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Abstract
There is a growing interest in using generative adversarial networks (GANs) to produce image content that is
indistinguishable from real images as judged by a typical person. A number of GAN variants for this purpose have been
proposed; however, evaluating GAN performance is inherently difficult because current methods for measuring the quality
of their output are not always consistent with what a human perceives. We propose a novel approach that combines a
brain-computer interface (BCI) with GANs to generate a measure we call Neuroscore, which closely mirrors the behavioral
ground truth measured from participants tasked with discerning real from synthetic images. This technique we call a neuro-
AI interface, as it provides an interface between a human’s neural systems and an AI process. In this paper, we first compare
the three most widely used metrics in the literature for evaluating GANs in terms of visual quality and compare their outputs
with human judgments. Secondly, we propose and demonstrate a novel approach using neural signals and rapid serial visual
presentation (RSVP) that directly measures a human perceptual response to facial production quality, independent of a
behavioral response measurement. The correlation between our proposed Neuroscore and human perceptual judgments has
Pearson correlation statistics: r(48) = − 0.767, p = 2.089e−10. We also present the bootstrap result for the correlation i.e.,
p ≤ 0.0001. Results show that our Neuroscore is more consistent with human judgment compared with the conventional
metrics we evaluated. We conclude that neural signals have potential applications for high-quality, rapid evaluation of GANs
in the context of visual image synthesis.

Keywords Generative adversarial networks · Rapid serial visual presentation · Human judgments · Brain-computer
interface · Neuro-AI interface

Introduction

Artificial intelligence (AI) has significant impact on society
yet research into the interaction between humans and AI
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deserves further exploration and has only recently become
a research focus. Cognitive computation provides a way of
using cognitively inspired techniques to solve a variety of
real-world problems, and these become especially useful
when the interface between an AI system and a human is
via a brain-computer interface. Abbass [1] recently explored
the last 50 years of the human-AI relationship with a focus
on how the development of trust between the parties has
been essential. He also covered the emergence of direct
brain-computer interfaces based on electroencephalography
(EEG).

As EEG can be the direct reflection of a human’s mental
processes, the use of EEG is widely studied and deployed
in the cognitive computation literature, for example by [10,
24]. It has been demonstrated recently that EEG can be
used effectively for reading emotion [24] and that a spiking
neural network framework can be used to analyze a human’s
attention to a task by using EEG [10]. In this paper, we
demonstrate a type of neuro-AI interface derived from
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cognitive computational perspective (as seen in Fig. 1),
which uses neural signals, in this case EEG, to score the
performance of generative adversarial networks (GANs).
The relevance between our work and the existing literature
such as [10, 24] is that a processing pipeline has been
developed and demonstrated for transforming EEG signals
into a value (score or accuracy), and this value matches
well a human’s cognitive response to a specific class of
stimulus, in our case an artificially generated facial image.
Moreover, our work contains experimental details and
provides neuroscientific interpretation in the comparison
of our EEG-based technique to existing approaches in the
literature.

GANs [13] are attracting increasing interests across
many different computer vision applications, for example
the generation of plausible synthetic images [2, 5, 20,
32], image-to-image translation [19, 48], and simulated
image refinement [34]. Despite the extensive work and
the many different GAN models reported in the literature,
evaluation of the performance of GANs is still challenging.
Some comprehensive reviews for GAN evaluation are
available including work in [7, 40, 46], and in summary,
the evaluation for GANs is divided into two main
types, qualitative and quantitative. The most representative
qualitative metric is to use human annotation to determine
the visual quality of the generated images. Quantitative
metrics compare statistical properties between generated
and real images. Both approaches have strengths and
limitations.

Qualitative metrics generally focus on how convincing
the image is from a human perceptual perspective rather
than detecting overfitting, mode dropping, and mode
collapsing problems [30]. Human annotation approaches are
also time-consuming because they require asking evaluators
to generate behavioral responses on an image-by-image
basis.

Quantitative metrics in contrast are less subjective, but
the psychoperceptual basis of image quality assessment is
not well represented in such metrics; hence, the robustness
of their performance is compromised. As a result, the field
of research around evaluation methodologies for GANs
is still developing and presents opportunities for new
approaches. One such approach which we propose is the
introduction of a neuro-AI interface that uses brain signals
for image evaluation in the context of a brain-computer
interface.

A brain-computer interface (BCI) is a communication
system in which an individual sends signals to the external
world without using the brain’s normal output pathways of
peripheral nerves and muscles [45]. While there are several
key BCI applications [15, 23, 35], there is a growing interest
in using EEG signals in a BCI to help in searching through
sets of images. This is based on estimating image content by
examining participants’ neural signals in response to image
presentation. The concept of rapid serial visual presentation
(RSVP) can be introduced using a familiar example, that
of rapidly riffling through the pages of a book in order to
locate a needed image [36]. In RSVP, a rapid succession
of target and standard (non-target) images is presented to
a participant via a display at a rate of 4 to 10 Hz. The
location of target images within the high-speed presentation
is not known in advance by participants and hence requires
them to actively look out for targets, i.e., to attend to target
images. This paradigm where participants are instructed
to attend to target images amongst a larger proportion of
standard images is known as an oddball paradigm and is
commonly used to elicit the P300 event-related potential
(ERP), a positive voltage deflection that typically occurs
between 300 and 600 ms after the appearance of a rare
visual target within a sequence of frequent non-relevant
stimuli [18, 31]. Since participants do not know when
target images will appear in the presentation sequence, their

Fig. 1 Schematic of neuro-AI
interface demonstrated in this
study. A type of AI system (e.g.,
GANs used in this work)
produces image stimulus to
participants and the
corresponding recorded neural
response returns to scoring the
performance of GANs
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occurrence causes an attentional-orientation response that is
characterized by the presence of a P300 (or P3) ERP. An
example of a RSVP paradigm protocol is shown in Fig. 2
where the participant’s task might be to count the number
of images with faces or to recognize the face of a particular
individual.

The P300 ERP can suffer from a low signal-to-noise ratio
(SNR), and its appearance spans multiple electrodes on the
scalp, which make the precise measurement of P300 activity
in the raw, unprocessed EEG epoch difficult. Our previous
work [43, 44] has shown that the P300 can be spatially
filtered to improve SNR and reduce dimensionality. The
work here will demonstrate a pipeline that uses a linear
discriminant analysis (LDA) beamformer to reconstruct the
P300 component for each type of GAN.

Although some work in the GAN evaluation literature
has mentioned that quantitative metrics are correlated with
human judgment [17, 33], there is no specifically designed
work reported in the literature which compares quantitative
metrics with those produced by human judgment. It should
be noted that the use of human judgment through annotation
to evaluate GANs in terms of visual quality is very effective.
However, such approaches are very time-consuming and
impractical in terms of scale, in real-world applications.
Given the advantages of conventional human annotation
approaches, we explore the area of BCI as we know that
neural signals can reflect human perception. In this work,
we propose a type of neuro-AI interface for evaluating GAN
outputs and we deploy an oddball task for eliciting P300
components via a RSVP protocol, where human subjects
are rapidly evaluating images produced by GANs. An
evaluation metric called Neuroscore is proposed and the
calculation of Neuroscore is demonstrated. Results show

Fig. 2 A RSVP image sequence showing juxtaposition of target and
non-target images along with a response request

this neuro-AI interface is more efficient compared with
conventional human annotation approaches and Neuroscore
is highly correlated with behavioral human judgment. Given
this, our work has two primary contributions:

– The design and evaluation of an experiment to compare
human assessments with the leading quantitative
metrics for GAN performance measurement in terms of
image quality

– The demonstration of a fast and efficient neuro-AI
interface in which neural signals provide a superior
metric for the evaluation of GANs

Preliminaries

Generative Adversarial Networks

A generative adversarial network (GAN) has two compo-
nents, the discriminator D and the generator G. Given a
distribution x ∼ px, G defines a probability distribution pg

as the distribution of the samples G(x). The objective of a
GAN is to learn the generator’s distribution pg that approx-
imates the real data distribution pr . Optimization of a GAN
is performed with respect to a joint loss for D and G

min
G

max
D

Ex∼pr log[D(x)] + Ex∼px log[1 − D(G(x))] (1)

The evaluation of GANs can be considered an effort to mea-
sure the dissimilarity between pr and pg . Unfortunately, the
accurate estimation of pr is intractable, and thus, it is not
possible to make a good estimation of the correspondence
between pr and pg . Another challenge for the evaluation
of a GAN is how to interpret that the evaluation metric
indicates visual quality. Notwithstanding such challenges,
metrics are available and we examine three well-known
metrics as background and for comparative purposes.

GAN EvaluationMetrics

This paper uses three of the most widely used evaluation
metrics for GANs in the literature for comparison, and we
now examine these in turn.

Inception Score

The inception score is the most widely used GAN
performance metric in the literature [33]. It uses a pre-
trained inception network [39] as the image classification
modelM to compute

IS = eEx∼pg [KL(pM(y|x)||pM(y))] (2)

where pM(y|x) is the label distribution of x that is
predicted by the model M and pM(y) is the marginal
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probability of pM(y|x) over the probability pg . A larger
inception score will have pM(y|x) close to a point mass
and pM(y) close to uniform, which indicates that the
inception network is very confident that the image belongs
to a particular ImageNet category and all categories are
equally represented. A larger inception score suggests that
the generative model has both high quality and diversity.
However, inception score may fail in some cases [4]. 1/IS
(1/inception score) is used as the comparison score in the
work in this paper, for consistency with the other two scores
examined.

Kernel MaximumMean Discrepancy

Maximum mean discrepancy (MMD) [14] is computed as

MMD2(pr , pg)=E xr ,x�r ∼pr ,

xg ,x�g ∼pg

[k(xr , x�
r )−2k(xr , xg) + k(xg, x�

g )]

(3)

It measures the dissimilarity between pr and pg for some
fixed kernel function k. A Gaussian kernel, defined as

k(x, x�) = e− ||x−x�||2
2σ where x are input samples and σ is

the bandwidth parameter, is often used for this purpose [25].
A lower MMD indicates that pg is closer to pr , indicating a
GAN has better performance.

The Frechet Inception Distance

Frechet inception distance (FID) [17] uses a feature space
extracted from a set of generated image samples by a
specific layer of the inception network. Regarding the
feature space as multivariate Gaussian, the mean and
covariance are estimated for both the generated data and real
data. FID is computed as

FID(pr , pg) = ||μμμr −μμμg||22+Tr(�r +�g −2(�r�g)
1
2 ) (4)

Similar to MMD, a smaller FID indicates better GAN
performance.

Comparing Metrics

In the case of the inception score, this is calculated
through the inception model [39]. It has been shown
previously that inception score is very sensitive to the model
parameters [4]. Even scores produced by the same model
trained using different libraries (e.g., Tensorflow, Keras, and
PyTorch) differ a lot from each other. Inception score also
requires a large sample size for the accurate estimation of
pM(y). FID andMMD both measure the similarity between
training images and generated images based on the feature
space [46], since the pixel representations of images do not

naturally support the computation of meaningful Euclidean
distances [12]. The main concern about the FID and MMD
methods is whether the distributional characteristics of
the feature space exactly reflect the distribution for the
images [12].

In general, these conventional metrics are easily affected
by small artifacts in either pixel space or feature space. For
instance, some sharp artifacts in BEGAN may cause large
difference between real and generated images regarding the
distribution. However, such sharp artifacts would not affect
image content and quality as human perception is more
robust to conventional metrics regarding these issues.

The Event-Related Potential and P300 Component

In neuroscience, event-related potentials (ERPs) refer to
low-amplitude voltage signals measured on the scalp which
arise from current source dynamics in the brain whose
changes reflect specific events or stimuli [6]. ERPs are
characterized by EEG changes that are time-locked to
sensory, motor, or cognitive events and provide a safe
and non-invasive approach to study psychophysiological
correlates of mental processes [37]. ERPs can be elicited by
a wide variety of sensory, cognitive, or motor events. The
P300 ERP component was discovered by Sutton et al. [38]
and since then has been one of the most investigated ERP
components. The P300 can be elicited when a participant
is instructed to respond mentally or physically to a target
stimulus and not respond otherwise in the experiment. In
this way, it reflects a participant’s attention, that is it can be
modulated by the specific instruction given to a participant.
Figure 3 shows an averaged P300 response elicited by a
target stimulus that is typically evident between 300 and 600
ms post presentation of a stimulus, depending on the type of
task. A list of related physiologically relevant terminology
and associated explanations used in this work is presented
below:

– Trial: Each individual image presentation is called a
trial.

– Epoch: An epoch is a specific time window which is
extracted from the continuous EEG signal. Each epoch
is time-locked with respect to an event (image stimulus
presentation in our case).

– Single-trial P300 amplitude: This is the amplitude of
the P300 component corresponding to each individual
image. The P300 amplitude is calculated by selecting
the maximum voltage value between 400 and 600 ms
for each EEG epoch.

– Averaged P300 amplitude: This is the difference
between the averaged target (for example a face) trial
amplitudes and the averaged standard trial amplitudes
(for example a non-face).

Cogn Comput (2020) 12:13–2416



Fig. 3 Averaged ERP response
for participant 9 showing
P300-related activity

– Reconstructed single-trial P300 amplitude: This is the
P300 amplitude corresponding to each single target
image. It is the LDA-beamformed single-trial P300
amplitude (the detail of the LDA beamformer method is
introduced later in Section “P300 Reconstruction”).

– Reconstructed averaged P300 amplitude: It is the
difference between the averaged LDA-beamformed
P300 corresponding to target trials and the averaged
LDA-beamformed signal corresponding to standard
trials (non-face).

Methodology

Data Acquisition and Experiment

We used three GAN models to generate synthetic images of
faces: DCGAN [32], BEGAN [5], and progressive growing
of GANs (PROGAN) [20] as shown in Fig. 4. Image
streams in the experiment contain generated images from
DCGAN, BEGAN, and PROGAN, as well as real face
(RFACE) images and non-face category images. RFACE
images were sampled from CelebA dataset [26]. Non-face
category (standard) images were sampled from ImageNet
dataset [9], similar to those used in other RSVP experiments
such as [15, 16].

EEG data for 12 participants was gathered. Data
collection was carried out with approval from Dublin City
University Research Ethics Committee (REC/2018/115).
Each participant completed two types of tasks which we
call the behavioral experiment (BE) task and the rapid serial

visual presentation (RSVP) task. The sequence of blocks
presented in the experiment was BE → RSVP → BE →
RSVP → BE.

The objective of the BE task was to record participants’
responses to each type of image category while the RSVP
task was to record EEG when participants were seeing the
rapid presentation of images. The ultimate goal of this study
was to compare whether the EEG responses in the RSVP
task were consistent with participants’ responses in the BE
task.

The BE task consisted of three blocks, where each block
contained 90 images (18 images for each face category
resulting in 72 face images in total and 18 non-face images).
Thus, there were 216 face images and 54 non-face images
in the BE task in total. Participants were presented with one
image at a time and asked to press a button corresponding
to a “yes” if they perceived a real face (i.e., belonging
to the RFACE set) or a “no” for anything they perceived
as not being a real face (including fake face produced by
GANs and non-face). Following each response, feedback
was given on whether or not the presented image was indeed
a real face to make participants pay more attention to the
task. The accuracy (number of correct trials divided by
number of presented images for that GAN type) of each
participant’s response was recorded, and their performance
is referred to subsequently as a “human judgment” metric.

The RSVP task contained 26 blocks. Each RSVP block
contained 240 images (6 images for each face category
thus 24 face targets in total and 216 non-face images);
thus, there were 6,240 images (624 face targets/5,616 non-
face images) available for each participant. In the RSVP

Fig. 4 Face image examples used in the experiment. From left to right: DCGAN, BEGAN, PROGAN, and real face (RFACE)
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task, image streams were presented to participants at a 4-
Hz presentation rate. Participants were asked to search for
RFACE images in this task so as to elicit a P300. We
compare the P300 amplitude in the RSVP task with the
human judgment measure in the BE task to determine if they
are consistent with each other.

EEG was recorded for both of the BE and RSVP tasks
along with timestamping information for image presentation
and behavioral responses (via a photodiode and hardware
trigger) to allow for precise epoching of the EEG signals for
each trial [42]. EEG data was acquired using a 32-channel
BrainVision actiCHamp at 1000-Hz sampling frequency,
using electrode locations as defined by the International
10-20 system.

To enhance the low signal-to-noise ratio of the acquired
EEG, pre-processing is required. Pre-processing typically
involves re-referencing, filtering the signal (by applying a
bandpass filter to remove environmental noise or to remove
activity in non-relevant frequencies), epoching (extracting
a time epoch typically surrounding the stimulus onset),
and trial/channel rejection (to remove those containing
artifacts). In this work, a common average reference (CAR)
was utilized and a bandpass filter (i.e., 0.5–20 Hz) was
applied prior to epoching. EEG data was then downsampled
to 250 Hz. Only behavioral responses occurring between
0 and 1 second after the presentation of a stimulus were
used. Trial rejection was carried out to remove those trials
containing noise such as eye-related artifacts (via a peak-
to-peak amplitude threshold across all electrodes). Details
of the retained trials for each participant are shown in
Table 1. A LDA beamformer [41] was applied to the
retained EEG epochs for each participant to enhance the
signal-to-noise ratio (SNR). Details of the application of
the LDA beamformer method is described in Section “P300
Reconstruction.”

Table 1 Number of trials for each stimulus type remaining after
artifact rejection

ID DCGAN BEGAN PROGAN RFACE Standard

1 116 108 107 113 4220

2 100 106 110 98 3215

3 156 153 154 154 5553

4 144 153 143 144 5168

5 110 101 92 80 4150

6 135 131 122 106 4521

7 138 139 143 141 4955

8 151 151 150 151 5290

9 146 149 140 149 4832

10 104 87 93 82 3286

11 149 138 144 142 5270

12 97 92 99 101 3859

P300 Reconstruction

EEG in our study was recorded using a number of spatially
distributed electrodes across the scalp (32 channels of EEG
in this study). The P300 is typically predominant on the
posterior electrodes of the scalp, which also means the P300
is detected in multiple channels simultaneously. We use the
LDA beamformer [41] to reconstruct the P300 in this work
for the following reasons. Firstly, it is difficult to compare
P300 between participants across a number of channels as
the location of the P300 varies across participants. Secondly,
the P300 suffers from interference from strong background
brain activity so it has a very low SNR [27]. The LDA
beamformer method allows us to reconstruct the P300 from
a multi-dimensional set of EEG signals, i.e., transform 32
channels of EEG to a one-channel time series facilitating
within-subject comparisons (with the additional benefit of
improving the SNR for the reconstructed P300 as well).
Given an EEG epoch Xi ∈ R

C×T (C is the number of
channels and T is the time series points in that EEG epoch),
let p1 ∈ R

C×1 and p2 ∈ R
C×1 be the spatial patterns

of a particular component in two different experimental
conditions, e.g., face stimuli versus non-face stimuli in this
paradigm. We denote the difference pattern as p := p1 −
p2 and the covariance matrix as � ∈ R

C×C [41]. The
optimization problem for the LDA beamformer is to find
a projection vector (we call it a spatial filter in the area of
EEG/BCI) w ∈ R

C×1 that satisfies

min
w

w��w s.t .w�p = 1 (5)

The optimal projection vector w (in Eq. 5) can be calculated
as

w = �−1p(p��−1p)−1 (6)

After determining the optimal w, a high-dimensional
EEG epoch then can be projected to the one-dimensional
subspace (reconstructed signal) as

Si = w�Xi (7)

where Si ∈ R
1×T is a one-trial reconstructed source signal.

The LDA beamformer method can be applied to different
time regions to reconstruct different individualized spatial
profiles for ERP components present in that time frame [44].
In this study, we apply the LDA beamformer between 400
and 600 ms in order to best extract the P300.

Neuroscore

The reconstructed averaged P300 amplitude is used as the
basis for our novel metric for evaluating GAN outputs. To
address latency of the P300 which varies across participants,
this work [44] has successfully demonstrated the use of
LDA beamformer to search for the optimal P300 time index

Cogn Comput (2020) 12:13–2418



in a RSVP experiment. We select the maximum value in
the 200-ms time window which is centered at the optimal
time index to represent the reconstructed single-trial P300
amplitude and then average these across the trials to get the
reconstructed averaged P300 amplitude. This reconstructed
averaged P300 amplitude is the Neuroscore. The process of
calculating Neuroscore can be seen in the algorithmic block
below.

It should be noted that Neuroscore benefits from a high
SNR compared with the traditional single-trial P300 for the
following reasons:

1. The LDA beamformer has been applied to raw EEG
epoch data in order to maximize the SNR.

2. Neuroscore is calculated by averaging trials which is
able to mitigate the background EEG noise.

Hence, our proposed Neuroscore is a relatively robust
metric as defined for this work. It should be noted that
higher Neuroscore values indicate better GAN performance
which is inverse to the traditional scores used in this work.

Experimental Results

Behavior Task Performance

We included 12 participants in the BE tasks and recorded
the accuracy (calculated as the number of correctly labeled
images divided by the total number of images) of their
judgments for each face category. In Table 2 , it can be
seen that participants achieve the lowest accuracy (0.705)
for PROGAN and the highest accuracy (0.994) for DCGAN,
i.e., participants rank PROGAN, BEGAN, and DCGAN
from high performance to low performance respectively.
While learning effects may be present, our result is robust
regardless of learning effects as we examined using different
groups of RSVP blocks combined with different parts of
the BE task, and the results remained consistent. It is
interesting that human judgment accuracy for RFACE is
0.686 which is comparatively low. This may be caused
by participants being convinced by GAN-generated images
and subsequently feeling less confident on RFACE images,
which indicates that GANs are able to convince participants
in this case.

Rapid Serial Visual Presentation Task Performance

In order to employ neural signals to evaluate the perfor-
mance of GANs, we use the RSVP paradigm to elicit
the P300 ERP. Figure 5 shows the reconstructed averaged

Table 2 Accuracy for face images generated from three GANs and
real face images in the BE task

ID DCGAN BEGAN PROGAN RFACE

1 1.000 0.759 0.704 0.759

2 0.981 0.741 0.537 0.537

3 1.000 0.796 0.778 0.537

4 0.981 0.889 0.704 0.667

5 1.000 0.667 0.648 0.759

6 1.000 0.926 0.704 0.759

7 1.000 0.815 0.611 0.759

8 0.981 0.815 0.870 0.759

9 1.000 0.796 0.685 0.704

10 1.000 0.815 0.759 0.722

11 1.000 0.907 0.759 0.685

12 1.000 0.963 0.704 0.796

Mean 0.995 0.824 0.705 0.695

Lower accuracy for GAN-generated images indicates better image
quality, i.e., participants were often convinced that synthesized faces
were in fact real
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Fig. 5 Reconstructed averaged (via LDA beamformer) P300 signal
across 12 participants in this study

P300 across all participants (using LDA beamformer) in
the RSVP experiment. It should be noted here that the
reconstructed averaged P300 signal is calculated as the
difference between averaged target trials and averaged stan-
dard trials after applying the LDA beamformer method, i.e.,
1
n

n∑

i=1
w�Xtarget

i − 1
m

m∑

i=1
w�Xstandard

i , where w is the spa-

tial filter calculated by the LDA beamformer,X are the EEG
epochs, and n and m are the numbers of targets and stan-
dards respectively. The solid lines in Fig. 5 are the means
of the reconstructed averaged P300 signals for each image
category (across 12 participants) while the shaded areas
represent the standard deviations (across participants). It
can be seen that the reconstructed averaged P300 (across
participants) clearly distinguishes between different image
categories.

Figure 6 shows topographical plots (of averaged ERP
activity) for the different image categories for each
participant and for an average across participants. This
demonstrates that the spatial topography of P300-related
activity varies across participants. It is for this reason that
we use the LDA beamformer approach to reconstruct the
source P300 for each participant in this study (so as to
eliminate erroneous measurement of the P300 by using a
specific common channel). We also show a topographic
representation of F-values from an ANOVA test that
assesses statistical differences between the means of the
four categories (one ANOVA for each channel). Larger F-
values indicate a larger statistical effect when examining
reconstructed P300 values across the four categories for a
participant. It can be seen that spatial locations with high F-
values are closely aligned to the P300’s spatial topography.

We also show the Neuroscore for each participant in the
study (for each GAN) in Table 3. A higher Neuroscore
indicates better performance of a GAN. Ranking the
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Fig. 6 Averaged P300 topography of each participant for each
category. F-values from an ANOVA test were computed for each
channel across four categories. Topography is created at the optimal
P300 time index for each participant which is demonstrated in [44]
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Table 3 Computed Neuroscore for each participant for each category

ID DCGAN BEGAN PROGAN RFACE

1 0.577 0.668 0.685 0.641

2 0.613 0.769 0.939 0.820

3 0.446 0.630 0.689 0.591

4 0.432 0.576 0.974 0.930

5 0.658 0.907 0.938 0.722

6 0.603 0.774 0.964 0.811

7 0.462 0.584 0.856 0.812

8 0.824 0.838 0.882 0.789

9 0.683 0.722 0.911 0.908

10 0.637 0.643 0.962 0.825

11 0.419 0.350 0.425 0.447

12 0.646 0.654 0.819 0.784

Mean 0.583 0.676 0.837 0.757

Higher score indicates better performance of GAN

performance of GANs by Neuroscore we see PROGAN
> BEGAN > DCGAN, which is consistent with human
judgment in the BE task.

Figure 7 summarizes the details from Table 3. The
median values of the Neuroscore for each category across
participants give the same rank as the mean value in Table 3.

From the averaged subtracted values (on a per-participant
basis) of the Neuroscore and BE accuracies, it can be seen
that the Neuroscore is correlated with the BE accuracy
(human judgment), i.e., PROGAN > BEGAN > DCGAN
(see Fig. 8).

In order to statistically measure this correlative relation-
ship, we calculated the Pearson correlation coefficient and
p value (two-tailed) between Neuroscore and BE accuracy
and found (r(48) = − 0.767, p = 2.089e − 10).1

We used a bootstrap procedure [3, 11] to validate
our Pearson correlation coefficient test since aggregat-
ing repeated measurements for participants (i.e., treating
DCGAN, BEGAN, PROGAN, and RFACE measurements
as being independent) like this results in a violation of
assumptions for our statistical test (violation of indepen-
dence). Using a bootstrap procedure with our correlation
measure allows us to sidestep this violation of assumptions
and still obtain a reliable statistic. We do this by repeatedly
randomly shuffling the BE accuracy values and Neuroscore
(within each participant) and then applying a Pearson cor-
relation coefficient test. After following this process 10,000
times, we count how many p values calculated on randomly

1We also did the Pearson statistical test and bootstrap on the correlation
between Neuroscore and BE accuracy only for GANs, i.e., DCGAN,
BEGAN, and PROGAN. Pearson statistic is (r(36) = − 0.827, p =
4.766e − 10) and the bootstrapped p ≤ 0.0001.

Fig. 7 Box plot of Neuroscore for each image category across 12
participants

shuffled values (using within-participant shuffling) (i) are
smaller than the original p value (where within-participant
shuffling is not applied). i

10000 now becomes the boot-
strapped Pearson p value, i.e., it estimates the probability
of getting the calculated p value by chance. For the Pear-
son correlation coefficient test, this strongly supports the
interpretation that our Neuroscore is predictive of human
judgment. Due to time-based constraints in running the
bootstrap procedure, we stopped at 10,000 iterations. This is
consistent with our hypothesis that higher Neuroscore indi-
cates better GAN models which is also indicated by lower
BE accuracy. The bootstrapped p value for the Pearson cor-
relation coefficient test is significant (p ≤ 0.0001), which
means that it is unlikely we have obtained these correlation
results by chance.2

It is notable that PROGAN achieved a higher Neuroscore
than RFACE. There are differences between the RFACE
and GAN-generated images that are likely impacting the
P300 amplitudes for the RFACE images. In the RFACE
images, there are a wide range of background textures (e.g.,
sky, sea, and indoor environments) that are not present in
the GAN-generated images. The GAN-generated images
tend to have homogeneous backgrounds, where in most
cases they are almost monochromatic and/or out of focus.
Furthermore, the RFACE images contain a greater variety
of other artifacts (e.g., jewellery) that tend not to be
discernibly reproduced by the GANs. The lower Neuroscore
for RFACE (i.e., RFACE < PROGAN) images is likely
a result of these non-task-related visual components in
the RFACE images increasing the discrimination difficulty.
It is known that increasing task difficulty results in a
diminished P300 amplitude [21]. For instance, increasing
the amount of visual distractors in an image in a target

2Without per-participant mean subtraction, the Pearson correlation
statistic is (r(48) = − 0.556, p = 4.038e − 05) and the bootstrapped
p ≤ 0.0001.
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Fig. 8 Correlation between
Neuroscore and BE accuracy.
Neuroscore and BE are both
mean centered within each
participant

detection task reduces the P300 amplitude [28]. A further
contributing factor may be the stereotyped visual structure
of the GAN images (i.e., a face with a bland background),
which facilitates the GAN images to be detected more
easily in the fast RSVP paradigm used. From the human
assessment results in the previous section, it can be seen
that participants find the PROGAN output quite convincing,
rating faces produced by the GAN similarly in accuracy as
the RFACE images.

Comparison to Other EvaluationMetrics

Three traditional methods are also employed to evaluate
the GANs used in this study. Table 4 shows the scores
from the three traditional metrics, Neuroscore, and human
judgment for three GANs. To be consistent with other
metrics (smaller score indicates better GAN performance),
we use 1/Neuroscore for comparison. It can be seen that
all three methods are consistent with each other and they
rank the GANs in the same order of PROGAN, DCGAN,
and BEGAN from high to low performance. By comparing
the three traditional evaluation metrics with the human,
it can be seen that they are not consistent with human
judgment of GAN performance. It should be remembered
that inception score is able to measure the quality of
the generated images [33] while the other two methods
cannot do so. However, inception score still rates DCGAN
as outperforming BEGAN. Our proposed Neuroscore is
consistent with human judgment.

Table 4 Score comparison for each GAN category

Methods DCGAN BEGAN PROGAN

1/IS 0.44 0.57 0.42

MMD 0.22 0.29 0.12

FID 63.29 83.38 34.10

1/Neuroscore 1.715 1.479 1.195

Human 0.995 0.824 0.705

Lower score indicates better performance of GAN

Discussion

We have compared human assessment with three represen-
tative quantitative metrics and used these for comparison
with our proposed neural scoring approach. In short, our
Neuroscore conveys a measure of the visual quality of
facial images generated from GANs. This is based on our
hypothesis that a generated image which looks more like
a real face image will elicit a larger reconstructed aver-
aged P300 amplitude in a RSVP task. Although the other
three traditional evaluation methods do provide insight into
several aspects of GAN performance, we study their effec-
tiveness from a visual image quality perspective only as
this is the focus of our work. The results are compelling in
their demonstration that the proposed Neuroscore is better
correlated with human judgment than any of the three quan-
titative metrics. This is important as an evaluation of the
visual quality of a generated image is useful in understand-
ing performance characteristics of specific GAN designs
and training datasets. The method proposed can meet this
need and is independent of any data modeling assumptions.
In contrast, conventional quantitative metrics may fail in this
regard.

For example, inception score is a model-based evaluation
method, and the model is very sensitive to adversarial
samples as shown in [22]. Inception score will also
produce a very high score if the generated images are
produced using adversarial training [4]. Our Neuroscore
approach would not be compromised with such images in
comparison. It is worth noting that compared with MMD
and FID, both inception score and our Neuroscore provide
a potentially good way of comparing the visual quality
between generated images and real images, i.e., inception
score and Neuroscore may give higher scores for the
generated image that has better visual quality than the real
image. Inception score, however, unlike the neural scoring
approach, is not able to improve on the ranking of the three
GANs compared with MMD or FID.

As mentioned earlier, more realistic GANs will produce
a higher Neuroscore. This is because Neuroscore is sensitive
to different stimulus processing requirements for different
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types of GANs, i.e., the larger averaged single-trial P300
amplitudes for GANs reflect properties related to different
stimulus information processing requirements [37]. It is also
worth commenting that while GANs for generating facial
images are explored in this study, our approach could be
used for other types of generated images because the P300
ERP can be elicited using a wide variety of significantly
different visual stimuli, e.g., Neuroscore may be applicable
in the evaluation of GANs in bedroom image generation [20,
29, 32, 47].

The work presented here focuses on evaluating image
visual quality only. Consequently there are some limitations
when using the Neuroscore to evaluate GANs in this
way. Overfitting, mode dropping, and mode collapsing are
very important aspects of GAN performance, and most
quantitative methods are able to assess these in some
way. However, for these broader assessments, we can
augment quantitative methods with our Neuroscore to gain
a better assessment of overall GAN performance. In reality,
choosing the appropriate evaluation metric for GANs
depends on the application and which type of problem
is being addressed by the GAN. If the goal of the GAN
application is the generation of high–visual quality images,
e.g., super resolution image reconstruction, a qualitative
metric is preferred in that case. If the GAN is to be trained to
capture the categories of large image datasets, a quantitative
metric would be a better choice. Therefore, the inclusion
of a neural scoring approach as we have demonstrated
should be considered in the context of the application’s
requirements.

Neuroscore is produced from human EEG signals and
directly reflects human perception and neural processes.
Compared with human judgment on images generated from
GANs, our paradigm has several advantages as follows.
Firstly, it is much faster than human judgment as a rapid
image stream is presented to participants as part of the
RSVP protocol. Traditional human judgment approaches
entail the evaluation of images one-by-one whereas our
paradigm supports batch evaluation of images. Secondly,
as the EEG recorded corresponds to individual images,
the method allows the tracking of image quality at the
level of the individual image rather than the aggregated
quality of a group of images. Thirdly, Neuroscore produces
a continuous value while human judgment is binary (“real”
or “fake”). Finally, it is possible to use EEG signals such
as P300 as supervised information for improving training of
GANs in the future.

In this work, we focus on the evaluation of images
generated from GANs. However, time series evaluation of
GANs is even more challenging and even less discussed in
the literature. We believe that our paradigm may extend to
use the auditory BCI [8] for auditory evaluation for GANs
in the future.

Conclusion

We have conducted a comprehensive comparison between
human assessments and three quantitative metrics for the
comparison of image quality in the specific GAN applica-
tion of facial image synthesis. We proposed and assessed
a neural interfacing approach in which a Neuroscore is
introduced as an alternative evaluation of GANs in terms
of image visual quality. We interpret our results to con-
clude that Neuroscore is more consistent with assessments
made by humans when compared with the three estab-
lished quantitative metrics, and we show that the correlation
between our Neuroscore and human judgment is not pro-
duced by chance, i.e., p ≤ 0.0001. We believe that our
proposed neuro-AI interface based on a rapid serial visual
presentation approach is more efficient and less prone to
error compared with conventional human annotation. Con-
sequently, we suggest that approaches using such neural
signals may complement or, for some specific applica-
tions, replace conventional metrics for evaluation of GAN
performance.
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