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Abstract
The task of personalized route query is to find the optimal trip that contains the keywords specified by the query user and
satisfies the travel distance constraints. The previous studies mostly focus on collaborative filtering by considering user
similarity. Trust is one of the most important factors in decision-making that has been neglected by the existing studies of
personalized route query. In this paper, we propose a new type of personalized route query by incorporating trust. We propose
a social trust-based optimal trip selection (STOTS) framework for personalized route query. STOTS consists of three key
components. The first component predicts social trust based on extreme learning machine (ELM), denoted STP-ELM, that
exploits social information and user behavioral patterns as features. In the second component, we propose a novel model to
incorporate social trust into personalized route query. Additionally, we propose an index to speed up query processing. In
the third component, we propose an optimal route query algorithm called RouteHunter that aims to find an appropriate route
satisfying the user-specified constraints. The experiment results show that (1) our social trust prediction approach based on
ELM attains superior regression efficiency compared to other traditional methods; (2) our proposed index can efficiently
accelerate personalized route query processing; and (3) our route query approach can achieve a better performance than the
baseline approach. This paper studies a novel personalized route query incorporating social trust in location-based social
networks. We propose a social trust-based optimal trip selection (STOTS) framework that uses ELM to evaluate social trust,
applies a ranking model to incorporate social trust, and includes an algorithm to find the required route. Experimental results
encouragingly demonstrate the efficiency and effectiveness of our proposed approach.
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Introduction

In location-based social networks (LBSNs), users are
allowed to provide location data to traditional social
networks, fostering several location-based services, e.g.,
Foursquare, Gowalla, and Geolife. It is very convenient
for users to record and share their life experiences with
such applications on mobile devices. With advances in loca-
tion acquisition and wireless communication technology,
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location-based social networks are increasingly important in
people’s everyday life. One of the most important challen-
ges in LBSNs, personalized route query aims to provide an
optimal route that passes through the locations specified by
the query user and satisfies the travel distance constraints.
This topic has recently become popular and has a wide range
of applications. In addition, personalized route query has an
important application in the field of cognitive computation
that helps individuals decide on the optimal route plan.
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Cognitive computation is a multidisciplinary field of research
aiming at devising computational models and decision
making mechanisms [3, 15, 34, 36, 46]. The objective
of cognitive computational models is to endow computer
systems with the faculties of knowing, thinking, and feeling.

In the literature on personalized route query, Li et al.
[26] proposed the trip planning query (TPQ) to find the
shortest path from the starting point to the destination
through several venues that can cover the category
requirements of the query user. Cao et al. [4] proposed
a novel keyword-aware optimal route query (KOR) able
to find an optimal route covering a set of user-specified
keywords and satisfying a specified budget constraint while
optimizing the route’s objective score. Zeng et al. [45]
studied optimal route searching with the coverage of user
preferences. Additionally, most studies have focused on
preferred route recommendation [25, 44]. The information
provided by an untrusted friend may not influence certain
behavioral decisions (personalized route query). We study
the personalized route query by incorporating trust that
has been neglected by the existing studies. Following the
existing work [9], social trust as a probability value of one
user relative to another is accepted by the great majority of
authors and adopted in our work. Social trust measures the
credibility between two persons and has been widely used
in providing personalized recommendations [1, 24, 33, 41].
However, most studies focus on social tie recommendations.

In this paper, we propose a new type of personalized
route query by incorporating social trust in LBSNs, called
social trust aware personalized route query (STPRQ).
Specifically, given a set of venue categories (such as a
restaurant, a gym, and a cafe), STPRQ aims to find a proper
route R from the starting venue to the destination. R should
pass through several venues of the respective categories and
be credible and popular in the social circle of the query
user. Furthermore, the route should satisfy a road network
distance constraint.

As mentioned above, STPRQ is a novel problem that
can help individuals make decisions. However, the existing
approaches are not suitable for tackling the STPRQ
problem. The challenge is threefold. First, the social trust of
each pair of users is unknown. Therefore, the first challenge
is to evaluate the social trust of each pair of users in the
underlying LBSNs. Second, to the best of our knowledge,
we are the first to study personalized route query by
incorporating social trust. This problem is not trivial. Thus,
the second challenge is to incorporate social trust into
personalized route query. Third, the existing studies related
to personalized route query are unsuitable for addressing
the STPRQ problem. A naive solution is to enumerate all
possible routes from the starting venue to the destination
and subsequently select an appropriate route. Clearly, the

naive solution is time-consuming and inefficient. Therefore,
the third challenge is to efficiently search for an appropriate
route satisfying the query constraints.

To overcome the above challenges, we design a social
trust-based optimal trip selection (STOTS) framework that
consists of three key components.

In the first component, we analyze social trust in
location-based social networks. Extreme learning machine
(ELM) provides a unified learning platform with a
widespread type of feature mapping and can be applied
in a regression analysis directly [20–22]. Inspired by
this platform, we design an approach based on ELM to
evaluate social trust effectively. To discover the social trust,
we construct features that exploit social information and
user behavioral patterns from the following aspects: user
profiles, social structure and user behaviors.

In the second component, we design a rank model
incorporating social trust into personalized route query that
can be leveraged to estimate the credibility of a route.
Specifically, we evaluate the popularity score of a venue (a
point-of-interest, POI) with respect to a user. Assuming that
we know the social trust between users, we can estimate the
credibility score of a venue. After that, for a given route, we
group venues by category. The sum of the highest ones in
each of these groups can be regarded as the credibility score
of the route.

In the third component, we propose an advanced search
algorithm called RouteHunter to find the preferred route that
can satisfy user constraints. RouteHunter adopts a greedy
strategy that extends the route from the starting venue. We
use a venue ranking scheme that considers the gain from
adding a venue into a route. That is, we consider both the
category diversity and distance constraint of a route.

Finally, extensive experiments on real-world datasets
demonstrate the efficiency and effectiveness of out pro-
posed algorithms.

The remainder of this paper is organized as follows. We
begin in “Related Works”, where we discuss the related
studies. We then introduce the preliminaries and problem
formulation in “Preliminaries and Problem Formulation”.
We present our framework for the problem of STPRQ
in “Framework” and describe our approach in detail in
“Approach”. We discuss the experiments in “Experiments”
and conclude this paper in “Conclusion”.

RelatedWorks

Personalized route query has attracted significant attention
in recent years. For instance, Li et al. [26] propose the TPQ
query that aims to find the shortest path from the starting
point to the destination through several venues that can
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satisfy the category requirements of the query user. Cao et
al. [4] consider both the user preferences and the budget
constraint to find the optimal route. Dai et al. [6] propose
a highly expressive personalized route planning query that
considers both personalization and the sequence constraint.
However, in the existing studies related to personalized
route query, the social trust has not received sufficient
attention. In this paper, as far as we know, we are the
first to study the personalized route query by incorporating
social trust. Our proposed problem is different from the
problems in the existing studies. Additionally, the previous
methods related to personalized route query are not suitable
for tackling our proposed problem.

Social trust is a critical factor in decision-making and
has recently attracted research interest from many fields,
e.g., sociology, psychology, computer science, and cog-
nitive sciences. Studying trust propagation [47], Golback
and Hendler [12] propose a trust inference mechanism for
assigning trust in Web-based social networks and investi-
gate how trust information can be mined and integrated
into applications. Guha et al. [13] develop a formal frame-
work of trust propagation schemes, introducing the formal
and computational treatment of distrust propagation. Mean-
while, several studies focus on social trust path selection
[27, 39]. Hang et al. [16] propose a social trust path selec-
tion method in online social networks, selecting the social
trust path with the maximum of propagated trust values
as the optimal solution. Liu et al. [27] present a complex
social network structure that considers trust information,
social relationships and recommendation roles and propose
an efficient heuristic algorithm in which multiple foreseen
social paths are formed to help social trust path selection.

Several recent studies combine recommendation systems
with social trust and reputation mechanisms. For instance,
Walter et al. [35] propose a recommendation system that
combines the concepts of social networking and trust
relationships. Jamali and Ester [23] propose a random
walk model combining the trust-based and collaborative
filtering approaches to recommendations. It can be observed
that although many recommendation systems incorporate
social trust, such systems mostly focus on item or user
recommendations. To the best of our knowledge, no study
has considered personalized route query by incorporating
social trust.

Preliminaries and Problem Formulation

In this section, we briefly review the extreme learning
machine (ELM), which is used as a starting point of our
proposed approach. Subsequently, we formally define the
problem of social trust-aware personalized route query.

Brief Description of Extreme LearningMachine

Extreme learning machine (ELM), developed by Huang et
al. [18–22], is based on a generalized single-hidden-layer
feedforward network (SLFN). In ELM, the hidden-layer
node parameters are mathematically calculated, instead
of being iteratively tuned. Thus, a good generalization
performance can be provided at speeds thousands of times
higher than those of traditional popular learning algorithms
of feedforward neural networks [20]. ELM has been widely
applied in various fields, such as theoretical research [31,
43], image analysis processing [7, 38], prediction analysis
[28, 29], and classification [8, 14, 40].

Given the activation function g(x) and N arbitrary
distinct samples (xi , ti ), where xi = [xi1, xi2, · · · , xin]T
∈ Rn and ti = [ti1, ti2, · · · , tim] ∈ Rm, a standard SLFN
with L hidden nodes is mathematically modeled as

fL(x) =
L∑

i=1

βig(ai , bi, x) = oj (1)

where ai and bi are the learning parameters of hidden nodes,
βi denotes the output weight connecting the ith hidden node
to the output layer, and oj is the j th output vector of the
SLFNs.

Usually, an SLFN can approximate these N samples with
zero error. That is, the error of ELM is

∑L
j=1‖oj − tj‖ = 0.

Thus, there exist ai , bi and βi such that

L∑

i=1

βig(ai , bi, x) = tj , j = 1, 2, · · · , N . (2)

Equation 2 can be written compactly as

Hβ = T (3)

where

H(a1, a2, · · · , aL, b1, b2, · · · , bL, x1, x2, · · · , xL)

=
⎡

⎢⎣
h(x1)

...
h(xN)

⎤

⎥⎦=
⎡

⎢⎣
g(a1, b1, x1) · · · g(aL, bL, x1)

... · · · ...
g(a1, b1, xN) · · · g(aL, bL, xN)

⎤

⎥⎦

N×L

(4)

β = [βT
1 , · · · , βT

L ]Tm×L (5)

T = [tT1 , · · · , tTN ]Tm×N (6)

H is the hidden-layer output matrix of the network. The
ith column of H is the ith hidden nodes’ output vector with
respect to inputs (x1, x2, · · · , xN), while the j th row of H

is the output vector of the hidden layer with respect to the
j th input xj .

The activation function g(x) is infinitely differentiable
and is usually designed to be the sigmoid function, the
Gaussian function or the radial basis function (RBF). In this
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Fig. 1 A single-hidden layer feedforward network

paper, we consider the RBF as the activation function; thus,
we obtain

g(ai, bi, x) = g(bi‖x − ai‖), bi ∈ R+ (7)

As shown in Fig. 1, the parameters of hidden-layer
nodes in ELM, i.e., ai and bi , can be randomly selected
regardless of the training datasets. The output weight β

can be estimated with the matrix computation formula
β = H †T . Therefore, the output function of ELM can be
formulated as f (x) = h(x)H †T .

Problem Statement

Data Model As shown in Fig. 2, a location-based social
network (LBSN) consists of a road network and a road-
social network (the venues checked-in by users must belong
to the road network). We model the road network as an
undirected graph RN(L, E), where L is the vertex set
representing the venues, i.e., POIs, in the road network.
Each venue l ∈ L has a keyword l.φ indicating its category,
e.g., restaurant or pub. Each e(li , lj ) ∈ E is an edge
between li and lj , indicating that there exists a path between
the two venues. Each edge e ∈ E is associated with a

positive weight w(e) showing the road network distance. We
consider R = (l1, l2, ln) to be a route if and only if li ∈ L

and (li , li + 1) ∈ E for every i ∈ 1, 2, · · · , n. The venue
categories covered by route R are denoted R.�. The sum of
weights of all edges in a route R is regarded as the length of
R.

We model the road-social network as an undirected
graph SN(U, C), where U is the vertex set representing
the users in a social network, each ui ∈ U has a check-
in list recording the venues the user has visited, and each
c(ui, uj ) ∈ C is an edge between ui and uj indicating
that the two users have a relationship, such as friendship
or being classmates. As shown in Fig. 2b , the hollow
dots are the users of the social network, the solid dots
are the locations visited by users of the social network,
the solid lines connecting two hollow dots are the social
edges indicating that the two users have a relationship,
and the blue dotted line connecting a hollow dot and a
solid dot means that the user has visited the location, with
the number on the dotted line representing the number of
visits.

Query Model A social trust-aware personalized route query
(STPRQ) in LBSNs is described as a tuple q =<

qu, s, t, �, � > where

• qu is the query user;
• s is the starting venue;
• t is the destination;
• � is a set of venue categories specified by the query

user; and
• � is the travel distance constraint.

Ranking Model Our goal is to identify a proper route that
is credible and popular in the social circle of the query
user. Thus, we consider the following aspects to quantify the
credibility and popularity of a route.

For the query user, the route popularity reflects the
interest score of the route in the user’s social circle. The

Fig. 2 Graph models of an LBSN
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user similarity Sim(u, v) between users u and v can be
calculated by the Jaccard distance[32]; thus, we obtain

Sim(u, v) = |N(u) ∩ N(v)|
|N(u) ∪ N(v)| (8)

where N(v) is the neighbor set of user v in the underlying
social network.

A route may pass through multiple venues. Thus, we first
describe the measurement of the popularity of a venue li
with respect to a user v, denoted p(v, li). We have

p(v, li) =
∑

u∈U Sim(v, u) · count(u, li)∑
u∈U count(u, li)

(9)

where count(u, li) represents the number of times u visited
li .

An important measure for social analysis is social
similarity. In addition, another important measure is social
trust. It is worth noting that social trust is different
from social similarity. Specifically, a high social similarity
between two users implies that their behavior patterns
are similar, even though they may distrust each other.
The information provided by an untrusted friend may
not influence certain behavioral decisions. In contrast, the
information from a trusted friend can be accepted, even if
the users’ social similarity is very low.

Social trust t (u, v) is the probability value ([0, 1])
between two users u and v. For simplicity, social trust
is symmetric in this paper. In other words, t (u, v) =
t (v, u). Evaluation of social trust will be described in
“Social Trust Evaluation”. Next, we discuss the estimation
of the credibility score of a venue for a user. We have

c(v, li) =
∑

u∈U t (v, u) · p(u, li)∑
u∈Up(u, li)

(10)

where c(v, li) denotes the credibility score of li with respect
to v.

Now, we are ready to present the credibility score of
route R that consists of a sequence of venues, i.e., R =
{l1, l2, · · · , lm}. The intuition is that we group the venues
in a route by category. Subsequently, we select the groups
that match the query categories �. The highest score in each
selected group is added to the credibility score of route R

associated with user v, denoted RS(v, R).
Now, we formally define our social trust-aware personal-

ized route query .

Problem 1 (Social Trust-aware Personalized Route Query
(STPRQ).) Given a road network RN(L, E), a correspond-
ing road-social network SN(U, C), a query user uq , a
starting venue s, a destination t , a set of keywords �, and
a distance constraint �, a social trust-aware personalized
route query (STPRQ) q = 〈uq, s, t, �, �〉 aims to identify
a route R from s to t such that

Fig. 3 The framework

1. R starts from s and ends at t , denoted R : s � t ;
2. the length of R should not exceed �, i.e., Dist(R) ≤ �;
3. the query keyword set � should be covered by R, i.e.,

� ⊆ R.�; and
4. for any other route R′ : s � t with Dist(R′) ≤ � and

� ⊆ R′.�, RS(uq, R′) ≤ RS(uq, R).

Example 1 Considering the location-based social networks
shown in Fig. 2 as an example, assume an STPRQ q =
〈u1, l1, l9, � = {ϕ3, ϕ5}, 17〉, meaning that user u1 wants
to find a route from venue l1 to l9. Additionally, the route
must pass through two venue categories, one being ϕ3 and
the other ϕ5. The credibility score of the route should be as
large as possible, while the length should be no greater than
17.

Framework

When a user proposes a query q = 〈qu, s, t, φ, �〉, our goal is
to respond efficiently to the social trust-aware personalized
route query. As shown in Fig. 3, we propose a social
trust-based optimal trip selection (STOTS) framework that
consists of three components: social trust evaluation, route
credibility estimation, and optimal route query.

Social Trust Evaluation At this stage, we first extract
features that exploit social information and user behavioral
patterns, including user profiles, social structure, and user
behaviors in LBSNs. Subsequently, we propose an approach
based on ELM to evaluate social trust between the two
users of any social ties in LBSNs. Additionally, we leverage
a trust propagation model to evaluate the social trust of
any pair of users. It is worth noting that this part can be
performed offline.

Route Credibility Estimation At this stage, our aim is to
estimate the credibility of a route for the query user. As
mentioned in “Problem Statement”, the route credibility
can be obtained by calculating the credibility score of a
venue for the query user. Thus, we design a novel index,
namely, the category-oracle inverted index that can be used
to accelerate the calculation of location credibility.
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Fig. 4 The process of STP-ELM

Optimal Route Query When a user proposes a query q, the
venue score can be calculated quickly based on the above
two stages; an efficient method will be described to query
a proper route in this part. We will illustrate this part in
“Optimal Route Query”.

Approach

In this section, we present the social trust evaluation, detail
the estimation of the credibility of a route, and then describe
the optimal route query.

Social Trust Evaluation

Recall that our aim is to discern the social trust value of
any two users. There are two cases: in the first, two users
are connected by a social edge directly; the second is the
opposite case.

Case 1. Existing direct edge connection As mentioned
above, social trust is a probability value ([0,1]) between two
users u and v implying the creditability between two users.
We consider social trust evaluation as a regression analysis
problem. To this end, we propose a novel semi-supervised
social trust prediction method based on extreme learning
machine (ELM), denoted STP-ELM. As shown in Fig. 4,
STP-ELM consists of two phases: feature extraction and
trust prediction.

Feature Extraction We now describe the extracted features
attached to two users connected by a social edge directly. As
explained below, various features are summarized from the
aspects of user profile, social features, and user behavior.

1) User profile. In real life, user profiles have an important
influence on the social trust between two users. For
instance, two users with the same gender will trust each

other. Specifically, we extract two kinds of features in
this class, which are shown in Table 1. Feature f1 is
the absolute value of the difference of two users’ ages.
Feature f2 is the difference of two users’ genders. That
is, f2 = 1 if the two users’ genders are the same;
otherwise, f2 = 0.

2) Social features. In this class, we utilize the betweenness
centrality [2, 11, 37] that has been proposed to measure
the social importance of a user to reflect the social
feature. Particularly, a user is likely to be trusted if the
user is important in the social network. In the social
graph, betweenness centrality measures the fraction of
shortest social paths that pass through a given node,
averaged over all pairs of node.

Let SN(U, C) be the graph associated with a road-
social network, given three nodes u, v, w ∈ U . Brandes
et al. in [2] introduces the pair-dependency of u and w

on v, demonstrated as Eq. 5:

δ(v) = σuw(v)

σuw

(11)

where σuw is the number of shortest social paths from
u to w, while σuw(v) is the cardinality of the subset of
social paths from u to w passing through v.

The betweenness centrality of node v is obtained as
the sum of the pair-dependency values of each pair of
nodes on v. To eliminate the direct computation of all
sums, Brandes introduces the dependence of vertex u

on v as:

δu•(v) =
∑

w∈U

δuw(v) (12)

Thus, the betweenness centrality B of node v is
obtained by summing contributions from all source
nodes:

B(v) =
∑

u∈U

δu•(v) (13)

Table 1 Features in user profile class

Feature Description Instance

f1 The difference of two users’ ages u.age=16, v.age=40, f1 = 24

f2 The difference of two users’ genders u.gender=f, v.gender=m, f2 = 0
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Fig. 5 The process of trust propagation

It is worth noting that we can preprocess the shortest
path for every pair of vertices. Subsequently, the
betweenness of every node can be computed according
to the preprocessed path.

Recall that our aim is to extract features with respect
to two users connected by a social edge directly. For a
given edge e(u, v), we have f3 = B(u) and f4 = B(v).

3) User behaviors in LBSNs. To predict the score of social
trust, we rely on basic intuition. That is, two users who
often visit certain venues together in real life may have
a high social trust. In most LBSNs, such venue-visiting
behavior is denoted as a check-in. Therefore, we gather
statistics of common check-ins (generated by the two
endpoints of an edge) as the features of this social edge,
such as the time of the generated check-ins. In addition,
the attributes of venues, such as categories, will be also
extracted as features of corresponding edges.

We extract the five most visited venues from the common
check-in lists of two users. That is, we have five features
(f5-f9) in this class. Each feature fi can be formulated as a
vector fi =< Ct imes, Vcat >, where 5 ≤ i ≤ 9, Ct imes

denotes the common check-in times, and Vcat denotes the
category of the visited venue.

Trust Prediction After the feature construction, STP-ELM
uses the above three classes of features to learn ELM-based
social trust regression models. As mentioned above, STP-
ELM leverages the ensemble ELM mechanism to further
improve the accuracy of social trust evaluation.

Specifically, STP-ELM learns k regression models. We
obtain partial edges with trust scores between the two
endpoints via a crowdsourcing strategy and use these edges
as the training data. That is, we use the three kinds of
features as input and manually annotate the social trust score
of two users with a direct social edge connection.

Finally, the social trust score of two users is the average
value of the social trust value learned from the ensemble of
k ELM-based regression models.

Case 2. No Direct Edge Connection We leverage the learned
social trust score in Case 1 to infer the social trust value of
two users without a direct edge connection. Following the
existing work [42], social trust can be propagated through
the network. That is, two users are more likely to trust each
other if they have a common trusted peer.

As shown in Fig. 5, for any two users(u and v) without
a direct edge connection in the underlying social network,
we obtain the shortest social path between u and v, denoted
path(u, v) = {(u = u0, u1), (u1, u2), · · · , (uh−1, uh = v)}.
Given the social trust value t (ui, ui+1) of two users in each
edge of this path, which would be learned in Case 1, we
obtain

t (u, v) = 	(ui,ui+1)∈path(u,v)t (ui, ui+1). (14)

Route Credibility Estimation

As mentioned in “Problem Statement”, Eqs. 9 and 10 show
how to calculate the popularity score and the credibility
score, respectively, of a venue for a user, respectively. One
important factor is the number of check-ins of a user at
a venue. However, the number of social network users
increases rapidly, as does the scale of check-in data. It is
time-consuming to obtain the check-in information for a
venue and the category of a venue by searching the check-
in data directly. Inspired by the study [48], we design
a category-oracle inverted index to quickly retrieve the
visiting times of a venue by a user, which can be used to
accelerate the processing of route credibility estimation.

Each check-in record has at least three items: the check-
in user, the venue id, and the category of the venue.
Figure 6a is an example of check-in data in location-based
social networks of Fig. 2. For instance, user u1 has visited
venue l1 once and l2 twice, while the categories of the two
venues are pub and hotel, respectively.

Fig. 6 An example of the
category-oracle inverted index
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Fig. 7 An example of route
credibility score evaluation

The venues are classified by their categories; each
category contains several venues in the road network. The
counts of times each venue was visited by various users
are summarized as one of the terms of our category-oracle
inverted index.

The structure of the category-oracle inverted index is
shown in Fig. 6b. To summarize, a category-oracle inverted
index has four primary items:

– Category. The first item in our index is the venue
category, which can be used to obtain the venue
category of a check-in record directly.

– Venue id. Venue id is the only identifier of a venue, which
can be used to obtain more information about the venue.

– Check-in user. This item indicates the user in a check-in
record.

– Check-in times. In real life, a venue may be visited by
the same user multiple times. The check-in times can
reveal the degree of interest of a user in the venue. Thus,
we use this item to record the number of times a venue
was visited by the same user.

Considering the check-in data in Fig. 6a as an example,
there are four categories: pub, hotel, cafe, and airport.
Figure 6b shows the category-oracle inverted index, which
can illustrate the check-in information intuitively. For
instance, there are two hotels, i.e., l2 and l8, where l2 has
been visited by user u1 twice and l8 has been visited by user
u2 once.

A personalized route consists of a series of venues,
whose category set should cover the query category set. The
intuition for estimating the credibility of a route is that we
first group venues in a route by category and subsequently
select the groups that match the query category set �. The

sum of the highest credibility scores of venues in each of
these selected groups can be regarded as the credibility score
of a route. Here, we first describe the calculation of the
credibility score of a venue and subsequently discuss the
estimation of the route credibility score.

Computing the Credibility Score of a Venue As mentioned
in “Social Trust Evaluation”, the social trust between two
users t (u, v) has already been evaluated. The process of cal-
culating the credibility score between a user and a venue
is described in Algorithm 1. We first compute the social sim-
ilarity of any user pair by Eq. 8 and subsequently calculate
the popularity score between each user and li . It is worth
noting that the popularity score reflects the interest score of
a user in venue li . By incorporating the social trust, we com-
pute the credibility score of li with respect to v by Eq. 10,
which incorporates the interest score and the social trust.

Table 2 Main notations
Notations Description

q : u, ls , ld , �, � the query submit by a user

Dis∗ the distance from ls to ld in the best feasible solution until now

Dis the distance from ls to current location

S the keywords set covered by the path ls to current location

T a path represent by the location matching the category in query q

T ∗ the path of the best feasible solution

RS∗ the route score in the best feasible solution until now

RS(u, T ) the route score of the path T about u

Q a min-priority queue
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Computing the Route Score In our query model described
in “Problem Statement”, � denotes the set of categories spec-
ified by the query user. For a route R = {l1, · · · , lm}, we
denote the category covered by R as RC = {l1.c, · · · , lm.c}.
We prune the route R without computing the route score
if � �⊂ RC. That is, we only compute the route score
if the route can cover the query category set; thus, in
the remainder of this subsection, we discuss this case by
default.

Algorithm 2 illustrates the procedure of estimating the
route credibility score. First, we group the venues in a
route by category. For each group, if the category of
venues belongs to �, we calculate the credibility score of
each venue in this group with respect to user v, and the
highest credibility score in this group is added to the route
score.

Example 2 shows a running instance of how Algorithm 2
operates.

Example 2 Suppose that the venue category set �

is {ϕ2, ϕ3} specified by user v in an STPRQ . As
shown in Fig. 7a, a sample route R from s to t is
{l1, l2, l3, l4, l5, l6, l7, l8}. The category set covered by R

is RC = {ϕ1, ϕ2, ϕ3, ϕ4}. Next, we group the venues in
R by category. The groups with the categories belonging
to � are selected. Subsequently, for each venue in the
selected groups, we calculate the credibility score. We
sum the highest venue credibility scores in each selected
group to obtain the credibility score of the route. As
shown in Fig. 7b, assuming that the venue credibility
score of each venue in the ϕ2 and ϕ3 groups has
already been calculated, we obtain the credibility score
RS(v, R) = 0.67 + 0.46 = 1.13.

Optimal Route Query

As the route score for the query user can be computed
and a category-oracle inverted index has been constructed,
we are now ready to present our proposed optimal route
query algorithm called RouteHunter. The notations used
throughout “Optimal Route Query” are listed in Table 2.

The primary idea of RouteHunter is that we evaluate
the credibility score of route R if and only if the venue
categories covered by R can contain the query category
set �. Furthermore, for a given route R, we only need to
calculate the credibility score of a venue if its category
belongs to �. That is, assuming that the query user arrives at
venue li from the starting venue, we calculate the credibility
score of li for the user if and only if the category of li
matches one of the categories specified by the user, i.e.,
li .ϕ ∈ �.

In the route extension phase, we traverse the neighbor-
hoods of a venue; a neighbor lj can be regarded as a
candidate only if the sum of the distance from the start loca-
tion s to the current location li , ω(e(li , lj )) , and the shortest
distance from lj to the destination ld is less than the dis-
tance constraint �. If the sum exceeds �, the route from s

to the neighbor lj does not satisfy the requirement of the
query user. By applying this approach, many venues can be
pruned. It is worth noting that we precompute the shortest
distance between each venue and s(and t) in the underlying
road network.

As shown in Algorithm 3, for a query q =<

qu, s, t, �, � >, RouteHunter first initializes the parame-
ters (lines 1 and 2) and assigns s as the first element of
a min-priority queue Q (line 3) used to maintain the can-
didate venues satisfying the distance constraint. Next, we
select the optimal venue by the Q.Ranking function in
line 5 that ranks venues in the following order: we denote
lk ≺ lt if and only if |p(ls → lk).ϕ| > |p(ls → lt ).ϕ| or
[|p(ls → lk).ϕ| = |p(ls → lt ).ϕ| and RS(u, p(ls →)) ≥
RS(u, p(ls → lt ))] or [|p(ls → lk).ϕ| = |p(ls → lt ).ϕ| and
RS(u, p(ls → lk)) = RS(u, p(ls → lt )) and Dist (p(ls →
lk)) < Dist (p(ls → lt ))]. Subsequently, we extend the
selected venue by applying the category cover strategy,
i.e., we prefer to extend the venue with category belong-
ing to the query category set (lines 6–8). In each extension,
we compare the distance lower bound of the current par-
tial route to the query distance constraint (lines 15–19).
When the destination t emerges in a route T , we check
whether this route satisfies the query category constraint
and the distance constraint and subsequently evaluate the
route score and update the optimal route obtained thus far
(lines 9–14).
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Example 3 Considering the location-based social networks
in Fig. 2 as an example, the category-oracle inverted index
are shown in Fig. 6. Assuming a query q =< u1, l1, l9, � =
{ϕ3, ϕ5}, 15 >, the detailed steps of RouteHunter are shown
in Fig. 8. We first extend the starting location l1; locations
l2 and l3 are the neighbors of l1. For each neighbor li ,
we examine the sum of w(l1, li) and the shortest distance
from li to the destination lt that we have obtained using the
well-known Floyd algorithm [10]. If the sum exceeds the
distance constraint �, we can prune this partial route from l1
to li , as the lower bound of such a partial route with respect
to distance has violated constraint �.

In this example, as the distance lower bound for both
partial routes from l1 to l2 (or l3) satisfies the distance
constraint, we put both of them into min-priority queue Q,

Table 3 Accuracy evaluation for EN-SVM and STP-ELM

Dataset Algorithm Training accuracy Testing accuracy

Gowalla EN-SVM 0.668 0.674

STP-ELM 0.693 0.701

Brightkite EN-SVM 0.726 0.733

STP-ELM 0.745 0.758

Foursquare EN-SVM 0.731 0.752

STP-ELM 0.738 0.750

calculate the interest score for all locations in Q (we rank
them by the Rank function). After each iteration, we record
the categories covered by the respective partial routes. As
the ranking order of l3 is superior to that of l2, we extend
l3 in the second iteration. The locations l4 and l5 can be
reached via l3; as the distance of the partial route {l1, l3, l4}
is 9 and the shortest distance from l4 to the destination l9
is 8, the sum is 17, exceeding the distance constraint 15;
hence, this partial route would be pruned. In Fig. 8b, l4
is marked by a yellow color. In contrast, we put l5 into
the priority queue Q, calculate the interest score and rank
those locations in Q. After that, we check the categories
covered by the least partial route to determine whether these
categories contain the categories specified by the query user,
i.e., � = {ϕ3, ϕ5}. If the answer is positive, this means
that a feasible solution has been obtained. For instance,
in Fig. 8c, location l5 meets the constraint of the lower
bound being less than 15, and the categories covered by
the partial route contain � = {ϕ3, ϕ5}. Subsequently, we
continue to extend the location with the greatest priority
in Q until Q becomes empty. In this example, we extend
location l2 to l4, checking that the distance of the partial
route {l1, l2, l4} is 8, and the distance lower bound of this
partial route exceeds the constraint 15; hence, we terminate
the RouteHunter algorithm. The partial route {l1, l3, l5}
merged with the shortest path from l5 to l9 is the query
answer to be returned.

Experiments

In this section, we experimentally evaluate the effective-
ness and efficiency of our proposed algorithms for the
STPRQ problem. We perform a series of sensitivity tests

Fig. 8 An example of how RouteHunter operates
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Table 4 Performance evaluation for EN-SVM and STP-ELM

Dataset Algorithm Training time (s) Testing time (s)

Gowalla EN-SVM 7.6325 7.3047

STP-ELM 1.2464 1.0358

Brightkite EN-SVM 5.8351 5.1563

STP-ELM 1.0193 0.9836

Foursquare EN-SVM 6.2356 5.9734

STP-ELM 0.8460 0.8231

to study the impact of query parameters with real social
graph datasets. In the following, we first describe the exper-
imental settings and subsequently analyze the experimental
results.

Experimental Settings

Dataset We use three real-world datasets, namely, Gowalla,
Brightkite and Foursquare. Table 2 provides the details.

– Gowalla. The Gowalla dataset, available at the Stanford
Large Network Dataset Collection1, contains data gen-
erated worldwide from February 2009 to October 2010.
This dataset contains 6,442,892 check-ins generated by
196,591 users at 1,280,969 venues. Additionally, there
are 950,327 social edges and 1,356,399 road network
edges.

– Brightkite. The Brightkite dataset is available at the
Stanford Large Network Dataset Collection3. Brightkite
was once a location-based social networking service
provider with users sharing their locations by checking-
in. This dataset contains 4,491,143 check-ins generated
by 58,228 users at 772,789 venues. Additionally, there
are 214,078 social edges and 1,025,364 road network
edges.

– Foursquare. We crawl the Foursquare dataset via the
Foursquare API2 from November 2014 to January
2016. This dataset has 76,503 users and 1,531,357
social edges. For each user, we collect the check-
ins during this period of time. Each check-in is a
pair of user and venue. In total, we obtained 299,995
venues located in Singapore and 969,549 check-ins.
Each venue has its category type description, such as
museum, bar, and hotel. In addition, we leverage the
OpenStreetMap3 to obtain a road network of Singapore.
It is worth noting that we regard the venues as the
vertices of the road network. Thus, the number of road
network edges is 416,723.

1http://snap.stanford.edu/data/index.html
2https://developer.foursquare.com/
3http://www.openstreetmap.org
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Fig. 9 Testing accuracy vs. the number of regression models

ComparativeAnalysis In this paper, we conduct three sets of
experiments. First, we test the performance of our proposed
social trust regression analysis method based on extreme
learning machine. Second, we test the performance of our
proposed index, including the effectiveness of our index, the
index construction time and the index space cost. Third, we
provide an overall evaluation of our proposed algorithms,
including the route query precision analysis and the effect
of parameter �.

Experiment 1: Evaluation of Social Trust Regression
Analysis

As discussed in “Social Trust Evaluation”, a plurality voting
method using multiple regression models is used to increase
the social trust prediction accuracy. To test the performance
of STP-ELM (illustrated in “Social Trust Evaluation”), we
consider ensemble SVM (support vector machine) [5, 17],
denoted EN-SVM, as the comparison algorithm, which
uses multiple SVM regression models to obtain a better
predictive performance. We set 40 as the default value of
the number of regression models in both EN-SVM and
STP-ELM.
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Fig. 10 Effectiveness of the index
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Table 5 Index construction time and memory cost

Dataset Time cost (s) Memory cost (MB)

Gowalla 876.7 1135.2

Brightkite 627.4 977.6

Foursquare 239.5 640.9

Table 3 shows the accuracy rate of EN-SVM and STP-
ELM applied to the three datasets. Table 4 shows the
efficiency of EN-SVM and STP-ELM. The above two sets
of experiments show that our proposed STP-ELM algorithm
can obtain a comparable accuracy yet needs less training
time and testing time than EN-SVM.

In Fig. 9, the effect of the number of used regression
models is investigated. The testing accuracy varies similarly
for the three datasets. It can be observed that the accuracy
of the STP-ELM algorithm increases with the number of
regression models. The reason is that the accuracy of social
trust regression analysis can be improved by increasing the
number of regression models. For the number of regression
models ranging from 40 to 80, the accuracy remains relatively
stable. Therefore, we set 40 as the default value of the
number of regression models in the following experiments.

Experiment 2: Evaluation of the Index

In this subsection, we first test the effectiveness of our
proposed index. As mentioned in “Optimal Route Query”,
our optimal route query algorithm, RouteHunter, leverages
the constraints specified by the query user to reduce the search
space, and the heuristic extends from the starting venue. We
consider RouteHunter without our index as the baseline and
denote by “RouteHunter+index” the algorithm version with
the index described in “Route Credibility Estimation”.

In this set of experiments, we set the distance constraint
� to be 7, randomly select the staring and ending venues,
and assign the size of the venue category set to be 3. As
shown in Fig. 10, the average runtime of 50 queries for
algorithm “RouteHunter+index” is less than that of the route
query algorithm without the index (RouteHunter). It can be
concluded that our proposed index can speed up the query
processing.

Next, we examine the index construction time and index
space cost. The results are shown in Table 5. It can
be observed that the index construction for the Gowalla
datasets needs much more time and space than that for
the Foursquare datasets. The reason is that our proposed
index is a venue category-aware inverted file implying that
each term in our index is a check-in record. The index
construction time and space cost are proportional to the size
of check-in data.

Experiment 3: Performance of the Query Algorithm

In this paper, to the best of our knowledge, we are the
first to study the personalized route query by incorporating
social trust. Our proposed problem is different from the
problems in the existing studies. Additionally, the previous
methods related to personalized route query are not suitable
for tackling our proposed problem. Thus, we implement
a baseline algorithm that only considers social similarity
instead of social trust, called similarity-based personalized
route query (Sim-PRQ). It is worth noting that our proposed
approach, STOTS, not only considers the user similarity but
also incorporates the social trust into personalized route
query. By comparing it to Sim-PRQ, we will evaluate the
performance of STOTS in this subsection.

Efficiency of Methods In this set of experiments, we
compare our STOTS approach to the baseline method (Sim-
PRQ) by considering the run time under various values of
the travel distance constraint �. Note that both methods are
able to obtain the optimal solution. Figure 11 shows that
the run time of both methods increases quickly with �. The
reason is that a query with a larger travel distance constraint
� is likely to have more potential routes.

Effectiveness of Methods Note that any route can be
represented by a sequence of venues (POIs). From user
history check-in data, we extract successive check-in
behaviors that can provide venue sequences. We consider
such venue sequences as route test sequences. For all
datasets, we extract 1000 test sequences with the length of
six. For each venue sequence with length six, the size of the
category set in a generated query is four after subtracting

Fig. 11 Query time
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Table 6 Average edit distance

Datasets Approach Edit distance

Gowalla Sim-PRQ 1.78

STOTS 1.21

Brightkite Sim-PRQ 1.73

STOTS 1.06

Foursquare Sim-PRQ 1.16

STOTS 1.03

the starting venue and the destination. We measure the
difference between the routes generated by our algorithms
and the test sequences to evaluate the route query accuracy.
Thus, the edit distance is applied as the evaluation metric,
as it measures the distance between two sequences in terms
of the minimum number of edit operations required to
transform one sequence into the other [25, 30].

Table 6 shows the performance of the two compared
approaches, i.e., Sim-PRQ and STOTS, for all three
datasets. The results show that our proposed approach
STOTS attains a higher accuracy (i.e., a lower edit dis-
tance) than Sim-PRQ. The reason is that STOTS not
only considers the user similarity but also incorporates
the social trust into personalized route query. In con-
trast, the Sim-PRQ approach only considers the user
similarity.

Effect of Parameter � In this set of experiments, we study
the accuracy and the run time of our STOTS algorithm under
various sizes of the query category set � . Figure 12 shows
the results. In our experience, the size of the category set
specified by query users is usually small. We set |�| to
values of 1, 3, 5, and 7. We observe that the run time of the
STOTS algorithm increases quickly with |�|. The reason is
that a query with a larger |�| will cause our algorithm to
converge more slowly. We also observe that the edit distance
increases with |�|, indicating that the accuracy decreases
with the increase in |�|. A larger |�| will introduce
more inexact factors into the query result, reducing the
accuracy.

Conclusion

Personalized route query is an important topic due to
the growing popularity of location-based social networks
and related applications on mobile devices. However,
the existing studies did not adequately explore the trust
between users in the context of personalized route query.
In this paper, we propose a novel personalized route
query considering the factor of social trust. We note three
major challenges in solving such personalized route query
incorporating social trust (STPRQ), namely, evaluating
social trust, incorporating social trust, and finding the
required route. Therefore, we propose the social trust-based
optimal trip selection (STOTS) framework that uses extreme
learning machine (ELM) to evaluate social trust, applies
a rank model to incorporate social trust, and includes an
algorithm to find the required route. Experimental results
on a real-world dataset encouragingly demonstrate the
efficiency and effectiveness of our proposed approach.

In our future work, we plan to study the evaluation
of social trust in location-based social networks. Another
direction of our future research is to seek other approximate
algorithms for solving this new problem.
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