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Abstract
With the rapid development of deep learning techniques, semantic image segmentation has been considerably improved
recently, which is viewed as the key problem of scene understanding in computer vision. These advances are built upon
the capability of complex architectures for deep neural network. In this paper, we present a novel deep neural network
architecture designed for semantic image segmentation. In order to improve the segmentation accuracy, we introduce a
novel hierarchical dilation block to effectively enlarge the size of receptive field and enable multi-scale processing in fully
convolutional neural network. Moreover, we exploit the technique of bypass and intermediate supervision to capture the
context information during upsampling and refining coarse features. We have conducted extensive experiments on several
popular semantic segmentation testbeds, including Cityscapes, CamVid, Kitti, and Helen facial datasets. The experimental
results demonstrate that our proposed approach runs two times faster than the state-of-the-art method. Our full system is able
to obtain realtime inference performance on 1080P images using a PC with single GPU. It executes a network forwarding
at 200fps in our experiment while retaining high accuracy. Our proposed approach not only runs faster than the existing
realtime methods but also performs on par with them.
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image understanding is one of the most ordinary problem,
which is very closely related to human cognitive activities. It
has a series of tasks, including object detection and tracking,
action recognition, face recognition, emotion analysis, and
scene understanding.

Over the past few decades, cognitive science has
shown its effectiveness on scene understanding and image
processing. For instance, to classify outdoor scene, Zhao et
al. [41] combine biologically inspired features and cortex-
like memory patterns. Their cognitive model achieves state-
of-the-art performance and significantly reduces the training
costs. Inspired by the human visual system, Wang et al. [33]
propose a coarse-to-fine pedestrian detection algorithm to
actively track pedestrians in real-time.

In this paper, we focus on the problem of semantic image
segmentation, which is the basis of scene understanding.
The key idea of semantic segmentation is to label each
pixel on image and assign it to one known category.
It is a cognitive vision-based task that could be solved
based on the knowledge on cognitive science. For example,
Xie et al. [35] find that cognitive processing at multiple

Introduction

Cognitive computing is a research area that helps us to
construct cognitive system based upon human cognitive
activities [23]. It is expected to solve many outstanding
problems in artificial intelligence and computer vision
through incorporating and integrating principles from
neurobiology, statistics, theoretical computer science and
artificial intelligence [10]. Among various difficulties,
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Fig. 1 Overview of our
proposed approach. Given an
input image, it is first processed
by an initial block which
contains two convolution units.
A convolution unit is a
convolution layer followed by
an activation layer. It may also
contain a batchnorm layer.
Then, the output is forwarded to
a unit block, which contains four
convolution units. The feature
map is applied to a hierarchical
dilation block (HDblock), and
then to a coarse-to-fine block
(CFblock). See “Hierarchical
Dilation and Coarse-to-Fine
Block” for the details. We
finally output a label map

scales with contextual information aids perceptual inference
tasks. Therefore, they employ multi-scale features and
contextual information to solve the problem of semantic
image segmentation, in which a multiple adjacency tree
model is presented to capture several kinds of regional
context. Thus, it can perform exact inference with some
simple assumptions. Differently from this approach, we
make use of a convolutional neural network (CNN) to
tackle this problem. CNN has been proven to be an
effective approach to image understanding [11, 16, 29,
34], especially for semantic image segmentation [8, 27].
However, an existing drawnback for CNN-based methods
is the feature coarse-to-fine problem. This is mainly due to
the successive pooling and subsampling layers that result in
feature maps with significantly reduced spatial resolution.
Although interpolation [3] and deconvolution layer [27]
offer solutions to upsample feature maps, they fail to refine
the features simultaneously.

Inspired by multi-scale cognitive mechanisms, we pro-
pose to aggregate multiple-scale contextual information
upon CNN for semantic image segmentation (Fig. 1). In
contrast to previous methods that exploit dilation convolu-
tion for multi-scale reasoning in parallel structure or sequen-
tial structure, we propose a novel hierarchical dilation block.
It not only helps to reduce the depth of CNN, but also
increases the variety on fields of view. Thus, our proposed
method enables to process image on objects and context
at multiple scales. To deal with the problem of coarse-
to-fine feature, we introduce a fused block that combines
skip connection and intermediate supervision. Therefore,
our proposed coarse-to-fine block is capable of acquiring
finer feature maps while increasing the spatial resolution.

More importantly, our approach is very efficient, which is
able to achieve real-time performance on images with the
full HD resolution.

RelatedWork

Semantic image segmentation has been intensively studied
for many years. Early methods [28, 35] mainly rely on hand-
crafted features in association with traditional machine
learning algorithms. These approaches are well-known to
be compromised by the limited expressive power of the
features.

During past few years, deep learning techniques have
shown excellent performance in computer vision. Fully
convolutional network (FCN) [27] is the pioneering work
that firstly introduces a powerful CNN for the task of
semantic segmentation. They replace the conventional fully
connected layer with a convolutional one, such that the
network output is a spatial map rather than the classification
score. However, FCN suffers from some weakness limiting
its capability, such as it fails to refine feature and cannot
capture the context information effectively.

Inspired from FCN, many research works have been
introduced to overcome its drawnback for semantic
segmentation. In [3, 36], dilated convolution is proposed
to enlarge the receptive field of the network. Noh et
al. [21] propose an encoder-decoder structures to deliver
spatial information from low layers to high layers. To
integrate context information into models, DeepLab models
[3] apply Conditional Random Field (CRF) as a pose-
processing stage. Zheng et al. [42] fully integrate the CRF
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with a FCN and train the whole network in an end-to-
end manner. Yu et al. [36] propose a multi-scale context
aggregation module. PSPNet [40] exploits the capability
of global context information by different-region-based
context aggregation through a pyramid pooling module.
Some works [7, 26] propose to make use of multi-scale
predictions to deal with context knowledge integration.
The detailed information can be found in a recent
survey [8].

The high accuracy of these methods are all on account
of a CNN model with heavy computational cost, which
have been pre-trained on ImageNet dataset [6]. Toward
fast or even real-time processing, the small network is
introduced. SqueezeNet [13] is a low-latency network,
which retains accuracy as the well-known AlexNet [16] for
image recognition. YOLO [25] is another efficient network
architecture for realtime object detection. Additionally,
Paszke et al. [22] present an efficient neural network
architecture named as ENet. ENet is especially designed for
semantic image segmentation, which is built upon various
bottleneck blocks.

On the other hand, some seminal works [12, 18, 19,
24, 43, 44] attempt to restrict CNNs into low-precision
version by binarizing or quantizing network weights,
pruning filters, and enabling sparse weights. Hubara et al.
[12] introduce binary weights and activations for neural
networks. This will replace most of arithmetic operations
with bit-wise ones, which substantially improves power-
efficiency. XNOR-NET [24] is another network, in which
both the filters and input are binarized. Liu et al .[19] obtain
significant speedup by proposing a method to zero out more
than 90% of parameters. In contrast to pruning weights, Li
et al. [18] propose to directly prune filters for acceleration.
Zhou et al. [44] present a method to convert any pre-trained
full-precision CNN model into a low-precision version.
Recently, Zeng et al. [38] address this by combining the
technique of pruning and quantization. All these schemes
claim to have less performance drop along with impressing
speedup.

Very Fast Semantic Image Segmentation

In this section, we give the details of our network. Firstly, we
introduce our proposed hierarchical dilation block to enlarge
receptive field. Secondly, we present coarse-to-fine block to
deal with the issue of refining features. Finally, an efficient
convolutional neural network architecture is proposed to
facilitate the real-time performance.

Hierarchical Dilation

To achieve good performance for deep convolution neural
network (CNN), increasing the receptive field size of a
network is known as an effective technique. Specifically,
pooling or subsampling is a universal strategy to increase
the size of receptive field. However, excessive subsampling
will result in large loss on spatial information for
CNN features, which is very important for semantic
segmentation. The other scheme is to increase the kernel
size of convolution layers, this will directly increase the
computational cost significantly [29] and collide with our
objective on building an efficient network for semantic
segmentation.

To tackle with the above issue, dilated/atrous convolution
[3, 36] is a remedy. Dilated convolution is a normal
convolution that applies convolution filters with a hole. It
is a simple yet effective strategy to enlarge the size of
receptive field. There are various mechanisms to make use
of the dilated convolution. Traditional structures employ
sequential layers with equal or incremental dilation factors
or parallel layers with various dilation factors. Figure 2
illustrates different schemes. These approaches successfully
increase the network receptive field with limited capability.
For example, they are unable to capture the scale variations
for objects in images.

To this end, we introduce a novel hierarchical dilation
block, named HDblock. The proposed HDblock contains
multilevel parallel dilated convolutions and each convolu-
tion includes 3×3 convolution kernels with various dilation

Fig. 2 Different dilation
structures to increase the size of
receptive field. The inside
rectangle indicates the dilation
factor of that layer. Panels a and
b are two conventional schemes.
Panel c is our proposed HDblock
that is a hierarchical structure

(a) (b) (c)
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Table 1 The comparison between a sequential structure of dilated
convolution [36] and an example of our HDblock

Methods Sequential [36] HDblock

3 × 3, 1 3 × 3, 2

3 × 3, 1 3 × 3, 8

Conv Layers 3 × 3, 2 3 × 3, 16

(kernal size, 3 × 3, 4 3 × 3, 2

dilated factor) 3 × 3, 8 3 × 3, 8

3 × 3, 16 3 × 3, 16

Layer amount 6 2a

FoV variety 6 16

Maximal FoV 65 × 65 65 × 65

aStrictly speaking, this HDblock contains two levels and each level

includes three parallel conv layers followed by an element-sum layer

factors. Our HDblock is not a straightforward repeated par-
allel structure. Importantly, it contains a bypass connection.
This hierarchical structure enables us to capture large field-
of-view (FoV) in diverser sizes. Suppose that the structure
has n levels and each level contains m dilation factors. It is
easy to find that simple sequential and parallel structure pro-
cess n and m kinds of FoV, respectively. However, the size
of our proposed HDblock reaches as many as (m+ 1)n. It is
a remarkable large quantity that enables us authentically to
capture multi-scale information.

One advantage of our proposed HDblock is that we
effectively enlarge the receptive field with less gains in the
depth of deep neural networks. For example, the context
network architecture introduced in [36] needs six layers to
obtain a 65×65 receptive field, while our HDblock achieves
that by using a two-level structure with various dilation
factors. The detail comparison is shown at Table 1. This

is significant as the ability to propagate gradients on deep
network is still a concern [32]. The other advantage is that
HDblock enables a great variety of FoV for the network
such that multi-scale processing is straightly feasible. This
not only offers context assimilation on large FoV, but also
enables accurate object localization. For example, a small
FoV is more appropriate to capture the feature of an eye,
while a building needs a large FoV.

Coarse-to-Fine Block

Pooling with downsampling is indispensable part of CNNs.
It is essential to reducing the probability of over-fitting
and heavy computational cost. However, it will lead to
coarse output of deep neural network, which often requires
an upsampling process for the task of pixel-wise labeling.
Many kinds of upsampling methods have already been
proposed. Interpolation layer [3] directly applies bilinear
interpolation on the feature maps. Deconvolution layer [21,
27] is another means to obtain upsampling result. It is
learnable like normal convolution layer but with fractional
stride. Unpooling layer [1, 37] recovers fine prediction by
exploiting the recorded locations of the maxima within
each pooling region. All these methods are only simply
upsampling operation.

Instead of using a straightforward upsampling layer, in
this paper, we propose an integrated coarse-to-fine block
called CFblock, which aims at upsampling and refining
features at the same time. The structure of our proposed
CFblock is illustrated in Fig. 3. Firstly, an input feature
is processed by a single layer discussed above. Thus, the
coarse features are directly enlarged, which are usually
being doubled. Practically, we pick a deconvolution layer as
upsampling operation without the specific concern. Then,

Fig. 3 The structure of our
proposed CFblock. The block
firstly upsamples the input
feature map and merges it with
the feature map from lower
layer. Then we apply the output
to a convolution layer to
generate a prediction. This
prediction is integrated back and
forwarded to the next layer



66 Cogn Comput (2018) 10:62–72

Table 2 Model details and
run-time performance on
NVIDIA 1080TI

Model Parameters Model size 640 × 360 1280 × 720 1920 × 1080

ms fps ms fps ms fps

ENet [22] 0.37M 1.4MB 13.5 74.1 38.7 25.8 80.6 12.4
Baseline 0.81M 3.8MB 3.4 294.1 12.1 82.6 26.4 37.9

Ours 1.67M 6.7MB 4.6 217.4 16.2 61.7 33.9 29.5

The italic entries indicate the best speed performance

we apply two strategies to refine this enlarged feature map.
One is a bypass structure. A low layer feature with the same
resolution is utilized. To reduce the computational cost as
large as possible, we add it to the enlarged coarse feature
rather than concating them. Another one is intermediate
supervision. The fused output is then processed by a 1×1
convolution layer so as to produce the prediction on score
map, which is then forwarded to an intermediate loss layer.
It is further employed to supervise the refining process.

The auxiliary loss layer is proven to be beneficial
especially for super-deep network [32, 40]. We confirm
this point in our empirical study. During testing phase, the
auxiliary supervised branches are usually abandoned, as in
[40]. We contrarily retain these intermediate predictions and
reintegrate them back to the main branch. This enables us
to have extra chances to reevaluate the refining process and
rectify the generated prediction. The similar strategy is also
employed in [20]. Note that they apply this idea to supervise
an hourglass block for human pose estimation, while we
make use of them inside a block to refine the supervised
feature for semantic image segmentation. Finally, the bypass
structure is employed again, where the initial refined feature
is fused into intermediate prediction by a skip connection.
We will show that our proposed CFblock successfully
upsample and refine the feature map in the experiment.

Network Architecture

To achieve efficient semantic image segmentation, it is
required to trade off between accuracy and speed. One can
start from an architecture with very high accuracy, and
then strive to speed it up via a variety of mechanisms.
Alternatively, a lightweight network architecture can be
employed and optimized to boost accuracy. It has the
potential advantage that the speed-up techniques can also be
applied for further acceleration. In our approach, we choose
the second strategy.

The backbone of our network is based on a lightweight
architecture called darknet [25], which is originally
employed for object detection. They provide several
different architectures that have diverse accuracy and speed.
In our experiment, we directly use the tiny version.1

1https://pjreddie.com/darknet/tiny-darknet/

With the proposed HDblock and CFblock, we facil-
itate our network to achieve real-time performance on
semantic image segmentation. To show the efficacy of
our proposed approach, we treat the backbone neural net-
work without our presented HDblock and CFblock as
the baseline method. We will demonstrate in the exper-
iment that the efficiency of our method is attribute to
build HDblock and CFblock upon the lightweight backbone
network.

Experiments

In this section, we evaluate our proposed method on four
different datasets, including three urban scene understand-
ing datasets Cityscapes [5], CamVid [2], and Kitti [9],
and a face parsing dataset Helen [30]. Before presenting
the benchmark results, we first provide the details on our
implementation and run-time performance evaluation.

Experimental Settings

Implementation

The implementation of our proposed method is based
on the deep learning platform Torch7 [4]. Our network
is built upon the tiny darknet which is pre-trained on
ImageNet [6]. In our experiment, we directly remove the
last three layers, since they are designed for classified task.
Then our proposed HDblock with two levels and CFblock
with two auxiliary losses are appended to the backbone
network.

To train a neural network model for semantic segmen-
tation, we employ Adam optimization algorithm [15] and
a class weighing scheme to deal with the imbalance class
distribution as ENet [22]. The training process converges
very quickly, and we train at most 150 epochs for all the
datasets. Our initial learning rate is set to 0.001 with a
weight decay of 0.0002. Due to the limited GPU memory,
we choose different batch sizes for each dataset. Specifi-
cally, they are 4, 8, 12, 16 for Kitti, CamVid, Helen, and
Cityscapes, respectively.

To make fair comparison, it should be highlighted that
we do not make use of any data augmentation techniques,

https://pjreddie.com/darknet/tiny-darknet/
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such as random mirroring, resizing and rotating in all our
experiments. Also, we do not adopt any post-processing
method. All these techniques are expected to further boost
the experimental results.

Comparison Methods

We exploit tiny darknet as our baseline method. After
removing the last three layers, we append two deconvolution
layers to upsample the output score. The stride of each
deconvolution is 4. Except this, all the setting for training
the baseline method is identical to our proposed approach.
Moreover, we compare with ENet in our experiment. The
results are obtained with default setting of their original
implementation. For the batch size, we pick 4, 10, 10, 10 for
Kitti, CamVid, Helen, and Cityscapes, respectively.

Evaluation Metrics

We employ two different metrics to evaluate the quality of
semantic segmentation, the mean accuracy (Acc.) over all
classes and the mean of class-wise intersection over union
(IoU) score. Assume that Pi is the set of pixel predicted
as the i-th class, and Ti is the set of pixel belonging to
the ith class. Then, we know that Ii = Pi ∩ Ti is the
set of pixel correctly predicted for the ith class. Let n be
the number of class, we can compute the two metrics as
below:

Acc. = 1

n

n∑

i

|Ii |
|Ti | ,

IoU = 1

n

n∑

i

|Ii |
|Ti ∪ Pi | (1)

Run-Time Performance

We first evaluate the inference time of our model with ENet.
To the best of our knowledge, ENet is the fastest neural
network architecture designed for semantic segmentation
currently. All the running time is obtained on a single
NVIDIA 1080Ti GPU using CUDA 8.0 with cuDNN 5.0.
Instead of using Torch7, we exploit the deep learning
platform Caffe [14] to measure the run-time for fair
comparison, since all the methods are implemented by C++.
The model structure is identical to the one evaluated on
Torch7, except for batchnorm layers which could be merged
into convolution layers in front of them as described in the
implementation.2

2https://github.com/TimoSaemann/ENet

https://github.com/TimoSaemann/ENet
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Fig. 4 Comparison results on Cityscapes dataset. Our method generates cleaner and finer prediction, such as the pedestrian in the first column
and the road in the third column

The empirical evaluation results are reported in Table 2.
For comprehensive comparison, we report results based on
various frame resolutions. From the results, we can observe
that ENet contains less parameters than the baseline but
performs slower. This is due to the heavy computation cost
of bottleneck and ENet is a deep structure of bottleneck.
Thus, though our model contains about 4× more parameters
than ENet [22], the running speed of our proposed method
is still at least 2× faster than theirs. Our approach is able
to obtain realtime inference performance on 1080P images.
In our experiment, it even executes a network forwarding at
200fps. We can also see that the baseline obtains a slightly
higher fps. In the following experiments, we will show that
the extra time cost contributes to a much higher accuracy.
Note that we do not make use of any neural network speedup

techniques, such as pruning filters and binarizing weights,
which are verified to be nondestructive on accuracy.

Cityscapes Dataset

Cityscapes [5] is a popular dataset for semantic urban
scene understanding. Data was captured in 50 cities during
several months, daytimes, and good weather conditions.
The dataset contains 5000 finely annotated images of
resolution 1024 × 2048. The dense annotation contains
30 common class labels of road, pedestrian, building, car,
etc. Nineteen of them are selected for evaluation. It is split
in 2950, 500, and 1525 images for training, validation,
and testing, respectively. The ground truth of testing set is
unavailable, and the evaluation is completed via submitting

Table 4 Results on CamVid test set

Method build. tree sky car sign road ped. fence pole swalk bike Acc. IoU

SegNet [1] 88.8 87.3 92.4 82.1 20.5 97.2 57.1 49.3 27.5 84.4 30.7 65.2 55.6

ENet [22] 74.7 77.8 95.1 82.4 51.0 95.1 67.2 51.7 35.4 86.7 34.1 68.3 51.3

Baseline 90.1 80.5 93.9 80.2 47.9 96.3 52.4 50.3 22.7 84.6 43.5 67.5 57.8

Ours 90.0 86.3 94.4 81.5 48.8 96.7 62.8 54.6 28.8 89.4 48.0 71.0 61.1

The italic values show the results with the highest accuracy



Cogn Comput (2018) 10:62–72 69

(a) (b) (c) (d) (e)

Fig. 5 Visual comparison on CamVid dataset

Table 5 Results on Kitti test set

Method build. sky road veg. swalk car ped. cyclist sign. fence Acc. IoU

ENet [22] 92.5 92.2 82.4 94.6 81.3 79.2 61.1 0.2 22.2 0.2 60.6 50.1

Baseline 91.7 97.8 92.9 97.6 67.6 83.2 63.9 20.7 29.6 18.2 66.3 57.6

Ours 96.3 98.6 86.5 98.3 92.1 87.9 84.1 11.0 36.9 23.1 71.5 62.9

The italic values show the results with the highest accuracy

Fig. 6 Visual comparison on Kitti dataset
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Table 6 Result on Helen test set

Method FaceSkin LeftEyebrow RightEyebrow LeftEye RightEye Nose UpperLip InnerMouth LowerLip Hair Acc. IoU

Enet [22] 94.9 80.9 83.6 83.5 84.8 92.4 73.5 78.6 83.4 96.3 85.2 73.2

Baseline 93.7 77.0 81.0 75.8 84.0 88.6 77.6 72.0 83.9 96.5 83.0 71.4

Ours 95.2 83.0 83.1 87.6 85.8 91.5 81.9 79.9 87.3 96.9 87.2 77.3

The italic values show the results with the highest accuracy

predictions to the website.3 In our experiment, we only
perform evaluation on the validation set and subsample the
resolution to 256 × 512 for fair comparison.

As shown in Table 3, our proposed method outperforms
ENet both on Accuracy and IoU. IoU is the recommended
metric of the dataset. We achieve 54.5% comparing to 46.4
and 50.2% for baseline and ENet, respectively. We can
observe that the baseline can attain the best performance for
some classes. In fact, the strong performance of the baseline
on some classes is the result of inferior performance of other
classes. For instance, the baseline predicts much region of
sidewalk as road. Several visual examples are illustrated in
Fig. 4.

Ablation Study To show the effectiveness of our proposed
method, we conduct ablation experiments with several
settings on Cityscapes dataset. We evaluate the performance
of baseline method, compared with the performance with
and without our proposed HDblock and CFblock. As shown
in Table 3, the results of baseline is better than that
of baseline both on accuracy and IoU metrics. However,
the performance of our proposed approach is improved
significantly, which is on par with ENet by taking advantage
of our proposed HDblock or CFblock. This demonstrates
that our proposed HDblock and CFblock layers are effective
for semantic segmentation.

CamVid Dataset

CamVid [2] is a road scene understanding database. It con-
tains 367 images for training, 100 images for validation, and
233 image for testing. To facilitate fair comparison, we do
not use the 100 images of validation split as ENet [22] in our
experiment. The original frame resolution for this database
is 960 × 720. We downsampled all images into 480 × 360
as the reference methods. The images were manually anno-
tated with 32 classes. As suggested in [31], we make use
of a subset of 11 classes, including building, tree, sky, car,
sign, road, pedestrian, fence, pole, sidewalk and bicyclist.

The detailed results for each category are shown in
Table 4. Note that the result of ENet is obtained from
the original paper [22]. For a convenience view, we also

3https://www.cityscapes-dataset.com/submit/

include the result of SegNet [1] also provided from [22]. Our
method achieves an accuracy score of 71.0% and mean IoU
score of 61.1%, which are both significant higher than other
methods, especially for ENet [22]. Several visual examples
are shown in Fig. 5. We find that our method generate more
clean and steady prediction than ENet.

Kitti Dataset

Kitti [9] is one of the most popular datasets for autonomous
driving. It contains many tasks, such as tracking, object
detection, and odometry. It does not officially contain
ground truth label for semantic segmentation. We employ
a subset of images that are manually annotated by Zhang
et al. [39]. It totally includes 252 images, where 140 images
are for training and 112 for testing. These images were
manually annotated with ten object categories, i.e., building,
sky, road, vegetation, sidewalk, car, pedestrian, cyclist,
signage, and fence. Moreover, the ground truth contains
some regions which are not annotated. which is labeled as
void. In our experiment, images are uniformly resized to
368 × 1232 for training and testing. We employ Kitti as a
complement dataset as the image resolution is significant
different to the former two.

The results are shown in Table 5. It is easy to find that our
method outperforms both baseline and ENet at a large mar-
gin. Our approach outperforms other methods in almost all
categories.Weachieve significant higher accuracyon “pedes-
trian,” “sidewalk,” and “Fence” categories. We show some
qualitative results on Fig. 6. It can be seen that ENet fails to
distinguish between pedestrian and cyclist, which is also in-
dicated in Table 5, as its accuracy on “cyclist” is only 0.2%.

Helen Dataset

Helen is a collection of 2330 high resolution face portraits
downloaded from Flickr. The dataset was originally
collected by Le et al. [17]. Moreover, the segment label
annotations are provided by Smith et al. [30]. Eleven
segment label types for each image are provided, including
face skin, left eyebrow, right eyebrow, left eye, right
eye, nose, upper lip, inner mouth, lower lip, hair, and
background. The dataset is divided into 2000/230/100
image for training, validation and testing, respectively. The

https://www.cityscapes-dataset.com/submit/
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Fig. 7 Visual comparison on
Helen dataset

(a) (b) (c) (d) (e)

resolutions of each image are varied. So, we resize them into
512×512 in our experiment for convenient comparison.

We evaluate the robustness of our proposed method via
Helen. As shown in Table 6, our method still outperforms
ENet and baseline method on total different scenario.
Several visual examples are illustrated in Fig. 7.

Conclusion

We have proposed an efficient convolution neural network
for semantic image segmentation. Inspired by multi-scale
cognitive mechanisms, we introduce a hierarchical dilation
block to provide various kinds of filed-of-view for deep
neural network. This enables us to adopt multi-scale
features effectively. According to cognition-based studies
on contextual effects, we provide an effective strategy to
integrate context information. The experimental results on
urban scene understanding benchmark and face parsing
dataset demonstrate the efficacy of our proposed approach.

In spite of the benefits of our proposed blocks, our
method is still not able to outperform ENet on all the classes.
In the future, we consider to use a robust network backbone
and combine some speedup techniques.
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