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Abstract
Many optimization problems in science and engineering are highly nonlinear and thus require sophisticated optimization
techniques to solve. Traditional techniques such as gradient-based algorithms are mostly local search methods and often
struggle to cope with such challenging optimization problems. Recent trends tend to use nature-inspired optimization
algorithms. The standard cuckoo search (CS) is an optimization algorithm based on a single cuckoo species and a single
host species. This work extends the standard CS by using the successful features of the cuckoo-host co-evolution with
multiple interacting species. The proposed multi-species cuckoo search (MSCS) intends to mimic the co-evolution among
multiple cuckoo species that compete for the survival of the fittest. The solution vectors are encoded as position vectors.
The proposed algorithm is then validated by 15 benchmark functions as well as five nonlinear, multimodal case studies in
practical applications. Simulation results suggest that the proposed algorithm can be effective for finding optimal solutions
and all optimal solutions are achievable in the tested cases. The results for the test benchmarks are also compared with those
obtained by other methods such as the standard cuckoo search and genetic algorithm. The comparison has demonstrated the
efficiency of the present algorithm. Based on numerical experiments and case studies, we can conclude that the proposed
algorithm can be more efficient in most cases. Therefore, the proposed approach can be a very effective tool for solving
nonlinear global optimization problems.
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Introduction

Many applications involve nonlinear optimization and thus
require sophisticated optimization algorithms to solve. Such
applications can be very diverse, spanning many areas and
disciplines from engineering designs and scheduling to data
mining and machine learning [13, 33, 40, 41, 43]. One of
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the current trends is to use metaheuristic algorithms inspired
by the successful characteristics in nature. Among these
new algorithms, cuckoo search (CS) has been shown to be
powerful in solving many problems [41, 43]. This standard
CS version was mainly designed for single objective
optimization problems, which was later extended to multi-
objective optimization [46].

Both standard cuckoo search and its multiobjective
extension used simplified characteristics to represent the
brood parasitism of a single cuckoo species and their
interactions with a single host species. However, the reality
is far more complicated in the cuckoo-host co-evolution sys-
tems [10]. The co-evolution often involves multiple cuckoo
species that compete with each other and compete for the
resources of host bird species, while the hosts can also have
multiple species. Cuckoo species tend to evolve to lay eggs
with the mimicry of the size, colours, and texture of the
eggs of host birds, often with critical timing advantage. On
the other hand, host birds can counter-act such parasitism
by developing their defensive strategies to identify potential
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intruding eggs and minimize the risk of hatching cuckoo
eggs. This arms race is both co-evolutionary and ongoing
[11, 27], and the co-evolution seems to promote species
richness and subspecies variations as well as diversity
in parasitic cuckoos [21]. The richness of characteristics
in cuckoo-host co-evolution provides us an inspiration
to potentially design better optimization algorithms.

One way to model such co-evolution has been proposed
by Mishra [22] to use a host-parasite co-evolutionary
approach where both parasites and hosts took random
flights. The probability of detection or rejection of eggs
was dynamic, depending on the accumulative success of the
parasites such as cuckoos. This approach has been used to
solve both function optimization problems and completing
incomplete correlation matrix [22]. However, this approach
only captured a very small part of the major characteristics
of the cuckoo-host co-evolutionary systems.

In order to capture more detailed characteristics of this
co-evolution system, in this paper, we extend the origi-
nal cuckoo search to a new multi-species co-evolutionary
cuckoo search algorithm. The key idea is to simulate the
main co-evolutionary behavior of both cuckoo species and
host species. The key novelty of this approach is to allow
different species of cuckoos (via more than two population
groups) to compete and co-evolve with a host species (via a
host population). This multi-population system is an intrin-
sic multi-swarm system, which can increase the selection
pressure to drive the system towards better strategies and
solutions.

Therefore, the paper is organized as follows. The “The
Original Cuckoo Search” section summarizes the original
cuckoo search and its main equations. The “Multi-Species
Cuckoo Search” section outlines the novel features of
the new multi-species cuckoo search, followed by the
numerical experiments on 15 different test benchmarks in
the “Validation by Numerical Experiments” section. The
“Practical Applications” section presents the results of
five different case studies concerning engineering designs,
inverse parameter estimation and data classification. The
paper concludes with discussions about further research
directions in the “Discussions” section.

The Original Cuckoo Search

Cuckoo search (CS) is a nature-inspired metaheuristic algo-
rithm, developed in 2009 by Xin-She Yang and Suash Deb
[41]. CS is based on the brood parasitism of some cuckoo
species. In addition, this algorithm is enhanced by the so-
called Lévy flights [28], rather than by simple isotropic ran-
dom walks. Recent studies show that CS is potentially far
more efficient than PSO and genetic algorithms [17, 42].

A relatively comprehensive review of the studies up to
2014 was carried out by Yang and Deb [43].

Cuckoo Search and its Algorithmic Equations

In the natural world, many cuckoo species (59 species
among 141 cuckoo species) engage the so-called obligate
reproduction parasitism strategy. There is an evolutionary
arms race between such cuckoo species and their associated
host species [10, 11, 27]. Based on such phenomena, Yang
and Deb developed the standard cuckoo search in 2009 [41].
The standard CS uses three simplified rules:

1. Each cuckoo lays one egg at a time and dumps it in a
randomly chosen nest. An egg corresponds to a solution
vector.

2. The best nests with high-quality eggs (solutions) will be
carried over to the next generation.

3. The number of available host nests is fixed, and the egg
laid by a cuckoo is discovered by the host bird with a
probability pa ∈ [0, 1]. In this case, the host bird can
either get rid of the egg, or simply abandon the nest and
build a completely new nest at a new location.

In the original cuckoo search, there is no distinction
between an egg, a nest, or a cuckoo. In this simplified
scenario, each nest corresponds to one egg which also repre-
sents one cuckoo, which makes it much easier to implement
[42]. Mathematically speaking, cuckoo search uses a com-
bination of a local random walk and the global explorative
random walk, controlled by a switching parameter pa . The
local random walk can be written as

xt+1
i = xt

i + βs ⊗ H(pa − ε) ⊗ (xt
j − xt

k), (1)

where xt
j and xt

k are two different solutions selected
randomly by random permutation. Here, H(u) is a
Heaviside function, ε is a random number drawn from a
uniform distribution, and s is the step size. In addition, ⊗
denotes an entry-wise multiplication operator, and β is the
small scaling factor.

On the other hand, the global random walk is carried out
by using Lévy flights

xt+1
i = xt

i + α ⊗ L(s, λ), (2)

where

L(s, λ) ∼ λ�(λ) sin(πλ/2)

π

1

s1+λ
, (s � 0), (3)

where α > 0 is the step size scaling factor, which should be
related to the scales of the problem of interest. Here, “∼”
highlights the fact that the search steps in terms of random



Cogn Comput (2018) 10:1085–1095 1087

numbersL(s, λ) should be drawn from the Lévy distribution
on the right-hand side of Eq. 3. It is worth pointing out
that Eq. 3 is an approximation to the Lévy distribution by
a power-law distribution with an exponent λ. The use of
Lévy flights enables the algorithm with higher ergodicity
and explorability, which makes the algorithm more likely to
jump out of any local optima [28, 41, 43].

Cuckoo Search in Applications

Since the development of the cuckoo search algorithm in
2009, it has been applied in many areas, including optimiza-
tion, engineering design, data mining, and computational
intelligence with promising efficiency. From the case stud-
ies in engineering design applications, it has been shown
that cuckoo search has superior performance to other algo-
rithms for a range of continuous optimization problems [16,
17, 42, 43, 50]. A review by Yang and Deb covered the
literature up to 2013 [43], while a review by Fister et al. cov-
ered the literature up to 2015. Another review by Mohamad
et al. focused on applications up to 2014 [24]. The most
recent literature review has been carried out by Shehab et al.
[32], which covers some of the most recent literature up to
2017. These reviews have highlighted some of the diverse
applications using cuckoo search and its variants.

There are many other applications, including vehicle
component optimization [15], wireless sensor networks
[12], training neural networks [35], runoff-erosion mod-
elling [31], phase equilibrium in thermodynamic calcula-
tions [3], network optimization [25], and scheduling [7].
In addition, cuckoo search has also been applied to mul-
tilevel color image segmentation [26], biodiesel engine
optimization [38], graphic objective feature extraction [39],
fractional order PID control design [51], vulnerabilities
mitigation [53], and others [45].

From the algorithm development perspective, different
cuckoo search variants have been developed by introducing
new components or hybridizing with other algorithms. For
example, a binary cuckoo search for feature selection has
been developed by Pereira et al. [29]. Walton et al. [36]
developed a modified cuckoo search for solving complex
mesh generation in engineering simulation, while Zheng
and Zhou [52] provided a variant of cuckoo search using
Gaussian process. Mlakar et al. developed a self-adaptive
cuckoo search [23], while Wang et al. enhanced cuckoo
search with chaotic maps [37].

As a further extension, Yang andDeb [46] developed a mul-
tiobjective cuckoo search (MOCS) algorithm for engineer-
ing design applications. Recent studies have demonstrated
that cuckoo search can perform significantly better than
other algorithms in many applications [17, 45, 50]. How-
ever, none of the above variants of cuckoo search use the

characteristics of multi-species co-evolution, and one of the
main aims of this paper is to explore this area so as to further
enhance and improve the CS algorithm.

Multi-species Cuckoo Search

In the original cuckoo search and its many variants, there is
only one cuckoo species interacting with one species of host
birds. In the standard cuckoo search, a cuckoo is allowed to
lay a single egg and each nest contains only a single egg.
This is a very simplified scenario. In the real cuckoo-host
systems, it is observed that multiple cuckoo species co-
evolve with one or more host species to compete for survival
of the fittest by brood parasitism [10, 27]. Loosely speaking,
cuckoos can evolve to subspecies with speciation, and they
can be subdivided into different gentes targeting at different
host species [11, 21]. The interaction dynamics can be
very complex, forming an on-going, co-evolutionary arms
race between cuckoo subspecies and host species as well
as different cuckoo species. Field studies have shown that
such co-evolution may promote species richness in parasitic
cuckoos with the enhanced speciation and extinction rates
[21]. Strictly speaking, different species, subspecies and
gentes are used in the biological literature and their meaning
can be different [21, 27]; however, we will simply use
species here for simplicity.

Based on the above characteristics of cuckoo-host co-
evolution, we can extend the original cuckoo search to
capture more realistic cuckoo-host co-evolution to develop
a new multi-species co-evolution cuckoo search, or multi-
species cuckoo search (MSCS) for short. In order to
describe the MSCS in detail, we use the following idealized
rules/assumptions:

1. There are multiple cuckoo species (m species) that
compete and co-evolve with a host species. The arms
race between cuckoo species and the host species obeys
the survival of the fittest. Both the best cuckoos and the
best hosts will pass onto the next generation.

2. Each cuckoo of any cuckoo species can lay r eggs inside
a randomly selected host nest. Each cuckoo egg has a
probability pa to be discovered (and then abandoned)
by the host (thus the survival probability is 1 − pa).

3. Each nest contains q eggs. If the fraction/ratio of
cuckoo eggs is higher than 1 − pa , the host bird can
abandon the nest and then fly away to build a new nest
in a new location.

Based on these rules for MSCS, we can represent
them more mathematically. Each solution vector xi to
an optimization problem in a D-dimensional space is
represented by an egg. Therefore, an egg is equivalent to a
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solution vector, and a nest represents a group of q solutions.
In general, there are m ≥ 1 species with a total

population of n, each species has ni (i = 1, ..., m) cuckoos
such that

m∑

i=1

ni = n. (4)

Each cuckoo lays r ≥ 1 eggs. There are w host nests, and
each nest can have q ≥ 1 eggs on average. So the total
number of eggs in the host nests areNh = wq, which should
be greater than n. That is, Nh ≥ n. In nature, it is estimated
that approximately 1/4 to 1/2 of eggs in the host nests are
cuckoo eggs. Thus, for simplicity, we can set n = Nh/2 in
this study.

Competition can occur at three different levels:
intraspecies competition, inter-species competition, and
cuckoo-host competition. Even for a single species, cuck-
oos within the same species can compete for host nests,
which is intraspecies competition. For multiple species, one
species of cuckoos can compete with cuckoos from other
species by their egg-replacing strategy. The most significant
competition is the cuckoo-host competition. All these three
kinds of competition interact and co-evolve to form a com-
plex system, leading to potential self-organizing intelligent
behavior.

In the co-evolutionary system, different cuckoo species
compete for the survival of the fittest, and cuckoos from
one species can take over other cuckoos’ territory or replace
eggs laid by other cuckoo species. This can simply be
realized mathematically by random swapping its location
vector with another in a dimension-by-dimension manner.
This binary random swapping operator can be achieved by
the following two equations:

x(new)
a = xa ⊗ (1 − Q) + xb ⊗ Q, (5)

and

x(new)
b = xa ⊗ Q + xb ⊗ (1 − Q), (6)

where xa is randomly selected from cuckoo species a,
while xb is selected from cuckoo species b. Here, Q is a
random binary vector with the same length of xa and each
of its components is either 1 or 0 [i.e. Qk ∈ {0, 1} (k =
1, 2, ..., D)]. For example, Q = [1, 0, 0, 1, 0, 1, 1] is a
binary vector in a seven-dimensional space. Again,⊗means
that the operation is a component-wise or dimension-wise
operation.

The main steps for implementing and simulating the
above idealized characteristics are as follows:

1. There are two population sets: a total population of
n cuckoos for m cuckoo species (each has its own

population nj (j = 1, 2, ..., m)), and a population of
Nh host nests. Thus, there are two initial best solutions:
g∗
cs to denote the best cuckoo among all m cuckoo
species (each species has its own best cuckoo g∗

j ) and
g∗
h to denote the best host in terms of objective fitness.

2. For each generation of evolution, each cuckoo (say,
cuckoo i) from one cuckoo species (say, species j ) can
lay r eggs in a randomly selected host nest (say, nest
k). The newly laid eggs will replace randomly selected
eggs in the nest so that the total number of eggs (q ≥ 1)
in the nest remains constant. The main equation for this
action can be carried out by Eq. 1.

3. For any new egg laid by a cuckoo, there is a probability
of pa to be discovered. Among q eggs, if the fraction of
cuckoo eggs exceeds 1 − pa , the host can abandon the
nest completely and fly away to build a new nest at a
new location via Eq. 2.

4. Different species of cuckoos compete for their survival
and territories, thus they can lay eggs in the nests that
other cuckoos just laid. This competition is equivalent
to replacing or swapping its own eggs with another
cuckoo’s eggs from different species. Thus, it can
be achieved by randomly swapping their components
dimension by dimension via Eqs. 5 and 6.

5. Random mixing is carried out in terms of egg-laying
and nest choices among different cuckoo species and
the host species.

6. Both the best cuckoos and host nests (in terms of their
fitness) should pass onto the next generation.

These key steps can be schematically represented as the
pseudocode in Algorithm 1. To illustrate the main ideas, for
two species of cuckoos with a total population of n = 40,
we have m = 2 and n = 40. If two species have the
same population size, we have n1 = n2 = n/2 = 20.
For simplicity, if all nests have the same number of four
eggs in 20 nests, we have q = 4 and w = 20, thus there
Nh = 20 ∗ 4 = 80 eggs in all the nests. In addition, if each
cuckoo lays one egg at a time (i.e., r = 1), this means that
there are n×r = 40 cuckoo eggs in the cuckoo-host system.
Thus, in this case, there are exactly 50% of the eggs belong
to cuckoos in the combined population of cuckoo species
and host nests.

Obviously, the number of cuckoo eggs in a particular
nest can be randomly distributed from 1 to q = 4. For
pa = 0.25, if there are 3 or 4 eggs in a nest, one egg
may typically belong to a cuckoo. If the number of alien
eggs is higher, this nest can be abandoned by its host, and
thus a new replacement nest with q new eggs (or randomly
generated solutions) will be built in a new location. This new
location is typically far enough from the original location to
minimize the risk of being close to the same cuckoos.
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It is worth pointing out that there seems to have some
similarity between multi-species cuckoo interactions and
the multi-swarm optimization in the literature [5]. However,
there are two key differences here: the multi-species cuckoo
search (MSCS) mimics the co-evolution between parasite
cuckoo species and host species, while multi-swarms
mainly split a population of the same kind into subgroups
or subswarms. In addition, the share of information in
MSCS is among the same cuckoo species and the same host
species, not directly shared among competing species. Such
information-sharing structure can potentially enable more
extensive exploitation of local information as well as global
information. On the other hand, multi-swarms tend to share
information among all subswarms. Furthermore, different
cuckoo species compete for their own survival, while the

multi-swarms do not compete. These differences mean that
MSCS is not a simple multi-swarm system, rather it is
an interacting co-evolving multi-swarm system. Therefore,
different algorithmic characteristics and performance can be
expected.

Validation by Numerical Experiments

All new algorithms have to be extensively tested by a diverse
range of benchmarks and case studies. As a preliminary test,
we will use a subset of 15 function benchmarks and 5 case
studies.

Benchmarks

For this purpose, we have selected 15 benchmark functions
with different modalities and landscapes. These benchmarks
are part of traditional optimization functions, the CEC2005
test suite and most recent CEC2015 test functions. The
chosen set of benchmarks have diverse properties so that we
can test the proposed algorithm more thoroughly.

The first function is the shifted sphere function f1 from
the CEC2005 benchmark suite [34]. This function has the
global minimum f1,min = −450 in the domain −100 ≤
xi ≤ 100.

The second function is Ackley function

f2(x) = −20e
− 1

5 ( 1
D

D∑
i=1

x2i )1/2

− e

1
D

D∑
i=1

cos(2πxi) + 20+ e, (7)

which has its global minimum f∗ = 0 at (0, 0, ..., 0). This
function is highly nonlinear and multimodal.

The third function is Xin-She Yang’s forest-like function

f3(x) =
(

D∑

i=1

|xi |
)
exp

[
−

d∑

i=1

sin(x2
i )

]
, (8)

which has the global minimum f∗ = 0 at (0, 0, ..., 0) in
the domain of −2π ≤ xi ≤ 2π . This function is highly
nonlinear and multimodal, and its first derivatives do not
exist at the optimal point due to the modulus |xi | factor.

The fourth function is the shifted Schwefel’s problem
with noise in fitness as given in CEC2005 benchmark suite
[34], which has the mean global minimum f4,min = −450
in the domain −100 ≤ xi ≤ 100.

The fifth function is Schwefel’s Problem 2.22 [49]

f5(x) =
D∑

i=1

|xi | +
D∏

i=1

|xi |, (9)

which has the global minimum f5,min = 0 at x =
(0, 0, ..., 0) in the domain −10 ≤ xi ≤ 10. This function is
unimodal.
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The sixth function is the shifted Rosenbrock function f6
of CEC2005 benchmark suite with the minimum f6,min =
390 in −100 ≤ xi ≤ 100.

The seventh function is the shifted and rotated Griewank
function with the minimum f7,min = −180 in the domain
of 0 ≤ xi ≤ 600.

The eighth function is Function 23 of the CEC2005
benchmarks [34], which is a non-continuous rotated hybrid
composition function with the minimum f8,min = 360 in
−5 ≤ xi ≤ 5.

The ninth function is Function 24 of the CEC2005
benchmarks [34], which is a rotated hybrid composition
function with f9,min = 260 in −5 ≤ xi ≤ 5.

The tenth function is Function 25 of the CEC2005
benchmark suite [34], which is a rotated hybrid composition
function without bounds with the minimum of f10,min =
260 in [2, 5]D .

The next five functions are taken from the CEC2015
benchmark suite [8, 30]. The 11th function is the rotated
bent cigar function with the minimum f11,min = 100, while
the 12th function is the rotated Discus function with the
minimum of f12,min = 200. The 13th function is the shifted
and rotatedWeierstrass function with f13,min = 300, and the
14th function is the shifted and rotated Schwefel’s function
with f14,min = 400. Finally, the 15th function is the shifted
and rotated Katsuura function with f15,min = 500. All
these functions have variables in the domain of [-100,100]D

where D is the dimensionality of the functions.

Parameter Settings

In our implementations, we have used n1 = n2 = 20,
n = 40, r = 1, m = 2, Nh = 80, q = 4 and w = 20
for the two sets of populations. For the parameters in the
algorithmic equations, we have used α = β = 0.01, λ =
1.5, pa = 0.25 and a fixed number of iterations tmax = 1000
as the stopping criterion. These parameter settings are based
on a preliminary parametric study in our simulations and the
suggestions in the literature [41, 43].

In addition, D = 10 is used for all the test functions
in the first experiment. Then, D = 50 is used for
the second numerical experiment with all other parameter
values remaining the same. For both the standard cuckoo
search (CS) and the proposed MSCS, we have used ncs =
80 so that the total numbers of function evaluations remain
the same for all algorithms. Thus, the fairness of the
comparison in terms of function evaluations is ensured.

Results

Each algorithm has been run for 100 trials so as to calculate
meaningful statistics such as the best (minimum) objective
values and the means of the obtained solutions. The error is

defined as the absolute value of the difference between the
best f (x∗) found by the algorithm and the true minimum
fmin(true). That is

Ef = |f (x∗) − fmin(true)|. (10)

The numerical results are summarized in Table 1 where
the best corresponds to the minimum of Ef and the mean
corresponds to the average value of Ef .

From Table 1, we can see clearly that MSCS can obtain
better results in all the benchmarks. The diversity among
the cuckoo-host populations in MSCS is higher than those
in CS, and the MSCS can be potentially more robust. This
will in general promote the exploration ability of the search
process.

Another way of looking at the simulation results is to
analyze and compare the convergence behavior. In fact,
MSCS converges faster than CS for all the test functions
by tracing both the minimum objective values found during
iterations. For example, for function f5, its convergence plot
is shown in Fig. 1 where we can see that MSCS converges
faster even from the very early iterations. Other benchmarks
show similar characteristics.

In order to test the proposed algorithm for solving higher-
dimensional problems, we have also tested the same set
of function benchmarks for D = 50. In most studies,
researchers tend to use higher numbers of iterations for
higher values of D, typically t = 1000D. But we have
used the same settings of the parameters as before; that is,
tmax = 1000. The results are summarized in Table 2.

As we can see from Table 2 that the MSCS obtained
better results for almost all functions, except for the shifted
and rotated Weierstrass function f13. Even for this function

Table 1 Errors |f (x∗) − fmin(true)| for D = 10

CS MSCS

Function Best Mean Best Mean

f1 2.97E−09 1.71E−06 2.21E−11 3.25E−08

f2 2.12E−09 1.69E−08 1.41E−11 5.79E−09

f3 7.02E−07 5.86E−06 3.68E−10 2.41E−09

f4 3.56E−07 2.23E−04 8.17E−08 7.91E−05

f5 4.11E−07 5.39E−06 1.01E−09 5.11E−08

f6 1.25E−09 2.77E−08 7.23E−10 5.98E−09

f7 2.17E−08 5.25E−08 2.49E−09 5.14E−09

f8 4.51E+01 7.26E+02 1.37E+01 9.40E+01

f9 2.65E+02 7.01E+02 3.86E+01 2.08E+01

f10 7.92E+02 7.89E+02 9.32E+01 2.65E+01

f11 8.14E+02 9.01E+02 1.27E+02 6.32E+02

f12 2.59E+02 6.87E+02 3.92E+01 7.41E+01

f13 2.76E+03 8.23E+03 4.62E+02 6.98E+03

f14 5.89E+03 7.54E+03 2.51E+03 3.42E+03

f15 2.83E+03 2.57E+03 1.49E+03 4.07E+03
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Fig. 1 Convergence plot for f5 during iterations

(f13), the two algorithms obtained the same orders of
results, but the variation of MSCS is smaller. This means
that the MSCS can obtain optimal solutions with sufficient
robustness.

Practical Applications

To test the proposed MSCS algorithm further, we now use
five test problems in real-world applications with diverse
properties and nonlinearity. Three case studies are engineer-
ing design problems and they are mostly mixed integer pro-
gramming problems. The fourth case study is the parameter

Table 2 Errors |f (x∗) − fmin(true)| for D = 50

CS MSCS

Function Best Mean Best Mean

f1 2.21E−06 7.43E−07 5.04E−09 6.37E−07

f2 2.83E−08 9.74E−07 1.42E−09 1.75E−07

f3 3.35E−06 6.21E−05 1.91E−07 3.22E−08

f4 1.94E−05 7.73E−01 3.89E−04 8.79E−01

f5 4.51E−05 6.12E−03 4.81E−06 7.33E−06

f6 3.31E−07 9.17E−06 2.92E−07 9.05E−06

f7 5.27E−06 7.51E−06 3.88E−07 4.71E−06

f8 2.83E+03 8.12E+03 0.91E+03 1.38E+03

f9 8.62E+03 8.90E+03 2.01E+03 8.92E+03

f10 5.22E+04 9.27E+04 1.59E+03 8.33E+03

f11 6.73E+03 7.93E+03 2.25E+02 7.16E+03

f12 3.12E+03 8.89E+03 1.37E+03 4.70E+03

f13 2.24E+04 7.67E+05 2.31E+04 5.91E+04

f14 7.36E+04 4.93E+05 4.98E+04 9.87E+04

f15 5.05E+04 9.28E+04 2.05E+03 6.69E+04

estimation problem or an inverse problem, which requires
to solve a second-order differential equation to calculate
the values of objective function. The final problem is the
data clustering using the well-known Fisher’s iris flower
data set.

It is worth pointing out that these case studies are seem-
ingly simple, but they are quite hard to solve due to high
nonlinearity, multimodality and irregular search domains.
They are nonlinear global optimization problems. In addi-
tion, the pressure vessel problem is also a mixed integer
programming problem, which is much harder to solve,
compared its continuous counterpart.

Design of a Spring

Let us start with a simple but nonlinear problem about the
design of a spring under tension or compression from a
metal wire [2, 9]. There are three design variables: the wire
diameter (r), the mean coil diameter (d), and the number
(N) of turns/coils. The objective is to minimize the overall
weight of the spring

minimize f (x) = (2 + N)r2d, (11)

subject to nonlinear constraints:

g1(x) = 1 − Nd3

71785r4
≤ 0,

g2(x) = d(4d − r)

12566r3(d − r)
+ 1

5108r2
− 1 ≤ 0, (12)

g3(x) = 1 − 140.45r

d2N
≤ 0, g4(x) = (d + r) − 1.5 ≤ 0.

(13)

Some simple bounds or limits for the design variables are

0.05 ≤ r ≤ 2.0, 0.25 ≤ d ≤ 1.3, 2.0 ≤ N ≤ 15.0.

(14)

Using the proposed MSCS with the same parameter
settings given in the “Parameter Settings” section, the
results of 20 different runs are summarized in Table 3
where comparison is also made. As we can see, MSCS can
obtain the best or the same results as the best results in the
literature.

Table 3 Comparison of optimal solutions for spring design

Author Optimal solution Best objective

Arora [2] (0.053396, 0.399180, 9.185400) 0.01273

Coello [9] (0.051480, 0.351661, 11.632201) 0.01271

Yang and Deb [41] (0.051690, 0.356750, 11.28716) 0.012665

Present (0.051690, 0.356750, 11.28716) 0.012665
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Table 4 Comparison of
optimal solutions for pressure
vessel design

Author Optimal solution Best objective

Cagnina et al. [6] (0.8125, 0.4375, 42.0984, 176.6366) 6059.714

Coello [9] (0.8125, 0.4375, 42.3239, 200.0) 6288.7445

Yang et al. [47] (0.8125, 0.4375, 42.0984456, 176.6365959) 6059.714

Present (0.8125, 0.4375, 42.0984456, 176.6366) 6059.714

Pressure Vessel Design

A well-known design benchmark is the pressure vessel
design problem that has been used by many researchers.
This design is to minimize the overall cost of a cylindrical
vessel subject to stress and volume requirements. There are
four design variables: the thickness d1 and d2 for the head
and body, respectively, the inner radius r , and the length W

of the cylindrical section [6, 9]. The main objective is

min f (x) = 06224rWd1 + 1.7781r2d2 + 19.64rd2
1

+3.1661Wd2
1 , (15)

subject to four constraints:

g1(x)=−d1+0.0193r ≤0, g2(x)=−d2+0.00954r ≤ 0,

(16)

g3(x) = −4πr3

3
− πr2W − 1296000 ≤ 0,

g4(x) = W − 240 ≤ 0. (17)

The inner radius and length are limited to 10.0 ≤ r, W ≤
200.0. However, the thickness d1 and d2 can only be the
integer multiples of a basic thickness of 0.0625 in. Thus, the
simple bounds for thickness are

1 × 0.0625 ≤ d1, d2 ≤ 99 × 0.0625. (18)

With these additional constraints, this optimization problem
becomes a mixed integer programming because two vari-
ables are discrete and the other two variables are continuous.

Using the same parameter settings as before, the results
of 20 independent runs are summarized and compared in
Table 4. In fact, all these algorithms can find the global
optimal solution as found by Yang et al. [47].

Speed Reducer Design

The speed reducer design is an engineering design bench-
mark with seven design variables. These design variables
include the face width of the gear, number of teeth, and
diameter of the shaft and others [18]. All these variables can
take continuous values, except for x3 which is an integer.

The objective to minimize the cost function

f (x) = 0.7854
[
x1x

2
2(3.3333x

2
3 + 14.9334x3 − 43.0934)

+(x4x
2
6 + x5x

2
7)

]

−1.508x1(x
2
6 + x2

7) + 7.4777(x3
6 + x3

7), (19)

subject to 11 constraints:

g1(x) = 27

x1x
2
2x3

−1 ≤ 0, g2(x) = 397.5

x1x
2
2x

2
3

−1 ≤ 0, (20)

g3(x) = 1.93x3
4

x2x3x
4
6

−1 ≤ 0, g4(x) = 1.93x3
5

x2x3x
4
7

−1 ≤ 0, (21)

g5(x) = 1.0

110x3
6

√

(
745.0x4
x2x3

)2 + 16.9 × 106 − 1 ≤ 0, (22)

g6(x) = 1.0

85x3
7

√

(
745.0x5
x2x3

)2 + 157.5 × 106 − 1 ≤ 0, (23)

g7(x) = x2x3 − 40 ≤ 0, g8(x) = 5x2 − x1 ≤ 0, (24)

g9(x) = x1−12x2 ≤ 0, g10(x) = (1.5x6+1.9)−x4 ≤ 0,

(25)

g11(x) = (1.1x7 + 1.9) − x5 ≤ 0. (26)

In addition, the simple bounds for the variables are 2.6 ≤
x1 ≤ 3.6, 0.7 ≤ x2 ≤ 0.8, 17 ≤ x3 ≤ 28 (integers only),
7.3 ≤ x4 ≤ 8.3, 7.8 ≤ x5 ≤ 8.4, 2.9 ≤ x6 ≤ 3.9, and
5.0 ≤ x7 ≤ 5.5.

Table 5 Comparison of
optimal solutions for the speed
reducer problem

Author Optimal solution Best objective

Akhtar et al. [1] (3.5061, 0.7, 17, 7.549, 7.8593, 3.3656,5.28977) 3008.08

Cagnita et al. [6] (3.5, 0.7, 17, 7.3, 7.8, 3.350214, 5.286683) 2996.348165

Yang and Gandomi [44] (3.5, 0.7, 17, 7.3, 7.71532, 3.35021, 5.2875 2994.467

Present (3.5, 0.7, 17, 7.3, 7.8, 3.34336449, 5.285351) 2993.749589
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Table 6 Measured response of
a simple vibration system. t 0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00

yd(t) 0.00 0.59 1.62 2.21 1.89 0.69 − 0.99 − 2.53 − 3.36 − 3.15 − 1.92

The results of 20 independent runs are summarized in
Table 5 where comparison has also been made. As we
can see, MSCS obtained the best result. Since there is no
literature about the analysis of this problem, no one knows
what the global best solution should be. Thus, we can only
say that 2993.749589 is the best result achieved so far.

Parameter Identification of Vibrations

For a simple vibration problem, two unknown parameters
μ and ν are estimated from the measurements of vibration
amplitudes. The governing equation is

d2y(t)

dt2
+ μ

dy(t)

dt
+ νy(t) = 40 cos(3t). (27)

This is a damped harmonic motion problem and its general
solution can be quite complex [48]. However, for fixed μ =
4 and ν = 5 with initial values of y(0) = 0 and y′(0) = 0,
its analytical solution can be simplified as

y(t) = e−2t [cos(t) − 7 sin(t)] + 3 sin(3t) − cos(3t). (28)

For a real system with a forcing term 40 cos(3t), we
do not know the parameters, but its vibrations can be
measured. For example, in an experiment, there are N = 11
measurements as shown in Table 6.

The task is to estimate the values of the two parameters.
However, one of the challenges is that the calculation of
the objective function that is defined as the sum of errors
squared. That is

f (x) =
N∑

i=1

(yi,predicted − yi,d)2, (29)

where the predicted y(t) has to be obtained by solving
the second-order ordinary differential (27) numerically and
iteratively for every given set of μ and ν. This becomes a
series of optimization problems.

Using the MSCS with a population of 40 cuckoos and the
same parameter setting given in the “Parameter Settings”
section. We have run the algorithm for 20 times so as to

Table 7 Accuracy comparison for Iris data set

Method Author Accuracy (%)

K-means and PSO Kao et al. [19] 89.3

MKF-Cuckoo Binu et al. [4] 95.0

K-means Khan and Ahmad [20] 76.4

K-means with CCIA Khan and Ahmad [20] 88.7

MSCS this paper 97.1

obtain meaningful statistics. The mean values of the two
parameters obtained from the measured data areμ∗ = 4.025
and ν∗ = 4.981, which are very close to the true values of
μ = 4.000 and ν = 5.000.

Iris Classification

To test the MSCS algorithm even further, we use it to solve
the classification problem of the well-known Fisher’s Iris
flower data set. This data set has 150 data points or instances
with 4 attributes and 3 distinct classes [14]. We use the data
from the UCI Machine Learning Repository.1

We have encoded the centers of clusters as solution
vectors so as to minimize the overall intra-clustering
distances. Although the parameter settings are the same as
before, the number of iterations is limited to 100 so as
to be comparable with the results from the literature [4].
The best values obtained are compared with the results
obtained by other methods such as the hybrid k-means and
PSO approach [19], multiple kernel-based fuzzy c-means
with cuckoo search [4], and k-means with improved feature
based cluster center initialization algorithm (CCIA) [20].

The optimization results are summarized in Table 7. As
we can clearly see, MSCS obtained the best result that is
an improvement over the best results obtained by multiple
kernel fuzzy c-means based cuckoo search approach (MKF-
cuckoo) [4].

The results and simulation we have obtained so far are
indeed encouraging. Obviously, we will carry out more
thorough evaluations of the proposed approach in the future
work. So let us summarize the work we have achieved so far
in this paper.

Discussions

The original cuckoo search has been extended to capture
more realistic characteristics of cuckoo-host co-evolution
systems. We have developed a multi-species cuckoo search
for solving global optimization problems, based on the main
characteristics of multiple cuckoo species competing and
co-evolving with host species. Then, we have tested the
proposed approach using a set of 15 function benchmarks
to show that the proposed algorithm can indeed work
well. Preliminary results suggest that MSCS can have a
higher convergence rate and obtain better results in general.
In addition, we have used five different case studies

1http://archive.ics.uci.edu/ml/datasets/Iris

http://archive.ics.uci.edu/ml/datasets/Iris
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from engineering designs, parameter estimation and data
clustering to further test the proposed algorithm. Our
simulation results and subsequent comparison have shown
that the MSCS can indeed find the optimal solutions that
are either better and comparable with the results obtained by
other methods.

The essence of multi-species co-evolution is to use more
than one species so as to see how different species interact
and compete. In the present studies, we have just used
two cuckoo species in the cuckoo-host co-evolution. Future
work will focus on more than two cuckoo species and more
detailed parametric studies with varied population sizes. In
addition, it would be useful to gain more insight by tuning
the key parameters in the algorithm to see how they may
affect the overall performance of the algorithm.

Furthermore, in the real-world cuckoo-host co-evolution
systems, there are multiple cuckoo species interacting with
multiple host species, which can have much more complex
behaviour and characteristics. For example, the common
cuckoos can lay eggs in many different host species
including garden warblers and reed warblers [27]. In reality,
the number of eggs laid by cuckoos and inside nests can
be random. The current approach with the preliminary
tests consists of only a single host species with multiple
cuckoo species. Therefore, a possible extension can include
multiple host bird species compete and co-evolve with
multiple cuckoo species. In addition, it can also be useful
to carry out further tests of this algorithm using a more
extensive set of benchmarks and real-world case studies.
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39. Woźniak M, Polap D, Napoli C, Tramontana E. Graphic object
feature extraction system based on cuckoo search algorithm.
Expert Syst Appl. 2016;66:20–31.

40. Wu TQ, Yao M, Yang JH. Dophin swarm extreme learning
machine. Cogn Comput. 2017;9(2):275–84.

41. Yang XS, Deb S. Cuckoo search via lévy flights. In: Proceedings
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