
Evolutionary Design of Linguistic Fuzzy Regression Systems
with Adaptive Defuzzification in Big Data Environments

Samuel López1 & Antonio A. Márquez2 & Francisco A. Márquez3 & Antonio Peregrín3

Received: 24 April 2018 /Accepted: 5 March 2019 /Published online: 19 March 2019
Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
This paper is positioned in the area of the use of cognitive computation techniques to design intelligent systems for big data
scenarios, specifically the use of evolutionary algorithms to design data-driven linguistic fuzzy rule-based systems for regression
and control. On the one hand, data-driven approaches have been extensively employed to create rule bases for fuzzy regression
and control from examples. On the other, adaptive defuzzification is a well-known mechanism used to significantly improve the
accuracy of fuzzy systems. When dealing with large-scale scenarios, the aforementioned methods must be redesigned to allow
scalability. Our proposal is based on a distributed MapReduce schema, relying on two ideas: first, a simple adaptation of a classic
data-driven method to quickly obtain a set of rules, and, second, a novel scalable strategy that uses evolutionary adaptive
defuzzification to achieve better behavior through cooperation among rules. Some different regression problems were used to
validate our methodology through an experimental study developed and included at the end of our paper. Therefore, the proposed
approach allows scalability while tackling applications of linguistic fuzzy rule-based systems for regression with adaptive
defuzzification in large-scale data scenarios. This paper thus examines the use of some relevant techniques for cognitive
computing when working with a vast volume of examples, a common occurrence when dealing with the design of artificial
intelligent systems that perform reasoning in a similar way as humans.

Keywords Linguistic fuzzymodeling .Evolutionary fuzzy systems .Fuzzy regression .Defuzzification .Bigdata .MapReduce .

Apache Spark

Introduction

The emerging discipline of cognitive computation deals with
artificial reasoning systems that interact with humans in com-
plex situations, mimicking human rational processes as

autonomously as possible in order to improve people’s pro-
ductivity in many areas.

To do so, this interdisciplinary research area employs and
combines models from various areas, many of them involving
computational intelligence developments as natural and bio-
logically inspired methodologies [1–3]. They use knowledge
learned from both people and data bymeans of machine learn-
ing and data mining, among others. Cognitive computing sys-
tems entail many challenges [4], some of them closely related
to large-scale [5], high dimensional [6] and big data [7]
problems.

Fuzziness is an inherent feature of cognitive information,
due to the incomplete cognition of human beings [8]. On the
other hand, decision-making ability is one of the main char-
acteristics of cognitive computation and in this sense, fuzzy
logic helps bring computer reasoning closer to its human
counterpart [9].

Evolutionary algorithms [10, 11] are biologically inspired
methods that have been widely used, particularly together
with fuzzy systems, forming the core of the soft computing
area. Both together are particularly useful due to the good

* Antonio Peregrín
peregrin@uhu.es

Antonio A. Márquez
amarquez@dti.uhu.es

Francisco A. Márquez
alfredo.marquez@dti.uhu.es

1 Escuela Técnica Superior de Ingeniería, University of Huelva,
21007 Huelva, Spain

2 Departamento de Tecnologías de la Información, University of
Huelva, 21007 Huelva, Spain

3 Centro de Estudios Avanzados en Física, Matemáticas y
Computación, University of Huelva, 21007 Huelva, Spain

Cognitive Computation (2019) 11:388–399
https://doi.org/10.1007/s12559-019-09632-4

http://crossmark.crossref.org/dialog/?doi=10.1007/s12559-019-09632-4&domain=pdf
http://orcid.org/0000-0001-7105-2615
mailto:peregrin@uhu.es

practical results, developing the area named evolutionary
fuzzy systems (EFSs). Relevant current reviews in this area
can be found in [12–14]. Also, some recent papers in this area
related with other current hot topics could be found in [15]
which is about explainable artificial intelligence and EFS; or
applications such as [16], related with intrusion detection sys-
tems with EFS; or [17], discussing the fuzzy modeling and
control of micro-air vehicles using evolutionary algorithms;
[18] is also about learning TSK fuzzy systems with evolution-
ary algorithms for high dimensional datasets.

Nonetheless, evolutionary algorithms in general terms have
the drawback of a substantial computational cost, due to the
iterative searching method employed. Furthermore, when
learning fuzzy systems rule bases (RBs), the high number of
examples (large scale problem) implies an exponential rule
growth, i.e., as many defuzzification parameters as rules, sig-
nificantly expanding the search space and thus the time re-
quired. Moreover, calculating the fitness function when using
an enormous number of training examples take a lot of com-
putational time.

The philosophies usually followed in the EFS area to han-
dle large amounts of data are basically the following [14]:

(a) Staking out the algorithms: the inner mechanisms of the
evolutionary algorithms should be rebuilt.

(b) Reducing the amount of data: this way, the evolutionary
procedure should require lower computational effort.

(c) Using distributed computing: the use of clusters of com-
puters to decrease the time employed.

Therefore, in the EFS design area, but not exclusively, one
important challenge is the development of methods and algo-
rithms for enormous data volumes capable of doing the same
work as small data approaches [19, 20], or quality improve-
ments due to the higher computational power.

Although many papers on EFSs for big data focused on
classifiers [21–26] can be found, only a few proposals are
devoted to regression problems [27–30]. However, [27, 28]
are not of linguistic models but Takagi-Sugeno. The recent
interest in scalability was preceded by some previous pro-
posals around sizeable datasets [31–35] based on different
kinds of approach, such as reducing the training data or de-
creasing the searching space. Therefore, they are not really
scalable proposals, that is, offering a wide range of applicabil-
ity while increasing the size of the dataset, based on increasing
the computational power without varying the design of the
algorithm.

Focusing on the design area of fuzzy rule-based systems
(FRBSs) problems, there have been many different methods
to improve their accuracy [12, 14]. Some of them are based on
the use of custom aggregation operators [36, 37]. Attending to
regression problems, one of the most well-known, and nor-
mally also compatible with the others, is the use of adaptive

fuzzy operators in the inference system [38, 39], and particu-
larly adaptive defuzzification [40]. The accuracy improve-
ments it provides derive from the adaptation of defuzzification
to each particular rule, fine-tuning their specific relevance, i.e.,
making the rule set be more cooperative. This is especially
interesting when the RB has been learned using methods
based on covering criteria and the best rule of its area. One
of these methodologies is the widely used and well-known
WM-method [41]. Therefore, the blend of this simple RB
learning procedure with the adaptive defuzzification achieves
a good combination, particularly when using evolutionary al-
gorithms [40].

However, the use of this approach when the problems in-
volve huge data volumes is a challenge. In that situation, the
first step, which is RB learning through adaptation of the
WM-method, was conceptually resolved in our conference
paper [30]. There, a model that gets the same RB as that which
could be learned with the sequential original model was pre-
sented and tested with an Apache Hadoop implementation.
The second step, in [30], is a preliminary study devoted to
an evolutionary adaptive defuzzification (EAD) method, but
there, the proposed model suffered from lack of precision in
terms of the accuracy achieved by the equivalent traditional
sequential model.

Attending particularly to the aforesaid second step, in this
work, we introduce an original new EAD method which im-
proves upon the approach presented in [30]. Specifically, it
definitively enhances the previous work in terms of accuracy
and scalability based on a substantially different distributing
scheme. Now, it is a single evolutionary process with distrib-
uted population evaluation, designated global learning model
[42], instead of the multiple distributed evolutionary process-
es, called the local learning model [42], used in [30]. Also, a
specific Apache Spark [43] implementation in place of the
Apache Hadoop employed in [30] is proposed, in order to
perform the iteration efficiently over the distributed loop need-
ed by the new learning model.

To verify the behavior of our proposal, we carried out an
experimental study.We used 12 regression problems andmea-
sured the performance in terms of computational cost and
accuracy. Furthermore, to confirm the advantages of the new
model, we compared it against the preliminary distributed
EAD presented in [30], applying statistical tests [44, 45] in
order to confirm our hypothesis.

To organize this paper, we have planned the sections as
follows: BPreliminaries^ section describes the new scal-
able EAD method; BWM-EAD-Global^ section comprises
the distributed MapReduce approach developed in this
work; and BExperimental Study^ section shows the exper-
imental study carried out, where we analyze the accuracy
and study the speed-up of our new proposal to finally
reach some conclusions presented in BConclusions and
Future Works.^

Cogn Comput (2019) 11:388–399 389

Preliminaries

This section is devoted to, first of all, review definitions and
notations related with adaptive defuzzification methods,
followed by an introduction to the big data distributed com-
puting frameworks.

Evolutionary Adaptive Defuzzification

Adaptive defuzzification is an easy mechanism to improve the
accuracy of linguistic FRBS for fuzzy modeling, based on
using the appropriate individual contribution of each rule to
the inference process in order to promote cooperation between
the rules [39, 40].

There are many papers devoted to parameterized
defuzzifiers. Frequently, they tune the behavior of the
defuzzification with a single global parameter or with one
parameter for each rule, resulting in an improved accuracy.

In this paper, we opted to use the specific expression shown
in (1), as it is efficient, easy to implement, and showed good
behavior in previous works [40]:

y0 ¼
∑N

i hi⋅αi:CGi

∑N
i hi:αi

; ð1Þ

where hi is the so-called matching degree, αi is the parameter
that tunes each rule Ri, i = 1 to N, and CGi is the gravity center
of the fuzzy set inferred with the rule Ri. This is a Mode - B
defuzzifier, i.e., it converts individually every inferred fuzzy
set into a real value and then calculates a weighted sum.

Note that theαi parameters are equivalent to rule weighting
[46], where values of αi ∈ [1,∞) emphasize the contribution of
that rule, whereas values αi ∈ [0,1] penalize it.

The set of defuzzifier parameters are often learned by using
an evolutionary algorithm with real coding [39, 40], following
the scheme of a chromosome comprising all the parameters
associated with each rule of the RB. In this way, the learning
process achieves a subset of rules with improved cooperation
among them [39, 40]. Therefore, the learning process de-
scribed is particularly interesting for use in post-processing
after the quick and simple methods of RB learning guided
by examples coverage (i.e., WM-method). These methods se-
lect the best rules individually, instead of in a collaborative
group, which is finally reached thanks to the evolutionary
process.

Big Data and Cluster Computing Frameworks

In general terms, big data is employed to denote volumes of
data out of the capabilities of the typical database resources to
capture, store, manage, and analyze [47].

The current big data technologies employed to manage the
aforesaid data volumes are based on three columns [48]:

& Distributed file systems that store the big files in several
distributed servers, e.g., the popular Apache Hadoop
Distributed File System (HDFS) [49]

& Programming paradigms such as MapReduce [50] or
Pregel [51] that ease the distributed programming jobs
into clusters or servers

& Frameworks for computing clusters such as Apache
Hadoop [49] or Apache Spark [43] to let us organize and
manage this groups of computers as storage (through dis-
tributed file systems) and data processing (implementing
distributed programing models) structures efficiently

The MapReduce programming paradigm was featured by
Google in 2004 [50], and its best known open-source imple-
mentation is Apache Hadoop. It is famous due to being one of
the first proposals including MapReduce, and also concepts
like relatively easy to use scalable storage and data processing,
as well as highly fault-tolerant, high availability, automatic
data redundancy and recovery, etc. Hadoop is conceived to
perform in a simple one-pass batch processing over data, that
is, it is not intended to implement iterations over data where it
is not efficient, or for interactive data research. Some of these
drawbacks have recently been resolved by the Apache Spark
[43] framework.

Apache Spark is likewise an open-source distributed
programming framework conceived as a step forward in
flexibility and efficiency. It incorporates different com-
putational models, MapReduce being one of them,
whose implementation is significantly faster [43] than
those of other frameworks. A particularly interesting ad-
vantage is that it allows efficient iterative or multi-pass
data processing due to one of its key features: the use
of in-memory computing. This mechanism is based on a
distributed memory abstraction (called resilient distribut-
ed dataset (RDD) [43]) that reduces the middle disk
access, dramatically accelerating overall performance.
An RDD can be seen as a set of data split through
different servers of the cluster, which can be processed
in parallel. Programmers can use two categories of op-
erations over RDDs: transformations, which take an
RDD and obtain another new RDD, and actions, which
obtain a value from a computation over a given RDD.
The fault-tolerant capability is implemented based on
the aforementioned RDDs, as their slices can be auto-
matically reconstructed if, for any reason, they get lost.

A user program in Spark can be seen as a single driver
running the main function in the cluster master machine, and
a set of several parallel tasks, run by the executors, achieving
the RDDs on the slave machines of the cluster and returning
the results of their computations to the driver.

Finally, we can point out that Spark can also use HDFS
distributed storage, but it is independent of the storage file
system of the cluster, and it can be used not only through

390 Cogn Comput (2019) 11:388–399

programming but also interactively by using a console com-
mand line interpreter.

The EAD proposal developed in this paper is based on the
use of the MapReduce paradigm implemented in the Spark
framework, due to its capacity for efficient use in data sciences
problems [52–55].

WM-EAD-Global: a Linguistic Fuzzy System
with Evolutionary Adaptive Defuzzification
with Spark

Now, we describe the proposal, the WM-EAD-Global FRBS
for regression. This entails two sequential phases, which ben-
efit from the distributed approach:

& WM-Spark: The first phase consists of creating the RB
using the scalable version of the WM-method we pro-
posed in [30]. As we code it using Spark this time, it is
designated WM-Spark.

& EAD-Global-Spark: The second phase entails the evolu-
tionary adaptive defuzzification method itself. It uses a
scalable global evolutionary learning model, where the
defuzzification method parameters are learned using an
evolutionary algorithm [40]. This time is also implement-
ed in Spark, where it takes advantage of the in-memory
data capabilities to implement an iterative global model
efficiently.

First Phase: WM-Spark

The WM data-driven method [41] is one of the most ref-
erenced algorithms of the FRBSs research area, to obtain,
in a simple way, the RB employing a set of samples. The
first phase, a distributed Spark implementation of the
WM-method, which we named WM-Spark, involves a

conceptually simple idea, which is to divide the original
training dataset into some subsets, and apply the WM-
method to each subset in a distributed way, helped by
the MapReduce paradigm. Thus, in Spark, the training
set is uniformly split into n portions and distributed along-
side the computer cluster. This one-pass MapReduce sche-
ma is shown in Fig. 1, highlighting the operations carried
out on the master node single computer by the driver
program, and the ones on the group of slave computers
by the executors. The functions are detailed below:

1. First, the driver program makes the partition of the fuzzy
variables (so-called Data Base (DB)) using a uniformly
allocated fixed number of triangular linguistic terms.
Beforehand, the training dataset is divided into n disjoint
subsets of training data with the same size, which are
spread into the worker nodes together with the partitioned
fuzzy variables.

2. Map function: worker nodes individually perform the
classical WM-method, creating a rule for each example
on its partition (naming RBi in Fig. 1, to the set of rules of
partition i) using for every variable the labels with the
greater matching. Additionally, a matching degree is giv-
en in order to combine these generated rules. Therefore,
this function creates a list of key-value pairs, where (key:
labels of the antecedents of the rules; value: consequent of
the rules, and its matching), which are returned to the
driver program to be joined.

3. Reduce function: at least one or more reduce processes
take the RBi to be joined to build the final set of rules (in
Fig. 1, we name it as RBF). When rules with the same
antecedents and consequent appear two or more times,
they are removed keeping only a single copy; on the other
hand, if there are rules with the same antecedents but
dissimilar consequent, they are fixed selecting only the
rule with the highest matching degree. Regarding the
key-value pairs managed, this function takes a list of

Fig. 1 First stage of the WM-EAD-Global method in MapReduce: the WM-Spark

Cogn Comput (2019) 11:388–399 391

key-value duos grouped by key/antecedent as (key: labels
of the antecedents of a rule; list of value: list of pairs
(consequents for that antecedents, and their respective
matching)) and results in a rule. The whole of the rules
generated is the final RB, (RBF) which, together with the
DB previously performed by the driver program, is the
complete Knowledge Base (KB). Lastly, note that the
WM-Spark described achieves the same as the WM-
method so the RBs it creates are identical.

Second Phase: The EAD-Global-Spark

This phase performs the evolutionary process devoted to tune
the parameters of the defuzzifier linked with each rule [39, 40]
in a scalable way.

In the BIntroduction^ section, we commented that the
proposal of this paper significantly improves the ap-
proach presented in [30]. There, we employed a local
distributed evolutionary process model, each with its
own different training data subset, to learn the
defuzzification rule parameters. In fuzzy regression,
where each output of the FRBS is computed through
the aggregation or combination of the inference of some
fired rules together instead of a single one, the values
of rule parameters learned are closely related to each
other, creating a cooperation relationship [40].
Therefore, the later complex combination of rule param-
eters learned within different partitions causes an inex-
orable decrease in the accuracy of the model.

This paper proposes to solve the aforementioned draw-
back by changing the local evolutionary learning model
(single-pass MapReduce schema) for a global one (multi-
pass MapReduce schema). In this way, the distributed
computational power is not employed to perform distrib-
uted learning, but the heavy chromosome evaluation
for every iteration of the evolutionary algorithm.
Conceptually, the proposed model performs in the same
way as the sequential model and later, in the experimental
study, the differences between local and global model will
be studied.

In order to describe the method proposed, we begin by
describing the evolutionary schema details, and then how we
use a MapReduce schema implemented in a Spark to make it
scalable and efficient.

The evolutionary algorithm implemented is based on a
classical CHC evolutionary algorithm [56], so here, we briefly
depict its essential mechanisms:

Encoding

A real encoding equal to the one employed in our previous
paper [40] was used. It consists of N genes in the interval

[0,10], corresponding to the respective rule parameters αi, of
the RB, Ri.

C ¼ α1;…;αNð Þ j αi∈ 0; 10f g

Initial Population

The chromosomes of the initial population have been
established with a single one with all its genes fixed to 1, in
order to have an individual with the whole of its rules without
weights. The rest of the chromosomes of the population were
initialized randomly.

Evaluation

The evaluation process is the element of the evolutionary pro-
cedure performed in a distributed way by using Spark execu-
tors, as described later. Our approach entails minimizing the
mean square error (MSE) to maximize the accuracy. TheMSE
expression 2 is:

MSE Sð Þ ¼
1

2
∑
M

k¼1
yk−S xkð Þð Þ2

M
ð2Þ

where S denotes the fuzzy model considered. We use a set of
evaluation data made by M pairs of numerical data
Zk = (xk,yk), k = 1,..,M, with xk being the values of the input
variables, yk the corresponding values of the output variables.

Crossover and Restart

The recombination of the chromosomes was implemented
using the BLX-α operator [57] specific for real-coded genetic
algorithms (fixing the parameter α= 0.5). This involved tak-
ing into consideration that CHC algorithm only pairs chromo-
somes that overcome the mating threshold (they are sufficient-
ly different, measured by using the Hamming distance after
the conversion of the real numbers into strings).

The aforesaid mating threshold is set initially to L/4, being
L is the number of characters of the string. The mating thresh-
old is reduced by one unit if no offspring reach the new
population.

The best chromosome of the population is maintained
when the algorithm restarts, while the rest of the individuals
are randomly initiated.

An Iterative MapReduce Process for Adaptive Defuzzification

Now, we shall describe theMapReduce strategy to achieve the
EAD-Global-Spark. First, we describe it in terms of functions
and processes (illustrated in Fig. 2), and then in terms of the
computation of the MSE (showed in Fig. 3).

392 Cogn Comput (2019) 11:388–399

In this second phase, an iterative process MapReduce is
performed to obtain the weighs for each rule obtained in the
first phase. Next, we describe this process developed using the
Spark paradigm:

1. The driver program, which is executed in the master
node, performs an evolutionary learning algorithm to
learn the associated RB weights, processing the heavy
computational population evaluation in a distributed
way along the cluster. To do so, it takes the whole data
set, splits it into as many different units as working nodes
available in the cluster, and distributes it to each node,
also giving them a full copy of the KB (DB + RB) previ-
ously obtained in the first phase, and, of course, a full
copy of the population to be evaluated.

2. Map function carried out by the executors: each worker
node uses its available data to do the evaluation process,
that is, every chromosome is evaluated using the worker
node set of examples. Therefore, each chromosome,
which represents the set of rule weights or defuzzification
parameters associated with the RB, gets in this process the
partial fitness corresponding with its data partition. In
terms of the key-value pairs, the Map function produces
a list of intermediate key-value pairs as (key:
chromosomes (weights associated of each rule that have
to be evaluated); value: fitness (a measure of the accumu-
lated error obtained for the RB and DB using the associ-
ated weights of each chromosome), which are transmitted
back to the master node that joins them. Later, we describe
in full how the MSE is computed with the aforesaid accu-
mulated error.

3. Reduce function, also carried out by the executors: at least
one or more reduce processes get the sorted ends of the
Maps functions andmerge them to construct the definitive
fitness of each chromosome (we named Ci with wi in Fig.
2). This is achievable because the final fitness of each
chromosome of the population, which is the MSE of the
whole data, can be computed by combining the measure
of the accumulated errors computed in each partition with
their subset of data examples. Using key-value pair termi-
nology, the reduce process gets the list of midway key-
value pairs aggregated for key as (key: chromosome
(weights associated of each rule that have been
evaluated); list of value: list of fitness (accumulated
errors) for each chromosome evaluated in each partition)
and produces a list of chromosomes with their new asso-
ciated fitness. The fitness obtained for all chromosomes is
then sent to driver program in order to follow the evolu-
tionary process.

Specifically, the definition of theMSE shown in expression
2 for a sequential calculation is computed within the
MapReduce schema in this way (see also Fig. 3):

& The Map functions compute the accumulated error
(Errori

j) showed in expression 3:

Error ji ¼ ∑
M
n

k¼1
yik−S

j xikð Þ� � ð3Þ

where n is the number of subsets into which the training
dataset has been divided, i is the subset considered (with i =

Fig. 2 Second stage of the WM-EAD-Global method in MapReduce: evolutionary adaptive defuzzification

Cogn Comput (2019) 11:388–399 393

1,…,n), j is the chromosome contemplated (with j = 1,…,t,
and t being the number of chromosomes), and M denotes the
number of instances or examples of the original dataset. Sj is
the fuzzy model employing the chromosome j, that is, using
the j set of defuzzifier parameters, and in the same way that in
(2), (xik,yik) are the numerical pairs of values of the i-subset of
examples for the input variables (x) of the example k (with k =
1,…,M), and the theoretical output (y).

& The reduce functions compute the MSE shown in expres-
sion 4 using the previously computed accumulated errors,
Errori

j:

MSE j Sð Þ ¼
1

2
∑
n

i¼1
Error ji
� �2

M
ð4Þ

with j being the chromosome considered, soMSE j(S) is the set
of MSEs computed returned as the fitness of each chromo-
some to the evolutionary algorithm.

Experimental Study

In this section, we present a study of the behavior of the pro-
posed model in terms of accuracy and scalability. As we

commented above, both WM-Spark and the new proposal
EAD-Global-Spark perform exactly in the same way as the
sequential WM and EAD. Therefore, the WM-EAD-Global is
alike to its sequential ancestor in terms of accuracy. Thus, in
the present experimental study, we attend to the scalability of
the new model and compare the accuracy of the presented
model against its predecessor proposed in [30].

This section is organized as follows: first, we show the
datasets selected for the experimental study. Then, the
BExperimental Setup^ subsection describes how has been
configured the experimental study developed and the non-
parametrical statistical test employed to do a comparative
study. Then, the BResults Obtained and Analysis^ subsection
is devoted to the examination of the results. Finally, the
BScalability^ subsection studies the speed-up achieved by
our proposal.

Table 1 shows a summary of the main characteristics of the
12 regression problems that we selected to carry out our ex-
perimental study. They have different complexities, different
numbers of instances and variables and can be found in the
KEEL [58] data repository, UCI Machine Learning
Repository, and the complementary material website of the
paper. We also included two particularly complex and great
datasets (ETHY2 and YPRE) in order to observe the behavior
with them. Particularly ETHY2 has been synthetically built
from its corresponding original. It is one of the two time series
ethylene_methane gas sensor array under dynamics gas
mixtures of 4.178.504 instances from UCI. It has 19 attributes

Fig. 3 Detailed schema used to compute the MSE by the proposed WM-EAD-Global approach with the MapReduce programming model

394 Cogn Comput (2019) 11:388–399

including the time and 2 outputs, so we have selected the
ethylene-methane output and the 17 input variables for 12 h.
Therefore, the set of datasets selected goes from a lesser to
greater number of variables, comprising a range from 8192 to
1,044,625 examples and from 6 to 90 input variables.

Experimental Setup

Regarding the KBs, we have used three triangular linguistic
terms for each variable in each problem. Both the conjunction
and inference operator were the minimum t-norm. Concerning
defuzzifiers, WM-Spark models use the center of gravity
weighted by the matching degree, while the later global model
EAD uses the defuzzifier showed in expression (1).

Datasets were previously separated into training and test,
also considering a 5-fold cross-validation model. A total of 30
runs for each problem (5 partitions and 6 different seeds for
the random number generator of the genetic algorithms) were
carried out. A population of 50 chromosomes, a crossover
probability of 1, and a maximum number of 100,000 evalua-
tions were the rest of the evolutionary process setup
considered.

An exception to the aforesaid setup is the YPRE dataset. It
was added in order to use a greater and complex dataset, but
due to its features, we have exceptionally used a single parti-
tion and a single seed. Regarding the evolutionary process, in
this particular case, we set the number of evaluations to
30,000, because of the relatively modest testing platform
available we describe next.

We employed a Spark cluster of 17 virtual servers with 4
cores and 8 GB of RAM each, the first of them being the one
that executes the driver program, and the other 16 the worker
nodes where the executors act. The host computer hardware is
a server with 4 CPUs Intel Xeon E7–4850 with 10 cores per
CPU and hyperthreading (thus, capable of 80 threads), and
192GB of RAM. The number of cores was set in two different
ways:

& Using a 2 core setup to measure the times needed with a
basic machine.

& Using the cluster mode with the whole 16 servers, with 16
and 32 cores setups.

Note that this is not a true HPC cluster for big data
problems but a research platform to test and validate al-
gorithms, so the absolute values of time obtained are not
truly representative, but interesting from a scalability
point of view and for comparison between them. Our ob-
jective is not to show the well-known usefulness of the
EADs for fuzzy regression applications, but to study the
ways to adapt them to the current MapReduce distributed
paradigm, to take advance of computer clusters.

Our study has been validated using statistical testing [44,
45]. In fact, we compared the performance approaches using a
Wilcoxon signed-rank test [59]. In this sense, we performed a
nonparametric statistical test of pairwise comparisons, the
Wilcoxon signed rank test [59], to compare performance ap-
proaches. For this purpose, the test first performs the absolute
value of the differences between the two FRBSs compared
and classifies the results in ascending order, establishing a
range for each of them. Once done, a sum of the R+ ranges
is calculated when the first model exceeds the second, and
vice versa when the opposite occurs R-. To conclude, a p value
related with the statistical distribution is calculated so then, the
null hypothesis of equality of means can be rejected if it is
under a pre-specified level of significance.

Results and Analysis

The results achieved by the two models (WM-EAD-Local
[30] (in that contribution, named Scalable WM-EAD) and
the new proposal, WM-EAD-Global) with each problem are
shown in Table 2, where the two main columns show the
average MSE obtained by the two models compared, both in
training (MSEtra) and test (MSEtst). The table also shows in-
formation on the number of rules of the models, and the best
test accuracies are highlighted.

In the same sense, Table 3 shows the Wilcoxon test results
of both models, where it can be concluded that there are sig-
nificant differences between the two methodologies compared
because the p values are lower than the fixed level of signif-
icance of α= 0.1.

Consequently, when analyzing Table 2 and the statistical
results found in Table 3, we can highlight that:

Table 1 Datasets considered. Available at KEEL (https://sci2s.ugr.es/
keel/datasets.php) and UCI (https://archive.ics.uci.edu/ml/datasets.html)
repositories, and also YPRE and ETHY2, which can be downloaded
from http://www.uhu.es/gisimd/papers/WM-EAD-Global/)

Problem Abbreviation Instances Input
variables

Delta-elv DELV 9517 6

California CAL 20,640 8

Mv MV 40,768 10

House HOU 22,768 16

Ethy_meta1M ETHY2 1,044,625 17

Elevators ELV 16,599 18

Compactiv CA 8192 21

Pole POL 14,998 26

Puma32 PUM 8192 32

Airelons AIL 13,750 40

Tic TIC 9822 85

YearPrediction YPRE 515,345 90

Cogn Comput (2019) 11:388–399 395

http://sci2s.ugr.es/keel/datasets.php
http://sci2s.ugr.es/keel/datasets.php
https://archive.ics.uci.edu/ml/datasets.html
http://www.uhu.es/gisimd/papers/WM-EAD-Global/

& The global learning model presented, WM-EAD-Global,
shows better average results for both training and test than
the local learning model implemented in WM-EAD-
Local, so the new proposal improves on the previous
one in terms of accuracy, as it does not suffer any deteri-
oration of the rule cooperation. But there are two excep-
tions with the TIC and YPRE datasets: the results of TIC
in test are slightly worse due to overfitting, which is al-
ways a situation that can occur when using evolutionary
algorithms. Attending to the particular case of the YPRE
dataset, we observed that the WM-EAD-Local gets slight-
ly better accuracy results than the WM-EAD-Global. This
is likely due to the lower number of evaluations of the
evolutionary algorithm fixed (only 30,000), together with
its greater complexity, so the evolutionary algorithm did
not converge and take advantage of the global learning
model like the rest of the datasets.

& Finally, it is also interesting to point out that the accuracy
of the global methodology proposed is independent of the
size of the partition employed (sometimes conditioned by
the distributed computing resources available). In other
words, this proposal is not only more accurate than the
preliminary one presented in [30], WM-EAD-Local, but
also independent of the computational resources. Thus,
greater computational power only affects the time needed,
but not the quality of the solution found.

Scalability

In this section, we observe the behavior of the proposed ap-
proach attending to the times obtained and its speed-up when
the number of computing resources, in terms of cores, grows.
We have selected the basic setup of the cluster using 2 cores,
and then setups with 16 and 32 cores. Table 4 shows the
runtime results obtained in hours, minutes, and seconds, spent
by the EAD-Global-Spark (the second phase comprising of a
multi-pass algorithm). It is important to note that, as we have
commented before, although many of the times shown are
sizeable, they are due to the available experimental platform
employed, based on virtual servers running inside a big host
computer. Nevertheless, the times are not important in

Table 4 Average runtime elapsed in hours:minutes:seconds and speed-
ups for the WM-EAD-Global using 16 and 32 cores

Dataset 2-cores 16-cores 32-cores

Time Time Speed-
up

Time Speed-
up

DELV 000:19:15 00:04:06 4.69 00:03:01 6.38

CAL 000:40:57 00:07:42 5.31 00:05:16 7.77

MV 052:38:43 09:04:24 5.80 06:12:53 8.47

HOU 008:24:41 01:18:37 6.42 00:54:20 9.29

ETHY2 594:41:23 101:41:06 5.85 67:27:23 8.82

ELV 003:58:51 00:42:08 5.67 00:27:11 8.79

CA 002:10:04 00:25:03 5.19 00:17:14 7.54

POL 011:12:12 01:48:22 6.20 01:07:28 9.96

PUM 047:48:21 08:12:06 5.83 05:18:42 9.00

AIL 015:56:45 02:36:11 6.13 01:42:32 9.33

TIC 118:14:11 20:42:28 5.71 12:48:54 9.23

YPRE – 1151:24:57 – 764:24:23 –

Table 3 Wilcoxon test to compare the accuracy of theWM-EAD-Local
vs. WM-EAD-Global. R+ corresponds to the sum of the ranks for WM-
EAD-Global and R- to WM-Spark-Local

Comparison R+ R- p value

WM-EAD-Global vs WM-EAD-Local 17 61 0.09228

Table 2 Reference values of
average number of rules andMSE
of the FRBSs built with WM-
EAD-Local and WM-EAD-
Global. Values of MSE in this ta-
ble must be multiplied by, 10−6,
108, 109, 10−6, 10−8, and 10−4 for
DELV, CAL, HOU, ELV, AIL,
and TIC respectively

Datasets WM-EAD-Local WM-EAD-Global

#R MSEtra MSEtst MSEtra MSEtst

DELV 129.4 1.623575 1.646743 1.597499 1.625437

CAL 123.4 3.209802 3.214411 3.194159 3.203725

MV 3677.8 6.639665 6.922148 6.242279 6.592111

HOU 756.4 9.908656 10.971230 9.536912 10.210971

ETHY2 1099.8 990.032050 990.133439 989.463110 989.549671

ELV 508.8 10.135433 10.373326 9.650917 9.871129

CA 424.8 5.889947 6.290382 5.201201 5.985796

POL 1087.0 183.906543 189.593453 172.921691 179.290236

PUM 6553.6 0.000248 0.000587 0.000224 0.000586

AIL 1072.0 2.009592 2.086157 1.910770 2.017002

TIC 5802.4 156.035968 495.464697 113.327201 518.080663

YPRE 5322,6 70.923407 70.941918 71.087112 71.103495

396 Cogn Comput (2019) 11:388–399

absolute terms, but in relative terms (speed-up), some with
respect to others. We did not include in Table 4 the measures
of YPRE dataset for the 2 cores setup because its complexity
makes it close to impossible to compute with this specific
cluster setup, but the results obtained with 16 and 32 cores
show a similar scalability than the one obtained with the other
datasets.

Finally, in order to easily compare the different speed-ups
of Table 4, Fig. 4 graphically shows the relative speed-up
between the 16 and 32 cores setup for each dataset of the
experimental study. The speed-up is defined as the ratio be-
tween the time spent with the 16 and 32 core setups respec-
tively, and the time spent by the simple 2 core setup. The
speed-up for the YPRE dataset is not computed due to the
aforesaid lack of time measured for the 2 core setup.

The time reduction when increasing the number of cores is
remarkable, as was expected. However, this time reduction is
not completely proportional to the number of cores, due to the
extra computational load of the Spark framework.

Conclusions

The purpose of this paper is to propose a new completely
linguistic FRBSs for regression with adaptive defuzzification
in large-scale environments created using MapReduce distrib-
uted paradigm and a global learning model. Although this
paper is focused on the evolutionary adaptive defuzzification
proposal, we include a distributed scalable version of the very
well-known Wang and Mendel approach [41] to learn the
fuzzy RB from examples. Both models are implemented in
Apache Spark. The most remarkable aspect of this paper is
that both algorithms produce the same results as their sequen-
tial ancestor, which was not achieved in our preliminary ap-
proach [30] where the learning model was local. The interest
of the use of evolutionary adaptive defuzzification approaches
is that it is compatible with most other methodologies to

improve the accuracy in linguistic FRBSs for regression and
control.

The proposal presented in this work is interesting not only
in terms of large-scale problems (i.e., dataset with huge vol-
ume of examples) but also with smaller datasets in more rea-
sonable execution times utilizing distributed processing, de-
spite the heavy computational cost of the evolutionary
technique.

Funding Information This work was supported by grant from the
Spanish Ministry of Science under project TIN2017-89517-P.

Compliance with Ethical Standards

Conflict of Interest The authors declare that they have no conflict of
interest.

Ethical Approval This article contains no studies with human partici-
pants or animals performed by any of the authors.

References

1. Siddique N, Adeli H. Nature inspired computing: an overview and
some future directions. Cogn Comput. 2015;7(6):706–14.

2. Nobakhti A. On natural based optimization. Cogn Comput.
2010;2(2):97–119.

3. Wang D, Shan H, Tian Y, Liu L. Emergent face orientation recog-
nition with internal neurons of the developmental network. Prog
Artif Intell. 2018;7(4):359–67.

4. Dragoni M, Rospocher M. Applied cognitive computing: chal-
lenges, approaches, and real-world experiences. Prog Artif Intell.
2018;7(4):249–50.

5. Fan M, Zhou Q, Abel A, Fang Zheng T, Grishman R. Probabilistic
belief embedding for large-scale knowledge population. Cogn
Comput. 2016;8(6):1087–102.

6. Zhang HG, Wu L, Song Y, Su CW, Wang Q, Su F. An online
sequential learning non-parametric value-at-risk model for high-
dimensional time series. Cogn Comput. 2018;10(2):187–200.

Fig. 4 Speed-up obtained with
each dataset (except YPRE)

Cogn Comput (2019) 11:388–399 397

7. Abdullah A, Hussain A, Khan IH. Introduction: dealing with big
data - lessons from cognitive computing. Cogn Comput. 2015;7(6):
635–6.

8. Zhang HY, Ji P, Wang JQ, Chen XH. A neutrosophic normal cloud
and its application in decision-making. Cogn Comput. 2016;8(4):
649–69.

9. Tao Z, Han B, Chen H. On intuitionistic fuzzy copula aggregation
operators in multiple- attribute decision making. Cogn Comput.
2018;10(4):610–24.

10. Molina D, LaTorre A, Herrera F. An insight into bio-inspired and
evolutionary algorithms for global optimization: review, analysis,
and lessons learnt over a decade of competitions. Cogn Comput.
2018;10(4):517–44.

11. Pino A, Shin K, Velázquez-Rodríguez C. Improving the genetic bee
colony optimization algorithm for efficient gene selection in micro-
array data. Prog Artif Intell. 2018;7(4):399–410.

12. Herrera F. Genetic fuzzy systems: taxonomy, current research
trends and prospects. Evol Intell. 2008;1(1):27–46.

13. Fazzolari M, Alcalá R, Nojima Y, Ishibuchi H, Herrera F. A review
of the application of multi-objective evolutionary systems: current
status and further directions. IEEE Trans Fuzzy Syst. 2013;21(1):
45–65.

14. Fernández A, López V, del Jesus MJ, Herrera F. Revisiting evolu-
tionary fuzzy systems: taxonomy, applications, new trends and
challenges. Knowl Based Syst. 2015;80:109–21.

15. Fernández A, Herrera F, Cordón O, del Jesus MJ, Marcelloni F.
Evolutionary fuzzy systems for explainable artificial intelligence:
why, when, what for, and where to? IEEE Comput Intell Mag.
2019;14(1):69–81.

16. Elhag S, Fernández A,Alshomrani S, Herrera F. Evolutionary fuzzy
systems: a case study for intrusion detection systems. In: Bansal J,
Singh P, Pal N, editors. Evolutionary and swarm intelligence algo-
rithms. Studies in Computational Intelligence, vol. 779. Cham:
Springer; 2019. p. 169–90.

17. Ferdaus MM, Anavatti SG, Garratt MA, Pratama M. Development
of C-means clustering based adaptive fuzzy controller for a flapping
wing micro air vehicle. J Artif Intell Soft Com Res. 2019;9(2):99–
109.

18. Cózar J, dela Ossa L, Gámez JA. Learning compact zero-order TSK
fuzzy rule-based systems for high-dimensional problems using an
Apriori + local search approach. Inform Sci. 2018;433–434:1–16.

19. Zikopoulos P, Eaton C, De Roos D, Deutsch T, Lapis G.
Understanding big data: analytics for enterprise class Hadoop and
streaming data. New York City: McGraw-Hill; 2011.

20. García-Pedrajas N, de Haro-García A. Scaling up data mining al-
gorithms: review and taxonomy. Progr Artif Intell. 2012;1(1):71–
87.

21. Río S, López V, Benítez JM, Herrera F. A MapReduce approach to
address big data classification problems based on the fusion of
linguistic fuzzy rules. Int J Comp Intel Syst. 2015;8(3):422–37.

22. Peralta D, Río S, Ramírez-Gallego S, Triguero I, Benítez JM,
Herrera F. Evolutionary feature selection for big data classification:
a MapReduce approach. Math Probl Eng. 2015:501–246139.

23. Fernandez A, Carmona CJ, del Jesus MJ, Herrera F. A view on
fuzzy systems for big data: progress and opportunities. Int J
Comp Intel Syst. 2016;9(1):69–80.

24. Ferranti A, Segatori A, Antonelli M, Ducange P. A distributed ap-
proach to multi-objective evolutionary generation of fuzzy rule-
based classifiers from big data. Inf Sci. 2017;415(416):319–40.

25. Ducange P, Marcelloni F, Segatori A. A MapReduce-based fuzzy
associative classifier for big data. In Proceedings of the IEEE
International Conference on Fuzzy Systems (FUZZ-IEEE).
2015;1–8.

26. López V, del Río S, Benítez JM, Herrera F. Cost-sensitive linguistic
fuzzy rule based classification systems under the MapReduce

framework for imbalanced big data. Fuzzy Sets Syst. 2015;258:5–
38.

27. Rodriguez-Fdez I, Mucientes M, Bugarin A. A genetic fuzzy sys-
tem for large-scale regression. In Proceedings of the IEEE
International Conference on Fuzzy Systems (FUZZ-IEEE). 2016;
1421–1428.

28. Rodriguez-Fdez I, Mucientes M, Bugarin A. SFRULER: scalable
fuzzy rule learning through evolution for regression. Knowl Based
Syst. 2016;110:255–66.

29. Rodriguez-Mier P, Mucientes M, Bugarín A. Scalable modeling of
thermal dynamics in buildings using fuzzy rules for regression. In
Proceedings of the IEEE International Conference on Fuzzy System
(FUZZ-IEEE). 2017; 1–6.

30. Márquez AA, Márquez FA, Peregrín A. A scalable evolutionary
linguistic fuzzy system with adaptive defuzzification in big data.
In Proceedings of the IEEE International Conference on Fuzzy
System (FUZZ-IEEE). 2017; 1–6.

31. Alcalá R, Gacto MJ, Herrera F. A fast and scalable multiobjective
genetic fuzzy system for linguistic fuzzy modelling in high dimen-
sional regression problems. IEEE Trans Fuzzy Syst. 2011;19(4):
666–81.

32. Márquez AA, Márquez FA, Roldán AM, Peregrín A. An efficient
adaptive fuzzy inference system for complex and high dimensional
regression problems in linguistic fuzzy modelling. Knowl Based
Syst. 2013;54:42–52.

33. Antonelli M, Ducange P, Marcelloni F. Genetic training instance
selection in multiobjective evolutionary fuzzy systems: a coevolu-
tionary approach. IEEE Trans Fuzzy Syst. 2012;20(2):276–90.

34. Antonelli M, Ducange P, Marcelloni F. An efficient multi-objective
evolutionary fuzzy system for regression problems. Int J Approx
Reason. 2013;54(9):1434–51.

35. Gacto MJ, Galende M, Alcalá R, Herrera F. METSK-HDe: a
multiobjective evolutionary algorithm to learn accurate tsk-fuzzy
systems in high-dimensional and large scale regression problems.
Inf Sci. 2014;276:63–79.

36. Liu P, Li H. Interval-valued intuitionistic fuzzy power Bonferroni
aggregation operators and their application to group decision mak-
ing. Cogn Comput. 2017;9(4):494–512.

37. Garg H, Arora R. Dual hesitant fuzzy soft aggregation operators
and their application in decision-making. Cogn Comput.
2018;10(5):769–89.

38. Alcala-Fdez J, Herrera F,Márquez FA, Peregrín A. Increasing fuzzy
rules cooperation based on evolutionary adaptive inference sys-
tems. Int J Intell Syst. 2007;22(9):1035–64.

39. Márquez FA, Peregrín A, Herrera F. Cooperative evolutionary
learning of linguistic fuzzy rules and parametric aggregation con-
nectors for Mamdani fuzzy system. IEEE Trans Fuzzy Syst.
2007;15(6):168–1178.

40. Cordón O, Herrera F, Márquez FA, Peregrín A. A study on the
evolutionary adaptive defuzzification methods in fuzzy modelling.
Int J Hybrid Intell Syst. 2004;1(1):36–48.

41. Wang L, Mendel J. Generating fuzzy rules by learning from exam-
ples. IEEE Trans Syst, Man, Cybern. 1992;22(6):1414–27.

42. Ramirez-Gallego S, Fernández A, García S, ChenM, Herrera F. Big
data: tutorial and guidelines on information and process fusion for
analytics algorithms with MapReduce. Inf Fusion. 2018;42:51–61.

43. Zaharia M, Xin RS, Wendell P, Das T, Armbrust M, Dave A, et al.
Apache spark: a unified engine for big data processing. Commun
ACM. 2016;59(11):56–65.

44. Demšar J. Statistical comparisons of classifiers over multiple data
sets. J Mach Learn Res. 2006;7:1–30.

45. García S, Herrera F. An extension on statistical comparisons of
classifiers over multiple data sets for all pairwise comparisons. J
Mach Learn Res. 2008;9:2579–96.

398 Cogn Comput (2019) 11:388–399

46. Cho JS, Park DJ. Novel fuzzy logic control based on weighting of
partially inconsistent rules using neural network. J Intel Fuzzy Syst.
2000;8:99–100.

47. Laney D. 3D data management: controlling data volume, velocity
and variety. META Group Research Note 6. 2001; 70.

48. Fernández A, del Río S, López V, Bawakid A, del Jesus MJ,
Benítez JM, et al. Big data with cloud computing: an insight on
the computing environment,MapReduce, and programming frame-
works. Wiley Interdiscip. Rev. Data Mining Knowl. Discov.
2014;4(5):380–409.

49. White T. Hadoop: the definitive guide. Sebastopol: O’ReillyMedia,
Inc.; 2012.

50. Dean J, Ghemawat S. MapReduce: a flexible data processing tool.
Commun ACM. 2010;53(1):72–7.

51. Malewicz G, Austern MH, Bik AJ, Dehnert JC, Horn I, Leiser N,
et al. Pregel: a system for large-scale graph processing. In
Proceedings of the ACM SIGMOD International Conference on
Management of Data 2010;135–146.

52. Padillo F, Luna JM, Ventura S. Exhaustive search algorithms to
mine subgroups on big data using Apache Spark. Prog Artif
Intell. 2017;6(2):145–58.

53. Pulgar-Rubio F, Rivera-Rivas AJ, Pérez-Godoy MD, González P,
Carmona CJ, del Jesus MJ. MEFASD-BD: multi-objective

evolutionary algorithm for subgroup discovery in big data environ-
ments - a MapReduce solution. Knowl Based Syst. 2017;117:70–8.

54. Arnaiz-González A, González-Rogel A, Díez-Pastor JF, López-
Nozal C. MR-DIS: democratic instance selection for big data by
MapReduce. Prog Artif Intell. 2017;6(3):211–9.

55. Luna-Romera JM, García-Gutiérrez J, Martínez-Ballesteros M,
Riquelme JC. An approach to validity indices for clustering tech-
niques in big data. Prog Artif Intell. 2018;7(2):81–94.

56. Eshelman LJ. The CHC adaptive search algorithm: how to safe
search when engaging in nontraditional genetic recombination. In
G.J.E. Rawlings (Ed.), Foundations of genetic algorithms. 1991;1:
265–283.

57. Herrera F, Lozano M, Sánchez A. A taxonomy for the crossover
operator for real-coded genetic algorithms: an experimental study.
Int J Intell Syst. 2003;18:309–38.

58. Alcala-Fdez J, Sánchez L, García S, del Jesus M, Ventura S, Garrell
J, et al. Keel: a software tool to assess evolutionary algorithms for
data mining problems. Soft Comput. 2009;13(3):307–18.

59. Sheskin D. Handbook of parametric and nonparametric statistical
procedures. Boca Raton: Chapman & Hall/CRC; 2006.

Publisher’s Note Springer Nature remains neutral with regard to jurisdiction-
al claims in published maps and institutional affiliations.

Cogn Comput (2019) 11:388–399 399

	Evolutionary Design of Linguistic Fuzzy Regression Systems with Adaptive Defuzzification in Big Data Environments
	Abstract
	Introduction
	Preliminaries
	Evolutionary Adaptive Defuzzification
	Big Data and Cluster Computing Frameworks

	WM-EAD-Global: a Linguistic Fuzzy System with Evolutionary Adaptive Defuzzification with Spark
	First Phase: WM-Spark
	Second Phase: The EAD-Global-Spark
	Encoding
	Initial Population
	Evaluation
	Crossover and Restart
	An Iterative MapReduce Process for Adaptive Defuzzification

	Experimental Study
	Experimental Setup
	Results and Analysis
	Scalability

	Conclusions
	References

