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Abstract
Recently, a three-way fuzzy concept lattice and its graphical structure analytics has given a mathematical way to deal with
cognitive concept learning based on its truth, false, and uncertain regions, independently. In this process, a major problem
was addressed while existence of bipolar information in a three-way decision space. To address this problem, the current
paper aimed at introducing bipolar neutrosophic graph representation of concept lattice and its granular-based processing
for cognitive concept learning. In addition, the proposed method is illustrated with an example for better understanding.
Cognitive computing provides a way to mimic with human brain and its uncertainty beyond the binary values. To characterize
these types of bipolar attributes based on its acceptation, rejection, and uncertain part, the three-way bipolar neutrosophic
context and its concept lattice is introduced in this paper. In addition, another method is proposed to extract some of the
bipolar cognitive concepts based on user required bipolar truth, bipolar indeterminacy, and falsity membership values,
independently. This paper provides a graphical structure visualization of the three-way bipolar information at user defined
granules. It is also shown that the extracted information from both of the proposed methods are concordant with each other.
It is also shown that, the proposed method provides an adequate way to model the three-way bipolar cognitive concepts when
compared to other available approaches. This paper introduces a method to model the three-way bipolar cognitive context
using the properties of bipolar neutrosophic graph and its lattice structure. The line diagram is drawn based on their lower
neighbors within O(|C| n2 m3) time complexity. In addition, another method is proposed to refine the three-way bipolar
neutrosophic cognitive concepts at user defined granulation within O(n6) or O(m6) time complexity with an illustrative
example. However, the proposed method is unable to measure the changes in the three-way bipolar neutrosophic cognitive
concepts at the given phase of time. Due to that, the author will focus on resolving this issue of bipolar neutrosophic context
in near future.

Keywords Bipolar fuzzy concept lattice · Bipolar neutrosophic graph · Cognitive concept · Formal concept analysis ·
Three-way fuzzy concept lattice · Granulation

Introduction

Recently, the calculus of neutrosophic set is introduced
in [47] for graphical analytics of uncertainty in human
cognition based on its acceptation, rejection, and uncertain
parts, independently. It is one of the first kind of
mathematical model which given a way to mimic with
human cognition beyond a unipolar fuzzy space [48, 50].
In this direction, Prem Kumar Singh [43, 53] introduces the
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properties of bipolar fuzzy sets to measure the uncertainty
and vagueness [52] in fuzzy attributes beyond the unipolar
fuzzy space at given phase of time [18, 46]. In this
process, a problem is addressed while dealing with positive
and negative thought exists in human cognition. The first
problem arises with its precise representation and the
second problem arises with its graphical analytics for
knowledge processing tasks. To approximate this problem,
the mathematical algebra of interval valued [37, 49] and
bipolar fuzzy [43, 44] set is introduced in applied lattice
theory for cognitive concept learning [29, 34, 59]. Wille
[65] develop a mathematical model called as concept lattice
for knowledge discovery and representation tasks using
the mathematics of applied abstract algebra [27]. This
mathematical model is extended into the fuzzy space by
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Fig. 1 Graphical demonstration of the proposed study and its objective

Burusco and Fuentes-Gonzales [13] for computing with
uncertainty and vagueness in attributes. This orientation
given many ways to represent the fuzziness in attributes
beyond the unipolar [9, 14] and bipolar space [5, 12,
43] for handling the heterogeneous [4] via multi-adjoint
concept lattice [21, 38]. To measure the uncertainty and
incompleteness in attributes by the three-way decision space
[23, 25, 67, 68] at distinct multi-granulation [34, 45, 66]
for handling multi-attributes cognitive contexts [56]. Some
other distinct approaches are also introduced recently to
handle the three-way cognitive concepts [29, 33, 74] using
parallel computing [39]. In this process, one of the problems
is addressed while representing the bipolar information in
the three-way fuzzy space [26]. To deal with this problem,
the current paper focuses on introducing the bipolar
neutrosophic context and its compressed graphical structure
visualization using the properties of bipolar neutrosophic
graph.

Figure 1 represents that the bipolar fuzzy attributes can
be handled more precisely using the properties of the bipolar
fuzzy set. To understand it more in a convinced way, the
Table 1 represents that bipolar information exists in the
three-way fuzzy space due to its corresponding relationship
among objects and attributes. One of the suitable examples
is an user wants to purchase a car for traveling with his/her
family based on their acceptance, rejection, and uncertainty
zone of given parameters. The user may purchase the car
based on acceptation of its price list—the same time the

user can reject the car based on its price list, whereas
other cases the user may be uncertain about price list.
The user can provide a positive or negative decision for
purchasing the car based on his/her cognitive thought. The
numerical representation of this type of human cognition is
a mathematically expensive task, the reason representation
of bipolarity requires mathematical representation beyond
the unipolar space [17, 30]. The theory of fuzzy sets
approximate the uncertainty and vagueness in attributes
via a defined single fuzzy membership value between 0
and 1 [63, 71, 72]. This single-valued fuzzy membership
includes both acceptation and rejection part of the attributes
with respect to the given context, whereas the bipolarity
is coexistence of true and false value at the same time. In
this case, the properties of bipolar neutrosophic set is more
helpful in precise representation of indeterminacy in fuzzy
attributes as shown in Table 2.

Let Z be a non-empty set then the bipolar fuzzy set
J in Z contains a positive membership values μP (z) as
well as negative membership values μN(z). The positive
membership values used to represent the acceptation,
whereas the negative membership values μN(z) used to
represent the implicit counter-property J [1, 31]. It can be
visualize using the properties of the bipolar fuzzy graph
G = (I, J), where I = (μP

I , μN
I ) is a bipolar fuzzy set in

V (vertices) and J=(μP
J , μN

J ) is a bipolar fuzzy set in E

(edges) V×V is extended in the three-way decision space
[1, 73]:

μP
J ({v1, v2}) ≤ min(μP

I (v1), μ
P
I (v2))(∀(v1, v2) ∈ V × V )

μN
J ({v1, v2}) ≥ max(μN

I (v1), μ
N
I (v2))(∀(v1, v2) ∈ V × V ) and

μP
J ({v1, v2}) = μN

J ({v1, v2}) = 0(∀(v1, v2) ∈ V × V − E).

J=
{
(z, μP (z), μN(z))|z ∈ Z

}
where μP :Z→[0, 1] and

μN :Z→[-1, 0] are mappings [31].
The three-way decision space is a generalized represen-

tation of win, loss, and draw (neutral) conditions of any
attributes based on its truth, indeterminacy, and falsity mem-
bership values, independently [3, 61]. One of the suitable
examples is the state of mercury (Hg) that cannot be rep-
resented precisely in a unipolar or bipolar fuzzy space.
The reason is its state is neither liquid nor solid in case
of room temperature. Similarly, the semiconductors cannot
be considered as conductors or isolators. Handling these
type of information and their meaningful pattern is complex

Table 1 Understanding the
existence of bipolarity in
three-way decision attributes

Conditions Objects Attributes Three-way fuzzy relation

(i) Unipolar Bipolar (or) three polar Bipolar neutrosophic

(ii) Bipolar Bipolar (or) three polar Bipolar neutrosophic

(iii) Three polar Bipolar (or) three polar Bipolar neutrosophic

(iv) Bipolar (or) three polar Bipolar (or) three polar Bipolar neutrosophic
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Table 2 Comparison of fuzzy
set and its extensive set theory Single-valued neutrosophic set Interval neutrosophic set Bipolar neutrosophic set

Domain Universe Universe Universe
of discourse of discourse of discourse

Co-domain Single value Interval-valued Bipolar-valued
in [0, 1]3 in [0, 1]3 in [− 1, 1]3

Uncertainty Yes Yes Yes
Vagueness Yes Yes Yes
True Yes Yes Yes

in [0, 1] in [0, 1] in [− 1, 1]
Falsity Yes Yes Yes

in [0, 1] in [0, 1] in [− 1, 1]
Indeterminacy Yes Yes Yes

in [0, 1] in [0, 1] in [− 1, 1]
Bipolar information No No Yes
Ordering Yes Yes Yes
Graph Yes Yes Yes

issue for the researchers of various fields. In this regard,
recently, some of the researchers tried to represent them in
the three-way decision space [34, 35, 70] for cognitive con-
cept learning [7, 32, 60] based on their partial ordering [28]
in m–dimension [19, 20]. In this case, the problem arises
while processing bipolarity [58, 64] in multi-dimensional
data sets [20, 42, 53]. Analysis of bipolar information in
the three-way fuzzy space is a hotspot for the researchers
[53, 62]. It means the bipolarity exists in each building
blocks of the three-way decision space [22, 30, 69]. To deal
with this problem, recently, properties of bipolar neutro-
sophic set [15] and its graphical properties [16] is studied
for multi-attribute decision-making processing [22]. It is
nothing but generalized algebra of neutrosophic set [61]
and its logic theory [57] into the bipolar space which is
recently utilized for knowledge processing tasks in [54].
This papers paid attention to deal with these type of multi-
day data sets using the properties of bipolar neutrosophic
graph and its partial ordering. The motivation is to extract
some interesting information from the given bipolar neu-
trosophic context for knowledge processing tasks as shown
in Fig. 1.

Recently, a method is introduced in [54] to deal with
bipolar fuzzy attributes in the three-way decision space
using the chosen subset of attributes. In this case, a problem
is noted while dealing with large number of attributes. Some
time processing the three-way bipolar fuzzy context at user
required information granulation is another expensive task.
To achieve this goal, two methods are proposed in this
paper. The first method focuses on generating some of the
useful pattern from the given bipolar neutrosophic context
using the calculus of next neighbor algorithm [36]. The
second method aimed at decomposition of the three-way
bipolar fuzzy context at user required information granules.

The motivation is to characterize the bipolar informations
precisely via its acceptation, rejection, and uncertain parts,
independently. The objective is to provide a mathematical
model for dealing with three-way bipolar contexts for
decision-making processes without any cognitive biases. In
this way, the proposed method adds a significant analysis in
the field of three-way data analysis.

Section “Preliminaries” provides some basic background
about FCA in the three-way fuzzy setting and its connec-
tion with bipolarity is given in Section “Preliminaries.”
Section “Proposed Methods” introduces a method for gen-
erating the three-way bipolar neutrosophic concepts based
on user required subset of attributes with its illustration
in Section “Illustration.” Section “Discussions” provides
conclusions followed by acknowledgements and references.

Preliminaries

Formal Concept Analysis with Three-Way Fuzzy
Setting

Definition 1 (Formal fuzzy context) [13]: A formal fuzzy
context is a triplet K = (X, Y, R̃), where X is a set of objects,
Y is a set of attributes and R̃ is an L-relation between X

and Y , R̃: X×Y→ L. Each relation R̃(x, y) ∈ L represents
the membership value at which the object x ∈ X has the
attribute y ∈ Y in [0, 1] where L is a support set of some
complete residuated lattice L.

Definition 2 (Three-way fuzzy context) [47] : A three-polar
fuzzy context can be represented as K = (X, Y, R̃) where
X represents set of objects, Y represents set of three-
polar attributes and R̃ represents the three-polar relationship
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characterized by truth (T
R̃
(x, y)), indeterminacy (I

R̃
(x, y)),

and false (F
R̃
(x, y)) membership value at which the object

x ∈ X has the attribute y ∈ Y in the three-polar space
[0,1]3 where (T

R̃
(x, y)),(I

R̃
(x, y)) and (F

R̃
(x, y)) are real

standard or non-standard subsets of ]0−, 1+[. It means R̃ =
{((x, y), T

R̃
(x, y), I

R̃
(x, y), F

R̃
(x, y) : ∀x ∈ X, y ∈ Y }

where 0− ≤ T
R̃
(x, y) + I

R̃
(x, y) + F

R̃
(x, y) ≤ 3+. It

should be noted that 0− = 0 − ε where 0 represents its
standard part and ε represents its non-standard part [57].
Similarly, 1+ = 1+ε (3+ = 3+ε) where 1 (or 3) represents
standard part and ε represents its non-standard part. Hence,
the real standard format (0, 1) or [0, 1] can be also used to
represent the relationship among objects and attributes set
using neutrosophic set [61].

Definition 3 (Residuated lattice) [40]: It is a basic structure
of truth degrees L=(L, ∧, ∨, ⊗, →, 0, 1) where 0 and 1
represent least and greatest elements, respectively. L is a
complete residuated lattice iff:

(1) (L,∧, ∨, 0, 1) is a complete lattice.
(2) (L,⊗, 1) is commutative monoid.
(3) ⊗ and → are adjoint operators (called as multiplica-

tion and residuum, respectively), that is a ⊗ b ≤ c iff
a ≤ b → c,∀a, b, c ∈ L. The operators ⊗ and → are
defined distinctly by Lukasiewicz, Gödel, and Goguen
t-norms and their residua. In this paper, Gödel t-norms
and their residua is used as given below [9, 25]:

Gödel:

• a ⊗ b = min(a, b),
• a → b = 1 if a ≤ b, otherwise b.

The L-set can be extended to finite set{
0, 2

n
, 3

n
, . . . , n−1

n
, 1

}
where n ∈ N+ to represent the accep-

tation part [43, 53]. Similarly, it can be defined for rejection
n ∈ N− as well as uncertain parts, independently as shown
in [47] which is further extended for handling multi-valued
logic [55] and Heyting algebra [74]. In this paper, it is used
for handling the three-way bipolar fuzzy attributes.

Definition 4 (Formal fuzzy concepts) [9, 13]: For any L-set
A∈ LX of objects, and B∈ LY of attributes we can define L-
set A↑ ∈ LY of attributes and L-set B↓ ∈ LX

of objects as follows [5]:

(1) A↑(y) = ∧x∈X(A(x) → R̃(x, y)),
(2) B↓(x) = ∧y∈Y(B(y) → R̃(x, y)).

A↑(x) is interpreted as the L-set of attribute y ∈ Y shared
by all objects from A. Similarly, B↓(x) is interpreted as
the L-set of all objects x∈ X having the attributes from
B in common. The fuzzy formal concept is a pair of (A,
B)∈ LX ×LY satisfy A↑ = B and B↓ = A, where fuzzy set of

objects A called as extent and fuzzy set of attributes B called
as intent.

Definition 5 (Three-polar concepts) [47, 49]: The pair
(A, B) is called as three-polar formal concept iff B↓
=(A, [TA, IA, FA) and A↑=(B, [TB, IB, FB ]). The ↓ is
applied on three-polar set of attributes as follows:

B↓=
{
yj , (TB(yj ), IB(yj ), FB(yj )) ∈ [0, 1]3 : ∀yj ∈ Y

}
.

It provides the covering objects set as follows:

A =
{
xi, (TA(xi), IA(xi), FA(xi)) ∈ [0, 1]3 : ∀xi ∈ X

}
.

The obtained objects set includes maximal membership
with respect to integrating the information by the given
attributes set. Now, apply the ↑ on these constituted
objects set which provide the three-polar attribute set
with its membership value being maximal with respect to
integrating the information from the constituted objects set.
If the obtained pair make the three-polar fuzzy concepts then
any extra attribute (or object) cannot be discovered which
will make the maximum membership value of the obtained
set of attributes (objects).

Definition 6 (Partial ordering of fuzzy concepts) [9, 24]:
A formal fuzzy concept is a maximal rectangle of a given
fuzzy context K filled with membership value between
[0, 1], which is an ordered pair of two sets (A, B), where
A⊆ X called as fuzzy extent, and B⊆ Y is called as fuzzy
intent. The set of formal fuzzy concepts(C), generated from
a given formal fuzzy context K, defines the partial ordering
principle, i.e., (A1,B1) ≤ (A2,B2) ⇐⇒ A1 ⊆ A2(⇐⇒
B2 ⊆ B1) for every fuzzy formal concept.

Definition 7 (Partial ordering among three-way fuzzy con-
cepts) [28]: Let C1 and C2 be two three-polar concepts gen-
erated from context K using the properties of neutrosophic
set. Then, C1 ⊆ C2 iff TC1(x) ≤ TC2(x), IC1(x) ≥ IC2(x),
FC1(x) ≥ FC2(x) for any x ∈ X. (C,∧, ∨) is bounded
lattice. Also, the structure (C, ∧, ∨, (1, 0, 0), (0, 1, 1), ¬)
follows the De Morgan’s law.

Definition 8 (Complete lattice) [27] : In the complete
lattice, there exist an infimum and a supremum for some
formal concepts as given follows:

• ∧j∈J (Aj , Bj )=(
⋂

j∈J Aj , (
⋃

j∈J Bj )
↓↑),

• ∨j∈J (Aj , Bj )=((
⋃

j∈J Aj )
↑↓,

⋂
j∈J Bj ).

The above mentioned definitions shows that three-way
fuzzy concept lattice [47] given a way to mimic with human
cognitive thought based on its acceptation, rejection, and
uncertain parts [37, 49]. In this process, a problem exists
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when the human cognition contains bipolar information. To
deal with this problem, recently, the mathematics of bipolar
neutrosophic set [22], bipolar neutrosophic graph [16], and
its extensive properties is studied [2] for computing with
linguistics word [71, 72] in the three-way decision space.
The current paper focuses on compact visualization of
bipolar neutrosophic contexts via vertices and edges of a
graph [10] and calculus of granular computing [41] for
knowledge processing tasks. To achieve this goal, some of
the useful and common properties among them is explained
given in the next section.

Bipolar Neutrosophic Set, its Lattice and Graph

In this section, preliminaries properties of bipolar neutro-
sophic set, its graph and lattice structure is given to bridge
it with the concept lattice structure as shown below:

Definition 9 (Bipolar neutrosophic set) [22] : Let x ∈
X and X is a space of points (objects) then a bipo-
lar neutrosophic set N in X can be characterized by
a bipolar truth-membership function TN(x), a bipolar
indeterminacy-membership function IN(x) and a bipo-
lar falsity-membership function FN(x). The each point
xinXTN(x), IN(x), and FN(x) ⊆ [− 1, 1]. The bipolar
neutrosophic set can be represented as follows:

N = {x, (T +
N(x), T

−
N(x)), (I

+
N(x), I

−
N(x)), (F

+
N(x), F

−
N(x)) :

x ∈ X} where TN(x), IN(x), FN(x) ⊆ [− 1,1].

Example 1 Let us suppose, that an expert wants to characterize
the product quality of a car company (x1) based on its
pollution controlling capacity y1. In this case, the expert can
write the product quality based on its acceptation, rejection
and indeterminacy for the global environment as follows:

x1 = ((0.4, − 0.6), (0.5, − 0.4), (0.3, − 0.5))

y1
.

Definition 10 (Intersection of bipolar neutrosophic set) [64] :
Let N3 defines intersection among two bipolar neutrosophic
set N1 and N2 on a given universal set X, whose
bipolar truth, indeterminacy, and falsity-membership can be
computed as follows:

T +
N3

(x) = min(T +
N1

(x), T +
N2

(x)),

T −
N3

(x) = max[T −
N1

(x), T −
N2

(x)],
I+
N3

(x) = (I+
N1

(x) + I+
N2

(x))/2,

I−
N3

(x) = (I−
N1

(x) + I−
N2

(x))/2,

F+
N3

(x) = max(F+
N1

(x), F+
N2

(x)),

F−
N3

(x) = min(F−
N1

(x), F−
N2

(x)), for all x ∈ X

This provides a way to discover an infimum among any
given three-way bipolar concepts.

Definition 11 (Union of bipolar neutrosophic set) [58, 64] :
Let N3 defines union of two bipolar neutrosophic set N1 and
N2 on a given universal set X, whose bipolar truth, indetermi-
nacy and falsity-membership can be computed as follows:

T +
N3

(x) = max(T +
N1

(x), T +
N2

(x)),

T −
N3

(x) = min(T −
N1

(x), T −
N2

(x)),

I+
N3

(x) = (I+
N1

(x) + I+
N2

(x))/2,

I−
N3

(x) = (I−
N1

(x) + I−
N2

(x))/2,

F+
N3

(x) = min(F+
N1

(x), F+
N2

(x)),

F−
N3

(x) = max(F−
N1

(x), F−
N2

(x)), for all x ∈ X

This provides a way to discover a supremum among any
given three-way bipolar concepts.

Definition 12 (Bipolar neutrosophic graph) [15, 16]: Let
G=(V,E) is a neutrosophic graph in which the vertices
(V ) can be characterized by a bipolar truth-membership
(T +

vi
, T −

vi
), a bipolar indeterminacy-membership func-

tion (I+
vi

, I−
vi

) and a bipolar falsity-membership function
(F+L

vi
, F−

vi
) such as follows:

{
(T(vi), I(vi), F(vi)) ∈ [−1, 1]3

}
f orallvi ∈ V .

Similarly, the edges (E) can be characterized by an
interval-valued neutrosophic relations among them, i.e.,{
(TE(V × V ), IE(V × V ), FE(V × V )) ∈ [−1, 1]3

}
for

all V × V ∈ E such as follows:

T +
E (vivj ) ≤ min(T +

E (vi), T
−
E (vj )),

T −
E (vivj ) ≤ max(T +

E (vi), T
−
E (vj )),

I+
E (vivj ) ≤ (I+

E (vi), I
+
E (vj ))/2,

I−
E (vivj ) ≤ (I−

E (vi), I
−
E (vj ))/2,

F+
E (vivj ) ≤ max(F+

E (vi), F
+
E (vj )),

F−
E (vivj ) ≤ min(F+

E (vi), F
−
E (vj )).

The bipolar neutrosophic graph is complete iff:

T +
E (vivj ) = min(T +

E (vi), T
−
E (vj )),

T −
E (vivj ) = max(T +

E (vi), T
−
E (vj )),

I+
E (vivj ) = (I+

E (vi), I
+
E (vj ))/2,

I−
E (vivj ) = (I−

E (vi), I
−
E (vj ))/2,

F+
E (vivj ) = max(F+

E (vi), F
+
E (vj )),

F−
E (vivj ) = min(F+

E (vi), F
−
E (vj )).

It is noted that
{
(TE(vivj ), IE(vivj ), FE(vivj ))

}
= (0, 0,

0) ∀(vi, vi) ∈ (V × V \ E).
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Table 3 A bipolar neutrosophic set representation of vertices v1, v2, v3

y1

(T +
v1

, T −
v1

) (0.4, − 0.6)
(I+

v1
, I−

v1
) (0.5, − 0.4)

(F+
v1

, F−
v1

) (0.3, − 0.5)
(T +

v2
, T −

v2
) (0.6, − 0.4)

(I+
v2

, I−
v2

) (0.4, − 0.5)
(F+

v2
, F−

v2
) (0.2, − 0.7)

(T +
v3

, T −
v3

) (0.8, − 0.5)
(T +

v3
, T −

v3
) (0.8, − 0.5)

(I+
v3

, I−
v3

) (0.6, − 0.3)
(F+

v3
, F−

v3
) (0.5, − 0.6)

Example 2 Let us extend, the example 1 that the car com-
pany wants to analyze the three green suppliers based on
pollution control (y1). In this case, the three company can
be represented using the vertices ({v1, v2, v3}) of a bipolar
neutrosophic graph as shown in Table 3. The corresponding
bipolar neutrosophic relationship among them can be visual-
ized using the edges E of a bipolar neutrosophic graph as
shown in Table 4. The graphical structure is shown in Fig. 2.

In this way, the bipolarity in the three-way decision space
can be visualized as discussed in [54]. However, for the
graphical structure analytics, some pattern based on object
and its common attribute based required. To achieve this
goal, a method is proposed in the next section using the
mathematical paradigm of next neighbor algorithm [6, 36]
as well as granular computing [66].

ProposedMethods

In this section, two methods are proposed for analysis of
bipolar neutrosophic context using the properties of next
neighbor and granular computing.

Table 4 A bipolar neutrosophic edges (E) among the vertices of
Table 3

v1v2 v2v3 v3v1

T +
E 0.4 0.6 0.4

T −
E − 0.4 − 0.4 − 0.5

I+
E 0.45 0.5 0.5

I−
E − 0.45 -0.4 − 0.35

F+
E 0.3 0.5 0.5

F−
E − 0.7 − 0.7 − 0.6

Fig. 2 A bipolar complete neutrosophic graph representation of
Tables 3 and 4

A Next Neighbor-BasedMethod for Generating
the Bipolar Neutrosophic Concepts

In this section, a method is proposed to find all the bipolar neu-
trosophic concepts using the properties of next neighbor algo-
rithm:

Step 1 Let us suppose, a bipolar neutrosophic context F =
(X, Y, R̃) where X is a set of objects, Y is a set of bipolar
attributes, and R̃ is bipolar neutrosophic relationship among
them as shown in Table 5.

Step 2 The proposed method find the attributes which
covers the given objects set maximally as given below:

{�}↓=
{
xi, (T

+
A(xi )

, T −
A(xi )

), (I+
A(xi )

, I−
A(xi )

), (F+
A(xi )

, F−
A(xi )

)
}

.

The bipolar neutrosophic membership value for the
obtained objects set can be computed as follows:

T +
Asi

(xi) = minj∈T +
Bsj

(μR̃
T +(xi, yj )),

T −
Asi

(xi) = maxj∈T −
Bsj

(μR̃
T −(xi, yj )),

I+
Asi

(xi) = 1

2 j∈IL
Bsj

(μR̃
IL(xi, yj )),

I−
Asi

(xi) = 1

2 j∈IU
Bsj

(μR̃
IU (xi, yj )),

F+
Asi

(xi) = maxj∈F+
Bsj

(μR̃
F+(xi, yj )),

F−
Asi

(xi) = minj∈F−
Bsj

(μR̃
F−(xi, yj )).
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Table 5 A bipolar neutrosophic context

y1 ... ym

x1 ((T +
r11

, T −
r11

), (I+
r11

, I−
r11

), (F+
r11

, F−
r11

) ... ((T +
r1m

, T −
r1m

), (I+
r1m), I

−
r1m

), (F+
r1m

, F−
r1m

)

. . ...

. . ...

. . ...

xn ((T +
rn1

, T −
rn1

), (I+
rn1

, I−
rn1

), (F+
rn1

, F−
rn1

) ... ((T +
rnm

, T −
rnm

), (I+
rnm), I

−
rnm

), (F+
rnm

, F−
rnm

)

Table 6 A proposed algorithm for generating the bipolar neutrosophic concepts using next neighbor
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Step 3 Now, discover the maximal covering attributes while
integrating the information from above obtained objects set
as follows:
{
xi, (T

+
A(xi)

, T −
A(xi)

), (I+
A(xi )

, I−
A(xi)

), (F+
A(xi )

, F−
A(xi )

)
}↑

.

This provides the maximal covering attributes. The mem-
bership value of the obtained attributes can be computed as
follows:

T +
Bsj

(yj ) = mini∈T +
Asi

[μR̃
T +(xi, yj )],

T −
Bsj

(yj ) = maxi∈T −
Asi

[μR̃
T −(xi, yj )],

I+
Bsj

(yj ) = 1

2 i∈I+
Asi

[μR̃
I+(xi, yj )],

I−
Bsj

(yj ) = 1

2 i∈I−
Asi

[μR̃
I−(xi, yj )],

F+
Bsj

(yj ) = maxi∈F+
Asi

[μR̃
F+(xi, yj )],

F−
Bsj

(yj ) = mini∈F−
Asi

[μR̃
F−(xi, yj )].

Step 4 This provides first bipolar neutrosophic concept
(Asi , Bsj ).

Step 5 The lower neighbor of the first concept can be
generated via combination of remaining attributes, i.e.,
:yk=Y − yj where j ≤ m and k ≤ m|.

Step 6 The maximal covering objects set for the newly
obtained attributes can be investigated using the Galois
connection and vice versa as shown in steps 2 and 3.

Step 7 In this way, all the lower neighbor can be
generated for the first concept. However, the distinct lower
neighbor having maximal bipolar neutrosophic membership
value while integrating the information among objects and
attributes set is considered as next neighbor.

Step 8 In similar way, other bipolar neutrosophic concepts
can be generated.

Step 9 The bipolar neutrosophic concept lattice can be
drawn using their obtained next neighbors.

Step 10 Interpret the obtain concept lattice for knowledge
processing tasks. The pseudo code of the proposed
algorithm is shown in Table 6.

Complexity Let us suppose, the number of objects and
the number of attributes in the given bipolar neutrosophic
context is n and m, respectively. The proposed method
generates the lower neighbors using maximal ((1, 0) (0, 0),

(0, 0)) acceptance of given bipolar neutrosophic attributes
m which may take O(m2) time complexity for positive
and negative membership values, respectively, i.e., gives
O(m4). After that, it connects with corresponding covering
objects set using the Galois connection which may take
O(m4 ∗ n) time complexity for each lower neighbors (C),
respectively. In this way, the proposed method may take
maximum O(|C| n m4) time complexity where, C is lower
neighbor. In the next section, another method is proposed to
navigate the three-way bipolar fuzzy context at defined level
of information granulation.

A Granular-BasedMethod for Decomposing
the Bipolar Neutrosophic Context

It can be observed that the proposed method shown
in Table 6 generates large as well as repeated bipolar
neutrosophic concepts. This property of proposed method
may decelerate the user or expert time in extracting
some useful meaning from the given bipolar neutrosophic
context. Reducing the size of concept lattice is one of
the other concern for the researchers [8]. In this direction,
the properties of granular computing has considered as
one of the useful tool for knowledge reduction tasks
[66]. The mathematical properties of granular computing
is recently applied for navigation of the bipolar fuzzy
context [44], the three-way fuzzy context [48], as well
as interval-valued neutrosophic context [49] for processing
the context using the defined information granules. The
level of granulation can be decided by user or expert
requirements to solve the complexity of particular problems
[41]. In this way, it provides an effective way to modularize
the complex problem into a series of well-defined sub
problems (modules) in a given computation cost. To achieve
this goal properties of granular computing is utilized for
decomposition of an three-way bipolar neutrosophic context
based on its bipolar truth, bipolar indeterminacy, and bipolar
false membership value independently, at user defined
((α+, α−), (β+, β−), (γ+, γ−)))—cut.

Step 1 Let us suppose, a bipolar neutrosophic context K
= (X, Y, R̃) where, |X| = n, |Y | = m and, R̃ represents
the bipolar neutrosophic relationship among them, i.e.,
((T +

R̃
, T −

R̃
), (I+

R̃
, I−

R̃
), (F+

R̃
, F−

R̃
)).

Step 2 The decomposition of bipolar neutrosophic context
is based on user requirements to solve the particular
problem. The level of granulation can be kept based on
bipolar truth, i.e., (α+, α−), indeterminacy, i.e., (β+, β−),
and falsity membership value, i.e., (γ+, γ−).

Step 3 The decomposition based on chosen granulation can
be done as follows:
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Table 7 A proposed algorithm for ((α+, α−), (β+, β−), (γ+, γ−)))—cut of bipolar neutrosophic context

The truth membership value belongs to the same
decomposed context iff: KT

(α+,α−) = {T
R̃(x,y)

|μT
R̃(x,y)

≥
α+ ∧ μT

R̃(x,y)
≤ α−}, where xi is object, yj is attribute.

In this case, represent 1.0 (i.e., maximal acceptance of
truth membership value) at the given bipolar neutrosophic
relationship for the chosen (α+, α−)—cut otherwise 0.0.

The indeterminacy membership value belongs to the
same decomposed context iff: KI

(β+,β−) = {I
R̃(x,y)

|μI
R̃(x,y)

≤
α+ ∧ μI

R̃(x,y)
≥ β−}, where xi is object, yj is attribute.

In this case, represent 0.0 (i.e., maximal acceptance of
indeterminacy value) at the given bipolar neutrosophic
relationship for the chosen (β+, β−)—cut otherwise 1.0
(Table 7).

The falsity membership value belongs to the same
decomposed context iff: KF

(γ+,γ−) = {F
R̃(x,y)

|μF
R̃(x,y)

≤
γ+ ∧ μF

R̃(x,y)
≥ γ−}, where xi is object, yj is attribute.

In this case, represent 0.0 (i.e., maximal acceptance of
indeterminacy value) at the given bipolar neutrosophic
relationship for the chosen (γ+, γ−)—cut otherwise 1.0.

Step 4 The decomposed contexts K((α+,α−),(β+,β−),(γ+,γ−)))

at user defined granulation. It should be reconsidered as a
couple of bipolar μ values which cannot be comparable with
a real number and follows following property:

K=
⋃

((α+,α−),(β+,β−),(γ+,γ−)) where, α is a defined
granulation for the bipolar truth, β for the bipolar
indeterminacy, and γ for bipolar falsity membership value.

Step 5 The decomposed context also satisfies the following
properties, i.e., Kα1,β1,γ1 ⊆ Kα2,β2,γ2 when α1 ≥ α2,
β1 ≤ β2, γ1 ≤ γ2. It means number of concepts and size
of neutrosophic concept lattice can be controlled using the

Table 8 A bipolar three-way fuzzy context

y1 y2 y3

x1 ((0.4, − 0.6), (0.5, − 0.4), (0.3,− 0.5)) ((0.6, − 0.4), (0.1, − 0.3), (0.2, − 0.2)) ((0.8, − 0.3), (0.6, − 0.2), (0.5, − 0.1))

x2 ((0.6, − 0.4), (0.4, − 0.5), (0.2,− 0.7)) ((0.6, − 0.5), (0.2, − 0.2), (0.3, − 0.3)) ((0.7, − 0.1), (0.4, − 0.3), (0.5, − 0.4))

x3 ((0.7, − 0.2), (0.2, − 0.6), (0.4, − 0.4)) ((0.9, − 0.2), (0.3, − 0.2), (0.6, − 0.5)) ((0.6, − 0.2), (0.1, − 0.4), (0.5, − 0.6))

x4 ((0.8, − 0.5), (0.6, − 0.3), (0.5, − 0.6)) ((0.6, − 0.1), (0.4, − 0.3), (0.3, − 0.4)) ((0.9, − 0.5), (0.6, − 0.3), (0.4, − 0.6))
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defined granulation for the truth, indeterminacy, and falsity
membership value.

Step 7 Similarly, it can be computed for each entries in bipolar
neutrosophic context based on user required information
granules.

Step 8 Write the obtained decomposed context for further
processing. The pseudo code for this proposed algorithm is
shown in Table 8.

Complexity Table 8 shows the pseudo code for the decom-
position of a given bipolar neutrosophic context having
n number of objects and m number of attributes. The
proposed method decomposed the context based on user
defined granulation for the bipolar truth, bipolar inde-
terminacy, and bipolar falsity membership values, i.e.,
((α+, α−), (β+, β−), (γ+, γ−))) (α, β, γ )—cut indepen-
dently. It may take O(m6) or O(n6) time complexity either
using extent or intent. In this way, the proposed method
reduces the computational cost for processing the given
bipolar neutrosophic context at user required information
granules for precise analysis of knowledge processing tasks.

Illustration

This section illustrates the proposed methods shown in
Tables 6 and 7 with an illustrative example in the
consecutive sub-sections. The obtained results from them
are also compared with the recently available approaches in
FCA with bipolar fuzzy settings.

Next Neighbor-Based Three-Way Bipolar
Neutrosophic Concept Lattice

Recently, the three-way concept lattice is studied in var-
ious research fields for knowledge processing tasks. In
this direction, single-valued [47] and interval-valued neu-
trosophic [49] graph representation of concept lattices are
studied for measuring the uncertainty in fuzzy attributes
based on its truth, falsity, and indeterminacy membership
values, independently. Other than that, some different orien-
tations are also studied [34] to characterize the uncertainty
and vagueness in attributes based on acceptation, rejection,
and uncertain regions [67, 68]. The proposed method is dis-
tinct from each of the available approaches in many ways. It
first provides a way to represent the bipolar information in
the three-way fuzzy space and its navigation at distinct gran-
ules. To accomplish this goal, the current paper introduces
an algorithm using the properties of bipolar neutrosophic
set and granular computing in Section 3. In this section, the
proposed method is illustrated with an example as given below:

Example 3 Let us consider, a decision-making problem
given in [64] for the illustration of proposed method. A car
company wants to analyze the most appropriate suppliers
{x1, x2, x3, x4} based on the following parameters y1 as
product quality: y2 as technology capability, y3 as pollution
control. The collected data set is represented using the
bipolar neutrosophic context as shown in Table 8. The
pattern from the given context can be generated using the
proposed method shown in Table 6 for precise analysis of
appropriate green suppliers.

Step (1) The proposed method generates first concept using
the attributes which covers each of the objects set
as follows:

{�}↓= { ((1,0),(0,0),(0,0))
x1

+ ((1,0),(0,0),(0,0))
x2

+ ((1,0),(0,0),(0,0))
x3

+ ((1,0),(0,0),(0,0))
x4

}.

Step (2) The covering bipolar fuzzy set of attributes for
the obtained objects set can be discovered using
the UP operator of Galois connection as follows:

{ ((1, 0), (0, 0), (0, 0))

x1
+ ((1, 0), (0, 0), (0, 0))

x2
+ ((1, 0), (0, 0), (0, 0))

x3
+ ((1, 0), (0, 0), (0, 0))

x4
}↑

= { ((0.4,−0.2), (0.425, −0.45), (0.5,−0.7))

y1
+ ((0.6, −0.1), (0.33,−0.25), (0.6,−0.5))

y2
+ ((0.6, −0.1), (0.425, −0.3), (0.5,−0.6)

y3
}.

This provides following three-way bipolar neutrosophic
concepts:

1. Extent: { ((1,0),(0,0),(0,0))
x1

+ ((1,0),(0,0),(0,0))
x2

+
((1,0),(0,0),(0,0))

x3
+ ((1,0),(0,0),(0,0))

x4
}.

Intent: { ((0.4,− 0.2),(0.425,− 0.45),(0.5,− 0.7))
y1

+
((0.6,− 0.1),(0.33,−0.25),(0.6,− 0.5))

y2
+

((0.6,− 0.1),(0.425,− 0.3),(0.5,− 0.6)
y3

}.
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Step (3) The lower neighbor of this concept can be
generated using the maximal acceptance of
uncovered attributes y1, y2, and y3 as follows:

Step (3.(i)) Extent: { ((0.4,− 0.6),(0.5,− 0.4),(0.3,− 0.5))
x1

+
((0.6,− 0.4),(0.4,− 0.5),(0.2,− 0.7))

x2
+

((0.7,− 0.2),(0.2,− 0.6),(0.4,− 0.4))
x3

+
((0.8,− 0.5),(0.6,− 0.3),(0.5,− 0.6))

x4
}.

Intent: { ((1,0)(0,0),(0,0))
y1

+
((0.6,− 0.1),(0.1,− 0.3),(0.2,− 0.5))

y2
+

((0.6,0.0),(0.6,− 1.0),(0.5,− 0.6))
y3

}.
Step (3. (ii)) Extent: { ((0.6,− 0.4),(0.1,− 0.3),(0.2,− 0.2)

x1
+

((0.6,− 0.5),(0.2,− 0.2),(0.3,− 0.3))
x2

+
((0.9,− 0.2),(0.3,− 0.2),(0.6,− 0.5))

x3
+

((0.6,− 0.1),(0.4,− 0.3),(0.3,− 0.4))
x4

}.
Intent: {((0.4, − 0.2), (0.6, − 0.6), (0.5,

−0.7))/y1 + ((1, 0)(0, 0), (0, 0))/y2 +
((0.6, 0.0), (0.6, − 1.0), (0.5, − 0.6))/y3}.

Step (3. (iii)) Extent: { ((0.8,− 0.3),(0.6,− 0.2),(0.5,− 0.1))
x1

+
((0.7,− 0.1),(0.4,− 0.3),(0.5,− 0.4))

x2
+

((0.6,− 0.2),(0.1,− 0.4),(0.5,− 0.6))
x3

+
((0.9,− 0.5),(0.6,−0.3),(0.4,− 0.6))

x4
}.

Intent: { ((0.4,− 0.3),(0.6,− 0.6),(0.5,− 0.7))
y1

+
((0.6,0.0),(0.6,− 1.0),(0.5,− 0.6))

y2
+ ((1,0)(0,0),(0,0))

y3
}.

All the above generated lower neighbors are distinct and
can be considered as next neighbors as follows:

2. Extent: { ((0.4,− 0.6),(0.5,− 0.4),(0.3,− 0.5))
x1

+
((0.6,− 0.4),(0.4,− 0.5),(0.2,−0.7))

x2
+

((0.7,− 0.2),(0.2,− 0.6),(0.4,− 0.4))
x3

+
((0.8,− 0.5),(0.6,− 0.3),(0.5,− 0.6))

x4
}.

Intent: { ((1,0)(0,0),(0,0))
y1

+
((0.6,− 0.1),(0.1,− 0.3),(0.2,− 0.5))

y2
+

((0.6,0.0),(0.6,− 1.0),(0.5,− 0.6))
y3

}.
3. Extent: { ((0.6,− 0.4),(0.1,− 0.3),(0.2,− 0.2)

x1
+

((0.6,− 0.5),(0.2,− 0.2),(0.3,− 0.3))
x2

+
((0.9,− 0.2),(0.3,− 0.2),(0.6,− 0.5))

x3
+

((0.6,− 0.1),(0.4,− 0.3),(0.3,− 0.4))
x4

}.
Intent: {((0.4, − 0.2), (0.6, − 0.6), (0.5, − 0.7))/y1 +
((1, 0)(0, 0), (0, 0))/y2 +
((0.6, 0.0), (0.6, − 1.0), (0.5, − 0.6))/y3}.

4. Extent: { ((0.8,− 0.3),(0.6,− 0.2),(0.5,− 0.1))
x1

+
((0.7,− 0.1),(0.4,− 0.3),(0.5,− 0.4))

x2
+

((0.6,− 0.2),(0.1,− 0.4),(0.5,− 0.6))
x3

+
((0.9,− 0.5),(0.6,− 0.3),(0.4,− 0.6))

x4
}.

Fig. 3 A bipolar neutrosophic concept lattice generated at step 2

Intent: { ((0.4,− 0.3),(0.6,− 0.6),(0.5,− 0.7))
y1

+
((0.6,0.0),(0.6,− 1.0),(0.5,− 0.6))

y2
+ ((1,0)(0,0),(0,0))

y3
}.

The concept lattice for this step is shown in Fig. 3.

Step (4) Similarly, other next neighbors can be generated
as follows:

5. Extent: { ((0.4,− 0.4),(0.3,− 0.35),(0.3,− 0.5))
x1

+
((0.6,− 0.4),(0.3,− 0.5),(0.3,− 0.7))

x2
+

((0.7,− 0.2),(0.25,− 0.4),(0.6,− 0.5))
x3

+
((0.6,− 0.1),(0.5,− 0.3),(0.5,− 0.6))

x4
}.

Intent: { ((0.4,− 0.3),((1,0)(0,0),(0,0))
y1

+ ((1,0)(0,0),(0,0))
y2

+
((0.6,− 0.1),(0.425,− 0.3),(0.5,− 0.6))

y3
}.

6. Extent: { ((0.4,− 0.3),(0.55,− 0.3),(0.5,− 0.5))
x1

+
((0.6,− 0.1),(0.4,− 0.4),(0.5,− 0.7))

x2
+

((0.6,− 0.2),(0.15,− 0.5),(0.5,− 0.6))
x3

+
((0.8,− 0.5),(0.6,− 0.3),(0.5,− 0.6))

x4
}.

Intent: { ((0.4,− 0.3),((1,0)(0,0),(0,0))
y1

+
((0.6,− 0.1),(0.4,− 1.0),(0.6,− 1.0))

y2
+ ((1,0)(0,0),(0,0))

y3
}.

7. Extent: { ((0.6,− 0.3),(0.35,− 0.3),(0.5,− 0.2))
x1

+
((0.6,− 0.1),(0.3,− 0.3),(0.5,−0.4))

x2
+

((0.6,− 0.2),(0.2,− 0.3),(0.6,− 0.6))
x3

+
((0.6,− 0.1),(0.5,− 0.3),(0.4,− 0.6))

x4
}.

Intent: {((0.4, − 0.3), ((0.4, − 0.6), (0.6, − 0.6), (0.5,

−0.7))/y1 + ((1, 0)(0, 0), (0, 0))/y2 +
((1, 0)(0, 0), (0, 0))/y3}.

8. Extent: { ((0.4,− 0.3),(0.4,− 0.3),(0.5,− 0.5))
x1

+
((0.6,− 0.5),(0.33,− 0.43),(0.5,− 0.7))/x2+((0.6,−0.2),(0.2,−0.4),(0.6,− 0.6))

x3
+

((0.6,− 0.1),(0.53,− 0.3),(0.5,− 0.6))
x4

}.
Intent: { ((0.4,− 0.3),((1,0)(0,0),(0,0))

y1
+ ((1,0)(0,0),(0,0)))

y2
+

((1,0)(0,0),(0,0))
y3

}.
The above generated bipolar neutrosophic concept and

its graphical structure visualization is shown in Fig. 4. It
shows the following ordering x3 > x4 > x2 > x1

which is concordant with Ulucay et al. [64] and Sahin et
al. [58] method. Moreover, the proposed method provides
a compressed graphical structure visualization to deal with
bipolar neutrosophic contexts, in case the user or expert
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Fig. 4 A bipolar neutrosophic concept lattice representation of Table 8

wants to navigate the bipolarneutrosophic context based
on distinct granules to measure the suitable pattern. To
achieve this goal, another method is proposed to decompose
the three-way bipolar neutrosophic context using the
mathematical algebra of granular computing as shown in
Section 3.2. In the next section, the proposed method is
illustrated using the same context to validate the results.

Decomposition of Three-Way Bipolar Neutrosophic
Context

Decomposition of fuzzy contexts and its navigation at user
required granules is addressed as one of the major issues [8].
This problem continues for bipolar fuzzy context [44, 52]
as well as other extensions of concept lattice [47]. To tackle
this problem, one of the authors [48, 49] introduces granular
computing in the three-way decision space to characterize
the pattern based on user defined truth, falsity, and
indeterminacy, membership values, independently. Toward
this direction, some other researchers also tried to simulate
the three-way decision space using multi-granulation [32].
The reason is calculus of granular computing given a way to
navigate the context based on its small information or sub-
modules [41]. Motivated from these studies, current paper
introduces a method to simulate the bipolar neutrosophic
context based on granular computing as shown in Section
3.2. In this section, the method is illustrated using the
context shown in Table 8. The given context can be
decomposed based on user required information granules as

Table 10 Decomposition of bipolar neutrosophic context at level 3,
i.e., ((0.6, − 0.2), (0.3, − 0.6), (0.4, − 0.6))

y1 y2 y3

x1 (0, 1, 0) (0, 0, 0) (0, 1, 1)

x2 (0, 1, 1) (0, 0, 0) (1, 0, 1)

x3 (1, 0, 0) (1, 0, 1) (1, 0, 1)

x4 (0, 1, 1) (1, 0, 0) (0, 1, 0)

shown in Table 9. To illustrate the proposed method level 3:
very interested, i.e., ((0.6, − 0.2), (0.3, − 0.6), (0.4, − 0.6)).
This provides the cut as follows:

Example 4 Let us consider, the three-way bipolar neutro-
sophic context shown in Table 8 for the decomposition at
granulation ((0.6, − 0.2), (0.3, − 0.6), (0.4, − 0.6)). To
demonstrate the proposed method shown in Section 3.2
consider the matrix entry R̃(x1, y1) = ((0.4,- 0.6), (0.5,-
0.4), (0.3,- 0.5)). In this case, α+ = 0.6, α− =- 0.2,
β+ = 0.3, β− = 0.6, γ+ = 0.4, γ− = 0.6. Now, the bipolar
truth membership value of matrix entry R̃(x1, y1) 0.4 < α+
and − 0.6 < α−, then it can be represented as 0. The bipo-
lar indeterminacy value of matrix entry R̃(x1, y1)0.5 > β+
and − 0.4 > β+ due to that it can be represented as 0. Sim-
ilarly, the bipolar falsity membership value of matrix entry
R̃(x1, y1)0.3 < γ+ and − 0.5 > γ− due to that it can be rep-
resented as 1. It means the level 3 provides (0, 1, 0)—cut for
the matrix entry R̃(x1, y1) of Table 8 as shown in Table 10.
In a similar way, other three-way decomposed values can be
obtained as shown in Table 10.

It can be observed that the object x3 shows maximal
acceptance for the chosen granulation as it contains
maximal truth value in each entries. Similarly, the order in
other preferences can be obtained as follows: x3 > x4 >

x2 > x1. This ordering is resembled with its concept lattice
shown in Fig. 4 as well as Ulucay et al. [64] and Sahin et al.
[58] method. Moreover, the proposed method gives many
ways to refine the given three-way bipolar neutrosophic
context based on user required granules within O(m6) or
O(n6) time complexity. In this way, the proposed method
is useful for processing the bipolar neutrosophic context in

Table 9 Some of the interested granules based on user required preference

Granulation Interested Measurement Bipolar membership

Level 1 Highly interested Highly positive ((0.8, − 0.1), (0.2, − 0.4), (0.2, − 0.4))

Level 2 Very very interested Very positive ((0.7, − 0.2), (0.2, − 0.5), (0.3, − 0.5))

Level 3 Very interested Absolute positive ((0.6, − 0.2), (0.3, − 0.6), (0.4, − 0.6))

Level 4 Interested Positive ((0.5, − 0.3), (0.4, − 0.7), (0.5, − 0.7))

Level 5 Not interested Not Positive ((0.4, − 0.7), (0.6, − 0.8), (0.8, − 0.9))
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Table 11 Analysis of potential methods on three–way bipolar neutrosophic context

Set theory Method Novelty Pitfall

[4] Heterogeneous Three-way Heterogeneous Not measure the negative

context decision concepts part of bipolar information

[5] Shared contexts FCA Bi-concepts Not measure the negative

part of bipolar information

[12] Bipolar Lattice Mathematical Unable in three-way

fuzzy set morphology decision space

[15, 16] Bipolar Bipolar neutrosophic Graphical Not provide

neutrosophic set fuzzy graph visualization any pattern

[22] Bipolar neutrosophic Similarity Bipolar Not provide

set context graphical visualization

[43, 44] Bipolar Lattice Bipolar Unable in

fuzzy set theory concepts three-way space

[47, 48] Neutrosophic Lattice Three-way Unable in bipolar

set theory fuzzy concepts information measurement

[49] Interval-valued Lattice and Graphical Unable in bipolar

neutrosophic set granular visualization information measurement

[53] Bipolar Next neighbor Lattice Unable in three-way

fuzzy set and granulation visualization information measurement

[54] Bipolar Subset based Lattice Unable in

neutrosophic set method visualization granular processing

[64] Bipolar Similarity Bipolar Not provide

neutrosophic set neutrosophic context graphical visualization

[67] Three-way Set-subset Precise Unable in measuring

decision space methods representation bipolarity

Proposed methods Bipolar Next neighbor Concept lattice Unable in measuring

neutrosophic set and granular and navigation fluctuations of bipolarity

precise way which will give more orientations to work in
different fields [2, 46] for measuring the fluctuation in three-
way fuzzy attributes [51]—the same time the application
of the proposed method will be discussed in future with an
illustrative example.

Discussions

Recently introduced, the three-way fuzzy concept lattice
representation using neutrosophic set [47] is given a
possible orientation to characterize the uncertainty based
on its truth, falsity, and indeterminacy, independently in
the three-way decision space when compared to other
approaches [23, 35, 67, 68]. In this process, problem arises
when the three-way fuzzy contains bipolar information
[49, 53]. In this case, precise representation of bipolar
truth, bipolar falsity, and bipolar indeterminacy membership
values is major issues for the researchers—the same time
defining their mathematical algebra and partial ordering

is another tasks. To deal with this problem recently, the
properties of bipolar neutrosophic sets [22] and its graphical
structure [15] visualization is discussed with an illustrative
example [64]. These available approaches motivated to
analyze the bipolar neutrosophic contexts for knowledge
processing tasks in limited time complexity. It can be
observed that all of the available approaches just highlighted
the distinct ways to represent the bipolarity in the three-
way decision space without their super and sub-concept
ordering as shown in Table 11. In the same time, these
approaches does not provides any mathematical way to
navigate the context at user or expert require granules to
find some hidden pattern. To resolve this problem, the
current paper aimed at graphical analytics of the three-way
bipolar neutrosophic contexts and its decomposition at user
required information granules with an illustrative example.

Table 12 represents the comparison of the proposed
method while considering some of the recently available
approaches. It shows that the proposed method provides
a significant output in the field of the three-way decision
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Table 12 Comparison of the proposed methods with recently introduced methods

Bipolar concept
lattice [44]

Neutrosophic
concept lattice
[47]

Interval neutro-
sophic lattice
[49]

Proposed methods
in this paper

Domain Universe Universe Universe Universe

of discourse of discourse of discourse of discourse

Co-domain Bipolar value Single valued Interval valued Bipolar valued

in [− 1, 1] in [0, 1]3 in [0, 1]3 in [− 1, 1]3

Negativity Yes [− 1, 0) No No Yes in [− 1, 0)

Positive Yes (0, 1] [0, 1] [0, 1] Yes in [0, 1]

Indeterminacy No Yes Yes Yes

Graphs Yes Yes Yes Yes

Partial ordering Yes Yes Yes Yes

Lattice Yes Yes Yes Yes

Multi-dimension No No Yes Yes

Granulation Yes Yes Yes Yes

Information from Same Same Same Same

example 3

Complexity O (2m ∗ n) O (2m ∗ 3n) O (2m ∗ 3n) O(|C| n2 m3)

space to deal with bipolar information within less computa-
tional time. In the same time, the proposed method gives an
umbrella ways to zoom in or zoom out the three-way bipo-
lar neutrosophic context for precise analysis of the hidden
pattern. These two properties are distinct from the proposed
method from any of the available methods in the three-way
bipolar fuzzy setting. However, the proposed method unable
to measure the fluctuation in bipolar neutrosophic context at
given phase of time [2]. In the same time, it does not provide
any information to process these types of dynamic data sets.
To deal with these types of problems, the author will focus
on introducing some other mathematical techniques [74] in
this field [11, 46] to handle the complex bipolar attributes
[55] at the given phase of time [18, 51].

Conclusions

This paper aimed at analyzing the bipolar information based
on its truth, falsity, and indeterminacy memberhship values

and its graphical structure visualization for knowledge pro-
cessing tasks. To achieve this goal, the bipolar neutrosophic
set-based context and its hidden pattern is generated using
the next neighbor algorithm which takes O(|C| n2 m3) time
complexity. It is observed that, the next neighbor algorithm
provides repeated and maximal number of concepts in pro-
cess of finding lower neighbors. To overcome this issues,
another method is introduced to decompose the bipolar neu-
trosophic contexts at user defined information granules for
its bipolar truth, falsity, and indeterminacy membership val-
ues, independently within O(m6) or O(n6) complexity. It is
shown that the obtained results from both of the proposed
methods are resembled with each other as well as Ulucay et
al. [64], Sahin et al. [58], and subset-based [54] methods. In
the near future, the author will try to focus on introducing
some of the new mathematical techniques for processing the
three-way bipolar fuzzy attributes and periodic changes.
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