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Abstract
Fast and accurate detection of 3D shapes is a fundamental task of robotic systems for intelligent tracking and automatic
control. View-based 3D shape recognition has attracted increasing attention because human perceptions of 3D objects
mainly rely on multiple 2D observations from different viewpoints. However, most existing multi-view-based cognitive
computation methods use straightforward pairwise comparisons among the projected images then follow with weak
aggregation mechanism, which results in heavy computation cost and low recognition accuracy. To address such problems,
a novel network structure combining multi-view convolutional neural networks (M-CNNs), extreme learning machine
auto-encoder (ELM-AE), and ELM classifer, named as MCEA, is proposed for comprehensive feature learning, effective
feature aggregation, and efficient classification of 3D shapes. Such novel framework exploits the advantages of deep CNN
architecture with the robust ELM-AE feature representation, as well as the fast ELM classifier for 3D model recognition.
Compared with the existing set-to-set image comparison methods, the proposed shape-to-shape matching strategy could
convert each high informative 3D model into a single compact feature descriptor via cognitive computation. Moreover, the
proposed method runs much faster and obtains a good balance between classification accuracy and computational efficiency.
Experimental results on the benchmarking Princeton ModelNet, ShapeNet Core 55, and PSB datasets show that the proposed
framework achieves higher classification and retrieval accuracy in much shorter time than the state-of-the-art methods.

Keywords ELM auto-encoder · Convolutional neural networks · 3D shape recognition · Multi-view feature aggregation

Introduction

Fast detection of 3D shapes is a fundamental task in
many fields, including computer vision, pattern recognition,
and robotic systems. Such task is also of great relevance
in modern industry for intelligent part transportation,
manufacturing, and 3D printing. For 3D shape recognition,
one can directly train recognition algorithms from original
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3D representations, such as point clouds, voxel binary
occupancies, or surface curvatures. Similar to human visual
perception mechanism of 3D objects by means of 2D
observations, the projective view-based method has been
a basic tool in 3D shape recognition domain. View-
based feature describes a 3D model by how it looks
with the selected 2D projections. The visual similarity
between the selected views of two models is regarded as
the index of model difference. Compared to 3D model
representations, view-based 2D representations have several
desirable properties for shape recognition: (1) being less
sensitive to 3D model representation artifacts, such as
slightly imperfect polygon meshes and noisy surfaces, and
(2) not relying on the explicit virtual model which may not
be readily available in physical object detection scenarios.
In addition, the rendered 2D views can be directly used
for comparison with other images, silhouettes, or even
hand-drawn sketches [1], thus leading to relatively low-
dimensional and efficient computation. Furthermore, the
well-developed image processing techniques could leverage
the view-based methods by using the advances in image
descriptors and massive image databases (such as ImageNet
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[2]) along with the powerful pre-trained deep convolutional
neural network (CNN) architectures [3]. Thus, in this
work, we adopt the view-based representation for 3D shape
recognition.

The straightforward way of view-based 3D shape recog-
nition is to recognize the projected views independently
(as shown in Fig. 2), and this method has been well ver-
ified as in [4]. However, classifying views independently
is a highly time-consuming and complex task owing to the
pairwise comparisons between images of a 3D model. For
a real-time retrieval system, retrieval accuracy and speed
are both important factors that need to be simultaneously
considered. However, the traditional 3D shape recognition
methods mainly focus on recognition accuracy, with less
attention on retrieval efficiency. To alleviate this issue, it is
thus natural to synthesize all the information from multiple
views of each model into a single feature descriptor. How-
ever, the question is how to synthesize all the information
from multiple views to generate a compact and high-level
representation of a 3D shape. This is a challenging task in
multi-view representation. The naive solution, which sim-
ply concatenates all selected views into a single input to
the CNN architecture, may cause an intractable training
effort owing to the potentially infinite large input scale.
More recent solution is to concatenate the individual out-
puts of the CNN into an extremely high-dimensional feature
descriptor, which also suffers from complex computation
and information redundancy. Thus, efficient feature extrac-
tion and dimension reduction techniques are needed to form
an aggregated feature extractor for 3D shape recognition.

Traditional dimension reduction algorithms, such as the
principal component analysis (PCA), auto-encoder (AE)
[5], random projection (RP) [6], and non-negative matrix
factorization (NMF) [7], are often used to reduce noise
and irrelevant information in source data. However, the
traditional AE and NMF are maimed by long training time.
The PCA is not able to represent data as parts (e.g., a leg
in a chair image), and RP only represents a subspace of
the original data. Motivated by the recent work in [8], in
this study, we introduce the extreme learning machine auto-
encoder (ELM-AE) to 3D shape analysis for multi-view
feature aggregation. The ELM-AE can efficiently learn the
main features of the input multi-view data and reduce noise
or redundant information, obtaining a low-dimensional and
high-level feature representation.

Therefore, we propose a new multi-view learning
framework (MCEA) by combining deep CNNs with
ELM-AE for feature extraction and aggregation, and an
ELM classifier for 3D model recognition. The proposed
framework exploits the advantage of the deep CNN network
and the robust ELM-AE feature representation, which could
represent a 3D model as a single compact feature descriptor.
By utilizing the advantages of ELM random assignment of

input weights without fine-tuning, the ELM-AE algorithm
can greatly decrease the computational cost of training.
Thus, the framework of MCEA for 3D shape recognition
can obtain a good balance between recognition accuracy and
computational efficiency. More importantly, it can greatly
improve the retrieval efficiency owing to the compact and
low-dimensional model feature descriptor.

To summarize, the key technical contributions of this
work are as follows:

1. A new hybrid framework of multi-view CNNs and
ELM-AE (MCEA) is proposed for feature learning,
classification, and retrieval of 3D models. To the best of
our knowledge, this framework is the first to combine
the advantages of deep CNN architecture with the
robust ELM-AE feature representation, along with the
fast ELM classifier, for 3D model recognition.

2. In contrast to the traditional multi-view methods that
generate 3D-shape feature vectors with a simple con-
catenation procedure, the proposed MCEA aggregates
shape features using the ELM-AE, thus alleviating
information loss and information redundancy.

3. The multi-view CNNs compensate the shortcomings of
the ELM-AE in direct feature learning from 3D object
data. The combination of the deep CNNs architecture
with the shallow ELM architecture is ideal for 3D object
recognition.

4. The proposed method runs much faster than the
existing set-to-set image matching methods and obtains
a good balance between classification accuracy and
computational efficiency.

The rest of this paper is organized as follows: we discuss
the related work in “Related Work” and present the MCAE
shape feature-learning algorithm in “Methodology”. The
experiments involved in the proposed method are then
represented in “Experiments and Evaluation”, followed by
the analysis and discussion of the results. Finally, we
conclude in “Conclusions”.

RelatedWork

The proposed method is related to prior work on 3D
shape recognition, which has been extensively investigated
for a couple of years. The works in this paper are also
related to the application of ELM, which is a relatively
recent intelligence technique that has been applied in
various scenarios with different problems for regression and
classifications. Below, we briefly review the relevant works.

3D Shape Representation Various algorithms have been
proposed for 3D shape representation, including model-
and view-based methods. Model-based methods describe
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a 3D model with native 3D shape representation, such as
point clouds [9, 10], and volumetric[11, 12] or polygon
meshes [13]. VoxNet [14], for example, creates object
class detectors for 3D point-cloud data by integrating a
volumetric occupancy grid representation with a supervised
3D CNN. 3D ShapeNets [15] describes a geometric 3D
model as a probabilistic distribution of binary variables on
a 3D voxel grid with a convolutional deep belief network.
J. Wu et al. [11] later utilized a 3D generative-adversarial
network for shape classification, which generates 3D
objects from a probabilistic space by leveraging the recent
advances in generative-adversarial nets and volumetric
convolutional networks. More recently, M. Tatarchenko[12]
proposed the octree generating networks, which learn to
predict both the structure of the octree and the occupancy
values of individual voxel cells and represents volumetric
3D outputs by using an octree. However, model-based
methods are often sensitive to 3D model representation
artifacts, like noisy surfaces or slightly imperfect polygon
meshes.

View-based recognition methods describe a 3D model
by a collection of 2D projections in order to exploit the
advances in image processing techniques. Early works on
view-based representation mainly focused on “handcrafted”
descriptors, such as the Fisher vectors (FV) [16], which
used SIFT features for representing human sketches of
shapes. Based on local Gabor filters, Eitz et al. [17]
compared human sketches with line drawings of 3D models
produced from several different views. The light field
descriptor (LFD) [18] extracts a set of geometric and Fourier
descriptors from object silhouettes generated from different
viewpoints. Other examples, such as the LFD [18], elevation
descriptor (ED) [19], and SPH [20], are all representative
of the work with “handcrafted” features. The existing view-
based methods are labor intensive and it is difficult to extract
discriminative information from the input 3D data. In this
work, instead, we propose to learn the shape features from
3D models using automatic machine learning algorithms.

More recently, deep-learning-based methods have
attracted increasing attention in many areas. Specifically,
CNNs have recently been shown to be remarkably success-
ful in image classification [3]. When CNNs are extended to
the domain of view-based 3D shape recognition, it is shown
that deep CNN-based descriptors have superior perfor-
mance compared to the handcrafted view-based descriptors
and many other model-based descriptors. Taking the 3D
shape search engine GIFT [21] as an example, it consists
of the following four components: projection rendering,
view feature extraction, multi-view matching, and re-
ranking. GIFT uses a pre-trained CNN for projected feature
extraction and utilizes an inverted file for re-ranking. A
multi-view CNN network (MVCNN) was later proposed to
learn a 3D shape representation that aggregates information

from multiple views and output a compact shape feature
vector using the element-wise maximum operation across
the selected views [4].

Extreme Learning Machine and Its Variants Compared to
the traditional machine learning algorithms, ELM is a
relatively recent intelligence technique that has been applied
in various scenarios with different problems, such as
regression and classifications with very promising results,
both in terms of computational performance and accuracy
[22, 23]. Different from other neural networks with well-
known back-propagation (BP), all the hidden neurons in
ELM are initialized randomly (independently from the
input data) according to a certain continuous probability
distribution and then fixed without iterative fine-tuning. The
parameters that only need to be learned are the weights
between the hidden layer and the output layer, resulting
in a linear-in-the-parameter model, leading to significantly
higher computational efficiency compared to the traditional
BP neural networks.

During the last several years, the theories and applica-
tions of ELM have been extensively studied, such as the
kernel ELM, incremental ELM (I-ELM), Bayesian ELM,
adaboot ELM [24], multi-layer ELM-LRF [25], hybrid
ELMs [26], etc. Especially, the ELM auto-encoder (ELM-
AE) [27] has been proposed to perform unsupervised learn-
ing, with which the input data could be projected to a
different dimensional space. For instance, Kasun et al. [8]
proposed a dimension reduction framework with ELM-AE,
which can represent data as parts with high learning speed.
A complete proof of the principle of ELM-AE was pre-
sented, which could reduce the dimensions with the least
effect on the Euclidean distance between data points and
results in essentially the lowest variance of the dimensions.
Owing to the desirable property of ELM-AE in dimension
reduction, in this work, we exploit ELM-AE for our 3D
shape-learning framework for multi-view feature aggrega-
tion.

Methodology

The proposed MCEA multi-view network architecture is
composed of four modules: shape rendering, multi-view
CNNs, ELM-AE-based feature aggregation, and ELM
classifier, as depicted in Fig. 1. The view-based shape
representation task starts from multiple views of a 3D
model, which is rendered with different virtual cameras.
A unified CNN, which is pre-trained as shown in Fig. 2,
is applied to generate an image feature for each view
separately. N number of CNNs are subsequently generated
to represent the corresponding multiple image features
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Fig. 1 The proposed multi-view feature-learning pipeline (MCEA).
First, a 3D model is rendered from N different viewpoints, generat-
ing N images, which are then passed through the multi-view CNNs to
extract the individual view-based features. These feature vectors are

then concatenated and fed into the ELM-AE module to obtain a com-
pact and low-dimensional shape feature for each model. Finally, an
ELM classifier is utilized to predict the output class

(feature vectors) per 3D model, as shown in Fig. 1. For
effective recognition, all of the N image features from
a 3D model are concatenated as one shape vector X,
which is then fed into the ELM-AE for feature aggregation
and transformed into a single and compact shape feature.
Finally, an ELM classifier is trained on those aggregated
shape features. The average category accuracy is used
to evaluate the recognition performance. Compared to
pairwise comparisons between images of 3D models, the
proposed aggregated shape feature can be directly used
to compare 3D models, leading to significantly higher
computational efficiency. Moreover, the aggregate shape
features are more informative and meaningful than the
simple combination of multiple projection image features.

For convenience, some important mathematic notations that
are employed in this paper are listed in Table 1.

Input: Projection Rendering

To study the view-based 3D shape representation, we
first need to generate multiple views of polygon meshes.
Following the reflection model introduced in [28], each
mesh polygon is rendered under a perspective projection.
To create multiple views, virtual cameras (viewpoints) need
to be appropriately set up to capture the 2D projections of
each mesh. In order to compare the proposed method against
the MVCNN in [4], we follow the same experimental
setting in that work. Supposing that the input models are

Fig. 2 Single-view feature-learning pipeline. A 3D model is first represented using a 2D projection image via projection rendering. The set of 2D
images is then put into a single-view CNN architecture for feature learning. Each image is set with one label depending on its corresponding 3D
shape
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Table 1 List of some important notations

Notation Description Notation Description

X Input data T Target labels corresponding to X

Nv Number of projection images per model d Dimensionality of training data in ELM-AE

F(.) CNN feature extractor for a given shape L Number of hidden nodes in ELM-AE

P(.) Image feature learned by CNN ω Orthogonal random weights in ELM-AE

H Hidden nodes b Orthogonal random biases in ELM-AE

g(.) Activation function βAE Output weights of ELM-AE

N Number of training data YL(X) Compressed features for X learned by ELM-AE

upright oriented along a consistent axis (e.g., the Z-axis), 12
different projections can be captured by placing 12 virtual
cameras around the mesh, every 30◦ (as shown in Fig. 1).
All the cameras are rotated 30◦ from the ground level and
pointed to the centroid of the mesh, which yields 12 views
per 3D model. Although additional views may improve the
performance of the feature representation, in this study,
we focus on the effect of applying the feature aggregation
process. Therefore, for a fair and reasonable comparison,
12 views are eventually selected in this implementation
“Experiments and Evaluation”.

Multi-View CNN Feature Extraction

Deep-learning-based methods have been widely used as
feature extraction techniques [29]. Thanks to the powerful
deep CNN, networks, such as VGG, GoogLeNet, and
ResNet [30], have been well trained on the ImageNet dataset
[2]. Considering similar properties between the images
in the ImageNet and the rendered views from Princeton
ModelNet, in this study, we initialize our single-view CNN
architecture as shown in Fig. 2, with pre-trained weights

from the VGG-M network. The single-view CNN is then
fine-tuned on all the projection images from the 3D shape
dataset. This pre-trained single-view CNN architecture is
eventually utilized as the feature extractor F(.) of our
multi-view learning framework (shown in Fig. 1).

Specifically, a typical CNN (ConvNet) architecture is
stacked with a sequence of layers, and every layer of
ConvNet transforms one volume of activations to another
through a differentiable function. There are four important
ideas in ConvNet: shared weights, local connections,
pooling, and the use of multiple layers [29]. A normal
CNN architecture mainly includes four types of layers:
convolutional, Relu, pool, and fully connected layers
(described in Fig. 3). The convolutional layer is the “brain”
block in a convolutional network, which does most of the
computational effort. A convolutional layer computes the
output of neuron units that are connected to the local patches
in its input feature space through a set of weights, which is
called a filter bank. All the units in a feature space share the
same filter bank owing to the high correlation and invariance
of the local values in the images, which could dramatically
reduce the number of weight parameters. Specifically,
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Fig. 3 Multi-view CNN architecture, where C means convolutional layer, R and P are the Relu layer and pool layer separately, and FC denotes
fully connected layer. The filter sizes of the five convolutional layers are 7*7*3, 5*5*96, 3*3*256, 3*3*512, and 3*3*512, successively
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each convolutional layer performs a dot product between
their weights and a small region, which functions like a
convolution operation with a certain filter and its input.

a = σ(f [x, y] ∗ g[x, y])

= σ

⎛
⎝

∞∑
n1=−∞

∞∑
n2=−∞

f [n1, n2].g[x − n1, y − n2]
⎞
⎠ (1)

where f ∗g is an element-wise multiplication and the sum of
a filter f and the input signal g. The result of this weighted
sum is then fed to a non-linearity module such as a Relu. The
Relu layer applies an element-wise activation function, such
as the max(0, x) thresholding at zero, to keep the volume
size unchanged. The pool layer performs a down sampling
operation along the spatial dimensions, using the maximum
or average operations. This merges semantically those
similar features into one feature. Pooling can progressively
compress the spatial size of the input, and then reduce
the large number of parameters and computation in the
whole network. In addition, it also alleviates the overfitting,
while in the fully connected layer, each neuron unit will be
connected to all the activations in the previous volume. It
is similar to convolutional layer, except that the neurons in
the convolutional layer are connected only to a local patch
in the input. Therefore, both layers use the convolution
operation (dot product). In this way, a ConvNet architecture
transforms the original input image layer-by-layer from the
original discrete set of pixel values to the final class scores
with certain differentiable functions.

In the single-view CNN architecture, as shown in Fig. 2,
each view is set with one label and the network is fine-tuned
on all selected views through a back-propagation criterion.
Specifically, let X = {x1, x2, ..., xN } denote the training
dataset with N shapes. For each shape xi ∈ X with one
label li , through shape rendering, we can get its projective
image set P(xi) = {xi,1, xi,2, ...xi,Nv }, where Nv is the
number of projection images for each model. The labels of
the projective images are the same as their corresponding
3D shape. Thus, the labeled projective images in the Nc-th
category are

PNc = {xi,j |xi,j ∈ P(xi), xi ∈ X, li = Nc} (2)

The single-view CNN architecture in this paper consists of
five convolutional layers, three fully connected layers, and
a SoftMax layer. The single-view CNN model is fine-tuned
with all the projective images.

In the proposed multi-view CNNs, each view is passed
through the unified CNN architecture (the pre-trained
single-view CNN in Fig. 2) with the same parameters
(weights and biases) separately. The penultimate (Nl-th)
layer is selected as image feature, which generates a 4096-
dimensional feature for each view. The Nv view features
are then concatenated into a single long vector, resulting

in a 4096 ∗ Nv dimension feature for each 3D model.
Specifically, for each shape xi ∈ X, which is rendered
with Nv projective images, P(xi) = {xi,1, xi,2, ...xi,Nv }.
By feeding each projective image xi,j ∈ P(xi) to the pre-
trained CNN in the forward direction, we can obtain its
activation with regard to the Nl-th layer of CNN as

Pj = F(xi,j , Nl) (3)

where Pj is the final feature representation for the j -th view
and F(.) denotes the CNN feature extractor. For a given
shape xi ∈ X, the shape feature can then be represented by

F(xi) = [
P1, P2, ...Pj ...PNv

]
(4)

ELM-AE-Based Feature Aggregation

Simple and straight forward feature concatenation of
the multiple image descriptors, as shown in Eq. 4,
leads to a high-dimensional feature representation while
with less semantic interrelation. It is prone to inferior
classification performance. Therefore, we utilize a novel
feature aggregation technique which would synthesize all
the feature representations of selected views (generated
from the same model), F(xi) = [P1, P2, ...Pj ...PNv ], into
a single and compressed 3D shape descriptor. Extreme
learning machining-based auto-encoder [8, 31] is employed
for feature transformation and aggregation. The ELM-AE-
based feature representation is as shown in Fig. 4. The
output function of classic ELM [22] is

f L(x) =
L∑
i=1

βihi(x) = h(x)β (5)

where L is number of hidden nodes, β = [β1,...,βL]T is
the output weight matrix between the hidden layer and the
output layer, and h(x) = [g1(x),...,gL(x)] are the random
hidden features (hidden node output vector) for input X,
where gi(x) is the output of the hidden node. Suppose, given
N training samples {(xi,ti)}Ni=1, then ELM learning process
can be boiled down to solving the following problem:

Hβ = T (6)

where T = [t1,t2,...,tN]T are the target labels corresponding
to the input data X = [x1,...,xN]T. The objective function is
to minimize the weighted sum of the training error and the
norm of output weights:

C||Hβ − T ||22+||β||22 (7)

By solving the above optimization problem, the weight β

can be obtained in two closed-form solutions corresponding
to different scales of training samples. If the dimensionality
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Fig. 4 Shape feature aggregation using the ELM based auto-encoder
and classifier. a The target output of ELM-AE is the same as input
x, and the hidden node parameters (ωi, bi) are made orthogonal after
randomly generated; output weights β are then calculated using the

regularized least squares. b The output compressed feature of the
ELM-AE is given by y(x) = xβ. c The ELM classifier is eventually
used for the final recognition task

of training samples is larger than the number of hidden
nodes, i.e., d > L, the solution is:

– Large-scale training case (d > L)

β =
(

I

C
+ H T H

)−1

H T T (8)

– Small-scale training case (d < L)

β = H T

(
I

C
+ HH T

)−1

T (9)

ELM-AE has the same solution as the classic ELM
except for (1) the target output of ELM-AE is the same
as input X and (2) parameters (weights and biases) of
the hidden nodes are made orthogonal after randomly
generated. ELM-AE can transform the representation of the
input data into three different coding architectures:

1. Compressed architecture: represent features from a
higher dimensional input data space to a lower
dimensional feature space

2. Equal dimension architecture: represent features from
input data space to an equal dimensional feature space

3. Sparse architecture: represent features from a lower
dimensional input data space to a higher dimensional
feature space

In this work, we utilize the compressed ELM-AE archi-
tecture to learn the shape feature from multiple 2D image
features. The random orthogonal weights of the hidden

nodes project the input data to a different lower dimen-
sional space, offering a low-dimensional shape descriptor.
As shown in Fig. 4, ELM-AE can be calculated as

h(x) = g(ω.x + b) (10)

where ωTω = I, bTb = 1, and ω = [ω1,...,ωL] are
the orthogonal random weights, b = [b1,...,bL] are the
orthogonal random biases between the input and hidden
nodes and X = [x1,...,xN]T are the input as well as the target
output data. Then, the objective function of ELM-AE can be
represented as

min
βAE

: ||HβAE − X||2 (11)

The output weights βAE of ELM-AE can be then given by

βAE =
(

I

C
+ HT H

)−1

H T X (12)

The hidden layer of an auto-encoder must preserve
information of input data [32]; therefore, ELM-AE retains
the Euclidean information and main features of input data
through orthogonal random parameters. The output weights
βAE of ELM-AE are responsible for the transformation
from the input data space to feature space. Then,
feature aggregation and dimension reduction are eventually
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achieved by ELM-AE through projecting input X with
weights βAE as

YL(X) = XβT
AE = X

((
I

C
+ HT H

)−1

H T X

)T

(13)

The training routine of the ELM-AE in this work is
summarized as Algorithm 1:

Algorithm 1 Training routine of an ELM-AE (given a set of

training samples X , activation function g, and hidden node

number L .)

1: Randomly generate hidden neuron parameters based

on any continuous distribution.

2: Parameters (weights and biases) are made orthogo-

nal after randomly generated.

3: Calculate matrix H (Eq. 10).

4: Estimate the output weight βAE based on some

optimization constraints Eq. 12.

Experiments and Evaluation

In this section, we demonstrate the performance of MCEA
and compare it with state-of-the-art methods for 3D
shape recognition on the Princeton ModelNet dataset [15],
Princeton Shape Benchmark (PSB)[33], and ShapeNet
Core 55 database [34]. The experiments are all performed
on a Dell workstation with an Intel(R) Xeon(R) CPU
(3.00 GHz), 64 GB RAM memory, and one NVIDIA GPU
with GeForce GTX 1080.

Datasets

The Princeton ModelNet currently contains 127,915 CAD
models in 662 categories. In the following experiments,
we run the proposed algorithm on its two well-annotated
subsets: ModelNet10 and ModelNet40, both of which are
publicly available on the Princeton ModelNet website.
Furthermore, we follow the same training and test split
provided by the authors [15] of the dataset (Table 2).

The PSB database is also a public database with 907
polygonal models divided into 92 categories, which are

Table 2 Statistics of Princeton ModelNet

Dataset Models Training Test

ModelNet10 4899 3991 908

ModelNet40 12311 9843 2468

collected from the World Wide Web. We also utilize the
ShapeNet Core 55, subset of ShapeNet (ShapeNet55),
which is collected from the Trimble 3D warehouse [35].
It contains approximately 51300 3D models from 55
common categories, and it is further divided into 204 sub-
categories, which is quite challenging owing to the diversity
of categories and large variations within classes. The whole
dataset is further split into training/validation/test sets with
70%/10%/20% shares, respectively. Further, the dataset
involves two variants (the ShapeNet55 normal dataset and
ShapeNet55 perturbed dataset). In the normal setting, the
shapes are all aligned, while in the perturbed version,
each model is randomly rotated by a certain angle. We
particularly conduct experiments on the perturbed dataset,
which is more challenging.

Experimental Setting

In our implementation, each 3D model is rendered by
different virtual cameras, yielding 12 views. Each view
is rescaled to 224*224*3 to fit the pre-trained VGG-M
network. We use the penultimate layer as image features,
generating a 4096-dimensional descriptor for each view.
Then, we concatenate the 12 view descriptors into a single
long vector, generating a 4096*12 dimension descriptor
for each 3D model, which is then fed into ELM-AE for
feature aggregation. A single layer ELM-AE is utilized in
our framework and the number of selected hidden nodes is
set at 5000. Meanwhile, the number of hidden nodes of the
ELM classifier is set at 1500. Both are determined using a
grid search.

3D Shape Retrieval

In this subsection, we consider two types of retrieval
approaches. One is a set-to-set image pairwise comparison,
which establishes a correspondence between two sets of
image features. We apply the standard Hausdorff distance
measurement. Consider a query shape xq and a matching
shape xm from the dataset. Through shape rendering
and multi-view CNNs for feature extraction, we can
obtain two feature sets F(xq) = [q1, q2, ...qNv ] and
F(xm) = [m1, m2, ...mNv ] respectively. Here, we consider
the activation with regard to the second fully connected
layer of CNNs as the final feature representation for each
view, where Nv is the number of views for each model and
qi (or mi ) denotes the view feature with respect to the i-
th view of model xq (or xm). Then, the standard Hausdorff
distance between two sets of features is defined as

D(xq, xm) = max
qi∈F(xq)

min
mj ∈F(xm)

d(qi, mj )) (14)
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Table 3 Analysis of time consumption

Datasets Off-line On-line (query)
(image-to-
image)

On-line (query)
(model-to-
model)

ModelNet10 ≈3.6 h 5.78 s 45.12 ms

ModelNet40 ≈6.8 h 14.15 s 100.25 ms

PSB ≈8.5 h 10.71 s 78.38 ms

where function d(.) measures the distance between two
features. Another approach is the proposed model-to-model
matching strategy, which straightforwardly compares a
query model with models from the database. In this strategy,
the inputs are model features, so we can simply apply
d(xQ, xM) to measure the distance between the two models,
where xQ, xM represent the aggregated model features
through the ELM-AE.

As can be seen from Eq. 14, supposing that there are N

shapes in the database, then the time complexity of standard
Hausdorff matching for a set-to-set image search engine
is O(N × N2

v ) for a given query model. Model-to-model
matching only requires time complexity of O(N) for each
query. The time cost of retrieving for different databases is
listed in Table 3.

From Table 3, we can clearly see that, model-to-model
search uses much less time than set-to-set image matching,
which is consistent with the theoretical analysis of time
complexity. The off-line stage includes shape rendering,
single-view CNN training, and feature extraction for all
models in database, and CNN training is the most time-
consuming operation. However, the query time on the
ModelNet datasets and PSB database can be controlled
within 1 s, which is much more efficient than that in the
traditional image-to-image matching strategy. To quantify
the retrieval performance and compare with other state-
of-the-art methods, we employ the most commonly used
evaluation metric, mean average precision (MAP), which

Table 4 Performance comparison of retrieval on ModelNet10 and
ModelNet40 dataset

Methods ModelNet10 (mAP) ModelNet40 (mAP)

(1) SPH [20] 44.05% 33.26%

(2) LFD [18] 49.82% 40.91%

(3) FV [16] / 43.90%

(4) 3D ShapeNets [15] 68.26% 49.23%

(5) MVCNN [4] / 70.10%

(6) GIFT [21] 91.12% 81.94%

(7) Single-view CNN 75.26 % 62.80%

(8) MCEA (ours) 91.54 % 82.06%

Table 5 Performance (%) comparison results of the involved methods
on the ShapeNet55 perturbed dataset

Methods P@N R@N F@N NDCG

1 GIFT [21] 54.6 58.1 54.2 86.6

2 MVCNN [4] 51.9 54.9 51.4 81.8

3 Li [34] 30.1 75.1 35.8 81.6

3 Wang [34] 33.7 26.5 20.5 73.6

3 Tatsuma [34] 24.9 64.0 29.0 79.1

4 MCAE (ours) 52.67 54.31 53.75 82.40

represents the average precision with which a positive shape
is returned.

To compare the proposed method with state-of-the-art
methods, we collect the retrieval results that are publicly
available, which includes the spherical harmonic (SPH)
[20], light field descriptor (LFD) [18], Fisher vector (FV)
[16], 3D ShapeNets [15], MVCNN [4], and GIFT [21].
Table 4 clearly shows that the proposed MCEA method
achieves a result comparable to those obtained by all
the state-of-the-art descriptors and the single-view CNN
baseline with set-to-set image matching.

We further evaluate the retrieval performance of MCEA
on the ShapeNet55 perturbed database, which is extremely
challenging for most existing methods. We utilize the
evaluation code provided by the organizer of SHREC’16
[34], which calculates several accuracy metrics: Precision
(P@N), Recall (R@N), F-score (F@N), and NDCG. We
select the following methods from SHREC’16 [34] for
the comparisons: GIFT [21], MVCNN [4], Li [34], Wang
[34], and Tatsuma [34]. The results of the performance
comparison of the involved methods on the ShapeNet55
perturbed dataset are presented in Table 5.

Multiple views
224× 24×3 

N=12

Multi-view CNNs 

(VGG)

ELM classifier

ELM-AE 

Feature aggregation

. . . .. . . ..

ELM classifier

Fusion feature vector

(a) (b)

Fig. 5 Architecture of involved algorithms. (a) CNN-ELM. (b) MCEA
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As listed in Table 5, the proposed MECA method can
achieve superior results than most of the above methods and
obtain marginal advantages over MVCNN [4]. It confirms
that our MECA method has an advantage to explore the
efficient information of 3D models. When compared with
GIFT [21], our method shows less advantage in retrieval
task. The reason is that GIFT includes an efficient re-
ranking mechanism, particularly designed for retrieval tasks
after feature learning. We believe that combined with a
metric learning algorithm, such as the Mahalanobis metric,
our method could obtain better retrieval results.

3D Shape Classification

To evaluate the efficiency of the proposed method in
classification tasks, we conduct two different experiments
(depicted in Fig. 5). The details are as follows: (a) Firstly,
the pre-trained CNN (shown in Fig. 2) is utilized as the
feature extractor of the projective images, and the output
of the penultimate layer of each CNN is used as image
feature. Twelve image features are then concatenated into
a single fusion vector as the feature representation for
each 3D model. Finally, an ELM classifier is applied on
those fusion feature vectors. We call this method as CNN-
ELM. (b) To verify the performance of the ELM-AE, in
the second experiment, we introduce the ELM-AE to the
process of shape recognition. As shown in Fig. 5b, an
ELM-AE module is added between the fusion layer and the
last ELM classifier based on the first experiment, which is
denoted as MCEA.

The main results of the experiments are included in
Table 6. With an ELM-AE module, the classification accu-
racy can be increased by approximately 2.2% in relation
to the baseline model with CNN-ELM on ModelNet40. It
indicates that the introduced ELM-AE module can obtain
the principal components of the original input, as an auto-
encoder does, and yield a more meaningful shape represen-
tation.

In order to compare the proposed method with the
state-of-the-art methods for 3D shape classification on the
ModelNet10 and ModelNet40, we collect the classification

Table 6 Statistics of classification accuracy and time on Princeton
ModelNet

Classification accuracy and time

Network ModelNet10 ModelNet40

CNN-ELM 90.97% (20.63s) 88.43% (60.14s )

MCEA 92.18% (298.00s) 90.65% (614.60s)

results publicly available on Princeton ModelNet website,
which include 3D ShapeNets byWu et al. [15], GIFT by Bai
et al. [21], VoxNet by Daniel Maturana et al. [14], DeepPano
by Shi et al. [36], and MVCNN by Su et al. [4]. We also
choose three handcrafted methods: the spherical harmonics
(SPH) by Kazhdan et al. [20], light field descriptor (LFD)
by Chen et al. [18], as well as Fisher vector (FV) by
Snchez et al. [16]. Finally, we select an ELM-based method
named MVD-ELM by Xie et al. [37] for comparison. The
classification results are summarized in Table 7.

Table 7 lists the classification accuracies and training
times for individual methods. It is observed that the
recognition performance of MCEA is superior to three
handcrafted methods, which is mainly due to its powerful
machine learning algorithms. To further evaluate MCEA,
we compare the proposed method against several deep
learning methods, such as 3D ShapeNets, GIFT, VoxNet,
and MVCNN. It is important to note that most of the deep
learning methods need several hours or several days during
the training stage. In contrast, our method could consume
less than 700 s (except for the pretraining time of the single-
view CNN) for training in ModelNet10 or ModelNet40,
attaining comparable high classification accuracies. When
we pay more attention to the feature aggregation process,
then the feature extraction can be implemented by other
descriptors. Even using the original VGG-M network
as feature extractor without fine-tuning (Table 7. (11)),
with ELM-AE we can obtain approximately 88.67% of
classification accuracy on ModelNet40. It confirms the
validity of MCEA for feature representation. Furthermore,
when the fine-tuned single-view network is used as feature

Table 7 Classification accuracies and training times for individual
methods

Classification accuracy

Method ModelNet10 ModelNet40 Time

(1) SPH [20] +SVM 79.97% 68.23% –

(2) LFD [18] +SVM 79.87% 75.47% –

(3) FV [16] +SVM – 78.8% –

(4) 3DShapeNet [15] 83.50% 77.30% ≈2days

(5) DeepPano [36] 85.45% 77.63% ≈4h

(6) VoxNet [14] 92.00% 83.00% 6∼12 h

(7) MVCNN [4] – 90.10% –

(8) GIFT [21] 91.50% 89.50% 0.3∼0.7h

(9) MVD-ELM [37] 88.99% 81.39% ≤700 s

(10) Single-view CNN – 85.10% –

(11) VGG+ELM-AE 90.46% 88.67% ≤700 s

(12) MCEA (ours) 92.18% 90.65% ≤700 s
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Fig. 6 Confusion matrices of
MCEA on ModelNet10 (top)
and ModelNet40 (bottom).
Ground truth labels are on the
vertical axis and predicted labels
are on the horizontal axis
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Fig. 7 Some misclassification
instances of the proposed
method

table          desk night_stand dressercup           vase

extractor, our MCEA method could achieve better results
(90.65%). In contrast to MVD-ELM [37], which adopts the
multi-view depth image representation and deep extreme
learning machine to achieve fast feature learning for 3D
shapes, our method obtains superior accuracy because of the
powerful deep network and informative aggregated ELM-
AE module.

Discussion

The confusion matrices of our final results on Princeton
ModelNet10 and ModelNet40 are shown in Fig. 6.
In the matrices, the diagonal elements describe the
classification accuracy and the off-diagonal elements show
the misclassification proportion. As shown in Fig. 6, most
3D models can be correctly classified except for some
categories with similar appearance, such as table and desk.
Some misclassification models are displayed in Fig. 7.
Those errors are mainly due to the similar appearance
between different categories.

Fig. 8 t-SNE feature visualization on ModelNet10 with the proposed
MCEA (best viewed in color)

We apply 2D t-SNE embedding [38] to the feature
vectors learned from MCEA, and a different color (or
number) encodes a different model category. The serial
numbers from 1 to 10 in Fig. 8 represent the categories
of bathtub, bed, chair, desk, dresser, monitor, night stand,
sofa, table, and toilet respectively. The result shows that 3D
models can be well-separated with our MCEA method.

Figure 9 shows the classification accuracy curves
obtained by the proposed MCEA method. It can be seen
that the accuracy curves have tiny fluctuation as parameter
L varies, and when L = 1500 there is a peak of recognition
accuracy. Thus, in the proposed MCEA framework, the
number of hidden nodes in the ELM classifier is set as
1500. We also explore the performance with a different
number of hidden nodes in the ELM-AE, the results are
clearly demonstrated in Fig. 10. It indicates that the ELM-
AE is not sensitive to the number of hidden nodes as
long as it is assigned as a large number (e.g., L > 5000).
Additional hidden nodes could not benefit the improvement
in performance but consume much more training time.
Therefore, we set the number of hidden node of the ELM-
AE as 5000, which means that the input multi-view features
are eventually reduced to 5000-dimension features.

The number of hidden nodes in ELM classifier
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Fig. 9 Effect of hidden nodes’ number L in ELM classifier
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Fig. 10 The performance ELM-AE under different number of hidden
nodes

Conclusions

In this work, we proposed a computationally efficient
method for view-based 3D shape recognition. A new frame-
work of multi-view CNNs and ELM-AE was developed to
recognize 3D models, which utilizes the composited advan-
tages of deep CNN architecture with the robust ELM-AE
feature representation, as well as the fast ELM classifier.
The experimental results demonstrate the effectiveness of
MCEA in solving 3D shape recognition problems. In con-
trast to existing 3D shape recognition methods that face
difficulties for fast shape retrieval or learning without infor-
mation loss or redundancy, the proposed method runs much
faster while maintaining a very high recognition accuracy.
The novel MCEA framework successfully achieves a good
balance between recognition accuracy and computational
efficiency. Therefore, the proposed combination of deep
CNN architecture with shallow ELM architecture is feasi-
ble for leveraging the performance of view-based 3D object
recognition, especially when the 3D geometric features are
not available in certain physical scenarios. In addition, the
proposed framework could be readily extended to other
multi-view representational cognitive areas, such as RGB-D
object recognition, and face recognition.
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