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Abstract Semantic scene mapping is a challenge and sig-
nificant task for robotic application, such as autonomous
navigation and robot-environment interaction. In this paper,
we propose a semantic pixel-wise mapping system for
potential robotic applications. The system includes a novel
spatio-temporal deep neural network for semantic seg-
mentation and a Simultaneous Localisation and Mapping
(SLAM) algorithm for 3D point cloud map. Their combina-
tion yields a 3D semantic pixel-wise map. The proposed net-
work consists of Convolutional Neural Networks (CNNs)
with two streams: spatial stream with images as the input
and temporal stream with image differences as the input.
Due to the use of both spatial and temporal information, it
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is called spatio-temporal deep neural network, which shows
a better performance in both accuracy and robustness in
semantic segmentation. Further, only keyframes are selected
for semantic segmentation in order to reduce the computa-
tional burden for video streams and improve the real-time
performance. Based on the result of semantic segmenta-
tion, a 3D semantic map is built up by using the 3D point
cloud map from a SLAM algorithm. The proposed spatio-
temporal neural network is evaluated on both Cityscapes
benchmark (a public dataset) and Essex Indoor benchmark
(a dataset we labelled ourselves manually). Compared with
the state-of-the-art spatial only neural networks, the pro-
posed network achieves better performances in both pixel-
wise accuracy and Intersection over Union (IoU) for scene
segmentation. The constructed 3D semantic map with our
methods is accurate and meaningful for robotic applications.

Keywords Deep learning · Spatio-temporal neural
network · 3D semantic map · Robotics

Introduction

Semantic scene mapping is a challenge and significant task
for autonomous navigation, localisation, robot-environment
interaction, etc. As it can provide semantic information
and understanding of the environments, it is widely inves-
tigated in robotics, computer vision, augment reality (AR),
and virtual reality (VR). Semantic pixel-wise segmentation
is the basis of semantic scene mapping and has gained a
great success due to the spectacular development of deep
Convolutional Neural Networks (CNNs) in the past few
years. The deep CNNs have proved their powerful abilities
in many aspects, such as objects recognition [1, 2], scene
segmentation [3, 4], and so on.
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Since a fully convolutional network (FCN) [3] was pro-
posed for scene segmentation and achieved the state-of-the-
art pixel-wise segmentation performance, researchers have
proposed many different kinds of deep convolutional neural
network architectures derived from the FCN. These CNNs
can learn the spatial information from images and obtain
pixel-wise understanding of the environments. But most
of them are for static images and time-consuming. They
can hardly have a real-time performance. This work aims
to producing the semantic pixel-wise segmentation from
video streams, which not only contain the spatial informa-
tion but also the temporal information for potential robotic
applications. The temporal information is valuable in the
pixel-wise segmentation as pixels in adjacent images have
some forms of corresponding geometry constraints. In this
paper, we present a novel spatio-temporal neural network
for semantic segmentation. In addition to the images as
spatial information, the image difference between two con-
secutive images is used as the temporal information for
the network. And the computational burden is reduced by
selecting only keyframes for segmentation while the non-
keyframe segmentation is predicted by the results from
keyframes.

It is known that 3D point cloud maps produced by visual
Simultaneous Localisation and Mapping (SLAM) [5, 6]
algorithms only represent the occupation information and
are less meaningful. However, 3D semantic maps can pro-
vide more meaningful information for robotic applications.
Semantic pixel-wise segmentation can be combined with
a 3D point cloud map to yield a 3D semantic map. In
this paper, we also present how to yield a 3D semantic
map through this combination. This is achieved by using
a SLAM algorithm to construct a 3D point cloud map and
then labelling each point in the point cloud by using the
semantic segmentation result. Some 3D semantic maps are
shown in Fig. 1.

Our main contributions in this paper are summarised as
follows:

• We propose a novel spatio-temporal neural network for
semantic scene segmentation. Both images and image
differences between two consecutive images are taken
as the inputs for the network. In this way, both the
spatial and temporal information are considered for
semantic segmentation.

• We propose to select the keyframes for semantic seg-
mentation while the non-keyframe segmentation is
established by the prediction result from keyframes.
In this way, the computational burden when handling
with video streams can be reduced and the real-time
performance can be improved.

Fig. 1 3D semantic maps. a 3D semantic map of a room. b 3D
semantic map of a corridor. c 3D semantic map of a staircase

• We develop a practical semantic scene mapping sys-
tem by using a visual SLAM algorithm combined with
the result from semantic segmentation. Qualitative and
quantitative experiments based on the public dataset and
our own dataset are presented. The 3D semantic map of
our dataset is built up for robotic applications.

In the following section, we will give a review of the
related work. In “Approach”, we will provide an introduc-
tion to the architecture of the proposed CNN for semantic
segmentation and present the fusion method for spatial
and temporal information. The procedures of keyframe
selection, segmentation prediction for non-keyframes, and
semantic map construction will be also described in this
section. “Experimental Evaluation” will demonstrate the
experimental results on different datasets using the pro-
posed system. In “Conclusions”, we will give a summary
conclusion and the future work we would like to investigate.

Related Work

In this part, we will review the research on semantic scene
segmentation using deep CNNs for single stream (spa-
tial only) network. The research on multi-stream networks
are followed. Then, we review the research on semantic
mapping with SLAM.
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Spatial Image Segmentation with CNNs

Semantic segmentation is a traditional field in computer
vision [7]. In 2015, Long et al. [3] first proposed to replace
fully connected layers with fully convolutional layers in
CNNs. In this way, the CNNs have been successfully
applied to spatial dense tasks, such as pixel-wise seg-
mentation, depth estimation, and optical flow estimation.
Following from VGG net [8], the FCN was trained end-to-
end for image segmentation. In order to take the advantage
of global context information, Liu et al. [9] introduced the
global pooling into FCN. The proposed ParseNet exceeded
the FCN in semantic segmentation due to the wider view of
the network. Badrinarayanan et al. [10] presented a novel
network architecture called SegNet for scene parsing. The
SegNet is based on the FCN and has an encoder-decoder
architecture. The decoder performs the upsampling for low-
resolution features. Afterwards, Kendall et al. [11] added
dropout layers to the SegNet and proposed a Beyasian Seg-
Net which could estimate the probability for pixel-level
segmentation.

Conditional Random Fields (CRFs) have proved its pow-
erful capability in image segmentation and been adopted as
a post-processing method to refine the image segmentation.
Zheng et al. [12] proposed to formulate the probabilistic mean
field inference with CRFs as Recurrent Neural Networks
(RNNs). By embedding CRFs into CNNs, they presented a
novel network architecture called CRF-RNN, which com-
bines the strength of both CNNs and CRFs. Arnab et al.
[13] designed two high order potentials based on object
detection and superpixels later and integrated them into the
CRF-RNN. However, CRFs are especially computational
intensive and not suitable for real-time applications.

The networks mentioned above all use the VGG [8] as
their base network architecture. After He et al. [2] pro-
posed a very deep ResNet, most researchers began to use
the ResNet as the basic network architecture. The ResNet
demonstrated a astonishing performance in the ImageNet
classification challenge [14] and has been widely applied
for many tasks. Chen et al. [15–17] proposed to use the
very deep ResNet, dilated convolution, and fully connected
CRFs to segment images. By using dilated convolution, the
field-of-view of filters can be enlarged effectively without
increasing the computation. Atrous Spatial Pyramid Pooling
(ASPP) and multiple scale technology were also introduced
in Deeplab [16], which performed extremely well in PAS-
CAL VOC-2012 [18] semantic image segmentation dataset.
Wu et al. [19] explored different variations of the ResNet
in order to find the best network configuration, such as the
number of layers, the size of field-of-view, and the res-
olution of feature maps. An online bootstrapping method

was also used during training to improve the segmenta-
tion performance. The proposed network was evaluated on
both PASCAL VOC-2012 benchmark and Cityscapes [20]
benchmark. The results showed that the proposed network
was very competitive when compared with other methods.
Afterwards, Wu et al. [21] further studied the relationship
between the depth of residual networks and the perfor-
mance and proved that some relatively shallow residual
networks could outperform much deeper networks, partic-
ularly within some limitations. This performance was not
only applied to the recognition task but also suitable for
the semantic segmentation task. Zhao et al. [4] proposed
the Pyramid Scene Parsing Network (PSPNet) which won
the ImageNet scene parsing challenge 2016 [22]. Differ-
ent from the global pooling method proposed in [9], the
global spatial context information in images was exploited
by different-region-based aggregation with the proposed
pyramid pooling model in [4]. Wu et al. [21] and Zhao et al.
[4] both used four graphics processing units (GPUs) to train
the network, and they could choose large “cropsize” and
“batchsize” which are critical for the performance.

Besides, Tu et al. [23] introduced optical flow as the tem-
poral information. By combining this motion-based saliency
method with a region-based image saliency method, they
demonstrated a spatio-temporal system for object segmenta-
tion. Doborjeh [24] made use of spatio-temporal EEG data
and used spiking neural networks to realise the classifica-
tion of signal. Wang et al. [25] proposed DeepVO which
used Recurrent Convolutional Neural Network (RCNN) to
perform visual odometry (VO). Both spatial and temporal
image information were used.

Multi-stream CNNs

With regard to temporal information, Wang et al. [26, 27]
proposed a novel temporal segmentation network to exploit
the optical flow along with colour images to enhance the
performance of action recognition in video streams. The
proposed network demonstrated a high performance in the
Large Scale Activity Recognition Challenge 2016.

Aiming at the pose regression in challenging indoor envi-
ronments, Li et al. [28] presented a novel dual-stream CNN
architecture to take colour images and disparity images as
the inputs at the same time. Eitel et al. [29] and Schwarz
et al. [30] rendered disparity images with a colour palette
and use a two-stream CNN to obtain a better performance
with RGB-D cameras.

Based on the SegNet [10], Hazirbas et al. [31] extracted
features from colour images and depth images respectively,
and fused them together to perform upsampling. Both colour
features and depth features are exploited for segmentation
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with this FuseNet [31]. AdapNet was proposed by Val-
ada et al. [32, 33] for semantic segmentation in adverse
environments. A novel fusion technology called Convo-
luted Mixture of Deep Experts (CMoDE) was presented to
enable a multi-stream network to learn features from dif-
ferent modalities. But this proposed network can only learn
spatial features.

To the author’s best knowledge, no one has used the
temporal information for semantic pixel-wise segmentation
along with CNNs so far. In this paper, we will investigate
how to combine both spatial and temporal information for
semantic pixel-wise segmentation.

Semantic Mapping with SLAM

For robotic applications, it is significant to locate the robot
itself and percept the semantic environments simultaneously
[34]. Salas-Moreno et al. [35] presented a planar SLAM sys-
tem which could detect the planar in the environment and
yield a planar map. A demonstration which replaced a wall
with a Facebook web page was shown by the proposed sys-
tem. They also proposed a SLAM system called SLAM++
[36]. The system detected objects such as chairs and desks
and then utilised these objects for the localisation. However,
only planar, desks, and chairs were extracted and perceived
by the above SLAM system. More extensive semantic map
could be built up for robotic applications by combining
visual SLAM algorithms with the semantic segmentation.
This is the research objective of this paper.

Approach

The proposed system is shown in Fig. 2. The details of
the spatio-temporal neural network will be discussed first.
Then, the geometry-based segmentation prediction for non-
keyframes is followed. At last, we will present our method
for 3D semantic mapping with visual SLAM technology.

Spatial Segmentation Network Architecture

The basic spatial neural network architecture we use in this
paper is the PSPNet [4] which had an excellent performance
in the ImageNet scene parsing challenge 2016. Its main
advantage is the combination of very deep ResNet, dilated
convolution, and pyramid pooling module.

At the very beginning, researchers preferred to use the
standard convolution followed by pooling to extract the
features and then adopted the deconvolution to recovery
information from the feature maps. However, this method
caused a loss to original details due to the use of pool-
ing. It also needs to use intensive computational power
and large memory. Chen et al. [15] proposed the dilated
convolution which was also called atrous convolution. Its
basic idea is to implement the convolution for feature maps
with holes. By using the dilated convolution, the kernel of
convolution is widened to some extent, the field-of-view
is effectively enlarged, and the features are extracted and
maintained efficiently. Further, it does not require any addi-
tional computation and memory. In order to explain the

Fig. 2 System overview. For images from a video steam, we clas-
sify them as keyframes and non-keyframes according to the geometric
constrains and time interval. For keyframes, we adopt the proposed
spatio-temporal neural network to perform the semantic segmentation.
For non-keyframes, we estimate the homograghy matrix (2D projective

transformation) between the last keyframe and current frame. Then, the
non-keyframe segmentation is predicted by the results from keyframes.
At the same time, a visual SLAM algorithm is used for camera pose
estimation. In the end, the 3D semantic map is constructed by our
system
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dilated convolution explicitly, we take a one-dimension sig-
nal, for example, x[i] is the 1D input signal with length K ,
y[i] is the output of the dilated convolution, so the dilated
convolution can be defined as follows:

y[i] =
K∑

k=1

w[k] · x[i + r · k] (1)

where rate r represents the stride that is used by the dilated
convolution to sample the input signal x[k]. In this way,
the dilated convolution has the functions which combine the
standard convolution, pooling, and deconvolution. Compared
with the traditional methods, it also enlarges the resolution
of the resulting feature map while maintaining more infor-
mation. In particular, the standard convolution is a special
case of the dilated convolution where the rate r is 1.

The pyramid pooling module is another important factor
that the PSPNet [4] outperforms other networks in semantic
segmentation. As shown in Fig. 3, the pyramid pooling mod-
ule is appended after the final feature map to better learn
the contextual information. Four different pooling scales (1,
1/2, 1/3, 1/6) followed by convolutions are applied in this
module. Then, four hierarchical feature maps are upsampled
with bilinear interpolation. Finally, these learned features
and the original feature map are concatenated into a new
final global feature map to yield the segmentation result.
In this way, the sub-region contextual information is better
utilised along with the global contextual information.

Proposed Spatio-temporal CNN for Semantic
Segmentation

Most existing neural networks take spatial images as the
input and yield the semantic segmentation. In this section,
we discuss how to use both spatial and temporal infor-
mation for semantic pixel-wise segmentation. For dynamic
video streams, long memory images (images recorded for a
long time) play a less important role in current segmenta-
tion. It is hard to use long memory images to improve the
segmentation accuracy on account of the fact that there is
few pixel correspondences between the images. In contrast,
short memory images are valued for semantic segmenta-
tion from video streams. Here, we use the image difference
between two consecutive images as the temporal informa-
tion. Then, we propose a CNN architecture, which has two
streams, one is the colour image stream to capture the spa-
tial features and another is the image difference stream to
capture the temporal features, as shown in Fig. 3.

By applying convolution and softmax to the final feature
maps after the pyramid pooling module, both spatial stream
and temporal stream can generate the category prediction
Ps(x) and Pt(x) for each pixel separately. We introduce
three strategies to fuse the two streams together. (1) Pixel-
wise prediction fusion—This fusion method is to treat the
pixel-wise segmentation prediction from each stream as
an independent normal distribution. Then, we can use the
element-wise operation such as sum or max to fuse the pre-
diction. (2) Feature map sum—This fusion method is to

Fig. 3 Spatio-temporal neural network architecture. The colour image and the image difference are fed into the network. Then, the prediction
maps are learned through the separated networks and fused together for image segmentation
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implement the element operation for the final feature maps
from the pyramid pooling module. The feature maps are
added together in the element level, and then, we let the net-
work to learn from the fused feature map. (3) Feature map
concatenation—This fusion method is to concatenate the
final feature maps from the two separate streams. By stack-
ing them together into multiple channels, the neural network
is trained end-to-end and the feature maps are fine-tuned.
Detailed comparisons between these methods are given in
IV-C (Fig. 4).

Image Segmentation Prediction with Homography
Matrix

Pixel-level image segmentation with the network is time-
consuming. We cannot use the network to segment every
image for real-time applications. Due to the overlaps
between consecutive images, we can just select some
keyframes from the image sequence to perform the seman-
tic segmentation with the proposed network. As shown
in Fig. 2, we classify the images as keyframes and non-
keyframes. For keyframe images, the pixel-level image
segmentation is performed to yield the segmentation result.
For non-keyframe image, the pixel-level segmentation map
is predicted from the result of neighbour keyframe images.
The segmentation prediction is conducted by using the
homography matrix to predict the segmentation map of
overlap regions. A 3 × 3 homography matrix H is com-
puted first. It can map [u, v], the 2D coordinate of a pixel

in the keyframe, to [u′, v′], the corresponding pixel in the
non-keyframe. The matrix H is defined as below:

⎡

⎣
u′
v′
1

⎤

⎦ =
⎡

⎣
H11 H12 H13

H21 H22 H23

H31 H32 H33

⎤

⎦

⎡

⎣
u

v

1

⎤

⎦ (2)

The homography matrix can transform the segmentation
map of a keyframe to the predicted segmentation map of
the non-keyframe. The matrix [H11, H12; H21, H22] is the
rotation term, and the vector [H13, H23]T is the transla-
tion term. The rotation matrix, the translation vector, and
the time interval jointly determine whether an image is a
keyframe. Speciafically, we compare the norm of the rota-
tion matrix, the translation vector, and the time interval with
the corresponding thresholds. If one of these three is big-
ger than its corresponding threshold, we choose the frame
as a keyframe. Only keyframes are processed to produce
the semantic segmentation map. So the overall processing
time is saved and the real-time performance is improved.
Figure 5f shows the result of segmentation prediction for
Fig. 5d. Although the segmentation performance of Fig. 5f
is not as good as Fig. 5e, but it is still acceptable for robotic
applications.

3D Semantic Scene Mapping with a SLAM Algorithm

The visual SLAM algorithm can simultaneously determine the
robotposeandconstructa3Dpointcloudmapfor theenvironment.

Fig. 4 Visual comparison on our manually labelled dataset (Essex Indoor). a Image. b Ground truth. c Spatial-PSPNet. d Spatio-temporal CNN.
e ColorMap. f Uncertainty map for segmentation
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Fig. 5 Image segmentation
prediction with homography
matrix. a Keyframe. b Keyframe
segmentation with CNN. c
Uncertainty map for keyframe. d
Non-keyframe. e Non-keyframe
segmentation with CNN. f
Segmentation prediction with
homography matrix

But the 3D point cloud map is less meaningful for robotic
applications. If each point in point cloud could be labelled
with semantic meaning, a 3D semantic scene map is obtained,
which is more meaningful for various robotic applications.
That means we can simultaneously determine the robot
pose and construct the 3D semantic scene map. In this
paper, we combine the network for semantic segmentation
with a visual SLAM algorithm to do this challenging task.

The system includes a spatial and temporal deep CNN
proposed above and a standard visual SLAM algorithm.
They run in parallel. The input to the SLAM algorithm is
the images and the output is the robot pose and the 3D point
cloud map. For each image, each point in the point cloud is
labelled with the corresponding result in the semantic pixel-
wise segmentation. Then, the next image is processed, and
the labelled point cloud is merged together as a global 3D
semantic map via the transformation of robot pose, i.e. the
global semantic map can be obtained as below:

Global Map :
∑

TcwXc =
n∑

i=1

[
R t
0 1

]
Xc (3)

where Tcw is the 4× 4 transformation matrix obtained from
the visual SLAM algorithm. Tcw is composed of rotation
R and translation t that can transform points from cam-
era coordinate to world coordinate. Xc = (xi, yi, zi, 1)T is
the homogeneous position representation of a point in the
camera coordinate.

Experimental Evaluation

In this section, we will evaluate the segmentation perfor-
mance of our proposed spatio-temporal neural network and

present a 3D semantic map system. We will first intro-
duce our manually labelled dataset that was collected from
our office. Secondly, we will discuss the fusion methods of
spatial stream and temporal stream for segmentation predic-
tion. Following that, the quantitative evaluations based on
Cityscapes benchmark dataset will be given by comparing
with different segmentation networks. Then, the qualitative
evaluation will be presented. In the end, the 3D semantic
map construction is demonstrated by our proposed system.

The proposed CNN is designed using the Caffe [37]
platform, and all experiments are performed on a desktop
equipped with one Nvidia GeForce Titan X GPU card and
Intel Core i7-4790 4.0GHz CPU.

Indoor Dataset for Scene Segmentation

In this part, we introduce the dataset collected from our
office environment in the network building of our university.
In order to test the efficiency of temporal information for
scene parsing, we need to have a dataset first. Most available
datasets only contain discrete images and their ground truth
labels. Video stream datasets for semantic segmentation are
not readily available. So we have to use a Kinect One camera
to build our own dataset for the second floor of our building.
The scale of the second floor is about 40 m × 30 m. And the
image size of our dataset is 960× 540 in a pixel level. Both
disparity image sequence and colour image sequence are
provided. Then, we manually segment the collected images
into 13 categories, as shown in Fig. 4. They are wall, chair,
rubbish bin, floor, PC, floor, ceiling, painting, lamp, desk,
person, and window. The semantic information of these
categories is very important for robot navigation and robot-
environment interface, especially the semantic information
of floor, wall, ceiling, door, and person. In addition for train-
ing the network, our dataset is also used for 3D semantic
scene map construction.
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Training Details

We train the two streams separately first. The ResNet-50
[2]-based PSPNet [4] architecture is used for two sep-
arated streams. The model weights which have already
been trained from the ImageNet scene parsing challenge
2016 are used for transfer learning for our dataset. Due
to the limitation of GPU memory in our experiments, we
choose the “cropsize” as 521 and the “batchsize” as 3. The
“poly” learning rate policy is adopted for training. The base
learning rate and the power are set to 0.00025 and 0.9,
respectively. The weight decay and the momentum are set
to 0.0001 and 0.9, respectively. The iteration number for
training the two separated streams is 20,000. An auxiliary
loss during training is used and the weight of this additional
loss is set to 0.4. We also use the data augmentation during
training. The image is randomly resized to 0.5 to 2, and the
random mirror is also adopted.

For the dual-stream neural network training, we change
the base learning rate to 0.0001. The “batchsize” is set to 1
because of memory limitation.

Fusion Method

In our proposed network, the image difference is used as the
input of temporal stream. The image difference is the sub-
traction of current keyframe from the previous image. It can
maintain the temporal information between two frames. We
also tried to use optical flow in the experiments, but found
that optical flow only represents moving objects and other
information was lost. This leads to the poor performance in
semantic segmentation.

In this part, we use our manually labelled dataset (Essex
Indoor dataset) to test and compare different fusion meth-
ods. As explained in part III-B, we mainly compare three
fusion methods here. As shown in Table 1, pixel-wise
prediction sum is the best fusion method for semantic seg-
mentation. The weight of different streams for fusion is
an important parameter for segmentation accuracy. In the

Table 1 Segmentation performance comparison with different fusion
methods

Method Pixel-wise accuracy Mean IoU

Spatial stream 88.91 95.93

Temporal stream 82.34 94.12

Feature map concatenation 89.21 96.30

Feature map SUM 89.85 96.46

Prediction MAX 89.46 96.46

Prediction SUM 90.68 96.74

The unit for pixel-wise accuracy and mean IoU is percentage (%)
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Fig. 6 Train the network with the “problem” dataset. We deliberately labelled the floor in an image as the lamp in the ground truth image. a The
image in the training dataset. b The ground truth with right label in the training dataset. c The ground truth with wrong label in “problem” dataset

experiment, the weight of spatial stream is set to 0.7, and the
weight for temporal stream is set to 0.3. The stage-by-stage
network training mechanism is used for our spatio-temporal
CNN. We first train the spatial stream and the temporal
stream separately. Then, we transfer the learned network
weights from the separate single streams to the dual-stream
CNN and finally fine-tune the dual-stream CNN.

Quantitative Analysis

In this part, we compare the proposed spatio-temporal neu-
ral network with other CNNs for semantic segmentation.
The public dataset Cityscapes [20] is taken as the bench-
mark. The images of Cityscapes dataset are collected in the
urban environment from different cities, and the camera is
fixed in the car.

Considering potential robotic applications, we only use
the PC with one graphic card for processing. This means
the memory is limited for training when compared with the
PSPNet [4]. The PSPNet adopted Rsenet-101 [2] as its basic
network architecture for Cityscapes dataset. They used four
GPUs for training and have much more memory. So when
training the spatial stream and temporal stream in our exper-
iments, we adopt the ResNet-50-based PSPNet and set the
“cropsize” and “batchsize” to 617 and 2, respectively. For
the dual-stream CNN training, we set the “cropsize” and
“batchsize” to 569 and 1, respectively. The spatio-temporal
CNN is much bigger than the single streams and needs more
memory for training. The transfer learning is used first, then
we fine-tune the network weights from the model learned
from ADK20K [22] dataset.

The results are showed in Table 2. Deeplab [16] uses CRFs
as a post-processing method to enhance the performance.
The proposed spatio-temporal CNN does not use CRFs, but
outperforms the Resnet-50-based spatial-PSPNet and other
networks. Figure 9 lists some results, and we can see that
the segmentation performance is improved by using the
temporal information.

Qualitative Analysis

This part evaluates the benefit of using the temporal infor-
mation for CNN to process video streams. Among the
training dataset, we deliberately label one category in one
image wrongly while all other images are labelled correctly.
If the network is robust to the problem, it should be able to
distinguish the wrong label. As shown in Fig. 6, we delib-
erately label the floor (bright purple) as the lamp (yellow)
in one training image. Then, the “problem” dataset is fed to
the network for training.

Table 3 shows the mIoU results on the Essex Indoor
dataset. All the networks are trained with the “problem”
dataset. As shown in the table, the spatio-temporal CNN
demonstrates the best performance in semantic scene seg-
mentation.

Figure 7 shows the segmentation results for different neu-
ral networks. Figure 7a is selected from the test dataset.
It is the neighbour image of Fig. 6a. These two images
have some similarities but are totally different. Figure 7d
is the segmentation result from the spatial stream with
colour images as the input. Figure 7e is the segmentation
result from the temporal stream with image difference as

Table 3 Per-class segmentation IoU (%) on the Essex Indoor test dataset when trained with the “problem” dataset

Method Wall Ceiling Floor Lamp Desk Person Chair PC Door Painting Windows Cupboard Rubbish Bin mIoU

Spatial-PSPNet 90.27 89.21 98.95 70.30 95.30 87.19 89.69 91.17 81.26 79.90 88.22 70.27 97.76 86.88

Temporal-PSPNet 89.92 87.05 90.49 57.24 75.55 83.26 77.35 79.85 81.39 84.62 87.99 73.30 93.76 81.67

Spatio-temporal CNN 95.45 89.97 96.26 64.18 91.42 94.72 88.33 93.33 93.74 90.10 93.10 83.26 98.83 90.21

The best results are shown in italic entries
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Fig. 7 Segmentation results of
the networks using “problem”
dataset for training. a Colour
image in the test dataset. b
Difference image in the test
dataset. c Ground truth. d
Segmentation result with colour
image as inputs. e Segmentation
result with image difference as
inputs. f segmentation result
with both colour image and
image difference as inputs

the input. Figure 7e is the segmentation result from our
proposed spatio-temporal CNN. As shown in the figure,
the spatial stream segments the floor as the lamp, i.e.
it fails to segments the floor, while the proposed fusion
CNN segments the floor successfully. The floors in other
test images are all segmented successfully with the spa-
tial stream. This result means only using colour images as
the network input cannot find the “problem” in the dataset,
while using both spatial and temporal information can make
right segmentation decision when facing with the “problem”
dataset.

3D Semantic Mapping

A 3D semantic map is very useful for robotic applications.
By constructing the 3D semantic map, the robots can inter-
act autonomously with the environment. For example, the
robots can navigate themselves in an unknown environment

by detecting the road and the robots can implement grasping
tasks by detecting different objects in the 3D space.

We obtain the 3D semantic map of our second floor in the
building by combining the spatio-temporal neural network
with a SLAM algorithm. The state-of-the-art SLAM algo-
rithm (ORB-SLAM [38, 39]) is used, which is able to obtain
the camera pose and the point cloud map in real time. The
keyframes are selected and then fed to the spatio-temporal
CNN for semantic segmentation. Compared with the sys-
tem without keyframe structure, the real-time performance
speeds up from 3 to 11 Hz. By labelling the point cloud
using the result of semantic pixel-wise segmentation, the 3D
semantic map is constructed and shown in Fig. 8. Although
there is some noise points in the map, it does provide the
meaningful information for potential robotic applications.
The main cause for the noise points is due to the measure-
ment limitation of the depth camera. We plan to tackle the
problem in our future work.

Fig. 8 3D semantic map of the second floor in the network building of our university
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Fig. 9 Visual comparison on Cityscapes dataset. a Image. b Ground truth. c Spatial-PSPNet. d Spatio-temporal CNN

Conclusions

In this paper, we have presented a novel spatio-temporal
CNN for image segmentation which shows a better perfor-
mance when compared with the CNNs using only spatial
information (Fig. 9). The image difference is taken as the
temporal information for additional network input in the
proposed network. Different fusion methods for spatial and
temporal information are discussed and compared. A global
3D semantic map is constructed with the proposed system
which combines the spatio-temporal CNN with a SLAM
algorithm. However, there are some noisy points in the con-
structed 3D map. This is caused by the limitation of depth
camera and the wrong segmentation of the scene in some
images. In the future, we would like to investigate how to
improve the constructed 3D map.
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