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Abstract
Visual simultaneous localization and mapping (SLAM) has been investigated in the robotics community for decades.
Significant progress and achievements on visual SLAM have been made, with geometric model-based techniques becoming
increasingly mature and accurate. However, they tend to be fragile under challenging environments. Recently, there is a trend
to develop data-driven approaches, e.g., deep learning, for visual SLAM problems with more robust performance. This paper
aims to witness the ongoing evolution of visual SLAM techniques from geometric model-based to data-driven approaches
by providing a comprehensive technical review. Our contribution is not only just a compilation of state-of-the-art end-to-end
deep learning SLAM work, but also an insight into the underlying mechanism of deep learning SLAM. For such a purpose,
we provide a concise overview of geometric model-based approaches first. Next, we identify visual depth estimation using
deep learning is a starting point of the evolution. It is from depth estimation that ego-motion or pose estimation techniques
using deep learning flourish rapidly. In addition, we strive to link semantic segmentation using deep learning with emergent
semantic SLAM techniques to shed light on simultaneous estimation of ego-motion and high-level understanding. Finally,
we visualize some further opportunities in this research direction.
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Introduction

Visual simultaneous localization and mapping (SLAM) is
essential to achieve persistent autonomy for vision-based
mobile robots, especially in unknown environments. It is
also a key enabler for enormous vision-based applications,
such as virtual and augmented reality. Researchers from the
robotics and computer vision communities have endeavored
and managed to design some efficient and versatile visual
SLAM systems in the past several decades.
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Most of the existing visual SLAM methods explicitly
model camera projections, motions, and environments
based on visual geometry. Therefore, they are referred
to as model-based SLAM. They can be divided into
feature-based methods [1–3] and direct methods [4–6]
according to the means that image information is used.
Specifically, feature-based visual SLAM methods extract
sparse features, such as points and lines, from the images
for feature matching and ego-motion estimation, while
direct methods directly use dense (or semi-dense) image
pixels for motion estimation under the assumption of
photometric consistency. Loop-closure detection and back-
end optimization can be incorporated with both methods to
form a full visual SLAM system.

The state-of-the-art model-based visual SLAM algo-
rithms have made a great success in the past decade. Supe-
rior performance on localization and mapping accuracy, for
example, has been demonstrated by both feature-based [3]
and direct [6] methods. However, they still face many chal-
lenging issues, in particular when being deployed in large-
scale environments, or under extreme lighting conditions.
Nowadays system robustness [7] and high-level (semantic)
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perception [7, 8] are the demanding tasks for visual SLAM
systems. Unfortunately, it becomes increasingly challenging
to solve these problems by solely relying on model-based
methods. One of the reasons is that the high-dimensional
images carry significant “redundant” information and the
real world has complex appearance, which is difficult to be
manually modeled in a precise manner.

Deep learning can automatically learn effective feature
representations from massive data in an end-to-end fashion,
and do not need the extraction of manually designed
features [9]. In this way, deep learning can learn more
robust and effective features according to the specific
problems, and has successfully demonstrated the good
capability for some challenging cognitive and perceptual
tasks, such as handwritten code recognition [10], human
pose estimation[11], tactile recognition [12], and facial
landmark localization [13]. Unavoidably, the evolution of
visual SLAM from model-based methods to deep learning
methods occurs. Recent attempts to develop deep learning
approaches for visual SLAM problems include the depth
estimation of a scene from a monocular image [14],
the visual odometry estimation [15], and the semantic
map generation [8]. These recent advances promise a
huge potential for visual SLAM systems to address the
challenging issues by bringing in adaptive and learning
capability.

This paper is to provide a review of the ongoing change
of visual SLAM systems frommodel-based to deep learning
methods. There are some previous publications which
provide various overviews of SLAM techniques. Durrant-
Whyte et al. [16, 17] presented a tutorial on the essential
methods for solving the SLAM problem from a view of
the recursive Bayesian formulation. Scaramuzza et al. [18,
19] provided a comprehensive review of visual odometry
(VO). Cadena et al. [7] provided a detailed survey on
visual SLAM and delineated some open challenges and
research issues, including system robustness and semantic
perception. However, they mainly concentrate on model-
based methods with no or limited discussion on data-driven
approaches. Technically they focus on the selection of
features, the framework of recursive optimizations, or the
detection of loop closures. Clearly, our work is distinct from
them by focusing on the recent advances of visual SLAM
methods using deep learning, covering the construction
of deep neural networks, the design of loss functions
and the flexibility of estimations. Further, we also unfold
how deep learning SLAM can benefit from model-based
methods when a loss function is designed or when a deep
learning architecture is constructed. We also emphasize
how important semantic SLAM can be given the strong
capability of deep learning for image segmentation. Finally,
future opportunities in this direction are focused on system
robustness, semantic understanding, and learning capability.

The rest of this paper is organized as follows. “Model-
based SLAM Methods” reviews related works of model-
based visual SLAMmethods. Three deep learning networks
and available training data sets are given in “Deep Neural
Networks for Visual SLAM.” Depth estimation methods
with deep learning are surveyed in “Depth Estimation with
Deep Learning,” followed by the review of pose estimation
methods with deep learning in “Pose Estimation with Deep
Learning”. “Semantic Mapping with Deep Learning” intro-
duces the state-of-the-art semantic mapping methods with
deep learning. Finally, “Open Challenges and Future Oppor-
tunities” proposes some potential opportunities for deep
learning SLAM, before drawing the conclusion in “Conclu-
sions.”

Model-based SLAMMethods

Model-based SLAM methods explicitly model camera
projections, motions, and environments based on multi-view
geometry and photometric consistency. They can be divided
into feature-based methods and direct methods. Feature-
based methods extract and match feature points from 2D
images, and then compute and optimize camera poses
along with the positions of these feature points in 3D. In
contrast, direct methods use pixels in the image to compute
6-DoF camera poses directly by minimizing photometric
errors without extracting feature points. Although there
exist plenty of model-based methods, we mostly focus on
the state-of-the-art in terms of localization and mapping
accuracy, due to the space limitation.

Feature-Based Visual SLAMMethods

MonoSLAM [20] proposed by Davison et al. is one
of the earliest real-time visual SLAM systems with a
monocular camera. Different from Structure from Motion
(SfM) approaches that are lack of real-time performance,
MonoSLAM adopts a probability framework and creates
sparse yet consistent 3D feature points for a map.
By combining a general camera motion model and
feature initialization, MonoSLAM achieves 3D localization
and mapping with 30 Hz real-time performance on
a standard PC. MonoSLAM bridges pure vision and
autonomous robotics closer and provides some new
potential applications for augmented reality (AR).

However, tracking and mapping in MonoSLAM system
are intimately linked and operated in one single thread.
In other words, the 6-DoF camera pose and the 3D map
points are updated together at every frame. The algorithm
could only handle a limited number of sparse features due
to the use of the large volume of images. In order to tackle
this problem, Klein et al. proposed a parallel tracking and
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mapping (PTAM) system [1] which separates tracking and
mapping into two parallel threads. The mapping thread is
updated according to keyframes and is performed using
computationally expensive bundle adjustment technology.
The tracking thread is updated at frame rate to estimate 6-
DoF camera poses based on the built 3D map. PTAM is
successfully performed with a hand-held camera in a small
environment.

ORB-SLAM proposed by Mur-Artal et al. [3] is one of
the most successful feature-based SLAM systems by now.
They first proposed a place recognition system [21] with
ORB features based on Bag-of-Words (BoW) technology.
ORB [22] is a rotational invariant and scale aware feature,
and could be extracted in high frequency. The proposed
place recognition algorithm can run efficiently, resulting
in the real-time implementation of both relocalization and
loop closing in visual SLAM systems. Then building upon
the ORB place recognizer [21], they proposed ORB-SLAM
[3] with monocular cameras, which could be performed in
large-scale environments and has demonstrated a superior
performance. Afterward, they extended ORB-SLAM from
monocular cameras to stereo and RGB-D cameras [23].

Endres et al. proposed RGB-D SLAM [2], which is
based on feature points. The proposed RGB-D SLAM can
generate dense and accurate 3D maps. In recent years,
there appears a new kind of sensor called event camera or
Dynamic and Active-pixel Vision Sensor (DAVIS) . The
corresponding SLAM algorithms [24] [25] are proposed for
6-DoF motion tracking and 3D reconstruction, and these
algorithms demonstrate impressive performance in some
challenging scenarios.

The shift from low-level point features to high-level
objects is also observed in emerging semantic SLAM. Salas-
Moreno et al. [26] presented a planar SLAM system which
can detect the planar in environments and yield a planar
map. They also proposed a SLAM system called SLAM++
[27], which can detect objects, such as chairs and desks,
and then utilize these objects for localization. However, a
limited number of objects, such as planar, desks, and chairs,
are extracted and specific supervised off-line learning is
required.

Direct Visual SLAMMethods

Different from the above feature-based methods, direct
methods do not rely on manually designed sparse features.
They instead employ most pixels in an image to estimate 6-
DoF camera poses by penalizing some photometric errors
for each overlapping image pair.

Newcombe et al. proposed a dense tracking and mapping
(DTAM) system [4]. As the depth of each pixel in
an image is estimated, DTAM generates a dense 3D
map for each frame. Afterward, Newcombe et al. [28]

proposed KinectFusion using a RGB-D camera which
is successfully demonstrated in dense registration and
mapping. KinectFusion relies on a truncated signed distance
function (TSDF) for pixel grid representation and utilizes
iterative closest point (ICP) for aligning depth images. Both
DTAM and KinectFusion run in room scale environments
with commercial GPU for real-time performance.

Whelan et al. presented ElasticFusion [29] based
on surfel representation with a RGB-D camera. By
using frame-to-model tracking and non-rigid deformation,
ElasticFusion performs the time-windowed surfel-based
dense data fusion. The dense global consistent map is
obtained without the need for pose graph optimization or
post-processing steps. GPU is also required for camera
tracking and dense mapping in order to achieve real-time
performance.

In order to increase the efficiency of dense-based
methods, Engel et al. proposed semi-dense visual odometry
(SVO) [30] which runs real-time on CPU. SVO uses the
pixels with a non-negligible image gradient rather than
all the pixels in the image. The semi-dense inverse depth
map is estimated and 6-DoF camera motion is tracked
with the alignment of estimated depth maps. Forster et al.
also presented a similar approach called SVO [5]. Engel
et al. then improved SVO [30] by introducing Large-Scale
Direct Monocular SLAM (LSD-SLAM) [31] which can
run in large-scale environments with CPU. LSD-SLAM
employs sim(3) to detect scale drifts and provides a
probabilistic solution to handle the noisy depth prediction
during tracking. Recently, Engel et al. further improved the
direct method and proposed Direct Sparse Odometry (DSO)
[6]. DSO combines photometric errors with geometric
errors and optimizes all the model parameters jointly.
The demonstrated performance includes high accuracy in
tracking and mapping, and robustness in some featureless
environments.

Pascoe et al. proposed NID-SLAM [32] which is also a
direct method for monocular cameras. Instead of penalizing
photometric errors like most direct methods, NID-SLAM
chooses normalized information distance (NID) metric to
estimate the camera motion. NID-SLAM demonstrates
robust performance in appearance changing environments.

Summary

Model-based visual SLAM methods have successfully
demonstrated their superior capabilities in pose estimation
and 3D map construction. Particularly the feature-based
representative ORB-SLAM [3] and the direct representative
DSO [6] both achieve high accuracy in the large-scale
environment, and real-time performance with commercial
CPUs. However, their robustness still tends to be struggling
when they face some featureless environments or other
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challenging scenes, e.g, serious image blur. Further, they
do not have a learning capability to be adaptive to specific
circumstances. The success of deep learning in computer
vision sheds some light on the improvement of robust
performance through the continuous learning.

Deep Neural Networks for Visual SLAM

Model-based methods represent the input images with
manually designed features and search for the best pose
which matches the features between image frames. Deep
learning directly learns good representations of the input
images at multiple levels. The representation could be
unknown features, depth, or even ego-motion between two
frames for SLAM problems.

In this section, three types of deep neural networks
(DNNs) are briefly illustrated, which have been already
found in deep learning SLAM methods. For more informa-
tion on deep learning, the reader is referred to [9].

Convolutional Neural Network

Convolutional neural network (CNN) is one of the most
popular deep neural network architectures to date. A CNN
mainly consists of vision layers (e.g., convolutional layer,
activation layer, pooling layer) and common layers (e.g.,
fully connected layer), as shown in Fig. 1a. Dropout
layers and normalization layers (e.g., batch normalization
layer) are also frequently incorporated. Loss function, such
as Softmax and Euclidean loss, drives the training by

minimizing the differences between the predictions and the
labels.

Convolutional layers are a core component of CNNs
although the specific structures of CNNs vary from case to
case. Given an input tensor x, they produce an output feature
map hk by the convolution of an input image with a linear
filter Wk:

hk
ij = (Wk ∗ x)ij + bk (1)

where bk is a bias term. Thanks to the local connectivity and
parameter sharing of the convolutional layers, CNNs vastly
reduce the number of parameters and are more efficient than
multi-layer perceptron.

The loss function is a vital part of DNNs. With a
carefully designed loss, the network can learn how to solve
different kinds of problems. Cross-entropy loss is usually
used for classification problems, while the Euclidean loss
is mainly employed for regression ones. Kendall [33] used
the Euclidean loss to compute differences of pose prediction
and ground truth to solve pose regression problems.

Deep Recurrent Neural Network

Recurrent neural network (RNN) is mainly designed to
capture the temporal dynamics of video clips. It maintains
the memory of its hidden states over time via feedback
loops, and models the dependencies between current input
and previous states. The RNN and its unfolded version are

Fig. 1 Three popular deep learning architectures: convolutional neural network, recurrent neural network, and autoencoder
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shown in Fig. 1b. Given an input xk at time k, a simple RNN
updates at time k by:

hk = H(Wxhxk + Whhhk−1 + bh) (2)

yk = Whyhk + by (3)

where hk and yk are the hidden state and output at time
k, respectively. W is the weight matrix, b is the bias term,
and H() is a non-linear function. However, simple RNN
suffers from the vanishing gradient problem in practice.
In order to solve this problem, long short-term memory
(LSTM) is widely used. Specifically, an LSTM has several
gates to control when to keep or forget the memory. In
deep RNNs related to visual SLAM, the RNNs are usually
connected to the features of CNNs. This forms a paradigm
termed recurrent convolutional neural network (RCNN), in
which CNNs and RNNs capture the spatial and temporal
representations from video clips, respectively. Therefore,
RCNN is suitable to be used for solving pose estimation in
SLAM problems for video clips.

Autoencoder

Autoencoder is a special kind of DNNs derived from CNN.
As shown in Fig. 1c, it consists of an encoder part and a
decoder part. Specifically, an autoencoder maps its input x
into a hidden code y through the encoder part:

y = e(x) (4)

where e() is a non-linear function representing the encoder.
Then the decoder part maps the hidden code y into a
reconstruction z that usually represents the same main
features with input x. Its map function is:

z = d(y) (5)

where d() is a non-linear function denoting the decoder
network. For the decoder part, deconvolution layers, dilated
convolution layers, upsampling, and convolution layers are
often used for feature decoding. For the autoencoder, the
output image and the input image usually have the same
size. And since Long et al. proposed the fully connected
network (FCN) [34], Autoencoder has been widely used
for depth estimation and semantic segmentation. We will
discuss the details in the following sections.

Dataset

Deep learning methods require a large amount of data for
training. In this part, we review the existing datasets which
could be adopted for deep learning related visual SLAM
tasks.

The KITTI benchmark [35] was collected in outdoor
environments with a driving car. It provides stereo images
with ground-truth 6-DoF poses derived from the fusion

of multiple sensor data. Depth data is also provided with
the calibrated laser. Some images in KITTI are labeled
manually for image segmentation. More details can be seen
in [36]. Similar to KITTI, Cityscapes dataset [37] also has
stereo images, depth images, semantically labeled images,
and 6-DoF poses. The RobotCar dataset [38] was collected
with a car driving in Oxford for a year, which means it
contains different weather and sceneries of a same place.
EuRoc MAV dataset [39] was gathered by using a flying
robot and could be used for VO and SLAM problems.
TUM dataset [40] and NYU dataset [41] were collected
with a hand-held RGB-D camera in indoor environments.
They provide color and depth images. In addition, NYU
dataset [41] also provides some labeled images for semantic
segmentation. PASCAL VOC [42], the Synthia dataset [43],
and COCO [44] datasets with labeled images aim at image
segmentation problems. ADE20K [45] contains more than
20K pixel-wise semantic annotated images.

To summarize, KITTI [35], TUM [40], and NYU [41]
datasets can be used for depth estimation. For relocalization
problem, one can use 7-scenes dataset [46] and Cambridge
landmarks [33]. Meanwhile, KITTI [35], Robotcar [38],
M’alaga [47], EuRoc MAV [39], NYU [41], and TUM [40]
datasets are applicable to ego-motion estimation. For scene
segmentation, PASCAL VOC [42], NYU [41], Synthia [43],
Cityscapes [37], KITTI [35], and ADK20 [45] datasets can
be utilized.

Depth Estimation with Deep Learning

Depth estimation is fundamental in a SLAM system.Model-
based SLAM methods usually take advantage of camera
parallax from multiple images to estimate the depth. With
the development of deep learning, data-driven methods
provide an alternative to depth estimation. Depth estimation
with deep learning can be divided into supervised methods
and unsupervised methods.

SupervisedMethods

Eigen et al. [50] designed a deep neural network to per-
form depth estimation with a single image. It is a supervised
method where the ground-truth depth map is required for
network training. The network consists of two components:
one for global structure prediction and one for local predic-
tion refinement. A scale-invariant error is defined as the cost
function for learning. The real scale of depth is recovered
without any post-processing. The proposed method pro-
duced good results on both NYUDepth [41] and KITTI [35]
datasets.

According to the perspective geometry, the size of objects
scales inversely with the depth. Ladicky et al. [53] made use
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of this property to transform the image into the canonical
depth for training. They also proposed to combine semantic
segmentation and depth estimation together to improve the
performance. The proposed method is also a supervised
depth estimation method with monocular images.

Liu et al. [51] also presented a depth estimation method
with single images using the so-called deep convolutional
neural field (DCNF), which integrates continuous condi-
tional random field (CRF) into a unified deep CNN frame-
work. Further, a superpixel pooling method and fully convo-
lutional networks (FCN) were proposed in [34] to improve
the accuracy and efficiency of segmentation performance,
and it could also be used for depth estimation. A similar
approach was also presented by Li et al. [54].

The attempt to combine depth estimation with visual
SLAM was made in [52], called CNN-SLAM. It is a
monocular SLAM system in which the predicted depth map
from CNN is dense and has the absolute scale. Comparing
with model-based methods, only the depth is estimated
from CNN while other parts, such as pose estimation and
graph optimization are the same as feature-based SLAM.
The proposed method demonstrated robust and accurate
performance in pose estimation and map construction.

Ma et al. proposed a so-called sparse-to-dense [55]
method to predict dense depth images, which could be used
as a plug-in module to model-based SLAM methods to
create an accurate, dense point cloud. They constructed two
CNNs to fuse RGB image and sparse depth image. Their
sparse depth image could be a model-based SLAM or a
low-cost LiDAR.

DeMoN proposed by Ummenhofer et al. [56] also
achieved depth estimation with supervised deep learning.

Supervised methods require a large amount of labeled
data to train the networks. Since it is costly to collect labeled
datasets, their applications are limited.

UnsupervisedMethods

Recently depth estimation methods using unsupervised
deep learning emerge. The main idea comes from the

representation capability of autoencoders. The encoder is a
CNN which predicts the depth map for the left input image,
and the decoder is a wrap function which synthesizes a
reconstructed left image from the right input image and the
predicted depth map. The reconstructed error is used as the
cost function to train the CNN [48] (see Fig. 2a).

Specifically, for the overlapped area between two stereo
images, every pixel in one image can find its correspon-
dence in the other with horizontal distance H in pixel:

H = Bf/D (6)

where B is the baseline of the stereo camera, f is the focal
length, and D is the depth value of the corresponding pixel.
By using the geometric constraint D map, the left image
can be synthesized from the right and vice verse. Then the
photometric loss function E is defined as below:

E =
∑ ∥∥I − I ′∥∥

2 (7)

where I is the original image, and I
′
is the synthesized

image. By minimizing the photometric loss function E

between the original left image and the synthesized left
image, the network is trained fully unsupervised in an end-
to-end manner. The proposed method can be viewed as a
monocular depth estimation system for the reason that it
only needs monocular images during testing. It even out-
performed some supervised methods in terms of accuracy
of depth estimation. Xie et al. [57] proposed to use a
deep neural network to predict a disparity map from the
left input image with unsupervised learning and then ren-
ders a novel right image for 2D-to-3D video conversion
applications.

Godard et al.[14] improved the Garg’s method [48]
by wrapping left and right images across each other to
synthesize corresponding images. In this way, the accuracy
of depth prediction could be enhanced by penalizing both
left and right photometric losses. Then Zhong et al. [58]
presented a very similar unsupervised depth estimation
system with stereo images as network inputs.

Fig. 2 Depth estimation with unsupervised deep learning. a Garg’s method [48]. b SfMLearner [49]
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Zhou et al.[49] proposed SfMLearner, which uses a
monocular image sequence for image alignment in order
to estimate the depth and ego-motion simultaneously
with unsupervised learning (see Fig. 2b). The geometric
constraint between temporal image pairs is used for
synthesizing corresponding images. After the training of
the networks, the depth images and camera poses can be
simultaneously predicted by the networks in an end-to-end
manner. However, the estimated depth map and ego-motion
are lack of the scale. Based on SfMLearner [49], Yang et
al. [59] proposed to use a CNN to represent the surface
normal map. Both predicted depth map and normal map
are used to construct the loss function. Vijayanarasimhan et
al.[60] presented SfM-Net which adds motion masks to the
photometric loss. It can estimate optical flow, depth map,
and ego-motion simultaneously.

Summary

Table 1 gives a brief summary of depth estimation methods
using deep learning. The advance from supervised learning
towards unsupervised learning for depth estimation is
significant as no labeled data is required and it is feasible
for life-long learning [48]. Unsupervised learning depth
estimation is also important in building up dense maps for
SLAM systems. With the view of temporal constraints in
an image sequence, it is possible to estimate the ego-motion
with unsupervised learning. This will be reviewed in the
next section.

Pose Estimation with Deep Learning

Data-driven pose estimation with deep learning learns
camera motion model and estimates poses directly without
explicitly modeling. The relocalization problem is targeted
first with supervised deep learning as it is possible to
collect labeled data in pre-visited places. Building on the
success of depth estimation with unsupervised learning,

Table 1 Some depth estimation methods with deep learning

Reference Year Feature

Eigen et al. [50] 2014 Supervised learning

Liu et al. [51] 2016 Supervised learning, CRF integrated

CNN-SLAM [52] 2017 Supervised learning, Combined with
SLAM

Garg et al. [48] 2016 Unsupervised learning, stereo image,
scaled depth

Godard et al. [14] 2017 Unsupervised learning, stereo image,
scaled depth, left-right consistency

SfMLearner [49] 2017 Unsupervised learning, monocular
image, non-scaled depth

more attention has been paid to ego-motion estimation by
using unsupervised learning.

Relocalization with Deep Learning

Most deep learning networks are originally used for
classification problems. Less are found for regression
problems. Kendall et al. [33] first used a CNN to solve the
pose regression problem. Their PoseNet was trained with
supervised learning with the requirement of ground-truth
6-DoF poses available for training (see Fig. 3a). The loss
function L is designed as below:

L = ∥∥x̂ − x
∥∥
2 + λ

∥∥q̂ − q
∥∥
2 (8)

where x is the representation of camera position estimated
by the CNN, unit quaternion q is the representation
of camera orientation estimated by the CNN, x̂ is the
ground-truth camera position, q̂ is the ground-truth camera
orientation, and λ is the balance weight to normalize
position and orientation losses. After supervised training
with labeled data, the PoseNet could perform relocalization
in pre-visited places with more robust performance than
model-based methods.

In order to estimate the uncertainty of pose estimation,
Kendall et al. [64] further proposed Bayesian PoseNet
by using dropout layers in the network as a means of
sampling. The selection of balance weight is a trick factor in
training. Kendall improved PoseNet and proposed a fusion
model to train the network and automatically adjust the
balance weights in [65]. The performance is improved, and
the uncertainty can be estimated by the network without
sampling.

Li et al. [66] then extended PoseNet from single CNN
to double CNNs to accommodate color and depth inputs
from RGB-D cameras. The proposed system showed robust
performance when faced with challenging situations. They
also applied PoseNet in night-time environment with a
depth sensor [67].

Deep RCNN architecture is adopted to explore the
temporal dynamics of camera motion in pose estimation.
Clark et al. [61] proposed to use an RCNN to implement the
pose regression with video clips. By taking image sequences
as network inputs, the uncertainty of pose estimation was
reduced and relocalization performance was improved.
Hazirbas et al. [68] incorporated a spatial LSTM module
into PoseNet to improve the relocalization performance.
The proposed system takes a single color image as input.
Naseer et al. [69] adopted PoseNet [33] as the basic network
and used data augmentation technology to improve the
relocalization performance. They applied the transformation
to synthesize additional input images. By using multiple
synthesized images as inputs to perform relocalization, the
system achieved better performance.
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Fig. 3 Pose estimation with deep learning. a PoseNet [33]. b DeepVO [15]. c UnDeepVO [62]

Ego-Motion Estimation with Deep Learning

Apart from absolute pose regression, the ego-motion
between two image frames can also be estimated by using
deep learning inspired by stereo geometric models. Ego-
motion estimation methods with deep learning can also be
divided into supervised and unsupervised methods.

DeTone et al. proposed HomographNet [70] and used
CNN to predict the homography parameters between image
pairs. The proposed deep homography estimator outper-
formed the traditional homography estimation method
based on ORB features.

Costante et al. [71] developed a CNN to estimate the
ego-motion with supervised training. Wang et al. proposed
monocular visual odometry system called DeepVO [15],
which trains a RCNN to estimate the camera motion in an
end-to-end manner. The temporal image sequence is intro-
duced into RCNN with LSTM module (see Fig. 3b). The
experiment results demonstrated a competitive performance
on visual odometry. DeepVO has also been extended to
incorporate uncertainty estimation [72]. Melekhov et al.[73]
also presented a relative camera pose estimation systemwith
CNN. Turan et al. proposed Deep EndoVO [74] which is
similar to DeepVO [15], and applied it to the area of soft
robotics [75].

Oliveira et al. [76] constructed a metric network for ego-
motion estimation and a topological network for topological
location estimation. The topological network discretizes the
trajectory into a finite set of locations and uses the CNN to
learn the topological relationship. By successfully combin-
ing this network with the ego-motion estimation network,
the system demonstrated good performance in localization.

Ummenhofer et al. [56] proposed a system called
DeMoN which consists of a chain of encoder-decoder
networks. An iterative network is specifically designed for
the system. DeMoN can estimate ego-motion, image depth,
surface normal and optical flow simultaneously but needs
labeled data for training.

Different from the methods using CNNs to estimate
camera motions directly, DeTone et al. [63] developed two
networks, one is used to estimate the location of feature
points, and another one is used to match the extracted
features and compute the homography. The network needs
manually synthesized data for training.

Instead of predicting camera poses with a deep neural
network directly, Peretroukhin et al. [77] proposed to use a
model-based geometric estimator for pose prediction and a
CNN for predicted pose correction. In detail, the proposed
CNN is trained to learn the errors between the ground truth
poses and the predicted poses from a model-based estimator.
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The proposed system is called DPC-Net and can also be
used for mitigating the effect of bad camera calibration
parameters.

Aiming at the estimation of camera ego-motion, Costante
et al. presented a novel CNN architecture which is called
LS-VO [78]. LS-VO consists of an autoencoder network
to learn optical flow representations, followed by a pose
estimation network predicting camera poses. The networks
take temporal image pairs as inputs and are trained jointly
end-to-end.

In order to tackle the scale drift problem in monocular
SLAM, Frost et al. [79] proposed to adopt a CNN
to perform the speed regression from successive video
frames. By further integrating the estimated speed into
bundle adjustment, they successfully realized the scale-drift
correction.

All the abovementioned methods use supervised learning
schemes which require ground truth for training. Labeling
large amounts of data is difficult and expensive. Therefore,
it is very demanding for a visual SLAM system to learn
under an unsupervised scheme so that the performance
could be continuously improved by the increased size of
unlabeled datasets.

Recently, [49] presented an ego-motion and depth
estimation system with unsupervised deep learning. It
achieves superior performance. However, the system cannot
recover the absolute scale due to the use of monocular
camera. Inspired by the unsupervised depth estimation
methods [14, 49], Li et al. proposed UnDeepVO [62]
which is a monocular visual odometry system with
unsupervised learning. By using stereo pairs for training
(see Fig. 3c), UnDeepVO demonstrated good performance
in pose prediction and depth estimation. Further, it can also
recover the absolute scale of 6-DoF poses and depth maps.
Nguyen et al. [80] also introduced the similar unsupervised
deep learning method into homography estimation.

Sensor Fusion with Deep Learning

Clark et al. [81] proposed a sensor fusion network called
VINet, which fuses the estimated pose from DeepVO
[15] and the inertial sensor reading with an LSTM.
The prediction network and the fusion network are
trained jointly end-to-end, and the proposed fusion system
demonstrated comparable performance with traditional
sensor fusion methods. Turan et al. [82, 83] adopted the
same method and presented a fusion system to fuse the
6-DoF poses from cameras and magnetic sensors.

Pillai [84] proposed an ego-motion estimation system
that fuses the information from a camera with other sensors
such as GPS, INS, and wheel odometry. They also adopted
a mixture density network to use optical flow vectors from
different kinds of camera optics.

Byravan et al. [85] proposed a CNN architecture called
SE3-Net, which takes raw point cloud data as input and
predicts SE3 rigid transformation.

Summary

Table 2 give a brief summary of pose estimation methods
using deep learning. Pose regression with CNN is a bold
attempt to apply supervised deep learning for relocalization
problems [33], while the ego-motion estimation [15] is a
result of the capability of deep learning to capture the
temporal motion dynamics. However, labeling data in large-
scale hinders the application of supervised deep learning in
visual SLAM systems. Unsupervised deep learning methods
are powerful and promising for pose and depth estimation
[49, 62].

Semantic Mapping with Deep Learning

For most autonomous robotic applications, the semantic
perception of the environment is extremely important. In
the computer vision community, semantic segmentation
has been a long researched and established topic. When
combining semantic segmentation with visual SLAM, it is
possible to estimate semantic 3D map and camera motions
simultaneously for robotic applications.

Semantic Segmentation

Long et al. first proposed a FCN [34] for pixel-wise semantic
segmentation. The proposed system is a fully con-
volutional network without fully connected layer (see

Table 2 Some pose estimation methods with deep learning

Methods Year Reference

PoseNet [33] 2015 Relocalization, supervised
learning, CNN

Clark et al. [61] 2017 Relocalization, supervised
learning, RCNN

DeepVO [15] 2017 Ego-motion estimation, super-
vised learning, RCNN

DeMoN [56] 2017 Ego-motion estimation, super-
vised learning, CNN

SfMLearner [49] 2017 Ego-motion estimation, unsu-
pervised learning, CNN,
unscaled depth and pose

UnDeepVO [62] 2017 Ego-motion estimation, unsu-
pervised learning, CNN,
scaled depth and pose

DeTone et al. [63] 2017 Feature position learning
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Fig. 4a). It achieved the state-of-the-art pixel-wise segmen-
tation performance at that time. Afterward, various CNN
architectures were derived from the FCN [34]. Liu et al. [93]
took advantage of the global context information and intro-
duced the global pooling into the FCN [34]. The proposed
system is called ParseNet, which outperformed the FCN in
scene segmentation with the wider view of the network.

Badrinarayanan et al. [86] presented a novel network
architecture called SegNet for scene segmentation. The
SegNet is based on the FCN and has an encoder-decoder
architecture (see Fig. 4b). The decoder performs the
upsampling for low-resolution features and can recover
the resolution of raw input. Afterward, Kendall et al. [94]
proposed Bayesian SegNet which uses dropout layers in the
SegNet as sampling. The proposed Bayesian SegNet can
estimate the probability for pixel-level segmentation and
achieved better performance than SegNet.

CRFs have proved its powerful capability in image
segmentation and was adopted as a post-processing method
to refine the image segmentation. Zheng et al. [95] proposed
to formulate the probabilistic mean field inference with
CRFs as RNNs. By embedding CRFs into CNNs, they
presented a novel network architecture called CRF-RNN,
which combines the strength of both CNNs and CRFs.
Afterward, Arnab et al. [96] designed two high-order
potentials based on object detection and superpixels, and
integrated them into the CRF-RNN. However, CRFs are
especially computational intensive and not suitable for real-
time applications.

The networks mentioned above all used the VGG [97]
as their base network architecture. After He et al. proposed
a very deep ResNet [98], it has gradually become the
basic network architecture. The ResNet demonstrated an
astonishing performance in the ImageNet classification
challenge [99] and has been widely applied for many
semantic segmentation tasks. Chen et al. [87, 100, 101]
proposed to use the very deep ResNet, dilated convolution,
and fully connected CRFs to perform image segmentation.
By using dilated convolution [102], the field-of-view of
filters could be enlarged effectively without increasing the
computation. Atrous spatial pyramid pooling (ASPP) and
multiple scale technologies were also introduced in Deeplab
[87], which performed extremely well in PASCAL VOC-
2012 [103] semantic image segmentation dataset.

Wu et al. [104] explored variations of the ResNet in order
to find the best network configuration, such as the number
of layers, the size of field-of-view and the resolution of
feature maps. An online bootstrapping method is also used
during training to improve the segmentation performance.
The proposed network was evaluated on both PASCAL
VOC-2012 benchmark and Cityscapes [37] benchmark. The
results show that the proposed network is very competitive
when compared with other methods.

Afterward, Wu et al. [88] further studied the relationship
between the depth of residual networks and the perfor-
mance, and proved that some relatively shallow residual
networks could outperform much deeper networks, particu-
larly within some limitations. This performance is not only

Fig. 4 Semantic mapping with deep learning. a FCN [34]. b SegNet [86]. c Semanticfusion [8]. d Semantic mapping [92]
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applied to the recognition task but also suitable for the
semantic segmentation task.

Zhao et al. [89] proposed the pyramid scene parsing
network (PSPNet) which won the ImageNet scene parsing
challenge 2016 [45]. Different from the global pooling
method proposed in [93], the global spatial context informa-
tion in images was exploited by different-region-based
aggregation with the proposed pyramid pooling model in
[89]. Liu et al. [105] also used deep fully convolutional resi-
dual network with pyramid pooling for road segmentation.

Based on the SegNet [86], Hazirbas et al. [106] extracted
features from color images and depth images, respectively,
and fused them together to perform upsampling. Both color
features and depth features are exploited for segmentation
with this FuseNet [106]. AdapNet was proposed by Valada
et al. [107, 108] for semantic segmentation in adverse
environments. A novel fusion technology called Convoluted
Mixture of Deep Experts (CMoDE) was presented to enable
a multi-stream network to learn features from different
modalities.

Semantic Mapping

Semantic information is particularly valued in robot-human
and robot-environment interaction [109]. With the progress
in semantic segmentation using deep learning, semantic
SLAM research grows rapidly. Li et al. [92] combined
model-based SLAM methods with spatio-temporal CNN-
based semantic segmentation (see Fig. 4d). The proposed
system can perform 3D semantic scene mapping and 6-DoF
localization simultaneously. The system could perform in
large indoor environments. A similar semantic mapping sys-
tem with the pixel-voxel network was proposed by Zhao
et al. [91]. McCormac et al. [8] proposed SemanticFusion
which integrates CNN-based semantic segmentation with
the dense SLAM technology ElasticFusion. SemanticFu-
sion can perform in indoor scenes and produce a dense 3D
semantic map (see Fig. 4c).

Summary

Table 3 gives a brief summary of semantic mapping methods
using deep learning. Semantic SLAM is very challenging
without the use of deep learning. The success in semantic
segmentation, such as FCN [34] SegNet [86] Deeplab [88,
95], boosts the research in semantic SLAM [8, 91, 92].
It is expected more fruitful results will be generated in
coming years. However, the most significant challenge in
semantic SLAM is the supervised learning which requires
a large amount of labeled dataset to train the networks.
Weekly supervised learning for semantic SLAM may be
made available due to the achieved breakthroughs in weekly
supervised semantic segmentation [110].

Table 3 Some semantic perception methods with deep learning

Methods Year Reference

FCN [34] 2015 Semantic segmentation,

VGG-based

SegNet [86] 2015 Semantic segmentation,

VGG-based,

encoder-decoder

architecture

Deeplab [87] 2016 Semantic segmentation,

ResNet-based, dilated

convolution, CRF

Wu et al. [88] 2016 Semantic segmentation,

ResNet-based, online

bootstrapping

PSPNet [89] 2016 Semantic segmentation,

ResNet-based, dilated

convolution, pyramid

pooling model

Semanticfusion [8] 2017 Semantic mapping,

ElasticFusion-based

Li et al. [90] 2017 Semantic mapping,

ORB-SLAM-based,

spatio-temporal CNN

for segmentation

Zhao et al. [91] 2017 Semantic mapping,

RGB-D SLAM-

based,pixel-voxel CNN

for segmentation

Open Challenges and Future Opportunities

Given the success of model-based SLAM methods in the
high accuracy of localization and mapping, the improve-
ment of robustness, the integration of semantic information,
and the incorporation of learning capability become the core
of next step development in visual SLAM systems. Deep
learning-based methods are demonstrating the potential in
all of these aspects. We visualize the following opportunities
for future development along this trend.

ImageNet-Scale Dataset for Learning-Based Visual
SLAM

Most of deep learning-based methods are based on
supervised learning schemes which require labeled datasets.
However, labeling a large amount of data is time-
consuming and labor-intensive, which limits the potential
application scenarios of deep learning-based methods.
This is particularly true in the context of visual SLAM
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because robots or autonomous systems typically operate in
completely unknown environments.

Current results show the robustness of supervised deep
learning-based methods are able to outperform model-based
ones in some challenging scenes. However, large-scale
labeled datasets are the bottleneck for further development.
It is appealing yet hard to get ImageNet-scale dataset for all
visual SLAM applications.

Therefore, it is very demanding for a visual SLAM
system to learn under an unsupervised scheme. The
performance could be continuously improved by the
increased size of unlabeled datasets. As unsupervised
deep learning methods [49, 62] has already shown some
promising results, it will be very interesting to see how
the performance of visual SLAM changes as the size of
the training dataset increases. Unsupervised deep learning
is expected to exploit a truly large-scale data, boosting
the capability of visual SLAM in terms of robustness, and
semantic understanding.

Semantic SLAMwith High-Level Understanding

For intelligent robots or autonomous systems, understand-
ing semantic information is essential and important. FCNs
have produced the state-of-the-art results on pixel-wise
semantic segmentation in the last few years.

Object-level semantic SLAM methods with deep learn-
ing will play a significant role in large-scale and complex
environments. Objects can be extracted from the geomet-
ric 3D map produced from visual SLAM systems. Further
understanding object properties and mutual relations will
enable a better interaction between robots and human or
robots and environments. Moreover, object-level semantic
information has the potential to improve the accuracy and
robustness of pose estimation while pose estimation can do
the same for semantic segmentation [8, 91, 92].

With the aid of high-level understanding of the scenarios,
task-driven SLAM which could provide high efficiency and
wide generalization is also a promising area to explore.

Adaptive SLAMMethods for Different Sensing
Modalities

Different kinds of sensors bring in different features of the
environments. How to take themost advantage of each of them
in visual SLAM has always been a big question to answer.
Apart from conventional optimal state estimation based multi-
sensor fusion, sensor fusion and management in the frame-
work of deep learning is being proved increasingly useful.
Learning-based methods potentially generate new adaptive
visual SLAM paradigms which can accommodate different
sensing modalities to replace the calibration process.

Integration of Model-BasedMethods with Deep
Learning

Model-based SLAM methods have already achieved great
success. However, they heavily depend on the successful
detection of features. Most existing features, such as SIFT,
SURF, or ORB features, are still fragile when encounter-
ing featureless or challenging scenes. The powerful rep-
resentation capability in deep learning can be used to
extract more robust scale-invariant, lighting-invariant, and
rotation-invariant features. Extracting and matching features
robustly by using supervised deep learning have already
been reported in [63]. Exploring the use of unsupervised
learning for extracting and matching more robust features is
a means to improve model-based methods.

Maintaining a globally consistent map is a very
important component of any SLAM system. For model-
based methods, graph-based pose optimization and global
bundle adjustment are the keys to gain the high accuracy
by maintaining a consistent map in the back-end. How to
use deep learning methods to maintain a globally consistent
map is still an open question to answer.

Conclusions

The maturity of model-based SLAM in accuracy leads to
seeking the robustness and the high-level cognition and
perception within visual SLAM systems. The attention is
being gradually turned towards a deep learning solution
inspired by the powerful capability of deep learning
in various visual tasks. Additionally, a visual SLAM
system with learning or adaptive capability is an attractive
factor for further exploration. Moreover, the deep learning
solution can also make a visual SLAM system more
flexible in producing a variety of meaningful estimated
results, such as pose, depth, 3D point cloud, and semantic
map.

We have provided significant evidence to show the
ongoing evolution from model-based to deep learning-
based methods is happening. The performance in improving
robustness, integrating semantic information, and incorpo-
rating leaning capability has been demonstrated in some of
deep learning solutions. It is expected more fruitful results
will continue to come.

The knowledge of model-based visual SLAM is valued
in designing the network architecture, the loss function,
and the data representation of deep learning-based methods.
The availability of large-scale dataset is a key to broad
applications of deep learning methods. The attempt to
employ unsupervised learning is promising to further
consolidate the deep learning contribution to visual SLAM.
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