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Abstract
Classical data mining algorithms are considered inadequate to manage the volume, variety, velocity, and veracity aspects
of big data. The advent of a number of open-source cluster-computing frameworks has opened new interesting perspectives
for handling the volume and velocity features. In this context, thanks to their capability of coping with vague and imprecise
information, distributed fuzzy models appear to be particularly suitable for handling the variety and veracity features of big
data. Moreover, the interpretability of fuzzy models may assume a particular relevance in the context of big data mining. In
this work, we propose a novel approach for generating, out of big data, a set of fuzzy rule–based classifiers characterized by
different optimal trade-offs between accuracy and interpretability. We extend a state-of-the-art distributed multi-objective
evolutionary learning scheme, implemented under the Apache Spark environment. In particular, we exploit a recently
proposed distributed fuzzy decision tree learning approach for generating an initial rule base that serves as input to the
evolutionary process. Furthermore, we integrate the evolutionary learning scheme with an ad hoc strategy for the granularity
learning of the fuzzy partitions, along with the optimization of both the rule base and the fuzzy set parameters. Experimental
investigations show that the proposed approach is able to generate fuzzy rule–based classifiers that are significantly less
complex than the ones generated by the original multi-objective evolutionary learning scheme, while keeping the same
accuracy levels.
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Introduction

Data mining allows extracting useful knowledge from data.
In the last decades, data mining has been considerably

� Alessio Bechini
alessio.bechini@unipi.it

Marco Barsacchi
marco.barsacchi@unifi.it

Pietro Ducange
pietro.ducange@uniecampus.it

Francesco Marcelloni
francesco.marcelloni@unipi.it

1 Dipartimento di Ingegneria dell’Informazione,
University of Pisa, Pisa, Italy

2 SMART Engineering Solutions, Technologies (SMARTEST)
Research Centre, eCAMPUS University, Novedrate, Italy

investigated and a huge number of different techniques
have been proposed for generating, for instance, descriptive
models in clustering and frequent pattern analysis, and
predictive models in classification and regression tasks [35].
Data mining is closely related to cognitive computation.
Indeed, as discussed in [20], cognitive computation helps
improve human decision-making: data mining models are
often adopted for decision-making issues, such as image
recognition [16], disease identification [3], and managing
the energy consumption in wireless sensor networks [38].

We are currently experiencing the Big Data Era [45] and
classical data mining algorithms appear to be inadequate
to manage big data. Indeed, big data are characterized
by the four “V”s, namely volume, variety, velocity, and
veracity: large volumes of data, which are often produced at
a very high speed and need to be elaborated in almost real
time (velocity), are generated by different sources and may
have different formats (variety) [11] and trustworthiness
(veracity). These data represent a very important source
of added-values in several contexts, such as in marketing
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strategies [23], industrial applications [55], and Internet of
Things [2].

Big data are of prominent importance also for their
relationship with cognitive computing systems [1]: they nat-
urally learn from people and from the huge amount of data
they are involved with, typically by exploiting computa-
tional intelligence and machine learning algorithms. In the
last years, several researchers have introduced data mining
approaches purposely designed and implemented for Big
Data [48, 58]. Most of these approaches have employed spe-
cific distributed frameworks, such as Apache Hadoop [57]
and Apache Spark [59], which have been recently proposed
with the aim of dealing with data storage and elaboration of
big data. Further, most of the recent contributions in the field
exploit the MapReduce paradigm [22] for implementing
both descriptive and predictive models, with the additional
benefit of the possibility to exploit computing resources on
the Cloud [31].

As an example, in [39] and in [42], authors have proposed
a distributed version of two famous clustering algorithms,
i.e., DB-SCAN and Fuzzy C-Means, respectively, devel-
oped using the Apache Hadoop framework. A fuzzy version
of random forests has been implemented over the same
framework as well [15].

Recently, in [14] and [43], Apache Spark implementa-
tions of associative classification models and of the KNN
classifier, respectively, have been discussed. Also, big social
data analysis has taken advantage of the use of such dis-
tributed computing frameworks [47]. A recent work high-
lights the main advances, challenges, and objectives in
designing, developing, and using data mining and machine
learning algorithms for big data [60].

In the context of predictive models, in the last years, a
number of contributions employing fuzzy models (FMs) for
handling big data have been proposed [25, 28, 32, 41, 44,
51–53]. As stated in [29], FMs are particularly suitable for
handling the variety and veracity of big data. This is mainly
due to their good capability of coping with vague, imprecise,
and uncertain concepts. It is worth underlining that fuzzy
logic has been recognized also as an important tool to keep
the fidelity of psychological interpretation of emotion [12],
opening up new ways to analyze the sentiment contents of
huge amounts of data available from web sources. From a
more technical point of view, the use of overlapped fuzzy
labels ensures a good coverage of the problem space. This
issue is especially relevant when dealing with very large
datasets that may be divided into a number of heterogeneous
chunks, such as in the MapReduce programming paradigm.
Actually, the different chunks may influence in a different way
the parameter learning process of the classification model.

To the best of our knowledge, the first proposal regard-
ing FM for big data classification is the Chi-FRBCS-
BigData [51] model. It is a fuzzy rule–based classifier

(FRBC), developed according to the MapReduce paradigm
and based on the approach described by Chi et al. [17].
In the work discussed in [41], the Chi-FRBCS-BigData
algorithm has been adapted for handling imbalanced big
datasets, and the effects of the granularity of fuzzy parti-
tions, when using the same algorithm, have been studied
in [30]. Recently, in the work published in [25], the CHI-BD
algorithm has been introduced: it is a novel distributed ver-
sion of Chi et al.’s approach [17], with improved results with
respect to Chi-FRBCS-BigData. Basically, CHI-BD is the
exact distributed implementation of Chi et al.’s approach,
whereas Chi-FRBCS-BigData is an approximated imple-
mentation. More details can be found in [25] and [51],
respectively. Notably, efficient MapReduce solutions based
on the CHI-BD algorithm have been proposed also for the
prototype reduction problem [26].

Similarly to the aforementioned approaches, most of
the contributions proposed so far focus on the design
and development of FMs in a distributed environment,
especially considering the accuracy of the models. Also, two
recent works discuss the good results obtained by two novel
fuzzy classification models for big data. The two models are
respectively based on fuzzy associative classifiers [52] and
distributed multi-way fuzzy decision trees (DMFDTs) [53].
Even if the accuracy of the obtained classifiers is good,
the complexity of the relative models, in terms of both
number of rules and number of decision nodes, is very high.
The greater the complexity, the lower the interpretability of
the FMs. However, the interpretability is a very important
feature that characterizes FMs, and is particularly relevant
in the context of big data as well [29, 56]. New methods to
generate both accurate and interpretable FMs are currently
investigated in the research community on fuzzy models
[24].

Interpretability is a subjective concept: it is hard to
find a worldwide-agreed definition and consequently a
universal measure of interpretability. A taxonomy of
interpretability measures for fuzzy rule–based models
has been proposed [33] by considering the two distinct
dimensions of semantics and complexity, at the rule base
(RB) and data base (DB) levels. As regards the DB, the
semantic interpretability is usually evaluated in terms of
integrity of the fuzzy partitions, whereas the complexity
is evaluated in terms of number of fuzzy sets. As regards
the RB, the interpretability is mostly analyzed in terms of
complexity and one of the most used metrics is the total
rule length (TRL) [18, 36, 37], that is, the total number of
conditions used in the RB. In the learning of interpretable
FMs, the importance of other factors like rule relevance has
been experimentally studied as well [49].

In the framework of “classical” FMs, multi-objective
evolutionary algorithms (MOEAs) have been widely used
with the aim of generating models characterized by good
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trade-offs between accuracy and interpretability [7, 27].
Independently of the approach used to generate the DB and
the RB of the fuzzy rule–based systems, the computation
of the accuracy of each individual generated in the
evolutionary process requires the scan of the overall training
set. When the size of the dataset is very large, such as in
the context of big data, the application of MOEA-based
approaches to the FM generation is very critical. Thus, the
natural way for managing very large datasets would be
to adopt a solution to speed up the computation: this can
be done by exploiting a distributed implementation on a
computer cluster.

Although some evolutionary-based methods for learning
FMs for big data have been recently proposed [28,
44], in 2017, we have introduced the first distributed
implementation of an MOEA to learn concurrently the RB
and DB of FRBCs, by maximizing accuracy and minimizing
complexity [32]. We have named our algorithm as DPAES-
RCS: it is an Apache Spark–distributed implementation
of the PAES-RCS approach discussed in [9, 10]. PAES-
RCS learns the RB through a rule and condition selection
strategy, which selects a reduced number of rules from
a heuristically generated set of candidate rules and a
reduced number of conditions, for each selected rule, during
the evolutionary process. Moreover, the parameters of the
fuzzy sets are learnt concurrently with the RB. PAES-RCS
has proven to be very efficient in obtaining satisfactory
approximations of the Pareto front using a limited number
of iterations [9].

In this paper, we propose an extension of DPAES-RCS
that includes two main novel aspects. First, we generate
the initial set of rules using the distributed FDT learning
approach introduced in [53] rather than the distributed
version of the C4.5 algorithm [21]. We highlight that we
adopt the same learning algorithm proposed in [53], but we
do not employ fuzzy partitions generated by the distributed
fuzzy discretizer (proposed in [53] as well) and leaves
labeled with different classes. Similar to [32], once the
FDT has been generated, we extract the rules by surfing
the tree from the root to each leaf. Second, we introduce
a strategy for learning the most suitable number of fuzzy
sets (granularity learning), for each linguistic variable,
concurrently to the learning of the RB and the parameters
of the fuzzy sets. To this aim, we adopt the virtual partition
method introduced in [5] and recently used in [7] in the
context of MOEA-based fuzzy models. We experiment the
proposed extension of DPAES-RCS, named DPAES-FDT-
GL, on eight benchmark datasets for big data classification.
We compare DPAES-FDT-GL with DPAES-RCS and with
a simplified version of DPAES-FDT-GL, named DPAES-
FDT, which exploits the FDT for generating the initial rule
set, but does not employ the granularity learning during
the evolutionary process. This last comparison is performed

to evaluate whether both the extensions of DPAES-RCS
included in DPAES-FDT-GL produce valuable effects.

We show that the accuracies achieved by the three
approaches are statistically equivalent, while the complexity
of the FRBCs generated by DPAES-FDT-GL and DPAES-
FDT is much lower than the one of the FRBCs generated
by DPAES-RCS. Thus, we conclude that DPAES-FDT-
GL and DPAES-FDT are definitely able to generate more
interpretable models than DPAES-RCS. However, even
though DPAES-FDT-GL and DPAES-FDT are statistically
equivalent in terms of complexity, results show that in most
of the cases, DPAES-FDT-GL generates the most compact
solutions, characterized by the lowest number of rules,
conditions, and fuzzy sets.

The paper is organized as follows. In “Preliminaries”,
some background concepts are introduced. Section
“The Proposed Approach” describes the overall approach.
We report the results of our experimental analysis in
“Experimental Results” and draw some final conclusion in
“Conclusions and Future Work”.

Preliminaries

The term “classification” refers to the action of assigning a
class Cm, out of a given set C = {C1, . . . , CK} of K classes,
to an unlabeled instance. A generic instance is described by
a set X = {X1, . . . , XF } of attributes with cardinality F .
Each attribute can be either categorical or numerical. In the
case of categorical attributes, Xf takes values out of a set
Lf = {Lf,1, . . . , Lf,Tf

} of Tf distinct values.
For numerical attributes, the universe Uf of Xf can

always be considered a bounded interval in R. With the
aim of defining fuzzy rules, a fuzzy partition is defined
on each of these intervals. Referring to a generic numeric
attribute Xf , let Pf = {Af,1, . . . , Af,Tf

} be a partition over
the relative universe Uf , where Tf is the number of fuzzy
sets in the partition. A label Lf,j is then assigned to each
fuzzy set Af,j , thus letting us work with linguistic variables
and deal with both categorical and numerical attributes in a
homogeneous way.

In this paper, we adopt triangular fuzzy sets and,
therefore, each fuzzy set Af,j is identified by the tuples
(af,j , bf,j , cf,j ), where af,j and cf,j correspond to the
left and right extremes of the support, respectively, and
bf,j to the core. Since we use strong partitions, af,1 =
bf,1, bf,Tf

= cf,Tf and, for j = 2, ..., Tf −1, bf,j = cf,j−1

and bf,j = af,j+1.
The number Tf of fuzzy sets to be used in the partition

for the attribute Xf can be regarded as a measure of the
granularity used for the definition of linguistic variables
over Uf . We can use the notation Pf (Tf ) to emphasize the
granularity level for Pf , because clearly Tf has a direct
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impact on the accuracy and interpretability of the derived
classification models.

Classification byMeans of Fuzzy Rules

In FRBCs, the output value for an unlabeled instance is
inferred from the fuzzy rules that compose the RB. In the
present work, we assume the following structure for the
generic mth rule Rm in RB :

Rm : if X1 is L1,jm,1 and . . . and XF is LF,jm,F

then Y is Ckm (1)

where Y is the FRBC output, whose value in the consequent
of rule Rm is Ckm , and jm,f ∈ [1, Tf ] identifies the index
of the label that has been selected for Xf in rule Rm, i.e.,
Lf,jm,f

. Depending on the nature of Xf (either numerical
or categorical), such a label may refer to either a fuzzy
set in partition Pf or a categorical value. In general, it
may happen that in one rule the value assumed by an
attribute provides no indications in choosing the outcome.
This situation can be plainly dealt with by introducing
an additional fictitious label Lf,0 for each attribute Xf ,
and using it to express that Xf does not contribute to the
classification. Formally, this “dummy” label corresponds to
a set with unitary membership across the whole attribute
universe: thus, Lf,0 lets us keep the generic structure of (1)
also for rules where the outcome actually depends only on a
subset of the attributes.

Let TR = {(x1, y1), (x2, y2), ..., (xN, yN)} be the
training set that contains N instances. In this notation, (xn,
yn) indicates the nth input–output pair, where xn is the input
vector with F values (each, either numerical or categorical,
for the relative attribute), and yn is the classification label.

The matching degree of the rule Rm with the input
xn represents the strength of activation of the rule. It is
calculated according to the following equation:

wm(xn) =
∏F

f =1
μLf,jm,f

(xn,f ) (2)

where μLf,jm,f
(xn,f ) is, in the case of numerical attributes,

the membership value of xn,f to the fuzzy set Af,jm,f

represented by label Lf,jm,f
and, in the case of categorical

attributes, is either 0 or 1.
As discussed in [33], the complexity of a rule base can

be measured in different ways, but a simple yet effective
index is TRL. In the approach proposed in this paper, TRL
is used to quantify the model complexity (and, indirectly, its
interpretability) and it is taken as one of the objectives for
the evolutionary algorithm that shapes the final solutions.

Finally, we adopt the “maximum matching method” as
reasoning method: the class of an unlabeled instance is
determined by the consequent of the rule with the maximum
matching degree for such an instance. In case of tie, among
the equally matching rules, the first one is chosen. If no
rule is fired, the instance is classified with the most frequent
class.

The Proposed Approach

The overall proposed approach, named DPAES-FDT-
GL, is structured according to the scheme reported in
Fig. 1. In the first place, it is necessary to obtain a
very good candidate rule base as the starting point for
the successive optimization process, aimed at producing
a set of final FRBCs with different trade-offs between
accuracy and interpretability. We denote the first phase
as Candidate RB Generation, and the second one as
Multi-Objective Evolutionary Learning. It is important to
underline that dealing with big data asks for particularly
efficient algorithms, and that consistent speed-ups can be
achieved by adopting distributed computing solutions. For
this reason, along all the successive steps in the proposed
approach, distributed algorithms have been employed
whenever possible using the Apache Spark framework [59],
which is able to implicitly deal with data distribution by
means of a predefined container type (known as RDD,
resilient distributed dataset).

For the Candidate RB Generation, differently from the
previous solution discussed in [32], we adopt a distributed
FDT learning approach. Thus, the candidate RB is directly
obtained from the learned FDT. The rationale for using
an FDT learning algorithm instead of C4.5 is based on
the intuition that learning an initial candidate fuzzy RB
by means of a procedure, which is completely managed
by using fuzzy sets, can produce a fuzzy model more
appropriate to undergo the subsequent fuzzy manipulations;
moreover, in practical contexts, the RBs generated by
traversing all the paths from the root down to each leaf of
an FDT have proven to be compact and interpretable [50].
As a preliminary step, a uniform discretization is performed.
The FDT learning is carried out by means of a distributed
algorithm [53].

The algorithm chosen for the multi-objective evolution-
ary learning (MOEL) is designed according to the well-
known Pareto Archive Evolutionary Strategy (PAES) [19],
and in particular it is based on DPAES-RCS [32], which is
a distributed version over Apache Spark of the PAES-RCS
algorithm [9]. Such a choice is motivated by its fast conver-
gence rate, which lets us reduce the number of iterations to
get to a set of satisfying solutions. This is a crucial point
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Fig. 1 General scheme of the
proposed approach. Upon the
construction of an initial
candidate RB by means of a
distributed FDT learning
algorithm applied to uniformly
partitioned attributes, a
multi-objective evolutionary
algorithm finds optimal FRBCs
with different trade-offs between
accuracy and complexity

with big data, because fitness evaluations over very exten-
sive datasets represent the most time-consuming task. An
important characteristic of this phase is that the granularity
of the attribute partitions is directly taken into account and
learned throughout the evolutionary process.

The following subsections give a description of the
algorithms used in the two phases of the proposed approach;
further details can be found in [32] and [53].

The Distributed Candidate RB Generation

The Candidate RB Generation phase used in this work
exploits a distributed FDT learning approach suitable for
dealing with big data, recently proposed by Segatori et al.
[53]. The multi-way version of the FDT has been chosen
(instead of the binary one) because it makes particularly
simple and efficient the subsequent rule extraction to build
the candidate RB: rules are obtained in the form described
in (1) through a tree traversal, deriving one rule for each
possible path from the root down to a leaf.

Differently from [53], which employs fuzzy partitions
generated by a distributed fuzzy discretizer (proposed in
[53] as well), and leaves labeled with different classes,
the tree learning used in this paper relies on a preliminary
uniform discretization for all the numerical features, with
Tmax evenly spaced triangular fuzzy sets that make up
strong partitions. This operation requires nothing more than
knowing the lowest and highest values in TR for each
numerical feature (that is, the endpoints for each universe
Uf ), and this can be easily accomplished in a distributed
fashion.

Each FDT node corresponds to a subset of TR, and the
root corresponds to the whole TR. The FDT construction
starts from the root and follows a top-down approach; unless
a termination condition is not satisfied, a newly generated
node gives rise to Tmax child nodes according to the fuzzy
partition of the attribute chosen for that specific splitting.
In this procedure, an attribute can be considered only once
in the same path from the root to a leaf. The attribute that
drives the splitting is selected as the one that yields the best

fuzzy information gain, which will be defined below. The
termination conditions are the following:

1. All the instances in the node belong to the same class.
2. The number of instances in the node is lower than a

fixed threshold λ.
3. The tree has reached a maximum fixed depth β.
4. The value of the fuzzy information gain is lower than a

fixed threshold ε. In our experiments, we set ε = 10−6.

More formally, given a parent node PN, let CNj indicate
the generic j th child node, j = 1, . . . , Tmax. The subset
of TR in CNj contains only the instances belonging to the
support of the fuzzy set Af,j . Let Sf be the set of instances
in the parent node, and Sf,j be the set of instances for CNj ,
i.e., the support of Af,j . Each node CNj is characterized by
a fuzzy set Gj , whose cardinality is defined as
∣∣Gj

∣∣ = ∑Nj

i=1 μGj
(xi ) = ∑Nj

i=1 T N(μAf,j
(xf,i), μG(xi )) (3)

where Nj is the number of instances in set Sf,j , μG(xi ) is
the membership degree of instance xi to parent node PN
(for the root node, μG(xi ) = 1), and the operator T N is a
T-norm.

The fuzzy information gain FGain used for selecting the
splitting attribute is computed, for a generic attribute Xf

with partition Pf , as

FGain(Pf ; IG) = FEnt(G) − WFEnt(Pf ; IG) (4)

where IG is the support of fuzzy set G. The fuzzy entropy
FEnt(G) is defined as

FEnt(Bf,j ) = ∑M
m=1 −|Bf,j,Cm |

|Bf,j | log2(
|Bf,j,Cm |
|Bf,j | ) (5)

where fuzzy cardinality
∣∣Bf,j,Cm

∣∣ is computed on the set of
instances in Sf,j with class label Cm. The weighted fuzzy
entropy WFEnt(PIf

, If ) of partition PIf
is defined as

WFEnt(PIf
; If ) = ∑KPIf

j=1
|Bf,j ||Sf | FEnt(Bf,j ) (6)

where
∣∣Bf,j

∣∣ is the fuzzy cardinality of fuzzy set Bf,j ,
∣∣Sf

∣∣
is the cardinality of set Sf , and FEnt(Bf,j ) is the fuzzy
entropy of Bf,j .
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In the case of categorical attributes, we split the parent
node into a number of child nodes CNj equal to the number
of possible values for the attribute. Each node CNj is
characterized by a fuzzy set Gj , whose cardinality is
∣∣Gj

∣∣ = ∑Nj

i=1 μGj
(xi ) = ∑Nj

i=1 T N(1, μG(xi )) (7)

Figure 2 summarizes the distributed implementation of
the candidate rule generation phase. We have highlighted
the distribution of the operations across the cluster of
computing units (CUs). The adopted distribution strategy is
aimed at reducing as much as possible the scans over TR,
which is the very bottleneck in the overall computation. To
this aim, the computation of the best split for each node is
spread across the CUs. The FDT learning consists in the
iterative execution of a MapReduce step: the mapping phase
takes care of computing the figures (over V chunks for TR)
to decide how to split, and the reduce phase is in charge of
completing (if it is the case) the node splitting. The nodes to
be possibly split are kept in a list, where in each iteration at
most MaxY elements at a time are extracted to be processed
in a MapReduce step.

It is worth underlining that the chosen distributed FDT
has a very good CU utilization, with extremely satisfactory
values for the speed-up, thus yielding good scalability

Fig. 2 Outline of the distributed candidate rule generation phase

figures with respect to the number of CUs [53]. The most
critical aspect relates to the system requirements for the
used cluster of computers. In particular, the maximum
number of nodes MaxY that can be processed in parallel
depends on the amount of RAM available on the cluster.
Of course, more memory resources can be provided so to
achieve the required parallelism [53].

The DistributedMulti-objective Evolutionary
Learning

The Evolutionary Process

The multi-objective evolutionary learning phase aims to
produce solutions that maximize accuracy and minimize
TRL, the index chosen to express the complexity of the
learned FRBCs. This is obtained through a distributed
multi-objective evolutionary algorithm that takes in input
the candidate RB produced in the previous phase. The
overall structure of the learning stage is based on PAES-
RCS for classification models, introduced in [9] and then
extended to the distributed framework in [32]. As multi-
objective evolutionary algorithm, we use (2+2)M-PAES,
introduced in [18] and also successfully employed in our
previous works [4, 6, 7]. (2+2)M-PAES is a modified
version of the well-known (2+2)PAES [40] and is a
steady-state evolutionary algorithm that uses two current
solutions and stores the non-dominated solutions in an
archive. Unlike the classical (2+2)PAES, which maintains
the current solutions until they are not replaced by solutions
with particular characteristics, we randomly extract, at
each iteration, the current solutions. Unlike the PAES-RCS
adopted in [9, 32], which considers uniform fuzzy partitions
with a pre-fixed number of fuzzy sets, the granularity of
each partition here is learned as well. Thus, the chromosome
coding has to accommodate this additional requirement.

The evolutionary process operates over three different
aspects:

1. selection of a subset of rules out of the initial set of
candidate rules, and contextual activation/deactivation
of the relative conditions,

2. modification of the fuzzy partitions by properly moving
the cores of the composing triangular fuzzy sets, and

3. selection of the granularity level, i.e., the number Tf of
partitions (or fuzzy sets), in the range [Tmin, Tmax].

We recall that the initial set of candidate rules is obtained
by considering uniform strong fuzzy partitions for each
numeric variable Xf , each containing Tmax fuzzy sets. Also,
the learning of the RBs, using the evolutionary rule and
condition selection procedure, and the optimization of the
parameters of the fuzzy sets are performed considering such
partitions, computed at the very beginning of the first phase.
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Indeed, we deal with virtual RBs [4] and virtual partitions
[5]. The actual granularity is used only in the computation of
the objectives. In practice, although during the evolutionary
process we generate RBs, denoted as virtual RBs, and tune
the fuzzy set parameters by using such virtual partitions,
each time we need to evaluate the fitness, the evaluation
is performed on the actual number of fuzzy sets used
to partition the single variables. This process requires the
definition of proper mapping strategies, both for the RB
and for the fuzzy set parameters. Thus, the execution of
crossover and mutation operators is not affected by the
actual number of fuzzy sets.

RBMapping Strategy

To map the virtual RB defined on partitions with Tmax fuzzy
sets onto a concrete RB defined on variables partitioned
with Tf fuzzy sets, we adopt the simple procedure proposed
in [4, 5]. Let us consider the following general proposition
in a rule of the virtual RB: Xf is Âf,h, h ∈ [1, Tmax]. It
will be mapped to Xf is Ãf,s , with s ∈ [1, Tf ], where
Ãf,s is the fuzzy set most similar to Âf,h out of the Tf

fuzzy sets Âf,h defined on Xf . In dealing with triangular
fuzzy sets, defined as discussed in “Preliminaries”, a trivial
yet effective similarity measure is the distance between the
centers of the cores of the two fuzzy sets. If two fuzzy sets
exist in the partition with centers of the cores at the same
distance from the center of the core of Âf,h, we operate a
random choice between them.

It can be noted that, at a certain granularity level, it is
possible that distinct fuzzy sets defined on the partitions
of the virtual RB do map onto the same fuzzy set on the
partitions used in the concrete RB. Thus, different rules
of the virtual RB may correspond to the same rule in the
concrete RB. For this reason, duplicates in the concrete RB
are searched and possibly removed. Of course, operating
at a different granularity level with the same virtual RB,
a different situation may arise also with respect to the
presence of duplicates for concrete rules. Thus, the concept
of virtual RB allows us to explore the search space and,
at the same time, exploit the (sub)optimal solutions found
during the evolutionary process.

Fuzzy Set Parameter Mapping Strategy

As regards the fuzzy set parameter tuning, we approach
the problem by using a piecewise, non-decreasing linear
transformation [5]. We start from an initial partition
of the input variables, and tune the parameters of the
fuzzy sets that compose the partition by applying such
a transformation. Let P̃f = {

Ãf,1, . . . , Ãf,Tf

}
and

Pf = {
Af,1, . . . , Af,Tf

}
be the initial and the transformed

partitions, respectively. In the following, we assume that

the two partitions have the same universe (i.e., Ũf ≡ Uf ),
considering also each variable normalized in the interval
[0, 1].

Let t (xf ) : Uf → Ũf be the piecewise linear
transformation. We have that Af,j (xf ) = Ãf,j

(
t
(
xf

)) =
Ãf,j

(
x̃f

)
, where Ãf,j and Af,j are two generic fuzzy sets

from the initial and transformed partitions, respectively. We
define the piecewise linear transformation by considering
“representative” for each fuzzy set the corresponding center
of the core. The sequence of representatives indicates the
change of slopes of the piecewise linear transformation
t (xf ) for each variable Xf . Let b̃f,1, . . . , b̃f,Tf

and
bf,1, . . . , bf,Tf

be the representatives of Ãf,1, . . . , Ãf,Tf

and Af,1, . . . , Af,Tf
, respectively. In each interval bf,j−1 ≤

xf ≤ bf,j , j = 1 . . . Tf , the transformation t (xf ) is defined
as:

t (xf ) = b̃f,j − b̃f,j−1

bf,j − bf,j−1
· (xf − bf,j−1) + b̃f,j−1 (8)

Given t (xf ), it can be used for the transformation of all the
parameters that define the fuzzy sets.

Figure 3 shows an example of the case where t (xf ),
as per Eq. (8), is defined assuming a uniform initial
partition and a maximum granularity Tmax = 7. Clearly,
bf,1 and bf,Tf

coincide with the extremes of the universe
Uf of Xf , thus t (xf ) depends on Tf − 2 parameters,
that is t (xf ) = t

(
(xf ; bf,2, . . . , bf,Tf −1)

)
[5]. Once the

values bf,2, . . . , bf,Tf −1 are given, the partition Pf can be
obtained by transforming the three points (̃af,j , b̃f,j , c̃f,j )

that describe the generic triangular fuzzy set Ãf,j into
(af,j , bf,j , cf,j ) by applying t−1(̃xf ).

Fig. 3 An example of piecewise linear transformation
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It is worth noticing that, during the learning of the
granularity, the transformation is applied only to the
parameters that describe a fuzzy set, thus obtaining again
triangular fuzzy sets. Figure 4 shows an example of this
transformation for granularity Tf = 5 by using the
piecewise linear transformation in Fig. 3, which is defined
for Tmax = 7.

Objective Functions, Chromosome Coding, and Mating
Operators

In the designed MOEL scheme, each chromosome is
associated with a bi-dimensional objective vector. The first
element accounts for the model complexity in terms of TRL
for the relative actual RB. The second element assesses the
model accuracy through its classification rate, as computed
over the training set.

Within the evolutionary procedure, the chromosome C

is composed of three different portions (CR, CG, CT ): CR

defines the virtual RB, CG the number of fuzzy sets, and CT

the virtual partitions.
Let JFDT be the initial virtual RB obtained in the first

phase, and MFDT the corresponding number of rules. We
underline that the initial RBs are generated considering Tmax
fuzzy sets for each partition. As we are interested in getting
compact RBs, we constrain the virtual RB to contain no
more than Mmax rules.

The CR part is a vector of Mmax pairs pm = (km, vm),
where km ∈ [0, MFDT ] identifies the index of the selected
rule in JFDT , and vm = [

vm,1, . . . , vm,F

]
is a “mask”

Fig. 4 Use of the transformation t (xf ) of Fig. 3 on partitions with
granularity Tf = 5 different from Tmax = 7

boolean vector whose generic element vm,f indicates,
for attribute Xf , whether to consider or not the relative
condition in the rule (if not, it becomes a “don’t care”
condition). As we want to be able to generate RBs with a
number of rules lower than Mmax, km is set to 0 if the mth
rule must be excluded from the RB.

CG is a vector that specifies the number of fuzzy sets to
be used for each attribute. Thus, its f th element contains
the number Tf ∈ [2, Tmax] of fuzzy sets to be used in the
actual partition Pf (Tf ). Tmax is an input parameter for the
algorithm, and such a value applies to all the variables. As
discussed in “RB Mapping Strategy,” the values contained
in CG are used to generate the concrete RB from the virtual
RB coded in CR .

CT is aimed at describing the placement of the Tmax
distinct fuzzy sets within each strong fuzzy partition for
all the F attributes; thus, it is a vector of F vectors,
each containing Tmax − 2 real numbers. The f th vector[
bf,2, . . . , bf,Tmax−1

]
indicates the positions of the cores of

the triangular fuzzy sets: it also contains the information
to define the shape of the piecewise linear transformation
t (xf ) (and consequently t−1) used to determine the position
of Tf fuzzy sets, if Tf < Tmax holds. To make sure that
bf,i < bf,i+1, ∀i ∈ [2, Tmax − 1], and to avoid an excessive
departure of the cores with respect to the uniform partition,
the value for the generic bf,j is restricted to vary in the
interval

[
b̃f,j − b̃f,j −b̃f,j−1

2
, b̃f,j + b̃f,j+1−b̃f,j

2

]
,∀j ∈ [2, Tmax − 1] . (9)

For the generation of the offspring populations, the MOEL
makes use of both crossover and mutation operations. We
apply independently the two-point crossover to CR , the one-
point crossover to CG, and the BLX-α-crossover, with α =
0.5, to CT . As regards CR , the crossover points are always
placed between two rules. In the case of CG, the crossover
point is a random position in [1, F ].

The algorithm includes two mutation operators for CR ,
one for CG, and another for CT . As regards CR , both
operators start by randomly choosing a rule (actually, a
pair pm) in the chromosome. The first operator replaces the
rule in pm with another rule randomly chosen out of the
candidate rule base. The second operator modifies the rule
in pm by going through each position vm,f of the condition
mask, and performing its complement with a probability
equal to Pcond (Pcond = 2

F
in the experiments).

The mutation for CG attempts to modify the granularity
for one single variable Xf : it consists of randomly choosing
a gene f ∈ [1, F ] and randomly either incrementing or
decrementing it by one. If the new value is out of the range
[2, Tmax], no modification is actually performed.
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The mutation for CT operates on bf,j , by first randomly
choosing f in [1, F ] and j in [2, Tmax − 1]: the new value
for it is randomly selected in the allowed interval (Eq. 9).
The described mating operators have experimentally shown
a good balance between exploration and exploitation,
thus being suitable for driving the evolutionary algorithm
towards good approximations of the Pareto fronts.

MOEL Distributed Implementation

The characteristics of the possible strategies for paral-
lel/distributed MOEAs have been extensively studied before
the widespread use of cloud-computing facilities [54]. Any-
way, recently, the opportunity to exploit cloud resources in
a simple way by means of efficient frameworks like Apache
Spark has made more attractive some solutions than others.
Thus, the “master-slave” paradigm [54] inherent in typical
Spark programs has been chosen in particular for its abil-
ity to deal with big datasets, providing good scalability with
respect to the size of the training set. Other paradigms, like
the “islands” and “diffusion” ones, are much more suited
with other distributed computing frameworks [19, 54], and
in these cases the obtained accuracy may be affected by
the number of used CUs, while we would make the results
independent of the underlying platform.

The distributed implementation of the MOEL phase for
the proposed approach is described in the schematic view of
Fig. 5: here, it is explicitly shown the workload distribution
across a cluster of CUs. It can be noted that distributed
computations can be used both in the initialization of the
archive required by the genetic algorithm (upper part of the
figure), and in the evolutionary procedure itself (lower part).

The overall MOEL algorithm is driven by the master
task: it is in charge of the main control flow and, at each
single iteration, of the TRL part of the fitness computation
(which, given the limited size of the rule base, is really
effortless). Instead, the evaluation of the accuracy asks for a
scan of the whole T R, which is typically very large. Thus,
it is advantageous to split TR in V chunks to be separately
scanned by slave tasks on the cluster CUs.

This way to exploit the CUs in the cluster is clearly
indicated in Fig. 5.

This scheme can be easily accommodated by developing
a single procedure to be executed just for this purpose by
all the slave CUs, taking as input the two solutions to be
evaluated and returning, for each of them, the number of
successful classifications over the target chunk of TR. It is
up to the driver task to sum up all the contributions to the
overall accuracy value.

Notably, it has been shown that the scalability of the
adopted MOEL, with respect to the used CUs, is almost
linear [32]. This means that, whenever needed, additional
CUs can be used so to effectively deliver reduced runtimes.

Finally, we can underline that the effort required by the
accuracy evaluation depends on the complexity of the rule
base. As such a complexity typically becomes smaller
and smaller as the population evolves, the execution time
for each iteration significantly decreases as the algorithm
proceeds towards its completion.

Experimental Results

In this section, we show the results of an experimental study
for the evaluation of DPAES-FDT-GL. In the following,
we take two main aspects into consideration: (1) evaluation
of the solutions provided by the algorithm in terms of
classification accuracy, complexity, and interpretability; (2)
comparison of the algorithm with the original DPAES-RCS.
Moreover, in order to disentangle the contribution of the
FDT from that of the granularity learning, we performed a
comparison with DPAES-FDT, which adopts the FDT for
generating the initial rule set, but no granularity learning
during the evolutionary process.

The eight datasets used in the experiments are listed in
Table 1, along with their number of instances, attributes
(both numerical and categorical), and classes, and their size.
The datasets have been collected from the UCI1 and the
LIBSVM2 repositories.

For each dataset, we performed a five-fold cross
validation. The experiments have been carried out using
Apache Spark 2.2.0 over a small computer cluster; we used
up to seven machines, one master node, and up to six
workers. Both the master and the workers are supplied with
4 vCPU, 8 GB of RAM, and 160-GB hard drive. All the
machines run Ubuntu 14.04. The datasets are stored on the
Hadoop Distributed File System. In all the experiments, we
used the stand-alone cluster manager provided by Apache
Spark.

The parameterization used for DPAES-FDT-GL and
DPAES-FDT is reported in Table 2, and the values have
been devised starting from the experience with DPAES-
RCS [32]. Regarding the number of evaluations, for
most of the datasets, we experimentally verified that the
evolutionary optimization process has a similar behavior
as the one discussed in [9], where we showed that
50,000 fitness evaluations allow obtaining Pareto fronts
statistically equivalent to the ones achieved after 1 million
evaluations. For the sake of brevity, we do not report this
analysis in the paper. Since each iteration of the (2+2)M-
PAES requires two fitness evaluations, it follows that
50,000 fitness evaluations correspond to 25,000 iterations.
Regarding granularity learning, we let the number of fuzzy

1Available at https://archive.ics.uci.edu/ml/datasets.html
2Available at www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/

https://archive.ics.uci.edu/ml/datasets.html
www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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Fig. 5 Outline of the distributed
computation approach adopted
in the evolutionary procedure
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Table 1 Datasets used in the
experiments. n and c denote
numerical and categorical,
respectively

Name No. of instances No. of attributes No. of classes Size

Covertype 2 (COV 2) 581012 54 (n:10, c:44) 2 75.2 MB

Covertype 7 (COV 7) 581012 54 (n:10, c:44) 7 75.2 MB

eCO (ECO) 4178504 16 (n:16) 10 534 MB

eME (EME) 4178504 16 (n:16) 10 535.2 MB

Higgs (HIG) 11000000 28 (n:28) 2 8.04 GB

Kddcup 2 (KDD 2) 4856151 41 (n:26, c:15) 2 476 MB

PokerHand (POK) 1025010 10 (c:10) 10 24.5 MB

Susy (SUS) 5000000 18 (n:18) 2 2.40 GB

sets per partition vary between Tmin = 3 and Tmax = 7.
In fact, considering the employed strong triangular fuzzy
partitioning scheme, the first and last fuzzy sets are tied
to the ends of the universe, thus a meaningful learned
partitioning requires at least three fuzzy sets. Furthermore,
according to psychologists, to preserve interpretability, the
number of linguistic terms per variable should be in the
range 7 ± 2. This is due to a limit of the human information
processing capability [46]. Thus, for the sake of simplicity,
we set Tmax = 7. Moreover, in our first work on granularity
learning, discussed in [4], we showed that using 7 or 9 as
Tmax yields similar results.

As previously described, for each dataset, the initial
RB has been obtained exploiting the multi-way version of
the distributed FDT algorithm [52], along with a uniform
discretization with Tmax = 7 linguistic values for each
numeric attribute. As suggested in [52], we limited the
minimum number of instances per leaf to 0.1% of the total
number of instances. Moreover, we set the maximum tree
depth β to 10 so to generate sufficiently complex rules,
yet limiting their total number. The average number of
generated rules, as well as the average number of selected
features, is reported in Table 3.

Experimental Evaluation of DPAES-FDT-GL

In this section, we discuss the results of an experimental
evaluation of DPAES-FDT-GL. In order to provide a
thorough evaluation of the proposed algorithm, we analyzed
the Pareto front approximations generated during the
optimization process by means of previously proposed
methods [32]. First, for each fold, we extracted and sorted
the Pareto front by decreasing accuracy; then, we selected
three solutions: FIRST, MEDIAN, and LAST, as the most
accurate, the median solution in the set, and the least
accurate, respectively, with respect to accuracy.

Table 4 shows, for each dataset and for each representa-
tive solution, the average values and the standard deviations
of the accuracy achieved on both the training (AccTra) and
test (AccTst) sets, of the average values and the standard
deviations of the complexity (TRL) and of the number
(NNDS) of non-dominated solutions contained in the archive
at the end of the evolutionary process.

First, in Table 4, we observe highly competitive results
(a comparison with the state-of-the-art is provided in
“Comparison of DPAES-FDT-GL with DPAES-FDT and
DPAES-RCS”), while the TRL is still reasonable. Thus,

Table 2 Values of the
parameters used in the
experiments for
DPAES-FDT-GL and
DPAES-FDT

Parameter Description Value

Nval Total number of fitness evaluations 50000

AS (2+2)M-PAES archive size 64

Mmax Maximum number of rules in a virtual RB 100

Tf Number of fuzzy sets for each continuous attribute Xf 7

PCR
Probability of applying crossover operator to CR 0.6

PCT
Probability of applying crossover operator to CT 0.5

PCG
Probability of applying crossover operator to CG 0.5

PMRB1 Probability of applying first mutation operator to CR 0.1

PMRB2 Probability of applying second mutation operator to CR 0.7

PMT
Probability of applying mutation operator to CT 0.6

PMG
Probability of applying mutation operator to CG 0.2

Tmax Maximum number of fuzzy sets for each linguistic variable 7

Tmin Minimum number of fuzzy sets for each linguistic variable 3
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Table 3 Values of the
parameters used for the
distributed FDT algorithm, and
average numbers of rules and
attributes in the RBs extracted
from the generated FDTs

Dataset Min no. inst. per leaf Rules Attributes

COV 2 1 13392.8 12.0

COV 7 1 18176.2 53.0

ECO 334 6683.0 13.0

EME 334 9226.6 16.0

HIG 880 4138.0 21.0

KDD 2 391 451.6 22.2

POK 80 28561.0 5.0

SUS 400 10770.0 18.0

we can conclude that DPAES-FDT-GL is able to generate
both accurate and interpretable systems. Furthermore, by
comparing the accuracies obtained on the training and test
sets, we observed that little or no overtraining occurs.

In order to better characterize the interpretability of the
provided solutions, in Table 5 we report M , F̂ , and #Fset

for the FIRST, MEDIAN, and LAST solutions generated
by DPAES-FDT-GL. Here, M is the average number of
rules, F̂ is the average number of selected features, and
#Fset represents the average number of fuzzy sets obtained
via granularity learning for each selected numerical feature.
Interestingly, both the number of selected rules and the
number of features are quite low, suggesting that the learned
RB is highly interpretable. Moreover, the mean number of
fuzzy sets per feature is lower than 5, suggesting that the
granularity learning does indeed help in producing more
interpretable systems.

Finally, comparing the number of rules M with TRL,
we observe that the average rule length (not shown here)
is typically very low, suggesting that the RBs are mostly
composed by generic rules.

Table 6 shows, for each dataset, the average execution
time for DPAES-FDT-RCS (in seconds) as well as its
standard deviation. Execution times have been measured on
a cluster with 6 slaves, equipped with 4 cores each, for
a total of 24 cores. Both the total execution time and the
runtime for the distributed evolutionary optimization phase
(DEO) are reported. We observe that the DEO phase is the
most time-consuming one. The runtime is primarily affected
by two factors: the number of instances in the dataset, and
the TRL of the evaluated solutions.

To give an example of the results provided by DPAES-
FDT-GL, we show the MEDIAN solution obtained on
the first fold of SUSY3 dataset. As reported in Table 4,

3The SUSY dataset is available at https://archive.ics.uci.edu/ml/
datasets/SUSY

the MEDIAN solution performs well both in terms of
accuracy and TRL. SUSY is a binary classification problem
to distinguish between a signal process that produces
supersymmetric particles and a background process that
does not. The data have been produced using Monte Carlo
simulations and are characterized by 18 attributes. The first
eight features are kinematic properties measured by the
particle detectors in the accelerator. The last ten features
are functions of the first eight features; these are high-level
features derived by physicists to help discriminate between
the two classes. In the following, the features will be labeled
as follows: lepton 1 pT , lepton 1 η, lepton 1 φ, lepton 2 pT ,
lepton 2 η, lepton 2 φ, missing energy magnitude, missing
energy φ, MET rel, Axial MET, MR , M TR 2, R, MT 2,√

ŜR , M�R
, �	Rβ and cos(θR+1). More information about

the attributes can be retrieved in the original manuscript [13].
Figure 6 shows, for each continuous attribute, both

the original uniform fuzzy partition (dashed line) and the
learned fuzzy partition (solid line) of the MEDIAN solution.
The corresponding RB is shown in Fig. 7. Here, the
labeling of the fuzzy sets depends on the granularity of the
partitioning: for three fuzzy sets, we used low, medium, and
high, while for seven fuzzy sets, we used very low, low,
medium-low, medium, medium-high, high, and very high.
The labeling for four, five, and six fuzzy sets has been
obtained by interpolating in between. It is worth noticing
that the RB is composed of only seven rules, with a
maximum of three antecedents each.

Comparison of DPAES-FDT-GL with DPAES-FDT
and DPAES-RCS

In this section, we experimentally compare the performances
of DPAES-FDT-GL with DPAES-FDT and DPAES-RCS,
the baseline MOEL scheme from which DPAES-FDT-GL
and DPAES-FDT have been derived. We underline that in
[32] it has been shown that DPAES-RCS is highly effective
when compared to other state-of-the-art algorithms, such as
distribute decision trees and the Chi-FRBCS-BigData.

https://archive.ics.uci.edu/ml/datasets/SUSY
https://archive.ics.uci.edu/ml/datasets/SUSY
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3 Hereafter, the reported results achieved by DPAES-RCS

are taken from the tables in [32]. In Table 7, we list the
average values with standard deviations of the accuracy on
the training (AccTra) and test (AccTst) sets for the FIRST,
MEDIAN, and LAST solutions generated by DPAES-FDT-
GL, DPAES-FDT, and DPAES-RCS. We also report M and
TRL in Table 8.

We observe that the accuracy values obtained by the three
algorithms are generally comparable across all the three
solutions analyzed here. Moreover, the solutions generated
by DPAES-FDT-GL and DPAES-FDT are always, except
for the FIRST solution of COV 2 dataset, more compact
than those produced by DPAES-RCS. However, it is worth
noting that DPAES-FDT-GL solutions are characterized, in
most cases, by a lower TRL and fewer rules than DPAES-
FDT solutions.

To statistically assess the differences among the achieved
accuracies and complexities, we generate, for each compar-
ison algorithm and on all datasets, a distribution consisting
of the average accuracy values obtained on the test set, and
a distribution consisting of the average complexity values.
Then, we apply non-parametric statistical tests. In partic-
ular, we perform the Friedman test to compute a ranking
among the distributions, and the Iman and Davenport test to
evaluate whether there exists a statistical difference among
the distributions. If the Iman and Davenport p value is lower
than the level of significance α (it is assumed the stan-
dard threshold value α = 0.05), we can reject the null
hypothesis and affirm that there exist statistical differences
among the multiple distributions. Otherwise, no statisti-
cal difference exists. In case of statistical difference, we
apply a post hoc procedure, namely the Holm test. This
test allows detecting effective statistical differences between
the control approach, i.e., the one with the lowest Fried-
man rank, and the remaining approaches. Details on the
aforementioned tests may be found in [34].

Table 9 shows the results of the application of the
Friedman and of the Iman and Davenport tests on the
accuracy values obtained over the test set. The null
hypothesis for the Iman and Davenport test can never be
rejected (the p values are always greater than 0.05). Thus,
we can conclude that the three algorithms are statistically
equivalent in terms of accuracy. On the other hand, it
is worth noticing that DPAES-FDT-GL and DPAES-FDT
achieve the highest ranks for the FIRST solutions.

Table 10 shows the results of the application of the
Friedman and of the Iman and Davenport tests on the
complexities. In this case, the null hypothesis associated
with the Iman and Davenport test is always rejected (the p
values are always lower than 0.05). Thus, we performed the
Holm post hoc procedure by considering DPAES-FDT-GL,
DPAES-FDT, and PDAES-FDT-GL as control approaches
for the FIRST, MEDIAN, and LAST solutions, respectively.
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Table 5 Average values and standard deviations of the number of rules (M), the number of attributes (F̂ ), and the average number of fuzzy sets
in the partition (#Fset) for the FIRST, MEDIAN, and LAST solutions generated by DPAES-FDT-GL. Please note that the dataset POK has no
numerical feature

FIRST MEDIAN LAST

Dataset M F̂ #Fset M F̂ #Fset M F̂ #Fset

COV 2 20.8 ± 3.3 11.4 ± 0.5 4.4 ± 0.2 12.4 ± 2.4 9.4 ± 0.5 4.5 ± 0.3 7.6 ± 3.1 6.4 ± 2.7 4.0 ± 0.3

COV 7 7.0 ± 1.2 9.2 ± 2.4 3.7 ± 0.2 6.8 ± 1.1 7.2 ± 1.9 3.9 ± 0.3 5.8 ± 0.8 4.6 ± 0.9 3.8 ± 0.3

ECO 21.2 ± 3.3 11.6 ± 0.5 4.6 ± 0.2 10.2 ± 2.3 10.2 ± 0.9 4.5 ± 0.2 5.0 ± 0.0 3.6 ± 0.5 4.7 ± 0.3

EME 28.6 ± 4.7 14.2 ± 0.8 4.8 ± 0.3 14.4 ± 5.1 11.0 ± 2.3 4.7 ± 0.2 5.4 ± 0.9 2.8 ± 1.9 4.7 ± 0.3

HIG 14.0 ± 1.7 12.2 ± 2.1 3.7 ± 0.2 9.0 ± 1.7 9.4 ± 0.6 3.7 ± 0.1 6.4 ± 1.5 5.4 ± 0.6 3.7 ± 0.2

KDD 2 10.8 ± 1.8 9.8 ± 2.2 3.9 ± 0.3 7.2 ± 1.1 7.6 ± 1.7 3.9 ± 0.3 5.4 ± 0.5 4.2 ± 0.4 3.9 ± 0.3

POK 41.6 ± 3.1 5.0 ± 0.0 – 19.4 ± 3.0 5.0 ± 0.0 – 6.6 ± 1.3 4.2 ± 0.4 –

SUS 14.6 ± 2.7 12.4 ± 0.9 4.3 ± 0.2 9.0 ± 1.6 10.2 ± 1.3 4.2 ± 0.2 6.6 ± 2.5 4.8 ± 1.5 4.2 ± 0.2

By analyzing Table 11, we can conclude that the DPAES-
RCS solutions are always statistically more complex than
those of the control algorithms. On the other hand, the
complexity of the solutions generated by DPAES-FDT-
GL and DPAES-FDT is always statistically equivalent.
In conclusion, both DPAES-FDT-GL and DPAES-FDT
outperform DPAES-RCS in terms of complexity. It is worth
noticing that, for the FIRST and the LAST solutions,
DPAES-FDT-GL achieves the best Friedman rank. Indeed,
as discussed above, in most of the cases, the complexities
of the DPAES-FDT-GL solutions are lower than those
generated by DPAES-FDT.

For an easier visual comparison of the widths of the
Pareto front approximations obtained by DPAES-FDT-GL,
DPAES-FDT, and DPAES-RCS, in Fig. 8 we plot, on the
classification rate/TRL plane, the average values achieved

Table 6 Average computation times (in seconds) and standard
deviations for the distributed evolutionary optimization (DEO) phase
and the overall algorithm (Tot)

Execution Time (s)

Datasets DEO Tot

COV 2 6245 ± 1115 7165 ± 1191

COV 7 4965 ± 718 5147 ± 671

ECO 23895 ± 6449 24836 ± 6416

EME 27189 ± 3060 28088 ± 3047

HIG 53749 ± 9780 54821 ± 9805

KDD 2 13470 ± 1033 14310 ± 1033

POK 3935 ± 422 3964 ± 421

SUS 32010 ± 6697 32611 ± 6690

by the three representative solutions, for all the datasets, on
both the training and test sets. Here the solutions generated
by DPAES-FDT-GL, DPAES-FDT, and DPAES-RCS are
reported as blue diamond, empty black circle, and red plus
markers, respectively. The results provided in Tables 7 and 8
can thus be visually evaluated, and the trends of the results
previously discussed can be easily identified.

In conclusion, we can state that employing the distributed
FDT, rather than a distributed version of the C4.5, allows
the MOEL process to generate more compact FRBCs.
Moreover, even though we cannot find statistical differences
between the complexities of the FRBCs generated by
DPAES-FDT-GL and DPAES-FDT, the activation of the
granularity learning allows us to reduce, in most of the
cases, the number of rules and the TRL of the generated
classifiers. The good behaviour of DPAES-FDT-GL can be
mainly attributed to the following considerations. First of
all, the FDT learning algorithm generates fuzzy decision
trees directly from fuzzy partitions. Thus, the tree is
tuned to the fuzzy partitions. On the other hand, the C4.5
learning algorithm used in DPAES-RCS generates decision
trees from crisp partitions. Indeed, the fuzzy partitions are
actually considered crisp for the execution of the learning
algorithm: each fuzzy set is approximated by using a
crisp set that corresponds to the α-cut with α = 0.5,
preserving the same label as in the corresponding fuzzy
set. Once the tree is learned, then the rules are extracted
from the tree and the labels re-assigned to the original
fuzzy sets. Thus, the decision tree (differently from FDT)
is not tuned to the final fuzzy partitions. Second, the
granularity learning process allows reducing the number
of fuzzy sets for each linguistic variable. The lower the
number of fuzzy sets that describe each partition, the
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Fig. 6 Uniform fuzzy partitions (dashed line) and learned fuzzy partitions (solid line) of the attributes of the MEDIAN solution obtained at the
end of the evolutionary process on the SUSY dataset

lower the number of combinations that can be obtained for
generating classification rules. These two aspects mainly
contribute to the good behaviour exhibited by DPAES-
FDT-GL, which achieves more compact solutions than
DPAES-RCS. This result is achieved thanks to the synergy
among the initial set of fuzzy rules extracted from the FDT,
granularity learning, rule and condition selection, and fuzzy
set parameter learning. Indeed, the membership function

parameter learning allows adapting the fuzzy partitions to
the dataset, also when using a low number of fuzzy sets
for each linguistic attribute. Thus, the number of rules can
decrease and the accuracy increase during the evolutionary
process.

As a final remark, we briefly compare the results achieved
by DPAES-FDT-GL with those obtained by a distributed multi-
way fuzzy decision tree (DMFDT) learning algorithm [53],

Fig. 7 RB of the MEDIAN
solution obtained on the first
fold of SUSY. The RB,
composed of seven rules, and
characterized by a TRL of 18,
achieved a classification
accuracy of ∼ 78.776% on the
test set
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Table 7 Average accuracies ± standard deviations achieved by the FIRST, MEDIAN, and LAST solutions generated by DPAES-FDT-GL,
DPAES-FDT, and by DPAES-RCS

Datasets AccTra AccTst AccTra AccTst AccTra AccTst

DPAES-FDT-GL (FIRST) DPAES-FDT (FIRST) DPAES-RCS (FIRST)

COV 2 75.843 ± 0.002 75.767 ± 0.003 75.999 ± 0.002 75.988 ± 0.001 75.753 ± 0.004 75.732 ± 0.003

COV 7 67.649 ± 0.012 67.618 ± 0.012 68.156 ± 0.006 68.232 ± 0.007 72.383 ± 0.003 72.374 ± 0.003

ECO 76.261 ± 0.005 76.266 ± 0.005 78.498 ± 0.005 78.493 ± 0.005 77.133 ± 0.004 77.115 ± 0.004

EME 81.225 ± 0.005 81.193 ± 0.005 82.882 ± 0.004 82.855 ± 0.004 80.600 ± 0.008 80.570 ± 0.008

HIG 65.040 ± 0.003 65.035 ± 0.004 65.013 ± 0.003 65.010 ± 0.003 65.008 ± 0.012 64.998 ± 0.012

KDD99 2 99.886 ± 0.008 99.886 ± 0.010 99.866 ± 0.000 99.865 ± 0.000 99.948 ± 0.012 99.947 ± 0.012

POK 61.778 ± 0.011 61.806 ± 0.001 60.535 ± 0.010 60.504 ± 0.011 60.233 ± 0.006 60.221 ± 0.006

SUS 78.628 ± 0.004 78.608 ± 0.004 77.968 ± 0.003 77.954 ± 0.003 78.123 ± 0.001 78.110 ± 0.001

Average 75.789 ± 0.006 75.772 ± 0.005 76.115 ± 0.004 76.113 ± 0.004 76.148 ± 0.006 76.133 ± 0.006

DPAES-FDT-GL (MEDIAN) DPAES-FDT (MEDIAN) DPAES-RCS (MEDIAN)

COV 2 75.378 ± 0.002 75.320 ± 0.003 75.375 ± 0.003 75.335 ± 0.004 74.968 ± 0.005 74.909 ± 0.005

COV 7 67.611 ± 0.011 67.582 ± 0.012 67.925 ± 0.006 67.988 ± 0.006 71.940 ± 0.004 71.924 ± 0.004

ECO 74.069 ± 0.007 74.074 ± 0.007 76.634 ± 0.008 76.635 ± 0.007 74.995 ± 0.011 74.984 ± 0.011

EME 78.997 ± 0.007 78.981 ± 0.007 80.982 ± 0.010 80.957 ± 0.010 78.221 ± 0.010 78.201 ± 0.010

HIG 63.625 ± 0.007 63.610 ± 0.007 63.711 ± 0.005 63.710 ± 0.005 64.389 ± 0.008 64.370 ± 0.008

KDD 2 99.883 ± 0.008 99.882 ± 0.009 99.865 ± 0.000 99.864 ± 0.000 99.933 ± 0.008 99.934 ± 0.008

POK 56.061 ± 0.008 55.989 ± 0.008 55.428 ± 0.010 55.360 ± 0.010 58.423 ± 0.008 58.430 ± 0.009

SUS 78.362 ± 0.006 78.361 ± 0.006 77.729 ± 0.003 77.707 ± 0.003 77.658 ± 0.003 77.659 ± 0.003

Average 74.248 ± 0.007 74.225 ± 0.007 74.706 ± 0.006 74.694 ± 0.006 75.066 ± 0.007 75.051 ± 0.007

DPAES-FDT-GL (LAST) DPAES-FDT (LAST) DPAES-RCS (LAST)

COV 2 66.153 ± 0.097 66.203 ± 0.096 70.907 ± 0.035 70.955 ± 0.035 72.708 ± 0.007 72.681 ± 0.006

COV 7 67.172 ± 0.007 67.157 ± 0.007 67.243 ± 0.005 67.299 ± 0.006 57.921 ± 0.106 57.907 ± 0.106

ECO 56.816 ± 0.089 56.801 ± 0.089 59.864 ± 0.032 59.851 ± 0.032 56.228 ± 0.078 56.244 ± 0.078

EME 62.793 ± 0.039 62.793 ± 0.039 62.233 ± 0.043 62.230 ± 0.043 61.407 ± 0.061 61.391 ± 0.061

HIG 58.718 ± 0.003 58.697 ± 0.003 58.524 ± 0.016 58.530 ± 0.015 59.825 ± 0.017 59.849 ± 0.017

KDD 2 94.423 ± 0.094 94.415 ± 0.094 94.351 ± 0.094 94.347 ± 0.094 98.508 ± 0.017 98.514 ± 0.017

POK 49.870 ± 0.009 49.822 ± 0.009 48.313 ± 0.012 48.331 ± 0.012 48.772 ± 0.031 48.749 ± 0.032

SUS 72.525 ± 0.052 72.521 ± 0.052 71.377 ± 0.051 71.414 ± 0.051 68.131 ± 0.083 68.128 ± 0.082

Average 66.059 ± 0.049 66.051 ± 0.049 66.601 ± 0.036 66.620 ± 0.036 65.438 ± 0.050 65.433 ± 0.050

Italic values indicate the maximum values obtained (per dataset)

and a distributed fuzzy associative classifier for big data
(DFAC-FFP) [52] (Table 12). We highlight that DMFDT
exploits the same FDT learning algorithm used to gener-
ate the initial set of fuzzy rules in DPAES-FDT-GL, but
employs fuzzy partitions generated by a distributed fuzzy
discretizer, and leaves labeled with different classes and a
weighted voting inference strategy. To this aim, we selected
HIGGS, KDD 2, and SUSY datasets. We chose only these
three datasets since the relative results are the unique ones
available in both [53] and [52], where DMFDT and DFAC-
FFP were proposed. Furthermore, HIGGS and SUSY are
the largest datasets in terms of memory occupancy.

On HIGGS, DMFDT achieves the highest accuracy; the
lower complexity of both DPAES-FDT-GL and DFAC-FFP
is balanced by a lower classification accuracy. Furthermore,

while the accuracies of DPAES-FDT-GL and DFAC-FFP
are comparable, the model complexities are different by
about two order of magnitudes. On KDD 2, the three
algorithms achieve more or less the same accuracy, but the
complexity of DPAES-FDT-GL is one order of magnitude
smaller than the one of the two comparison algorithms.
More interestingly, DMFDT achieves a classification
accuracy of ∼ 79.6% on the SUSY dataset; it is ∼ 1.1%
higher of that achieved by DPAES-FDT-GL, yet it has been
obtained with 805,076 nodes and 758,064 leaves, thus with
a system of four orders of magnitude more complex than
the one generated by DPAES-FDT-GL. Finally, it is worth
noticing that DPAES-FDT-GL achieves better results than
DFAC-FFP, with a complexity smaller by two orders of
magnitude.
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Table 8 Average M and TRL ± standard deviations achieved by the FIRST, MEDIAN, and LAST solutions generated by DPAES-FDT-GL,
DPAES-FDT, and by DPAES-RCS

Datasets M TRL M TRL M TRL

DPAES-FDT-GL (FIRST) DPAES-FDT (FIRST) DPAES-RCS (FIRST)

COV 2 20.8 ± 3.3 107.4 ± 23.6 22.4 ± 3.8 113.8 ± 36.5 33.6 ± 8.4 74.4 ± 23.0

COV 7 7.0 ± 1.2 11.4 ± 3.0 6.6 ± 1.9 11.4 ± 4.4 36.2 ± 7.3 145.0 ± 37.0

ECO 21.2 ± 3.3 101.2 ± 24.9 28.0 ± 3.5 136.6 ± 21.4 54.0 ± 16.5 168.4 ± 79.6

EME 28.6 ± 4.7 136.8 ± 23.0 34.2 ± 4.0 165.2 ± 35.3 58.6 ± 5.7 187.4 ± 39.8

HIG 14.0 ± 1.7 48.4 ± 23.2 18.6 ± 3.4 77.2 ± 22.3 30.2 ± 8.2 125.2 ± 40.2

KDD99 2 10.8 ± 1.8 24.6 ± 6.5 11.4 ± 0.5 21.8 ± 1.3 21.8 ± 4.1 35.4 ± 8.0

POK 41.6 ± 3.1 90.2 ± 7.1 39.0 ± 3.0 83.8 ± 6.5 50.0 ± 4.6 113.2 ± 13.3

SUS 14.6 ± 2.7 63.0 ± 17.1 18.0 ± 6.0 73.0 ± 35.6 28.0 ± 8.6 80.4 ± 33.4

Average 19.825 ± 2.725 72.875 ± 16.050 22.275 ± 3.262 85.350 ± 20.412 39.050 ± 7.925 116.175 ± 34.287

DPAES-FDT-GL (MEDIAN) DPAES-FDT (MEDIAN) DPAES-RCS (MEDIAN)

COV 2 12.4 ± 2.4 43.4 ± 11.8 11.2 ± 0.8 37.2 ± 6.0 21.7 ± 7.3 38.7 ± 17.3

COV 7 6.8 ± 1.0 8.8 ± 1.8 6.2 ± 1.6 7.8 ± 2.5 29.4 ± 6.8 84.2 ± 25.1

ECO 10.2 ± 2.3 34.6 ± 10.3 15.0 ± 2.3 51.0 ± 11.2 45.4 ± 17.3 117.7 ± 73.4

EME 14.4 ± 5.1 50.2 ± 26.4 15.4 ± 1.5 56.8 ± 13.2 48.1 ± 5.9 112.0 ± 27.2

HIG 9.0 ± 1.7 22.0 ± 1.7 10.6 ± 0.9 26.8 ± 6.0 25.8 ± 6.8 78.7 ± 28.6

KDD 2 7.2 ± 1.1 13.6 ± 2.5 7.4 ± 0.9 13.4 ± 0.5 13.2 ± 2.5 19.5 ± 4.3

POK 19.4 ± 3.0 37.6 ± 5.7 17.2 ± 2.9 33.8 ± 6.3 35.2 ± 6.3 68.1 ± 11.8

SUS 9.0 ± 1.6 28.2 ± 8.3 9.6 ± 2.8 26.6 ± 12.3 19.9 ± 7.7 45.6 ± 25.5

Average 11.050 ± 2.275 29.800 ± 8.562 11.575 ± 1.712 31.675 ± 7.250 29.838 ± 7.575 70.562 ± 26.650

DPAES-FDT-GL (LAST) DPAES-FDT (LAST) DPAES-RCS (LAST)

COV 2 7.6 ± 3.1 12.2 ± 7.5 5.2 ± 0.4 6.4 ± 1.7 9.2 ± 2.6 10.0 ± 3.2

COV 7 5.8 ± 0.8 5.8 ± 0.8 5.8 ± 1.8 5.8 ± 1.8 28.0 ± 6.4 58.2 ± 19.9

ECO 5.0 ± 0.0 5.0 ± 0.0 6.4 ± 2.1 7.6 ± 4.2 35.2 ± 10.9 54.4 ± 24.2

EME 5.4 ± 0.9 5.8 ± 1.8 5.4 ± 0.9 6.2 ± 2.7 44.6 ± 4.6 75.2 ± 17.3

HIG 6.4 ± 1.5 6.2 ± 1.5 5.6 ± 1.3 5.8 ± 1.3 23.2 ± 7.2 48.6 ± 21.4

KDD 2 5.4 ± 0.5 5.4 ± 0.5 5.4 ± 0.9 5.6 ± 1.3 8.0 ± 1.4 8.2 ± 1.3

POK 6.6 ± 1.3 9.2 ± 3.3 5.6 ± 1.3 6.0 ± 2.2 25.4 ± 3.1 34.2 ± 8.4

SUS 6.6 ± 2.5 7.4 ± 3.8 7.0 ± 1.2 7.6 ± 1.9 15.0 ± 6.9 22.0 ± 14.0

Average 6.100 ± 1.325 7.125 ± 2.400 5.800 ± 1.238 6.375 ± 2.138 23.575 ± 5.388 38.850 ± 13.713

Italic values indicate the maximum values obtained (per dataset)

Table 9 Results of the Friedman and of the Iman and Davenport tests on the accuracy computed on the test set

Algorithm Friedman rank Iman and Davenport p value Hypothesis

DPAES-FDT-GL 1.875

FIRST DPAES-FDT 1.875 0.7145 Not rejected

DPAES-RCS 2.25

DPAES-FDT 1.875

MEDIAN DPAES-RCS 2 0.714 Not rejected

DPAES-FDT-GL 2.25

DPAES-FDT-GL 1.75

LAST DPAES-FDT 2.125 0.7145 Not rejected

DPAES-RCS 2.125
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Table 10 Results of the
Friedman and of the Iman and
Davenport tests on the
complexity

Algorithm Friedman rank Iman and Davenport p value Hypothesis

DPAES-FDT-GL 1.437
FIRST DPAES-FDT 1.812 0.0139 Rejected

DPAES-RCS 2.75
DPAES-FDT 1.375

MED IAN DPAES-FDT-GL 1.75 0.0013 Rejected
DPAES-RCS 2.875
DPAES-FDT-GL 1.562

LAST DPAES-FDT 1.562 0.0025 Rejected
DPAES-RCS 2.875

Table 11 Results of the Holm
post hoc procedures on the
complexity for α = 0.05

i Algorithm z-value p value alpha/i Hypothesis

FIRST 2 DPAES-RCS 2.625 0.0086 0.025 Rejected

1 DPAES-FDT 0.75 0.4532 0.05 Not rejected

MEDIAN 2 DPAES-RCS 3 0.0027 0.025 Rejected

1 DPAES-FDT-GL 0.75 0.4532 0.05 Not rejected

LAST 2 DPAES-RCS 2.62 0.0086 0.025 Rejected

1 DPAES-FDT 0 1 0.05 Not rejected

Fig. 8 Plots of the average accuracy on the training and test sets and average TRL of the FIRST, MEDIAN, and LAST solutions generated by
DPAES-FDT-GL (blue diamond markers), DPAES-FDT (empty black circle markers), and DPAES-RCS (red plus symbol markers)
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Table 12 Comparison of the average accuracies on the test set and average complexities for DPAES-FDT-GL, DMFDT, and DFAC-FFP

DPAES-FDT-GL DMFDT DFAC-FFP

Dataset AccTst M TRL AccTst No. of leaves No. of nodes AccT st M

HIG 65.035 ± 0.004 14.0 48.4 71.253 ± 0.029 920,942 972,779 66.005 ± 0.078 9,365

KDD 2 99.886 ± 0.010 10.8 24.6 99.986 ± 0.005 703 630 99.998 ± 0.001 890

SUS 78.608 ± 0.004 14.6 63.0 79.639 ± 0.016 758,064 805,076 78.267 ± 0.050 10,970

Complexity is measured as average number (M) of rules and average TRL for DPAES-FDT-GL, average number of nodes and leaves for DMFDT,
and average number (M) of rules for DFAC-FFP

Conclusions and FutureWork

In this paper, we have presented a novel approach,
denoted as DPAES-FDT-GL, for generating sets of fuzzy
rule–based classifiers with different optimal trade-offs
between accuracy and interpretability from big data.
The approach extends DPAES-RCS, a distributed multi-
objective evolutionary algorithm recently proposed on the
Apache Spark framework. The extensions regard two main
aspects. First, the initial set of candidate rules used in the
multi-objective evolutionary learning is extracted from a
fuzzy decision tree (FDT) rather than a crisp decision tree.
The FDT is generated by a distributed learning algorithm
recently proposed by one of the authors. Second, the
granularity of each numerical attribute is determined during
the evolutionary process. We have executed DPAES-FDT-
GL on eight big datasets and have compared the results to
the ones obtained by DPAES-RCS. Although the accuracy
achieved by the fuzzy rule–based classifiers generated by
DPAES-FDT-GL is statistically comparable to the one
obtained by the classifiers generated by DPAES-RCS, the
models generated by DPAES-FDT-GL are characterized by
the lowest number of rules, conditions, and fuzzy sets. We
can conclude that DPAES-FDT-GL represents an important
step forward in getting interpretable fuzzy classifiers in the
context of big data. Since there exists a number of real
applications that require not only high accuracy, but also
high interpretability, we strongly believe that DPAES-FDT-
GL can be a very interesting and promising approach for
such applications.

In order to disentangle the contribution of the FDT
from that of the granularity learning, we also performed a
comparison with DPAES-FDT, a version of DPAES-FDT-
GL, which adopts the FDT for generating the initial rule
set, but no granularity learning during the evolutionary
process. We observed that, when extracting the initial set
of rules from an FDT, we obtain models that are always
statistically less complex. Moreover, even though we cannot
find statistical differences between the complexities of the
FRBCs generated by DPAES-FDT-GL and DPAES-FDT,
we observed that the activation of the granularity learning

allows reducing, in most of the cases, the number of rules
and the T RL of the generated classifiers.

Future works will address the problem, in the specific
setting of the described approach, of bounding the size of
the training set without experiencing losses in the achieved
accuracy. This aspect is crucial in dealing with big data, and
effective solutions can extend the practical applicability of
DPAES-FDT-GL to extremely big dataset, with no signif-
icant additional penalties in the runtimes for the learning
phase. Indeed, the main problem we have to cope with when
using EFS with big data is the computation of the accuracy
on the overall training set. This computation depends on the
number of instances in the training set and on the dimen-
sionality of each instance. In big data, generally, both these
numbers are high and then require long runs before achiev-
ing satisfactory solutions. Thus, techniques for reducing the
number of attributes and the numerosity of the datasets,
preserving the accuracy achieved by the models, are very
appealing. As regards attribute reduction, our approach
already performs a selection of attributes when we apply
the FDT algorithm for generating the initial set of rules:
indeed, the attributes that are considered in no decision
node are removed. Furthermore, during the evolutionary
process of RCS, attributes that are included in no rule can
be eliminated. Nevertheless, we would like to investigate an
appropriate chromosome coding for performing explicitly
attribute selection during the evolutionary optimization. The
reduction of the instance numerosity can be performed with
the amount of approaches that have been proposed in the lit-
erature, but that needs to be adequately tuned to the specific
setting of the proposed algorithm. Further, in the past, we
proposed a co-evolutionary approach for instance selection
[8], which should be adapted to manage big data.

Funding Information This work was been partially supported by
the University of Pisa under grant PRA 2017 “IoT e Big Data:
metodologie e tecnologie per la raccolta e l’elaborazione di grosse moli
di dati.” Moreover, the work carried out in implementing the described
approach is part of the efforts for the development of the projects
“SIBILLA” and “TALENT,” co-financed by Regione Toscana under
the framework POR-FESR 2014-2020 - Bando 2.



386 Cogn Comput (2019) 11:367–387

Compliance with Ethical Standards

Conflict of Interest The authors declare that they have no conflict of
interest.

Ethical Approval This article does not contain any studies with the
active participation of humans. Furthermore, this article does not
contain any studies on animals. The data collected and processed will
be solely used for research related to this work and it will be ensured
that they will not allow to identify any of the authors of such data.

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

References

1. Abdullah A, Hussain A, Khan IH. Introduction: dealing with
big data - lessons from cognitive computing. Cogn Comput.
2015;7(6):635–6. https://doi.org/10.1007/s12559-015-9364-6.

2. Al-Ali A, Zualkernan IA, Rashid M, Gupta R, Alikarar
M. A smart home energy management system using IoT and
Big Data analytics approach. IEEE Trans Consum Electron.
2017;63(4):426–34. https://doi.org/10.1109/TCE.2017.015014.

3. Aljarah I, Al-Zoubi AM, Faris H, Hassonah MA, Mirjalili
S, Saadeh H. Simultaneous feature selection and support
vector machine optimization using the grasshopper optimization
algorithm. Cogn Comput. 2018;10(3):478–95. https://doi.org/10.
1007/s12559-017-9542-9.

4. Antonelli M, Ducange P, Lazzerini B, Marcelloni F. Learning
concurrently partition granularities and rule bases of Mamdani
fuzzy systems in a multi-objective evolutionary framework. Int
J Approx Reason. 2009;50(7):1066–80. https://doi.org/10.1016/j.
ijar.2009.04.004.

5. Antonelli M, Ducange P, Lazzerini B, Marcelloni F. Multi-
objective evolutionary learning of granularity, membership func-
tion parameters and rules of Mamdani fuzzy systems. Evol Intel.
2009;2(1-2):21–37. https://doi.org/10.1007/s12065-009-0022-3.

6. Antonelli M, Ducange P, Lazzerini B, Marcelloni F.
Learning knowledge bases of multi-objective evolutionary fuzzy
systems by simultaneously optimizing accuracy, complexity
and partition integrity. Soft Comput. 2011;15(12):2335–54.
https://doi.org/10.1007/s00500-010-0665-0.

7. Antonelli M, Ducange P, Lazzerini B, Marcelloni F. Multi-
objective evolutionary design of granular rule-based classifiers.
Granular Computing. 2016;1(1):37–58.

8. Antonelli M, Ducange P, Marcelloni F. Genetic training instance
selection in multiobjective evolutionary fuzzy systems: a coevo-
lutionary approach. IEEE Trans Fuzzy Syst. 2012;20(2):276–90.
https://doi.org/10.1109/TFUZZ.2011.2173582.

9. Antonelli M, Ducange P, Marcelloni F. A fast and efficient
multi-objective evolutionary learning scheme for fuzzy rule-based
classifiers. Inf Sci. 2014;283:36–54. https://doi.org/10.1016/j.ins.
2014.06.014.

10. Antonelli M, Ducange P, Marcelloni F. Multi-objective evolutio-
nary design of fuzzy rule-based systems. In: Handbook on compu-
tational intelligence: vol 2: Evolutionary Computation, hybrid
systems, and applications. World Scientific; 2016. p. 635–670.

11. Anuradha J et al. A brief introduction on Big Data 5Vs char-
acteristics and Hadoop technology. Procedia computer science.
2015;48:319–24. https://doi.org/10.1016/j.procs.2015.04.188.

12. Ayesh A, Blewitt W. Models for computational emotions from
psychological theories using type I fuzzy logic. Cogn Comput.
2015;7(3):285–308. https://doi.org/10.1007/s12559-014-9287-7.

13. Baldi P, Sadowski P, Whiteson D. Searching for exotic particles
in high-energy physics with deep learning. Nat Commun, 5. 2014.
https://doi.org/10.1038/ncomms5308.

14. Bechini A, Marcelloni F, Segatori A. A MapReduce solution
for associative classification of big data. Inf Sci. 2016;332:33–55.
https://doi.org/10.1016/j.ins.2015.10.041.

15. Bechini A, Matteis ADD, Marcelloni F, Segatori A. Spreading
fuzzy random forests with MapReduce. In: 2016 IEEE Int’l conf.
on systems, man, and cybernetics (SMC); 2016. p. 2641–0646.
https://doi.org/10.1109/SMC.2016.7844638.

16. Cai Z, Shao L. RGB-d scene classification via multi-modal feature
learning. Cognitive Computation. 2018. https://doi.org/10.1007/
s12559-018-9580-y.

17. Chi Z, Yan H, Pha.m T. Fuzzy algorithms: with applications
to image processing and pattern recognition, Advances in Fuzzy
Systems - Applications and Theory, vol 10 World Scientific. 1996.
https://doi.org/10.1142/3132.

18. Cococcioni M, Ducange P, Lazzerini B, Marcelloni F. A Pareto-
based multi-objective evolutionary approach to the identification
of Mamdani fuzzy systems. Soft Comput. 2007;11(11):1013–31.
https://doi.org/10.1007/s00500-007-0150-6.

19. Coello Coello CA, Lamont GB, Van Veldhuizen DA. Evolution-
ary algorithms for solving multi-objective problems, vol 5, 2nd
edn Springer. 2007. https://doi.org/10.1007/978-0-387-36797-2.
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