.2) and no
comment 20% (neutral membership function = 0.2).

Z-numbers Fuzzy reliability The profit of the project would be high, but I am not sure.

The proposed
risk-based
approach

Negative and positive risks and acceptable
negative and positive risks

The profit of the project would be high, but the prediction might have 50% risk
in the optimistic case (positive risk = 0.5) and 40% risk in the pessimistic
mode (negative risk = 0.4) and 50% of the pessimistic scenario can be
accepted (acceptable negative risk = 0.4, acceptable positive risk = 0).
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Seiti et al. [28]. In this paper, an interval-valuedDS theorywas
developed based on the risk of fuzzy information and applied
to failure modes and effects analysis (FMEA).

Reviewing the literature, a few noteworthy research gaps
are as follows:

& The risk modeling was investigated only in MCDM prob-
lems, and by modeling variations of fuzzy numbers x
scale, and no comprehensive model has been proposed
for risk modeling of fuzzy membership functions.

& The risks were investigated for classic trapezoidal and
triangular fuzzy numbers, and no study has been per-
formed to consider the risk of generalized fuzzy numbers
(GFNs) owing to risk factors.

To fill these gaps, the novelties of the proposed risk-based
fuzzy cognitive model are briefly as follows: (I) the proposed
model extends the fuzzy sets risk modeling by allocating a
confidence interval to a fuzzy membership function owing
to possible risks by considering the risk as the presence of
factors affecting the membership function, (II) risk modeling
of a trapezoidal GFN is investigated through modeling the
variations of its membership functions, (III) the proposed
methodology is adopted to extend a Risk-based Fuzzy
Cognitive Technique for Order of Preference by Similarity
to Ideal Solution (RFC-TOPSIS) and applied to FMEA prob-
lem. Before proceeding to the introduction of the cognitive
model, various risk configurations including the optimistic
and pessimistic modes and acceptable risks are analytically
described and their relationships discussed.

The rest of this manuscript is organized as follows.
“Preliminaries” provides a brief discussion on type I and type
II fuzzy sets and fuzzy numbers. “Risk Modeling of Fuzzy

Sets and Generalized Trapezoidal Fuzzy Numbers” presents
new developments in the research on risk modeling of fuzzy
sets and generalized trapezoidal fuzzy numbers. “The
Proposed Risk-Based Fuzzy Cognitive Model” introduces
the concept of the proposed cognitive model and the RFC-
TOPSIS method. In “Illustrative Example and Comparisons”,
an example of FMEA using the proposed RFC-TOPSIS meth-
odology is provided to elucidate its applicability in a real
problem. “Results” describes the main findings of the pro-
posed models. Finally, “Conclusion” delineates conclusion
and future research directions.

Preliminaries

This section briefly discusses type I (T1) and type II (T2)
fuzzy sets and numbers. The discussion is a basic requirement
for the risk-based fuzzy cognitive model.

Type I Fuzzy Sets

Definition 1 A fuzzy set A in a universe of discourse X is
characterized by a membership function μA, which takes the
values ranging from 0 to 1, so we have [35]

A ¼ x;μA xð Þð Þj x∈Xf g μA : X→ 0; 1½ � ð1Þ

The value of μA at x ∈ X represents the degree to which x is
a member of A.

Definition 2 Operations between fuzzy sets A = {(x, μA(x)}
and B = {x, μB(x)} are listed in the following [36].

Union : A∪B ¼ x;μA∪B xð Þf g; where μA∪B xð Þ ¼ max μA xð Þ;μB xð Þð Þ
Intersection : A∩B ¼ x;μA∩B xð Þf g; where μA∩B xð Þ ¼ min μA xð Þ;μB xð Þð Þ

Complement : A ¼ x;μ
A

xð Þ
� �

; where;μ
A

xð Þ ¼ 1−μA xð Þ
Algebraic Product : A:B ¼ x;μA:B xð Þf g; where μA:B xð Þ ¼ μAμB
Algebraic Sum : Aþ B ¼ x;μAþB xð Þ� �

; where μAþB xð Þ ¼ μA þ μB−μAμB
Algebraic Difference : A−B ¼ x;μA−B xð Þf g; where μA−B xð Þ ¼ μA∩B xð Þ

Power Set : AP ¼ x;μAP xð Þf g; where μAP xð Þ ¼ μA xð ÞP
n o

Cartesian Product : A xð Þ � B yð Þ ¼ x;μA�B x; yð Þf g; where μA�B x; yð Þ ¼ min μA xð Þ;μB yð Þð Þ
Bounded Sum : A⨁B ¼ x;μA⨁B xð Þf g; where μA⨁B xð Þ ¼ min μA þ μB; 1f g

Bounded Difference : A⊙B ¼ x;μA⊙B xð Þ� �
where μA⊙B xð Þ ¼ max μA þ μB−1; 0f g

8>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>:

ð2Þ

Definition 3 A triangular fuzzy number (TFN) ea on ℝ has its
membership function μea xð Þ : ℝ→ 0; 1½ � which is defined as

follows [25]:

μea xð Þ ¼
x−a1ð Þ= a2−a1ð Þ; a1≤x≤a2
a3−xð Þ= a3−a2ð Þ; a2≤x≤a3

0; otherwise

8<: ð3Þ
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where a1 and a3 are the lower and upper bounds of the fuzzy

number eA, respectively, and a2 describes the modal value. The
TFN can be expressed as ea ¼ a1; a2; a3ð Þ

Definition 4 Defuzzification is the process of converting
the outcomes of fuzzy systems into a real crisp number
[37]. There are various defuzzification techniques such
as the center of area (COA) [38] and center of gravity
(COG) [39]. Using the COA method, a defuzzified val-
ue of a TFN ea ¼ a1; a2; a3ð Þ is obtained by employing
Eq. (4) [25].

COA ea� �
¼ a3−a1ð Þ þ a2−a1ð Þ½ �=3þ a1 ð4Þ

Definition 5A generalized trapezoidal fuzzy number (GTrFN)

can be expressed by eA ¼ a1; a2; a3; a4;μeLA;μeRA� �
, where a1,

a2, a3, a4 are real values and μeLA and μeRA are so-called left and
right heights of GTrFN eA. If μeLA ¼ μeRA = 1, then eA becomes a

tradi t ional TrFN and can be represented as eA ¼
a1; a2; a3; a4ð Þ [40]. In fact, defining the left and right mem-
bership degrees gives much more flexibility to express uncer-
tainty, since the possibilities of a2 and a3 and the points be-
tween them could not necessarily be identical. According to

Jiang et al. [40], GTrFN eA has its membership function μeA
defined as follows:

μeA xð Þ ¼
g1 xð Þ; a1≤x≤a2;
g2 xð Þ; a2≤x≤a3;
g3 xð Þ; a3≤x≤a4;
0; otherwise;

8>><>>: ð5Þ

where g1(x), g2(x) and g3(x) are interdependent linear func-
tions and g1 : [a1, a2]→ [0, 1], g2 : [a2, a3]→ [0, 1] and g3-
: [a

3
, a4]→ [0, 1].

Type II fuzzy sets

The type II fuzzy set (T2 FS) is an extension to T1 FS. AT2
FS can be defined in different ways, which are presented in the
following.

Definition 5 AT2 FS eA in the universe of discourse X can be
defined through a T2membership function as expressed in the
following [41]:

eA ¼ x; uð Þ;μeA x; uð Þ
� 	

x∈X ; u∈ 0; 1½ �j
� �

ð6Þ

In which x and u are the primary and secondary variables ofeA, respectively, and the T2 membership function of eA is de-
noted by μeA x; uð Þ.

Definition 6 The primary membership of eA can be described
by applying Eq. (7) [41].

J x ¼ x; uð Þ u∈ 0; 1½ �;μeA x; uð Þ > 0





� �
ð7Þ

Definition 7 An interval T2 trapezoidal fuzzy number (IT2

TrFN), eeAi, is written as eeAi ¼ eAU
i ; eAL

i

� �
¼ aðð U

i1 ; a
U
i2 ; a

U
i3 ; a

U
i4;

H1
eAU
i

� �
;H2

eAU
i

� �
Þ; aLi1; a

L
i2; a

L
i3; a

L
i4;H1

eAL
i

� �
;H2

eAL
i

� �� �
Þ;

where eAU
i and eAL

i are T1 trapezoidal fuzzy numbers,H j eAU
i

� �
denotes the membership value of aUij in the trapezoidal fuzzy

number eAU
i

� �
; 1≤ j≤4;H j eAL

i

� �
is the membership value of

aLij determined based on the lower trapezoidal membership

function eAL
i ; 1≤ j≤4 , H1

eAU
i

� �
∈ 0; 1½ �;H2

eAU
i

� �
∈ 0; 1½ �;H1ðeAL

i Þ∈ 0; 1½ �;H2
eAL
i

� �
∈ 0; 1½ �, and 1 ≤ i ≤ n [42]. The IT2

TrFNs eeA1 and eeA2 follow the mathematical operations given
below [42]:

eeA1⨁
eeA2 ¼

aU11 þ aU21; a
U
12 þ aU22; a

U
13 þ aU23; a

U
14 þ aU24; min H1

eAU

1

� 	
;H1

eAU

2

� 	� 	
;min H2

eAU

1

� 	
;H2

eAU

2

� 	� 	� 	
;

aL11 þ aL21; a
L
12 þ aL22; a

L
13 þ aL23; a

L
14 þ aL24; min H1

eAL

1

� 	
;H1

eAL

2

� 	� 	
;min H2

eAL

1

� 	
;H2

eAL

2

� 	� 	� 	
0BB@

1CCA ð8Þ

eeA1⊖
eeA2 ¼

aU11−a
U
24; a

U
12−a

U
23; a

U
13−a

U
22; a

U
14−a

U
21; min H1

eAU

1

� 	
;H1

eAU

2

� 	� 	
;min H2

eAU

1

� 	
;H2

eAU

2

� 	� 	� 	
;

aL11−a
L
24; a

L
12−a

L
23; a

L
13−a

L
22; a

L
14−a

L
21; min H1

eAL

1

� 	
;H1

eAL

2

� 	� 	
;min H2

eAL

1

� 	
;H2

eAL

2

� 	� 	� 	
0BB@

1CCA ð9Þ
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eeA1⨂
eeA2≅

aU11a
U
21; a

U
12a

U
22; a

U
13a

U
23; a

U
14a

U
24; min H1

eAU

1

� 	
;H1

eAU

2

� 	� 	
;min H2

eAU

1

� 	
;H2

eAU

2

� 	� 	� 	
;

aL11a
L
21; a

L
12a

L
22; a

L
13a

L
23; a

L
14a

L
24; min H1

eAL

1

� 	
;H1

eAL

2

� 	� 	
;min H2

eAL

1

� 	
;H2

eAL

2

� 	� 	� 	
0BB@

1CCA ð10Þ

k⨂
eeA1 ¼

kaU11; ka
U
12; ka

U
13; ka

U
14; min H1

eAU

1

� 	
;H1

eAU

2

� 	� 	
;min H2

eAU

1

� 	
;H2

eAU

2

� 	� 	� 	
;

kaL11; ka
L
12; ka

L
13; ka

L
14; min H1

eAL

1

� 	
;H1

eAL

2

� 	� 	
;min H2

eAL

1

� 	
;H2

eAL

2

� 	� 	� 	
0BB@

1CCA ð11Þ

eeA1⊘
eeA2≅

aU11=a
U
24; a

U
12=a

U
23; a

U
13=a

U
22; a

U
14=a

U
21; min H1

eAU

1

� 	
;H1

eAU

2

� 	� 	
;min H2

eAU

1

� 	
;H2

eAU

2

� 	� 	� 	
;

aL11=a
L
24; a

L
12=a

L
23; a

L
13=a

L
22; a

L
14=a

L
21; min H1

eAL

1

� 	
;H1

eAL

2

� 	� 	
;min H2

eAL

1

� 	
;H2

eAL

2

� 	� 	� 	
0BB@

1CCA ð12Þ

k⊘
eeA1 ¼

k=aU14; k=a
U
13; k=a

U
12; k=a

U
11; min H1

eAU

1

� 	
;H1

eAU

2

� 	� 	
;min H2

eAU

1

� 	
;H2

eAU

2

� 	� 	� 	
;

k=aL14; k=a
L
13; k=a

L
12; k=a

L
11; min H1

eAL

1

� 	
;H1

eAL

2

� 	� 	
;min H2

eAL

1

� 	
;H2

eAL

2

� 	� 	� 	
0BB@

1CCA ð13Þ

Definition 8 An IT2 TrFN eeAi can be defuzzified as follows
[42]:

DTraT
eeAi

� 	
¼

aUi4−aUi1
� �þ H1

eAU

i

� 	
aUi2−aUi1

� 	
þ H2

eAU

i

� 	
aUi3−aUi1

� 	
4

þ aUi1 þ
aLi4−aLi1
� �þ H1

eAL

i

� 	
aLi2−aLi1

� 	
þ H2

eAL

i

� 	
aLi3−aLi1

� 	
4

2664
3775

2
ð14Þ

whereDTraT eeAi

� �
is the defuzzified valued of eeAi. If eAU

i ¼ eAL
i

; then eeAi becomes GTrFN, i.e.,eAi ¼ ai1; ai2; ai3; ai4;H1
eAi

� �
;H2

eAi

� �� �
, which can be

defuzzified as follows:

DTraT eAi

� �
¼

ai4−ai1ð Þ þ H1
eAi

� �
ai2−ai1

� �
þ H2

eAi

� �
ai3−ai1

� �
þ 4ai1

4

ð15Þ

Risk Modeling of Fuzzy Sets and Generalized
Trapezoidal Fuzzy Numbers

In this section, risk modeling of fuzzy sets and GTrFNs is
examined considering various configurations that may arise,
such as negative risk, positive risk, acceptable negative risk,
and acceptable positive risk. Fuzzy set risk modeling is
discussed in “Fuzzy Set Risk Modeling” while the modeling

based on GTrFNs comes in “Generalized Trapezoidal Fuzzy
Number RiskModeling,”with other schemes of riskmodeling
based on fuzzy sets and fuzzy numbers are given in “Other
Configurations of Fuzzy Sets and Generalized Trapezoidal
Fuzzy Number Risk Modeling.”

Fuzzy Set Risk Modeling

This section investigates different schemes of risk modeling
based on fuzzy sets. For this purpose, three cases are consid-
ered: pessimistic, optimistic, and pessimistic-optimistic.
Either of the cases may occur depending on the nature of the
involved risk factors and decision variables [18]. In a pessi-
mistic case, the risk tends to worsen the existing information,
while an optimistic case implies that the risk enhances the
fuzzy information and the pessimistic-optimistic mode is the
general form of fuzzy set risk modeling which is a combina-
tion of the two former cases.
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Pessimistic Approach

Assuming that the risk may only worsen the values of the
fuzzy set membership functions or only the pessimistic values
are considered by the decision-maker, in this case, one may
end up with a pessimistic interval of fuzzy sets. The effect of
these factors is termed negative risk in this paper and denoted

by r−. Let A ¼ x;μeA xð Þjxϵ X
n o

be a fuzzy set of X, a pessi-

mistic set of A can then be formulated as follows by consid-
ering risk r− for the membership function μeA xð Þ:

eAp xð Þ ¼ x; 1−r−ð ÞμeA xð Þ;μeA xð Þ

 �

j xϵ X
� �

; 0 < r− < 1 ð16Þ

where eAP xð Þ represents the pessimistic set of X elements con-
sidering r−.

Generally, one may consider separate risks for the mem-
bership degree of each individual element values, xi ∈ X. For
example, given that the risks ri

− refer to the membership de-
gree of the ith element, i.e., μeA xið Þ, the intended relationship

can be written as follows.

A
≈
Pb xð Þ ¼ xi; 1−ri−ð ÞμeA xið Þ;μeA xið Þ


 �
j; xiϵ X ;∀i i ¼ 1; 2; 3;…; eA


 


� �

; 0 < ri− < 1 ð17Þ

In order to achieve further clarity, we take into account only
a similar risk value for all the membership degrees of a spe-
cific fuzzy set, so we referred to all risks with no indices. See
Example 1.

Optimistic Mode

Now consider a case where effective factors can only improve
the membership grades. We consider these values as usually
dependent on the degree to which the decision-maker is the
optimist. In this mode, the associated risk with the factors
contributing to better solutions is called the positive risk (de-
noted by r+) and the optimistic interval of the membership
function is obtained as follows:

eAO xð Þ ¼ x; μeA xð Þ;min 1þ rþð ÞμeA xð Þ; 1
� 	
 �

jxϵ X
� �

; rþ > 0 ð18Þ

where eAO xð Þ is the set of optimistic values of primary fuzzy
set A.

Pessimistic-Optimistic Approach

In this approach, risk factors are assumed to affect the mem-
bership function both pessimistically (r−) and optimistically
(r+). Accordingly, the solution interval for the membership

function will be developed as in Eq. (32) where eAP−O xð Þ rep-
resents the pessimistic-optimistic interval of the fuzzy set A.

eAP−O xð Þ ¼ x; 1−r−ð ÞμeA xð Þ;min 1þ rþð ÞμeA xð Þ; 1
� 	
 �

jxϵ X
� �

;

0 < r− < 1; rþ > 0

ð19Þ

One may consider a special case with identical r+ and r−

values, implying that chances that the effective factors may
improve or worsen the results are equal. Given that the

optimistic and pessimistic approaches represent special cases
of the optimistic-pessimistic approach with zero r− or r+

values, respectively, the rest of this research keeps focusing
on this general approach (i.e. optimistic-pessimistic) only.

By defining an interval in a simple form, as it is evident
from the Eq. (19), it is implicitly assumed that all of the points
due to risks are identical when their possibility degrees are not
considered. In the presence of risk, the existing and evaluated
membership degree has the highest degree of possibility.
Trying to describe the interval based on this assumption, one
can employ the triangular fuzzy numbers as a measure of the
possibility degree of each point. Representing the optimistic-
pessimistic interval via a TFN gives

eAP−OT xð Þ ¼ x; 1−r−ð ÞμeA xð Þ;μeA;min
�
1þ rþð ÞμeA xð Þ; 1

�� 	
jxϵ X

� �
0 < r− < 1; rþ > 0

ð20Þ

where eAP−OT xð Þ is the triangular fuzzy-valued pessimistic-op-
timistic set of A. See Example 2.

Generalized Trapezoidal Fuzzy Number Risk Modeling

This section presents a discussion on risk modeling of
GTrFNs under various scenarios. Similar to “Fuzzy Set Risk
Modeling,” three scenarios are considered herein: pessimistic,
optimistic, and pessimistic-optimistic modes.

Modeling the Pessimistic Interval of Generalized
Trapezoidal Fuzzy Numbers

As explained in the previous sections, one may take the neg-

ative risk for membership degrees of GTrFNs. Let eA ¼
a1; a2; a3; a4;μeLA;μeRA� �

be an arbitrary GTrFN. Given that

μeLA≠μeRA, different risks can be defined for left- and right-
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hand-side membership degrees, i.e., rL
− for μeLA and rR

− for

μeRA, respectively. Therefore, denoted by eAP, a T2 fuzzy pes-

simistic interval for A considering rL
− and rR

− can be formu-
lated as

eeAP ¼ eA; eAP
� 	

¼ ð a1; a2; a3; a4;μfLA;μfRA
� 	

; a1; a2; a3; a4; 1−rL−ð ÞμfLA; 1−rR−ð ÞμfRA
� 	Þ

0 < rR−; rL− < 1

8>>>>>>><>>>>>>>:
ð21Þ

where eAP
refers to the pessimistic form of A with negative

risks. Figure 1 demonstrates eeAP.

Modeling the Type II Fuzzy Optimistic Interval of Generalized
Trapezoidal Fuzzy Numbers

Following an opposite approach to that followed in the
previous section, an optimistic interval of membership

degrees can be obtained for GTrFN eA by considering
positive risks rL

+ and rR
+ for μeLA and μeRA, respectively,

as follows:

eeAO

¼ eAO
; eA� 	

¼
a1; a2; a3; a4; min 1þ rLþð ÞμfLA; 1

� 	
;min 1þ rRþð ÞμfRA; 1

� 	� 	
;

a1; a2; a3; a4;μfLA;μfRA
� 	

0BBB@
1CCCA

rRþ; rLþ > 0

8>>>>><>>>>>:
ð22Þ

where eAO
and eeAO

are the optimistic modes of eA and optimistic
T2 fuzzy interval, respectively. eeAO

is depicted in Fig. 2.

Modeling the Pessimistic-Optimistic Interval of Generalized
Trapezoidal Fuzzy Numbers

Based on what was mentioned previously, a fuzzy number
may be associated with both optimistic and pessimistic risks

at the same time. In this case, for GTrFN eA, a T2 pessimistic-
optimistic interval, can be defined as follows:

eeAP−O

¼ eAO
; eAP

� 	
¼

a1; a2; a3; a4; min 1þ rLþð ÞμfLA; 1
� 	

;min 1þ rRþð ÞμfRA; 1
� 	� 	

;

a1; a2; a3; a4; 1−rL−ð ÞμfLA; 1−rR−ð ÞμfRA
� 	

0BB@
1CCA

0 < rR−; rL− < 1; rRþ; rLþ > 0

8>>>><>>>>: ð23Þ

where eeAP−O
shows the pessimistic-optimistic mode of eA

which is shown in Fig. 3.
Based on the reasoning explained in “Fuzzy Set Risk

Modeling,” it makes more sense to describe the intervals using
a TFN rather than a simple interval. Given GTrFN

eA ¼ a1; a2; a3; a4;μeLA;μeRA� �
, the TFN-based pessimistic-

optimistic interval of Eq. (27) (herein designated as eeAP−OT
)

is defined as follows:

eeAP−OT

¼
a1; a2; a3; a4; 1−r−ð ÞμfLA; 1−r−ð ÞμfRA

� 	
; a1; a2; a3; a4;μfLA;μfRA
� 	

;

a1; a2; a3; a4; min 1þ rLþð ÞμfLA; 1
� 	

;min 1þ rRþð ÞμfRA; 1
� 	� 	

0BB@
1CCA

0 < rR−; rL− < 1; rRþ; rLþ > 0

8>>>><>>>>: ð24Þ
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Other Configurations of Fuzzy Sets and Generalized
Trapezoidal Fuzzy Number Risk Modeling

When it comes to the risk of a membership function, there
are chances that cases other than those discussed in the
previous sections arise due to the nature of risk itself; an

example of this scenario is the acceptable risk by deci-
sion-makers. Hence, here, all other modes in fuzzy sets
and numbers are discussed and obtained relations of
“Fuzzy Se t Ri sk Mode l ing” and “Genera l i zed
Trapezoidal Fuzzy Number Risk Modeling” are modified
based on it.

Acceptable (Tolerable) Risk

Figure 3 implies that, with increasing the risk, an extended
range of membership degree is considered, implying further
uncertainty and lower value of available information. As a
common practice in most decision-making problems, the
decision-maker tends to accept a certain level of risk up to
which he/she can tolerate the risk. Being dependent on the
risk-taking behavior of the decision-maker and the specific
problem at hand, this behavior is generally referred to as the
risk appetite of the decision-maker [26]. Denoting the accept-
able risk by AR, positive and negative degrees of risk-taking
can be indicated by AR+ and AR−, respectively. Accordingly,
Eqs. (19) and (24) will be modified as follows.

eAP−ObT xð Þ ¼ x; 1−r− 1−AR−ð Þð ÞμeA xð Þ;μeA;min
�
1þ rþ 1−ARþð Þð ÞμeA xð Þ; 1

�� 	
jxϵ X

� �
ð25Þ

eeAP−OT

¼
a1; a2; a3; a4; 1−r− 1−AR−ð Þð ÞμfLA; 1−r− 1−AR−ð Þð ÞμfRA

� 	
; a1; a2; a3; a4;μfLA;μfRA
� 	

;

a1; a2; a3; a4; min 1þ rLþ 1−ARþð Þð ÞμfLA; 1
� 	

;min 1þ rRþ 1−ARþð Þð ÞμfRA; 1
� 	� 	

0BB@
1CCA ð26Þ

where 0 < rR
−, rL

− < 1 and rR
+, rL

+ > 0.
The AR is expressed as a number between 0 and 1. Figure 4

indicates how different are pessimistic-optimistic intervals
with and without considering AR for an arbitrary membership
degree μ.

All of the possible scenarios regarding the risk modeling of
a membership function are presented in Fig. 5.

Fig. 1 The pessimistic T2 fuzzy interval for describing eeAP considering
the negative risks for μeLA and μeRA

Fig. 2 The T2 fuzzy optimistic interval for describing eeAO
considering the

positive risks for μeLA and μeRA Fig. 3 The T2 fuzzy pessimistic-optimistic interval for describing eeAP−O

considering both the positive and negative risks for μeLA and μeRA
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The Proposed Risk-Based Fuzzy Cognitive
Model

In fuzzy decision-making problems, the accuracy of the re-
sults highly depends on the information quality, which con-
sists of completeness, accuracy, consistency, and the credibil-
ity of information. As discussed previously, unforeseen risk
factors tend to deviate fuzzy information from the actual data.
Different approaches to risk modeling in fuzzy sets and sys-
tems were discussed in “Risk Modeling of Fuzzy Sets” and
“Generalized Fuzzy Numbers.” The present section sets out a
risk-based fuzzy cognitive approach to be applied on fuzzy
sets and GTrFNs in the pessimistic-optimistic scheme based
on all risk configurations, e.g., positive, negative, and accept-
able risks. This new concept is deemed useful for the decision-
making problems where the membership degrees are associ-
ated with risks and errors. “Definitions and Operations” pre-
sents new algebraic operations for our newmodel based on T1
and T2 FSs. In order to demonstrate the capabilities of the
proposed concept, an MCDM framework based on the

combination of the FTOPSIS method and this new concept
is developed in “RFC-TOPSIS Method.”

Definitions and Operations

For an arbitrary fuzzy set {〈x, μ〉}, the corresponding risk-
based fuzzy cognitive model (RFC(x)) on X is defined based
on a pessimistic-optimistic membership function, eμRFC, con-
sidering the entire set of risks, R, i.e., negative and positive
risks and acceptable negative and positive risks:

R ¼ r−; rþ;AR−;ARþf g ð27Þ
RFC xð Þ ¼ x;μ;Rf g ¼ x; eμRFC

n o
for x∈X ð28Þ

where

eμRFC ¼ μRFC1;μRFC2;μRFC3ð Þ
μRFC1 ¼ 1−r− 1−AR−ð Þð Þμ

μRFC2 ¼ μ
μRFC3 ¼ 1þ rþ 1−ARþð Þð Þμ

0 < rR−; rL− < 1; rRþ; rLþ > 0

8>>>><>>>>: ð29Þ

and μRFC1 : X→ [0, 1], μRFC1 : X→ [0, 1], and μRFC3 :
X→ [0, 1].

The same algebraic operations as those applied to fuzzy sets
(e.g., union, intersection) can be developed for the proposed
model. For the proposed risk-based fuzzy cognitive sets asso-
ciated with A and B (designated as RFCA xð Þ ¼ x; eμRFCAh if g,
and RFCB xð Þ ¼ x; eμRFCBh if g, respectively), some of the main
operations can be defined as follows.

Union:

RFCA xð Þ∪RFCB xð Þ ¼ x;max eμRFCA; eμRFCB

� �D En o
¼ x; max μRFC1A;μRFC1Bð Þ;max μRFC2A;μRFC2Bð Þ;max μRFC3A;μRFC3Bð Þð Þð Þh if g

ð30Þ

Fig. 4 The fuzzy pessimistic-optimistic interval for a membership
degree μ with and without considering AR

Fig. 5 All of the possible
configurations of taking risks of a
membership function
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Intersection:

RFCA xð Þ∩RFCB xð Þ ¼ x;min eμRFCA; eμRFCB

� �D En o
¼ x; min μRFC1A;μRFC1Bð Þ;min μRFC2A;μRFC2Bð Þ;min μRFC3A;μRFC3Bð Þð Þð Þh if g

ð31Þ

Complement:

RFCA xð Þ ¼ x;μRFCA

D En o
¼ x; 1−μRFC3; 1−μRFC2; 1−μRFC1ð Þh if g ð32Þ

⊕−Sum:

RFCA xð Þ⊕RFCB xð Þ ¼ x; eμRFCA þ eμRFCB−eμRFCAeμRFCB

D En o
¼ x; eμRFC1A þ eμRFC1B−eμRFC1AeμRFC1B; eμRFC2A þ eμRFC2B−eμRFC2AeμRFC2B; eμRFC3A þ eμRFC3B−eμRFC3AeμRFC3B

� �D En o ð33Þ

⊗−Sum

RFCA xð Þ⊗RFCB xð Þ ¼ x; eμRFCA:eμRFCB

D En o
¼ x; eμRFC1A:eμRFC1B; eμRFC2A:eμRFC2B; eμRFC3A:eμRFC3B

� �D En o
ð34Þ

All of the above-mentioned operations can be easily proven
based on the operations applicable to basic fuzzy sets and
TFNs. See also Example 4.

Proposed Model of Generalized Trapezoidal Fuzzy
Numbers

The risk-based fuzzy cognitive form of an arbitrary GTrFN eA
¼ a1; a2; a3; a4;μeLA;μeRA� �

is a T2 fuzzy number designated

as RS eA� �
. RS eA� �

can be defined based on the governing

equations and parameters of the proposed risk-based ap-
proach, such as rL

−, rR
−, rL

+, rR
+, AR− , and AR+, respectively.

Mathematically, RS eA� �
is written as

RS eA� �
¼ a1; a2; a3; a4; eμL

SA; eμR

SA

� 	
ð35Þ

where

eμL

SA ¼ μL
S1;μ

L
S2;μ

L
S3

� �
eμR

SA ¼ μR
S1;μ

R
S2;μ

R
S3

� �
8<: ð36Þ

and

μL
SA1 ¼ 1−rL− 1−AR−ð Þð Þ:μLA

μL
SA2 ¼ μLA
μL

SA3 ¼ min 1þ rLþ 1−ARþð Þð Þ:μLA; 1ð Þ
μR

SA1 ¼ 1−rR− 1−AR−ð Þð Þ:μRA
μR

SA2 ¼ μRA
μR

SA3 ¼ min 1þ rRþ 1−ARþð Þð Þ:μRA; 1ð Þ

8>>>>>><>>>>>>:
ð37Þ

Suppose RS eA� �
¼ a1; a2; a3; a4; eμL

SA; eμR
SA

� �
and

RS eB� �
¼ b1; b2; b3; b4; eμL

SB; eμR
SB

� �
, then employing alge-

braic operators of T2 FSs and TFNs, one can obtain

RS eA� �
⊕RS eB� �

¼ a1 þ b1; a2 þ b2; a3 þ b3; a4 þ b4ð Þ; min eμL

SA; eμL

SB

� 	
;min eμR

SA; eμR

SB

� 	� 	
¼

a1 þ b1; a2 þ b2; a3 þ b3 þ a4 þ b4ð Þ; min μL
S1A;μ

L
S1B

� �
;
�
min μL

S2A;μ
L
S2B

� �
;min μL

S3A;μ
L
S3B

� �� �
;

min μR
S1A;μ

R
S1B

� �
;
�
min μR

S2A;μ
R
S2B

� �
;min μR

S3A;RS3B
� �� �� �0@ 1A ð38Þ

RS eA� �
⊖RS eB� �

¼ a1−b4; a2−b3; a3−b2; a4−b1ð Þ; min eμL

SA; eμL

SB

� 	
;min eμR

SA; eμR

SB

� 	� 	
¼

a1−b1; a2−b2; a3−b3; a4−b4ð Þ; min μL
S1A;μ

L
S1B

� �
;
�
min μL

S2A;μ
L
S2B

� �
;min μL

S3A;μ
L
S3B

� �� �
;

min μR
S1A;μ

R
S1B

� �
;
�
min μR

S2A;μ
R
S2B

� �
;min μR

S3A;RS3B
� �� �� �0@ 1A ð39Þ
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k⊗RS eA� �
¼ ka1; ka2; ka3; ka4ð Þ; eμL

SA; eμR

SA

� 	
; if k is ordinary number ð40Þ

RS eA� �
⊗RS eB� �

≅ a1:b1; a2:b2; a3:b3; a4:b4ð Þ; min eμL

SA; eμL

SB

� 	
;min eμR

SA; eμR

SB

� 	� 	
¼

a1:b1; a2:b2; a3:b3; a4:b4ð Þ; min μL
S1A;μ

L
S1B

� �
;
�
min μL

S2A;μ
L
S2B

� �
;min μL

S3A;μ
L
S3B

� �� �
;

min μR
S1A;μ

R
S1B

� �
;
�
min μR

S2A;μ
R
S2B

� �
;min μR

S3A;RS3B
� �� �� �0@ 1A ð41Þ

RS eA� �
⊘RS eB� �

≅ a1=b4; a2=b3; a3=b2; a4=b1ð Þ; min eμL

SA; eμL

SB

� 	
;min eμR

SA; eμR

SB

� 	� 	
¼

a1=b4; a2=b3; a3=b2; a4=b1ð Þ; min μL
S1A;μ

L
S1B

� �
;
�
min μL

S2A;μ
L
S2B

� �
;min μL

S3A;μ
L
S3B

� �� �
;

min μR
S1A;μ

R
S1B

� �
;
�
min μR

S2A;μ
R
S2B

� �
;min μR

S3A;RS3B
� �� �� �0@ 1A ð42Þ

k⊘RS eA� �
≅ k=a4; k=a3; k=a2; k=a1ð Þ; eμL

SA; eμR

SA

� 	
; if k is ordinary number ð43Þ

RS eA� �
can be defuzzified through Eqs. (44) and (45). The

first round of defuzzification of RS eA� �
using Eq. (15) gives

D1 RS eA� �� �
¼ a1 þ μL

S1Aa2 þ μR
S1Aa3 þ a4

4
;
a1 þ μL

S2Aa2 þ μR
S2Aa3 þ a4

4
;
a1 þ μL

S3Aa2 þ μR
S3Aa3 þ a4

4

� 	
ð44Þ

However, given that the obtained value is still fuzzy in
nature, a second defuzzification round may be practiced on

the basis of the COA method (Eq. (4)) to come with the final
crisp value:

D2 RS eA� �� �
¼

a1 þ μL
S1A þ μL

S2A þ μL
S3A

3

� 	
a2;

μR
S1A þ μR

S2A þ μR
S3A

3

� 	
a3 þ a4

4
ð45Þ

Other operations (e.g., aggregation and normalization) can
also be defined on this basis easily.

RFC-TOPSIS Method

As of current, a variety of FTOPSIS methods have been
proposed [43, 44] for multi-attribute decision-making
problems. The present study lays out a novel FTOPSIS
method, namely, risk-based fuzzy cognitive TOPSIS mod-
el (RFC-FTOPSIS). The following are different steps of
this new methodology.

Step 1. Forming the fuzzy decision and weight matrices

In this step, m alternatives with respect to n criteria are
evaluated and the decision matrix based on GTrFNs and the
fuzzy criteria weights are determined, which are denoted aseDk and eW , respectively.

eDk ¼ esk ij
 �
m�n

i ¼ 1;…;m; j ¼ 1;…; n ð46Þ

eW ¼ ewi

h i
1�n

ð47Þ

where esk ij is the fuzzy evaluation of the ith alternative respect
t o t h e j t h a t t r i b u t e b y k t h e x p e r t a n desk ij ¼ s1ij; s2ij; s3ij; s4ij;μLij;μRij

� �
.
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Step 2. Determining the risk matrix

In the second step, for evaluating the risk factors, the positive
and negative risk matrices of m alternatives with respect to n
criteria are determined based on each decision-maker’s opinions.

Rk ¼ Rk
− jRk

þ� � ð48Þ
Rk

− ¼ r−ijk
� �

m�n ð49Þ

Rk
þ ¼ rþij

k
h i

m�n
ð50Þ

where Rk denotes the riskmatrix of the kth decision-maker and
Rk

+ and R−
k are the positive and negative risk matrices, respec-

tively. In the above relations, r−ij
k and r−ij

k are negative and
positive risks related to μLij, μRij in assessing the ith alternative
with respect to the jth criterion by the kth decision-maker.

Step 3. Determining AR matrix

Now, focusing on experts’ opinions and organizational
goals, the AR matrix of the n criteria is specified. In this case,
AR+ and AR− refer to the positive and negative AR matrices,
respectively

AR ¼ AR− jARþ� � ð51Þ
ARþ ¼ ARþ

j
� �

1�n ð52Þ
AR− ¼ AR−

j
� �

1�n ð53Þ

Step 4. Defining the risk-based fuzzy cognitive decision
matrix (RS

k)

In a fourth step, a risk-based fuzzy cognitive decision ma-

trix is formed. Given the GTrFN esk ij in Eq. (46), risk matrix
Eq. (48), and acceptable risk matrices Eq. (51), the risk-based

GTrFNs, i.e., RS
k esij� �

, and the corresponding matrix, RS
k, can

be obtained as follows:

RS
k ¼ RS

k esij� �h i
m�n

ð54Þ

Step 5. Aggregating the decision matrix RS
k

Subsequently,RS
k should be aggregated to giveRS

Tas follows:

RS
T ¼ 1

K
⊕K

k¼1RS
k ð55Þ

where RS
T ¼ RS

T esij� �� �
m�n and RS

T esij� �
denotes the aggregat-

ed risk-based GTrFNesij.
Step 6. Weighting the decision matrix

Now, the weighted aggregated matrix is obtained (RS
W) by

employing Eqs. (56) and (57).

RS
W ¼ RS

W esij� �h i
m�n

ð56Þ

∀i; j RW
S esij� �

¼ ewj⊗RS
T esij� �

ð57Þ

in which RS
W esij� �

is weighted aggregated risk-based GTrFNesij.
Step 7. Normalizing the weighted decision matrix

In this step, the matrix elements should be normalized. If

RS
W esij� � ¼ s1ij; s2ij; s3ij; s4ij; eμLSij; eμRSij

� �
, the normalized

matrix is defined using Eq. (58).

RS
N ¼ RS

N esij� �h i
m�n

ð58Þ

where RS
N denotes the normalized matrix and RS

N esij� �
is the

normalized value of RS
W esij� �

which is obtained as follows:

RS
N esij� �

¼ s1ij
cþi

;
s2ij
cþi

;
s3ij
cþi

;
s4ij
cþi

; eμLSij; eμRSij

� 	
; cþi ¼ max

j
s4ij for beneficial criterion

RS
N esij� �

¼ a−i
s1ij

;
a−i
s2ij

;
a−i
s3ij

;
a−i
s4ij

; eμLSij; eμRSij

� 	
; a−i ¼ min

j
s1ijfor non−beneficial criterion

8>>>>>><>>>>>>:
ð59Þ

Step 8. Defuzzifying the normalized decision matrix

Now to convert RS
N to simple fuzzy decision matrix, each

RS
N esij� �

should be one time defuzzified. This can be done

using Eq. (44), and then we have

D1 RS
N� � ¼ D1 RS

N esij� �� �h i
m�n

ð60Þ

and
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D1 RS
N esij� �� �

¼ a1ij; a2ij; a3ij
� � ð61Þ

In these relations,D1(RS
N) is the defuzzified matrix and D1

RS
N esij� �� �

is a one-time defuzzified value of RS
N esij� �

.

Step 9. Specifying the FPISs and FNISs

In this step, for each attribute the fuzzy positive ideal solu-
tions (FPISs)A+ and fuzzy negative ideal solutions (FNISs)A−

should be obtained by employing Eqs. (62) and (65):

Aþ ¼ evþ1 ;evþ2 ;…evþn� �
A− ¼ ev−1 ;ev−2 ;…ev−nn o

8><>: ð62Þ

where by considering D1 RS
N esij� �� � ¼ a1ij; a2ij; a3ij

� �
, we

have

evþj ¼ maxia1ijev−j ¼ minia3ij

8<: ð63Þ

Step 10. Determining distance of each choice from FPISs
and FNISs

The distances between each choice from each FPIS and
each FNIS are denoted by dþi and d−i , respectively, and can
be calculated by using Eq. (64):

dþi ¼ ∑
n

j¼1
d euij;evþj� 	

; i ¼ 1; 2;…;m

d−i ¼ ∑
n

j¼1
d euij;ev−j� �

; i ¼ 1; 2;…;m

8>><>>: ð64Þ

in which the distance between two TFNs eA ¼ a11; a12; a13ð Þ
and eB ¼ a21; a22; a23ð Þ can be described via Eq. (65) [23]:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

3

� 	
a11−a21ð Þ2 þ a12− a22ð Þ2 þ a13−a23ð Þ2

h is
ð65Þ

Step 10. Computing the closeness coefficient

Eventually, the following equation provides the closeness
coefficient (CCi) for the ith option:

CCi ¼ d−i
d−i þ dþi

i ¼ 1; 2;…;m ð66Þ

Fig. 6 Flowchart of proposed RFC-TOPSIS

Table 2 The evaluation matrix of an expert

AR− = 0.10, AR+ = 0.2 AR− = 0, AR+ = 0.3 AR− = 0.2, AR+ = 0.3

ID O r− r+ S r− r+ D r− r+

F1 (0.72,0.78,0.92,0.97;0.9,1) 0.1 0.2 (0.58,0.63,0.8,0.86;0.8,0.9) 0 0.2 (0.17,0.22,0.36,0.42;0.8,1) 0.3 0.1

F2 (0.0,0.0,0.02,0.07;1,0.7) 0.2 0.3 (0.32,0.41,0.58,0.65;0.8,1) 0.25 0 (0.8,0.9,0.9,0.95;0.8,0.9) 0.2 0.5

F3 (1,1,1,1;1,1) 0 0.5 (0.0,0.0,0.02,0.07;1,0.7) 0.1 0 (0.93,0.98,1,1;1,1) 0 0

F4 (0.93,0.98,1,1;1,1) 0 0 (1,1,1,1;1,1) 0 0 (0.0,0.0,0.02,0.07;1,0.7) 0.2 0.2

F5 (0,0,0,0;1,1) 0 0.05 (0.17,0.22,0.36,0.42;0.8,1) 0.4 0.2 (0.8,0.9,0.9,0.95;0.8,0.9) 0.1 0.1

F6 (0.17,0.22,0.36,0.42;0.8,1) 0.5 0.1 (0.8,0.9,0.9,0.95;0.8,0.9) 0 0 (0,0,0,0;1,1) 0.25 0
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Step 11. Ranking the alternatives

In this step, the alternatives are ranked descending accord-
ing to CCi. The steps of the proposed RFC-TOPSIS method
are depicted in Fig. 6.

Illustrative Example and Comparisons

In this section, to demonstrate capabilities of the proposed
RFC-TOPSIS method in solving decision-making problems
under risk and uncertainty, a case study of FMEA is presented
with the results of different scenarios compared.

Case Study (FMEA Analysis)

As a popular industrial analysis technique, FMEA works by
ranking potential failure modes based on so-called Risk
Priority Number (RPN) measure. The RPN is evaluated by
multiplying the risk factors, i.e., occurrence (O), severity (S),
and detection (D) [45]. Given that this analysis is frequently
performed prior to actually designing the process or the prod-
uct, the risk factors are extremely difficult to predict accurately
[17]. The proposed RFC-TOPSIS model was evaluated on an
ocean-fishing vessel as a case study. For this purpose, FMEA
was performed on structure, propulsion, electrical, and auxil-
iary systems of the vessel. Possible failure of each of these

systems may end up with injuries and/or other negative im-
pacts. For each failure mode, the entire spectrum of signals
and warnings were investigated. Table 2 presents GTrFN-
based assessments for different failure modes with respect to
different risk factors by one expert. Being doubtful due to
information deficiency, the expert assigned two values (i.e.,
positive and negative risks) to each risk factor. The acceptable
negative and positive risks of each criterion were determined
based on the organizational goals and expert opinions
(Table 2).

As a first step, Eqs. (36) and (37) were employed to calcu-
late the risk-based fuzzy cognitive form of each evaluation
(Table 3). Next, the evaluations were subjected to
defuzzification via Eq. (44) and a simple fuzzy decision ma-
trix was built based on TFNs (Table 4). Subsequently, CCi

values were obtained by calculating the distance from FPISs
and FNISs, respectively. Results of the ranking procedure are
presented in Table 5. Moreover, in order to show the effective-
ness of the proposed model to capture various scenarios of the
problem, four other cases are investigated as follows:

Case 1: Only optimistic mode (positive risk) is
considered.
Case 2: Only pessimistic mode (negative risk) is
considered.
Case 3: AR is equal to zero.
Case 4: The problem is risk-free.

Table 3 The obtained risk-based fuzzy cognitive form of each evaluation

ID O S D

F1 (0.72,0.78,0.92,0.97; (0.819,0.9,1), (0.91,1,1)) (0.58,0.63,0.8,0.86; (0.8,0.8,0.928),
(0.9,0.9,1))

(0.17,0.22,0.36,0.42; (0.632,0.8,0.872),
(0.79,1,1))

F2 (0.0,0.0,0.02,0.07; (0.82,1,1), (0.574,0.7,1)) (0.32,0.41,0.58,0.65; (0.6,0.8,0.8), (0.75,1,1)) (0.8,0.9,0.9,0.95; (0.688,0.8,1), (0.774,0.9,1))

F3 (1,1,1,1; (0.82,1,1), (0.82,1,1)) (0.0,0.0,0.02,0.07; (0.9,1,1), (0.63,0.7,1)) (0.93,0.98,1,1; (1,1,1), (1,1,1))

F4 (0.93,0.98,1,1; (0.82,1,1), (0.82,1,1)) (1,1,1,1; (1,1,1), (1,1,1)) (0.0,0.0,0.02,0.07; (0.86,1,1), (0.602,0.7,1))

F5 (0,0,0,0; (1,1,1), (1,1,1)) (0.17,0.22,0.36,0.42; (0.48,0.8,0.928),
(0.6,1,1))

(0.8,0.9,0.9,0.95; (0.744,0.8,0.872),
(0.8370.9,1))

F6 (0.17,0.22,0.36,0.42; (0.44,0.8,0.864),
(0.55,1,1))

(0.8,0.9,0.9,0.95; (0.8,0.8,0.8), (0.9,0.9,1)) (0,0,0,0; (0.825,1,1), (0.825,1,1))

Table 4 The obtained fuzzy
decision matrix ID O S D

F1 (0.7915,0.828,0.8475) (0.666,0.666,0.7062) (0.25336,0.2815,0.28546)

F2 (0.02037,0.021,0.0225) (0.41275,0.4695,0.4695) (0.76645,0.82,0.8875)

F3 (0.91,1,1) (0.02065,0.021,0.0225) (0.9775,0.9775,0.9775)

F4 (0.8884,0.9775,0.9775) (1,1,1) (0.02051,0.021,0.0225)

F5 (0,0,0) (0.2279,0.2815,0.28854) (0.793225,0.82,0.8587)

F6 (0.2212,0.2815,0.28502) (0.82,0.82,0.8425) (0,0,0)
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Table 5 and Fig. 7 present the results of the four above-
described cases, indicating discrepancies resulting from dif-
ferent risk configurations in the problem.

Results

Generally speaking, in future-based problems, predicted input
data for processing are sometimes associated with risks and
errors. Although such data can be adequately expressed using
fuzzy sets and numbers, risks of this information can be con-
sidered as a confidence factor. By reviewing the results, it can
be seen that the slight different outcomes were obtained from
the presented case study when the RFC-TOPSISmethodology
was applied, highlighting flexibility and efficiency of the
methodology when it comes to risk-related problems.
Considering the risk for evaluating the RPN, as compared to
the risk-free case, has led to change in the results, e.g., the
criticality of F3 decreases from rank 1 in the risk-free case to
rank 2. It could be noted that considering the risk results in a
more precise, reliable, and robust manner results in the risk-
free case and it is obvious that it does not add the processing
load considerably.

By reviewing the closeness coefficient values of different
scenarios, it is inferred that by assuming the identical values of

FPISs and FNISs in each scenario, the closeness coefficient of
the proposed model is always between optimistic and pessi-
mistic cases and lower than the free-risk mode, i.e., we have

CCi
Pessimistic≤CCi

Proposed risk−based fuzzy cognitive≤CCi
Without risk≤CCi

Optimistic

ð67Þ

Finally, ranking results show a higher impact of optimistic
risk on results than other cases, since the failure modes have
become more critical.

Conclusion

Fuzzy sets can well represent the ambiguities and uncer-
tainties of human cognitive information; however, in some
decision-making problems, particularly those focusing on fu-
ture events, usually, some percentage of risk and error exists
about the predicted fuzzy data, which cannot be modeled by
classical fuzzy sets. Therefore, the present research developed
a new risk-based fuzzy cognitive model for describing the risk
associated with the fuzzy sets and generalized fuzzy numbers.
Moreover, such concepts as risk appetite (risk-taking degree)
were considered to model the proposed methodology in a
better and more realistic manner. Considering the novelties

Table 5 Comparison of different
scenarios ID Default case Optimistic mode Pessimistic mode AR = 0 Without risk

CCi Rank CCi Rank CCi Rank CCi Rank CCi Rank

F1 0.591 3 0.599 3 0.587 3 0.59 3 0.594 3

F2 0.431 4 0.444 4 0.427 4 0.429 4 0.439 4

F3 0.652 2 0.666 1 0.652 1 0.65 2 0.6663 1

F4 0.653 1 0.666 1 0.653 2 0.652 1 0.6663 1

F5 0.3634 6 0.3722 5 0.361 6 0.362 6 0.3696 5

F6 0.3636 5 0.37 6 0.3632 5 0.363 5 0.3696 5

3 3 3 3 3

4 4 4 4 4

2

1 1

2

11 1

2

1 1

6

5

6 6

55

6

5 5 5

D E F A U L T  C A S E C A S E  1      
( O P T I M I S T I C  

M O D E )

C A S E  2       
( P E S S I M I S T I C  

M O D E )

C A S E  3  ( A R = 0 ) C A S E  4                                    
( W I T H O U T  R I S K )

F1 F 2 F3 F4 F5 F6

Fig. 7 Comparison of different ranking results in different scenarios
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of this new concept, one may refer to the definition of positive
and negative risks and the pessimistic and optimistic intervals
of a membership function in the form of TFNs. Since the
proposed model can be used to address various risk scenarios,
it gives to organizations and decision-makers flexibility to
define various parameters like the acceptable degree of
positive/negative risk in real applications. Finally, a new ap-
proach called RFC-TOPSIS methodology was developed for
solving MCDM problems, followed by presenting a case
study of FMEA to demonstrate the efficiency of the proposed
methodology. Based on the results of this study, the proposed
methodology is highly recommended for problems requiring
high levels of precision, such as safety or environment-related
problems where a wrong decision is likely to end up with
serious consequences. In addition, it can be used in decision
problems in which data are related to the future along with risk
and ambiguity including project management, portfolio selec-
tion, and climate changes.

As is discussed in “Introduction,” the mental factors of
experts affect the reliability of the obtained information, since
the risk values themselves are extracted by the experts, and
there are differences in their risk perceptions (i.e., the higher
risk values are reported by pessimist experts and the lower
values by optimistic experts); it is recommended to employ
consensus-reaching models in group decision problems to re-
duce the effects of miscognition through social influence [46].
Additionally, in this study, crisp values were obtained directly
by the experts, which is not always a true assumption. The
precise value of negative and positive risks of future predic-
tions are not always in hand, so it can be expressed by using
fuzzy information, which can be mentioned as a future direc-
tion of this study. Moreover, the risk-based fuzzy cognitive
model was employed only for T1 fuzzy information that can
be applied to other fuzzy models (e.g., intuitionistic fuzzy sets,
hesitant fuzzy sets, and interval-valued fuzzy sets) and another
future research work for modeling risks of aforementioned
uncertainties.
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Appendix

Example 1. Letting the risks associated with membership
function and set elements of a reference set X and the

fuzzy set eA as rμ
− = 0.3 and rx

− = 0.2,respectively, the

pessimistic set eAPb can be obtained as follows.

X ¼ 1; 2; 3; 4f g
A ¼ 1; 0:2ð Þ; 2; 0:4ð Þ; 3; 0:5ð Þ; 4; 0:7ð Þf geAP ¼ 1; 0:14; 0:2½ �ð Þ; 2; 0:28; 0:4½ �ð Þ; 3; 0:35; 0:5½ �ð Þ; 4; 0:49; 0:7½ �ð Þf g

Example 2. Taking the X and fuzzy set eA of Example 1
and assuming the risks of membership function as r− =

0.3 and r+ = 0.2, the pessimistic-optimistic set eAP−OT xð Þ
can be written as follows.

X ¼ 1; 2; 3; 4f geA ¼ 1; 0:2ð Þ; 2; 0:4ð Þ; 3; 0:5ð Þ; 4; 0:7ð Þf g

eeAP−OT xð Þ ¼ 1; 0:14; 0:2; 0:24ð Þð Þ; 2; 0:28; 0:4; 0:48ð Þð Þ
; 3; 0:35; 0:5; 0:6ð Þð Þ; 4; 0:49; 0:7; 0:84ð Þð Þ

8>><>>:
9>>=>>;

Example 3. Suppose GTrFN eA ¼ 1; 2; 3; 4; 0:4; 0:6ð Þ
and rL

− = 0.2, rR
− = 0.3, rL

+ = 0.3 and rR
+ = 0.2 , eeAP−OT

is determined as follows:

eA ¼ 1; 2; 3; 4; 0:4; 0:6ð Þ; rL− ¼ 0:2; rR− ¼ 0:3; rLþ ¼ 0:3 rRþ ¼ 0:2eeAP−OT

¼ 1; 2; 3; 4; 0:32; 0:42ð Þ; 1; 2; 3; 4; 0:4; 0:6ð Þ; 1; 2; 3; 4; 0:52; 0:72ð Þð Þ

Example 4. By letting ={1}, A = {(1,0.2)}, B = {(1,0.5)},
RA = {0.3, 0.4, 0.2, 0.1}, and RB = {0.2, 0.1, 0.2,
0.1},then we have

A ¼ 1; 0:2ð Þf g; r−A ¼ 0:3; rþA ¼ 0:3;ARA
− ¼ 0:2 and ARþ

A ¼ 0:1 →RFCA xð Þ ¼ 1; 0:152; 0:2; 0:254ð Þð Þf g
B ¼ 1; 0:5ð Þ; r−B ¼ 0:2; ?rþB ¼ 0:1;AR−

B ¼ 0:2 and ARþ
A ¼ 0:1 →RFCB xð Þ ¼ 1; 0:42; 0:5; 0:545ð Þð Þ

RFCA xð Þ∪RFCB xð Þ ¼ 1; 0:42; 0:5; 0:545ð Þð Þf g
RFCA xð Þ∩RFCB xð Þ ¼ 1; 0:152; 0:2; 0:254ð Þð Þf g
RFCA xð Þ⊕RFCB xð Þ ¼ 1; 0:5082; 0:6; 0:6606ð Þð Þf g
RFCA xð Þ⊗RFCB xð Þ ¼ 1; 0:0638; 0:1; 0:13843ð Þð Þf g
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