
Cogn Comput (2018) 10:3–14

Implicit Heterogeneous Features Embedding
in Deep Knowledge Tracing

Haiqin Yang1 ·Lap Pong Cheung2

Received: 10 July 2017 / Accepted: 31 October 2017 / Published online: 15 December 2017
© Springer Science+Business Media, LLC, part of Springer Nature 2017

Abstract Deep recurrent neural networks have been suc-
cessfully applied to knowledge tracing, namely, deep
knowledge tracing (DKT), which aims to automatically
trace students’ knowledge states by mining their exercise
performance data. Two main issues exist in the current DKT
models: First, the complexity of the DKT models increases
the tension of psychological interpretation. Second, the
input of existing DKT models is only the exercise tags rep-
resenting via one-hot encoding. The correlation between the
hidden knowledge components and students’ responses to
the exercises heavily relies on training the DKTmodels. The
existing rich and informative features are excluded in the
training, which may yield sub-optimal performance. To uti-
lize the information embedded in these features, researchers
have proposed a manual method to pre-process the features,
i.e., discretizing them based on the inner characteristics of
individual features. However, the proposed method requires
many feature engineering efforts and is infeasible when the
selected features are huge. To tackle the above issues, we
design an automatic system to embed the heterogeneous fea-
tures implicitly and effectively into the original DKTmodel.
More specifically, we apply tree-based classifiers to predict

� Haiqin Yang
hqyang@ieee.org

Lap Pong Cheung
lpcheung@link.cuhk.edu.hk

1 Department of Computing, Hang Seng Management College,
Shatin, Hong Kong

2 Computer Science and Engineering, The Chinese University
of Hong Kong, Shatin, Hong Kong

whether the student can correctly answer the exercise given
the heterogeneous features, an effective way to capture how
the student deviates from others in the exercise. The pre-
dicted response and the true response are then encoded into
a 4-bit one-hot encoding and concatenated with the origi-
nal one-hot encoding features on the exercise tags to train a
long short-term memory (LSTM) model, which can output
the probability that a student will answer the exercise cor-
rectly on the corresponding exercise. We conduct a thorough
evaluation on two educational datasets and demonstrate the
merits and observations of our proposal.

Keywords Recurrent neural networks · Knowledge
tracing · Tree-based classifiers

Introduction

In the past forty years, several major paradigm shifts have
appeared in the area of cognitive science and machine learn-
ing [5]. Now, deep learning reaches the new peak of the
interest [32]. Deep learning, as the resurgence of neural
networks, has attracted many research devotions due to its
outstanding performance in various real-world applications
and actual deployment in state-of-the-art systems for speech
recognition [17], image classification [13, 30, 42], text clas-
sification [23], generating image captions [47], and even
playing Go [41].

The effectiveness of deep learning is the result of its ability
to automatically learn the representation from the input fea-
tures without handcraft. The “deep” in deep learning refers
to multiple layers of neurons (or feature representation)
between the input and the output of the neural networks [16,
32]. The success of deep learning starts from deep belief
nets [19] and quickly extends to other neural networks,

https://doi.org/10.1007/s12559-017-9522-0

http://crossmark.crossref.org/dialog/?doi=10.1007/s12559-017-9522-0&domain=pdf
http://orcid.org/0000-0001-5453-476X
mailto:hqyang@ieee.org
mailto:lpcheung@link.cuhk.edu.hk

4 Cogn Comput (2018) 10:3–14

such as convolutional neural networks and recurrent neural
networks [16, 30].

Recurrent neural networks (RNNs) are one of the effec-
tive tools in cognitive computing and machine learning
to model dynamic temporal behaviors for sequences of
inputs [40, 50]. Recently, deep RNNs such as the long
short-term memory (LSTM) and the gated recurrent unit
(GRN) have been intensively investigated and proved their
effectiveness in solving various real-world applications such
as speech recognition, language modeling, and knowledge
tracing [8, 20, 34, 38].

Knowledge tracing is one of the significant research top-
ics in educational data mining (EDM) [26, 31]. The goal
is to capture students’ knowledge states over time so that
we can estimate their learning progress of mastering the
required knowledge components [2, 9, 10]. Inferring stu-
dents’ knowledge states allows us to adapt to different
learning progress and to recommend suitable personalized
exercises or necessary teaching materials according to stu-
dents’ needs [1, 12, 44]. Recently, massive online open
course (MOOC) platforms, such as Coursera, Edx, and
Khan Academy, have provided high-quality open access
online courses and attracted a large amount of enrolled users
worldwide to enrol these courses [11]. The abundance of
the data generated in these platforms enables researchers to
investigate and monitor the learning process of students [26,
28, 31].

In the literature, the proposed methods for knowledge
tracing can be divided into two main streams: One is
Bayesian Knowledge Tracing (BKT) [3, 10, 36], which
applies a Hidden Markov Model (HMM) to model the
knowledge components. The hidden states are updated
according to each student’s responses to the exercises.
Another approach is Deep Knowledge Tracing (DKT) [38,
49], which utilizes deep recurrent neural networks to dis-
cover the hidden structure of the correlation of exercises by
analyzing students’ responses to the exercises. In the debut,
it is shown that DKT can achieve 25% gain in the area under
the ROC curve (AUC) score over BKT [38]. More variants
of DKT models are further investigated in [25, 48, 52].

There are still two main issues in the previously proposed
DKT models: First, the complexity of the DKT models
increases the tension of psychological interpretation of the
models. How to propose a model with sufficient psycho-
logical interpretation is favorable in cognition science [43,
51]. Second, the input of DKT models is only a one-hot
encoding of the exercise tags [38]. It excludes many rich
and informative features, such as the exercise title, the num-
ber of attempts to answer, and the duration time of answers.
These features are heterogeneous and exhibit different char-
acteristics of students’ learning procedure. They not only
provide additional information on exercises but also cap-
ture students’ learning procedure. Analyzing and utilizing

them properly will help to trace students’ learning states.
Currently, researchers mainly focus on incorporating differ-
ent types of features in the learning. The proposed features
capture different aspects of students’ learning procedure,
such as measuring the effect of students’ individual char-
acteristics, assessing the effect of help in a tutor system,
controlling the difficulty level of exercises, and measuring
the effect of subskills [24, 53]. In [53], a manual method is
proposed to analyze the features and to select appropriate
feature subsets. The selected features are then discretized
based on the statistics of the features and the semantic
meaning is learned via an autoencoder. The manual feature
engineer effort offers further improvement in knowledge
tracing but is still restricted in two aspects: First, they
require sufficient domain knowledge to understand the data.
This may introduce bias when practitioners cannot fully
explore the data. Second, they are infeasible to extend the
method to huge feature size.

To tackle the above issues, we propose an automatic and
intelligent approach to integrate the heterogeneous features
into the DKT model. More specifically, we conduct a pre-
processing step via the tree-based classifiers due to their
effectiveness and interpretation power [39]. We then apply
the tree-based classifiers to predict whether a student can
answer an exercise correctly given the heterogeneous fea-
tures. After that, we encode the predicted response and the
true response into binary codes and concatenated them with
the original one-hot encoding features as the input to train
a LSTM model. Although the pre-processing step is simple,
it can provide additional information of students’ learning
behaviors, especially, how a student deviates from others in
the learning process.

We highlight the contributions of this article in the
following:

– We have proposed an automatic and effective way to
pre-process the heterogeneous features based on tree-
based classifiers. The splitting features can provide
us insight into the characteristics of students’ learning
behaviors.

– We present a systematic framework to incorporate the
learned response, the true response, and the original
one-hot encoding features to train an LSTMmodel. The
output can produce the predicted probability whether
a student will answer the next exercise correctly.
The learned response given the heterogeneous features
allows us to exploit students’ learning behaviors.

– We conduct a thorough evaluation on two educational
datasets and demonstrate the effectiveness and merits of
our proposal.

The rest of the paper is organized as follows: In “Related
Work,” we review the related work in this paper, includ-
ing techniques for knowledge tracing and the tree-based

Cogn Comput (2018) 10:3–14 5

classifiers we adopt. In “Methods,” we detail the over-
all architecture of our proposal, especially, how the het-
erogeneous features are learned and incorporated. In
“Experiments,” we present the educational datasets, the
experimental setup, and the experimental results with
detailed explanation. Finally, in “Conclusions,” we conclude
the whole paper with some remarks.

Related Work

Knowledge Tracing

Knowledge tracing is an important research topic in EDM,
aiming to capture the students’ knowledge learning states
based on their performance on the exercises. BKT is a
dominant approach in the field, where the knowledge com-
ponents are denoted as a series of binary variables in the
hidden states modeled by a HMM [3, 10, 36]. The hid-
den states are updated according to each student’s responses
to the given exercises. Researchers then extend the HMM
model to explore different latent factors [15, 27, 37].

DKT [38] is a breakthrough to leverage a vanilla RNN or
an LSTM model to solve this task. In the debut, it is shown
that DKT can achieve 25% gain in the AUC score over BKT.
Though later, some researchers argue that, with suitable
extensions, BKT can achieve comparable performance with
DKT [26]. Due to the good performance of DKT, variants
of DKT models are accordingly proposed [48, 52, 53]. For
example, a memory-augmented neural network replaces the
LSTM in the original DKT to capture the long-term depen-
dence and extended to utilize the key-value mechanism to
store the concept representation and students’ understanding
state of each concept, respectively [52].

Some researchers also try to include heterogeneous fea-
tures to improve the model performance of knowledge trac-
ing [24, 53]. The existing publications show that by employ-
ing these heterogeneous features properly, they indeed can
further improve the model performance. However, the exist-
ing work contains the deficiency of handcraft or not fitting
in the DKT architecture. This motivates us to further explore
the heterogeneous features and to exploit them in the DKT
architecture.

Tree-Based Classifiers

Decision trees are one type of the most popular data min-
ing algorithms for classification and decision-making [39].
They utilize the entropy to split features and have trig-
gered a family of feature discretization and feature selection
techniques [14, 29]. The processes of feature selection and
feature discretization embedded in the training procedure
via decision trees have shown that they can largely reduce

the engineering effort [45]. Moreover, the learned features
are meaningful and interpretable, which motivates us to
include them in our proposal.

Among various decision trees, Classification and Regres-
sion Trees (CART) [39] have exhibited several significant
advantages: First, they can handle both numerical and cat-
egorical features. Second, they can handle outliers prop-
erly [46] and avoid overfitting [35]. Hence, we apply CART
in [7]. After observing the power of CART, we decide
to further explore other tree-based classifiers such as ran-
dom forest [4] and the Gradient Boosted Decision Tree
(GBDT) [18]. These two methods are both ensemble clas-
sifiers, where random forest consists of weak decision trees
to reduce the overall performance variance and the GBDT
is a linear combination of weak learners greedily to improve
the performance of the entire ensemble. Due to their power
of retaining robustness and improving the predictive per-
formance of solving classification applications [4, 18], we
apply these two methods in the rest.

Methods

Figure 1 illustrates the overall architecture of our proposed
model, Deep Knowledge Tracing with tree-based classifiers,
where CART is illustrated as the representative tree-based
classifier. It can be replaced by other tree-based classifiers,
e.g., random forest or GBDT. In Fig. 1, the bottom part is
the pre-processing procedure on the heterogeneous features.
These features are learned by CART to predict whether a
student will answer the exercise correctly and output the
predicted response. The predicted response and the true
response are encoded into a 4-bit one-hot encoding. They
are concatenated with the original one-hot encoding on the
exercise tag as a new input. This new input is fed into an
LSTM [20] to learn the similarity of exercises and trace the
knowledge components mastered by the students. It is noted
that Fig. 1 shows a vanilla RNN for simplicity, where we
deploy an LSTM in our evaluation.

Input and Output

Consider a specific student practicing an exercise at the t th
time stamp, let et and at be the exercise tag and the hetero-
geneous features, respectively. The notation ct = 1 implies
that the student will answer the exercise correctly while
ct = 0 for an incorrect answer. As shown in Fig. 1, CART
will take at as the input and tries to predict whether the
student will correctly answer the exercise given these het-
erogeneous features. The corresponding predicted response
is then denoted by a′

t .
All features are represented into the binary representa-

tion denoted by O(·, ·), where O(et , ct) ∈ {0, 1}M is the

6 Cogn Comput (2018) 10:3–14

Fig. 1 The architecture of our proposal with the 4-bit one-hot encod-
ing for responses consists of three parts: (1) heterogeneous features
learned via tree-based classifiers, (2) feature concatenation, and (3)
model training and prediction by an RNN/LSTM. The solid large black
nodes indicate the splitting of features on different sub-branches of
the trees. The dots in the black color, the white color, and the gray
color in a vector indicate the values of 1, 0, and the probability of the
prediction, respectively

original one-hot encoding for an exercise tag with the num-
ber of exercises beining M and O(a′

t , ct) is the 4-bit one-hot
encoding. Hence, the total size of O(et , ct) and O(a′

t , ct) is
2M + 4. For O(et , ct), all elements are zeros except that 1
will be denoted at the ith index when the answer of the ith

exercise is correct; otherwise, 1 will be placed at the i + M-
th index. O(a′

t , ct) is constructed by the predicted response
learned by the tree-based classifiers and the true response,
which is defined in Table 1.

After concatenating O(et , ct) and O(a′
t , ct), we feed it as

a new input of LSTM xt to train the corresponding model
and output a vector yt ∈ R

M for predicting the probability
that whether a student will answer the question correctly. In
the level of RNN/LSTM in Fig. 1, different color grades in
the nodes of yt represent different levels of the probability,
where dark colors represent higher probabilities while light
colors represent lower probabilities.

Models

Tree-Based Classifiers

We apply the following tree-based classifiers, CART [39],
random forest [4], and GBDT [18], to automatically par-
tition the feature space and output the predicted response
whether a student will correctly answer an exercise. We
briefly introduce these three models in the following.

At each node, CART continuously conducts binary par-
titioning to group the interaction of the same class by
maximizing the gini index or information gain. Here, we
take information gain as an example in the following formu-
lation. Given a set S at a node contains training data at ∈ R

n

and the corresponding labels ct ∈ {0, 1}, CART partitions
the data into two subsets

Sl = {(at , ct)|at,j < t}, and Sr = S \ Sl

where j is the splitting variable and t is the threshold
determined by minimizing the information gain defined as
follows:

(j∗, t∗) = argmin
j,t

G(S, j, t) � |Sl |
|S| H(Sl) + |Sr |

|S| H(Sr),

where | · | defines the Cardinality of the set, i.e., the number
of elements in the set. H(·) defines the impurity measured
by the cross entropy, and G(·) denotes the gini index or
information gain. For a region R with N observations, the
cross entropy H is defined by

H(X) = −
∑

k

pk log(pk), where pk = 1

N

∑

at∈R

I (ct = k)

Table 1 Explaination of the notation of O(a′
t , ct)

Symbol Meaning

1000 A true positive prediction: a correctly answered exercise is predicted as a correctly answered exercise.

0010 A false positive prediction: a wrongly answered exercise is predicted as a correctly answered exercise.

0100 A false negative prediction: a correctly answered exercise is predicted as an incorrectly answered exercise.

0001 A true negative prediction: a wrongly answered exercise is also predicted as an incorrectly answered exercise.

Cogn Comput (2018) 10:3–14 7

In binary classification, k is the label set, which can be
selected from {0, 1}, or {−1, +1}.

By minimizing the cross entropy, CART learns a set of
classification rules. At time t , the heterogeneous feature at is
fed into the root of CART and follows the path assigned by
the classification rules until getting a predicted response a′

t .

Random forest learns an ensemble of decision trees by
growing a bag of trees with the bootstrap sample and vari-
able subsets [4]. Suppose there are B trees in the bag, for
each tree, a bootstrap sample Z∗ of size N is drawn. At each
node of the corresponding tree Tb, a subset of variables is
selected at random and is split according to the same crite-
ria of CART until the maximum node size is reached. The
class prediction hatCB(at) = majority vote{a′b

t }Bb=1, where
a′b
t is the class prediction of a particular tree b.

GBDT is also a tree-based ensemble method and achieves
better performance by reducing bias rather than variance
[18]. The ensemble is learned by adding a CART iteratively
which minimizes the following objective function:

H(t) =
n∑

i=1

l(yi, ŷ
(t)
i) +

t∑

i=1

�(fi)

where n is the number of training samples, l(·) is the loss
function, and �(fi) is the regularization term. ŷ

(t)
i is the

predicted value for the i-th sample at the t-th step and is
defined by: ŷ(0)

i = 0, ŷ(t)
i = ∑t

k=1 fk(ai) = ŷ
(t−1)
i +ft (ai),

fk is the CART learned at the k-th step and fk(ai) is the
corresponding predicted value on the feature ai .

It is noted that the information of heterogeneous fea-
tures is therefore implicitly captured by a′

t via the predicted
response, which embeds the information of how a student
deviating from others in the exercises. The personalized
information is then utilized in the DTK models.

Recurrent Neural Networks

A recurrent neural network is a neural network that simu-
lates a discrete-time dynamical system that has an input xt ,
an output yt , and a hidden state ht , where t represents time.
The dynamical system is defined by

ht = fh(xt , ht−1) (1)

yt = fo(ht), (2)

where fh and fo are a state transition function and an output
function, respectively. Each function is parameterized by a
set of parameters: θh and θo.

LSTM is proven to be an efficient RNN in modeling
long-term dependency through a collection of cells and
gates. The cell states are controlled by gates to decide
whether to store or remove the information, which facili-
tates complex interaction of current input and history. The

hidden state and output are updated by the following set of
equations:

it = σ(Wxixt + Whiht−1 + Wcict−1 + bi) (3)

ft = σ(Wxf xt + Whf ht−1 + Wcf ct−1 + bf) (4)

ct = ftct−1 + it tanh(Wxcxt + Whcht−1 + bc) (5)

ot = σ(Wxoxt + Whoht−1 + Wcoct−1 + bo) (6)

ht = ot tanh(ct) (7)

where σ is the sigmoid function. The components of LSTM,
denoted as i, f, c, and o, are input gate, forget gate, cell
activation vector, and output gate, respectively.

In training an RNN/LSTM, we are given a set of N train-
ing sequences D = {(x(n)

i , y(n)
i)}Tn

i=1, where n = 1, . . . , N ,
and estimate the parameters by minimizing the following
objective function:

J (θ) ∝
N∑

n=1

Tn∑

t=1

L(y(n)
t , fo(h

(n)
t)), (8)

where θ defines all variables of W’s and b’s defined in
Eqs. (3)–(7). L(a, b) is a predefined divergence measure
between a and b, such as Euclidean distance or cross-
entropy.

The input xt = [O(et , ct), O(a′
t , ct)], capturing stu-

dents’ exercise performance, is fed into an LSTM to learn
the hidden structure of the sequence of exercises, which
represents the knowledge components. The hidden cell ht

is then passed to a fully connected layer via a sigmoid
activation function to get the output yt , which denotes the
predicted probability of whether a student will correctly
answer the next exercise. In this setting, we will predict the
probability for all M exercises because we do not know
which one is the next exercise.

Prediction

In the test, the average loss is computed by the binary cross-
entropy defined as follows:

L = 1

N

N∑

n=1

tn0 +T n

∑

t=tn0

cn
t+1 log ŷ

n
t + (1 − cn

t+1) log(1 − ŷn
t),

where N is the number of students, tn0 is the starting index
for the nth student in the test set, and T n is the number of
exercises for the student. The predicted value ŷn

t is the inner
product of predicted output and the one-hot encoding of the
exercises conducted by the student n, i.e., ŷn

t = yn
t
�O(en

t+1)

because ŷn
t can output the corresponding predicted prob-

ability of whether the student n can answer the question
correctly in the next time stamp.

8 Cogn Comput (2018) 10:3–14

Experiments

In the experiments, we address the following issues:

1) What is the performance of our proposal compared to
the baseline methods?

2) What is the effect of the encoding scheme?
3) What is the importance of the features learned?
4) What is the effect of tree-based classifiers to DKT and

the visualized trees?

“Model Comparison”–“Effect of Tree-Based Classifiers and
Tree Results” will answer the above questions accordingly.

Datasets

In the following, we conduct experiments on two popu-
lar educational datasets collected from the computer-based
online learning platforms [7, 53]. The datasets are:

– ASSISTments 2009-20101 [53]: The dataset consists
of 4,151 students exercising on 124 knowledge com-
ponents with 332,343 interactions (records). It is also
called the mastery learning data because a student
is considered mastering a skill when meeting certain
criteria.

– Junyi academy2 [6]: The dataset is crawled from a Chi-
nese e-learning platform established on the basis of the
open-source code released by the Khan Academy. The
dataset contains students’ exercises in mathematics. We
select 1,000 most active students from the exercise log,
which yields 666 knowledge components and 971,402
records.

Table 2 summarizes the basic statistics of the datasets,
including the number of users, skills (knowledge compo-
nents), records (exercise interactions), and the used het-
erogeneous features. In the following, ASSISTments and
Junyi are bold to denote the corresponding dataset. In
ASSISTments, we use the following 12 features:

• original: a binary feature records whether the exer-
cise is the main problem or a scaffolding problem, i.e.,
whether the original problem is broken into several
steps.

• attempt count: a numerical value records the num-
ber of attempts (times) a student tries to answer the
exercise.

• ms first response: a numerical value records the time
in milliseconds between the start time and the first
action from the student, e.g., asking for the hints or
entering an answer.

1https://sites.google.com/site/assistmentsdata/home/assistment-2009-
2010-data/skill-builder-data-2009-2010
2https://pslcdatashop.web.cmu.edu/DatasetInfo?datasetId=1198

Table 2 Summary of the datasets

Summary ASSISTments Junyi

No. of users 4,151 1,000

No. of skills 124 666

No. of records 332,343 971,402

No. of features 12 10

• answer text: a categorical feature records whether the
answer is entered by the student or the value is selected
in a multiple choice.

• assistments position: the position of the assignment on
the class assignments page.

• type (problem set type): the organization of contents
in the problem set. It has three classes:

– Linear: Student completes all problems in a
pre-determined order.

– Random: Student completes all problems, but
each student is presented with the problems in
a different random order.

– Mastery: Random order, and student must
“master” the problem set by getting a certain
number of questions correct in a row before
being able to continue.

• hint count: an integer records the number of the hints
a student requests in practicing the exercise.

• hint total: an integer records the number of possible
hints on the problem. Note that each problem has a
different number of hints.

• overlap time: a numerical value records the time in
milliseconds for the student to complete the problem.

• first action: a categorical feature records the first
action the student performs to the problem: 0 for
attempting to solve it, 1 for asking for the hint, 2 for
scaffolding, and 3 for doing nothing.

• opportunity: an integer records the number of opportu-
nities the student has to practice the skill.

• tutor mode: a categorical feature indicating whether
the exercise is in the tutor mode, the test mode, the
pre-test mode, or the post-test mode.

In Junyi, there are ten heterogeneous features:

– problem number: an integer records how many times
the student practices the exercise. For example, the
value is 1 if the student tries to answer the exercise at
the first time.

– topic mode: a binary feature recordswhether the student
is assigned this exercise by clicking the topic icon.

– suggested: a binary feature records whether the exer-
cise is suggestede by the system according to prerequi-
site relationships on the knowledge map.

https://sites.google.com/site/assistmentsdata/home/assistment-2009-2010-data/skill-builder-data-2009-2010
https://sites.google.com/site/assistmentsdata/home/assistment-2009-2010-data/skill-builder-data-2009-2010
https://pslcdatashop.web.cmu.edu/DatasetInfo?datasetId=1198

Cogn Comput (2018) 10:3–14 9

– reviewmode: a binary feature records whether the exer-
cise is done by the student after he/she earns proficiency.

– time: a numerical value records the time (in seconds) of
a student spending on the exercise.

– time taken: a numerical value records the total number
of seconds the student spends on this exercise.

– attempt counts: an integer records how many times the
student attempts to answer the problem.

– hints used: a binary feature records whether the student
requests hints.

– count hints: an integer records how many times the
student requests hints.

– earn proficiency: a binary feature records whether the
student reaches proficiency. Please refer to [21] for the
algorithm of computing proficiency.

Both datasets also contain other non-numerical and non-
categorical features, which are removed in the experiment.
Detailed explanation about the features can be referred to
the following two links:

– https://sites.google.com/site/assistmentsdata/
how-to-interpret and

– https://pslcdatashop.web.cmu.edu/Files?datasetId=1198.

Model Comparison

A fivefold student level cross-validation is conducted in
the test. The results are evaluated by the area under the
ROC curve (AUC) and R2, two standard metrics for evalu-
ating the predicted performance [22, 38, 53]. The following
models with different feature processing are compared:

– Deep Knowledge Tracing (DKT) [38]: the input fea-
ture is the one-hot encoding of the exercise tags.

– DKT with Feature Engineering (DKT-FE) [53]: Fea-
ture engineering has been conducted by manually select-
ing a subset of heterogeneous features and dis-
cretizing them by a certain pre-determined criterion
while reducing the dimensionality of the input via
autoencoder. The learned feature is concatenated with

the one-hot encoding of the exercise tags as the
input.

– DKT without Feature Engineering (DKT-W): The
selected heterogeneous features are the same as those
of DKT-FE but without any further feature processing.
The selected feature is directly concatenated with the
one-hot encoding of the exercise tags as the input.

– DKTwith Decision Trees (DKT-CART): The selected
heterogeneous feature is learned by CART to output
the predicted response, which is represented by a 2-
bit binary code, and concatenated with the 2-bit binary
code of the true response and the one-hot encoding as
the input of the LSTM.

– DKT with Random Forest (DKT-RF): The selected
heterogeneous feature is learned by the random forest to
predict the corresponding response. The setting of the
input is the same as that of DKT-CART.

– DKT with GBDT (DKT-GBDT): The selected het-
erogeneous feature is learned by the corresponding
response. The setting of the input is the same as that of
DKT-CART.

For the LSTM, we set the hidden dimension to 200 and train
it via the stochastic gradient descent on the size of a mini-
batch being 5. Other parameters are set as default in the Ten-
sorflow. For different tree-based classifiers, the parameters
are set as default in the Python toolbox, scikit-learn.

Table 3 reports the results of all four compared methods.
From the results, we have the following observations:

– Our proposed DKT with tree-based classifiers attains
significantly better performance over other methods in
terms of both the AUC and R2 metrics on both datasets.
Especially, our proposed DKT-CART attains 13% gain
over DKT in the R2 metric.

– For models of the DKT with tree-based classifiers,
DKT-GBDT attains the best performance in both
datasets among all three compared methods, while
DKT-RF gets the second best performance. The results
show that ensemble methods can further improve the
model performance in these two datasets.

Table 3 Experimental results
on the compared models. The
predicted and true responses
are encoded into 4-bits in the
proposed models

Model ASSISTments Junyi

AUC (%) R2 AUC (%) R2

DKT 73.8 ± 0.7 0.161 ± 0.010 72.5 ± 0.4 0.076 ± 0.014

DKT-FE 73.1 ± 1.0 0.163 ± 0.010 68.8 ± 0.5 0.039 ± 0.004

DKT-W 60.9 ± 0.2 0.010 ± 0.012 70.0 ± 0.6 0.052 ± 0.005

DKT-CART 74.2 ± 0.7 0.172 ± 0.014 72.9 ± 0.5 0.090 ± 0.007

DKT-RF 74.4 ± 0.7 0.171 ± 0.014 73.2 ± 0.8 0.092 ± 0.025

DKT-GBDT 74.7 ± 0.5 0.181 ± 0.010 73.3 ± 0.5 0.093 ± 0.010

The Italic entries in the tables are the highest outputs

https://sites.google.com/site/assistmentsdata/how-to-interpret
https://sites.google.com/site/assistmentsdata/how-to-interpret
https://pslcdatashop.web.cmu.edu/Files?datasetId=1198

10 Cogn Comput (2018) 10:3–14

– An interesting observation is that including hetero-
geneous features without appropriately pre-processing
degrades the performance of DKT. We conjecture this
may be due to the introduction of noise, which inter-
venes DKT to extract the similarity between exercises.

– The degrading effect of DKT-W is highly dependent on
the size of the dataset. The size of the Junyi dataset is
much larger than that of ASSISTments and it may help
to relieve the effect of training the LSTM.

– The performance of DKT-FE is a slightly poor than
that of DKT-W in the Junyi dataset. The reason is that
we adopt the same criterion to process the feature as
the ASSISTments data shown in [53]. The provided
criterion is not extensible to the new Junyi dataset.

– Overall, the experimental results show that including
additional features may improve the prediction accu-
racy, but it requires properly pre-processing.

Effect of Encoding Scheme

One issue is that the predicted and true responses can be
encoded into 2-bit instead of 4-bit as the designed setting
of one-hot encoding of the exercise tags. To test the effect
of these two settings, we change the inputs and conduct the
experiments accordingly.

Tables 4 and 5 report the results of the compared results
with respect to the number of encoded response units,
respectively. We can observe that

– In ASSISTments, DKT-RF and DKT-GBDT achieve
better performance than DKT-CART in both the AUC
and R2 metrics. It shows that ensemble classifiers can
further improve the model performance.

– In Junyi, the performance is not significantly different.
DKT-CART with 2-bit units and DKT-GBDT with 4-
bit units attain the best performance in the AUC metric,
while DKT-CART earns a little better than DKT-GBDT
in terms of the R2 metric.

Generally speaking, 4-bit units encoding can get bet-
ter or at least comparable performance than the scheme of

Table 4 Experimental results of the DKT model with different tree-
based classifiers on ASSISTments with respect to the number of
encoded response units

Model 4 units 2 units

AUC (%) R2 AUC (%) R2

DKT-CART 74.2 ± 0.7 0.172 ± 0.014 72.9 ± 0.7 0.156 ± 0.014

DKT-RF 74.4 ± 0.7 0.171 ± 0.014 73.3 ± 0.6 0.160 ± 0.008

DKT-GBDT 74.7 ± 0.5 0.181 ± 0.010 74.4 ± 0.6 0.178 ± 0.010

The Italic entries in the tables are the highest outputs

Table 5 Experimental results of the DKT model with different tree-
based classifiers on Junyi with respect to the number of encoded
response bits

Decision Tree 4 units 2 units

AUC (%) R2 AUC (%) R2

DKT-CART 72.9 ± 0.5 0.090 ± 0.007 73.3 ± 0.5 0.097 ± 0.007

DKT-RF 73.2 ± 0.8 0.092 ± 0.025 73.1 ± 0.5 0.092 ± 0.003

DKT-GBDT 73.3 ± 0.5 0.093 ± 0.010 73.1 ± 0.8 0.087 ± 0.015

The Italic entries in the tables are the highest outputs

2-bit units encoding. We hypothesize that it may be the
consequence of “division of labor.” As the input xt is the
concatenation of two one-hot encoding vectors, it selects
and adds two columns in the input-to-hidden weight matrix,
which contributes to the updating of hidden layer. If the
scheme of the 4-bit unit encoding is applied, the last four
columns in the input-to-hidden weight matrix would be ded-
icated to learn how the cross-effect of the predicted response
and the true response to the contribution of knowledge trac-
ing. Meanwhile, the original one-hot encoding features are
assigned to simply learn the effect of accumulating pro-
ficiency through exercises. In contrast, for the scheme of
the 2-bit unit encoding, no column in the weight matrix
is assigned to learn the cross-effect. The original one-hot
encoding features have to learn not only the accumulation
of proficiency but also the cross-effect, which increases the
learning complexity.

Importance of the Features

Tree-based classifiers have the power to evaluate the impor-
tance of features. In [4, 33], the importance of a variable can
be measured by mean decrease impurity (MDI). That is, the
importance of a variable Xm for predicting Y is measured
by adding up the weighted impurity decreases p(t)�i(st , t)

for all nodes t where Xm is involved, averaged over all NT

trees:

Importance(Xm) = 1

NT

∑

T

∑

t∈T :v(st)=Xm

p(t)�i(st , t)

and �i(s, t) = i(t) − pLi(tL) − pRi(tR), where p(t) is
the proportions Nt

N
of samples reaching t and pL, pR are

NtL

Nt
,

NtR

Nt
, the proportions of samples in the left and right

node, respectively. v(st) is the variable involved in split st .
i(t) can be any impurity measure.

Figure 2 shows the importance of the features in random
forest for ASSISTments and Junyi, respectively. We can
observe that

– Figure 2a shows that the features of ASSISTments are
grouped into five sectors based on their importance.

Cogn Comput (2018) 10:3–14 11

Fig. 2 Feature importance
measured on both test datasets.
The importance of variables are
evaluated by mean decrease
impurity. a ASSISTments. b
Junyi

The feature, original, is the most important with a mean
over 0.3. Following it are the features of attempt count,
ms first response, tutor mode, and answer type, which
get a mean weight around 0.12. The third sector consists
of the features of position, type, and hint count, which
get a mean weight of 0.05. The fourth sector consists
of the features of hint total and overlap time. The final
sector consists of the features of first action and oppor-
tunity, which show no importance for the classification.

– Figure 2b shows that the features of Junyi are grouped
into four sectors based on their importance. The feature
of problem number gains an important weight over 0.7.
The second sector consists of the features of topic mode
and suggested which exhibits a mean weight around 0.1.
The third sector consists of the features of review mode,
time taken, and count atte-mpts, whose mean weights
are less than 0.1. The rest four features, hint used,
count hints, earned proficie-ncy, and time, are in the
final sector and contain negligible weights.

Table 6 Prediction accuracy of different tree-based classifiers given
the heterogeneous features on ASSISTments

Classifier AUC (%) R2

CART 88.8 ± 3.7 0.526 ± 0.14

RF 94.1 ± 2.4 0.544 ± 0.13

GBDT 93.56 ± 2.4 0.463 ± 0.08

The Italic entries in the tables are the highest outputs

Overall, the importance of the features can provide us
guidance to understand the data and extract meaningful
information to improve model performance.

Effect of Tree-Based Classifiers and Tree Results

We also record the performance of the tree-based classifiers
predicting the correctness of the student’s answer to the cur-
rent exercise in Tables 6 and 7 forASSISTments and Junyi,
respectively. The results show that the adopted tree-based
classifiers usually attain good performance on the prediction
at the current state. The ensemble classifiers can get bet-
ter performance than CART and accordingly achieve better
performance in the corresponding DKT models.

Another advantage of tree-based classifiers is its inter-
preting ability for the results. The decision tree can be
visualized such that teachers and researchers can extract the
latent factors which affect the probability of correct predic-
tion. Figure 3 shows parts of the tree learned by CART on

Table 7 Prediction accuracy of different tree-based classifiers given
the heterogeneous features on Junyi

Classifier AUC (%) R2

CART 99.0 ± 0.0 0.965 ± 0.0

RF 99.4 ± 0.0 0.968 ± 0.0

GBDT 99.2 ± 0.0 0.968 ± 0.00

The Italic entries in the tables are the highest outputs

12 Cogn Comput (2018) 10:3–14

Fig. 3 Parts of the trees learned
by CART on ASSISTments and
Junyi. The color of a block
indicates the majority class, i.e.,
the class with more training
samples, in that node: the blue
color denotes that the sample is
correctly assigned to the
majority class and the red color
for incorrect assignment. The
light of the color implies the
value of the gini coefficient, a
lighter one for a larger gini
coefficient. In each block, the
first row denotes the selected
feature and its splitting
threshold. “gini”” stands for the
gini coefficient. “samples”
means the total number of
samples being assigned and
classified in that node. “value”
denotes the number of samples
in each class. The last row
“class” indicates whether the
current block is in the correct
state

both datasets. The learned trees can then be further analyzed
to understand the importance of the features.

Conclusions

We have proposed an effective method to pre-process the
heterogeneous features and integrate the learned feature
implicitly to the original deep knowledge tracing model.
The pre-processing step is conducted by tree-based clas-
sifiers, i.e., CART, random forest, and gradient boosting
decision tree, to output the predicted response that a student
will correctly answer the current exercise given the hetero-
geneous features. This allows us to capture students’ beha-
viors on the exercises and to provide an good initialization

to the DKT model. Our experiments on two educational
datasets demonstrate the effectiveness and merits of our
proposal.

Some interesting future work can be considered. For
example, we do not fully utilize the importance of the
features. How to include such information in the RNN mod-
els is a significant research topic. The current setting only
predicts exercises in a fixed set. It is valuable to explore the
current model to provide the personalized recommendation
for students to select appropriate exercises and to conduct
selective practice.

Funding Information The work described in this paper was par-
tially supported by the Research Grants Council of the Hong Kong
Special Administrative Region, China (Project No. UGC/IDS14/16).

Cogn Comput (2018) 10:3–14 13

Compliance with Ethical Standards

Ethical Approval This article does not contain any studies with
human participants or animals performed by any of the authors.

References

1. Agrawal R. Data-driven education: Some opportunities and chal-
lenges. In: EDM; 2016. p. 2.

2. Ayers E, Nugent R, Dean N. A comparison of student skill
knowledge estimates. In: EDM; 2009. p. 1–10.

3. Baker RS, Corbett AT, Aleven V. More accurate student
modeling through contextual estimation of slip and guess prob-
abilities in Bayesian knowledge tracing. In: Proceedings of the
9th International Conference on Intelligent Tutoring Systems, ITS
2008, Montreal, Canada, June 23-27; 2008. p. 406–415.

4. Breiman L. Random forests. Mach Learn. 2001;45(1):5–32.
5. Cambria E, Hussain A. Sentic computing. Cogn Comput. 2015;

7(2):183–5.
6. Chang H, Hsu H, Chen K. Modeling exercise relationships in

e-learning: a unified approach. In: EDM; 2015. p. 532–535.
7. Cheung LP, Yang H. Heterogeneous features integration in deep

knowledge tracing. In: ICONIP; 2017.
8. Chung J, Gulcehre C, Cho K, Bengio Y. Gated feedback

recurrent neural networks. In: ICML; 2015. p. 2067–2075.
9. Corbett AT, Anderson JR. Knowledge tracing: modelling the

acquisition of procedural knowledge. User Model User-adapt
Interact. 1995;4(4):253–78.

10. Corbett AT, Anderson JR. Knowledge tracing: modeling the
acquisition of procedural knowledge. User Modeling and User-
Adapted Interaction. 1994.

11. Czerniewicz L, Deacon A, Glover M, Walji S. MOOC—
making and open educational practices. J Comput High Educ.
2017;29(1):81–97.

12. Desmarais MC, Villarreal A, Gagnon M. Adaptive test design
with a naive bayes framework. In: EDM; 2008. p. 48–56.

13. Gao F, Zhang Y, Wang J, Sun J, Yang E, Hussain A. Visual
attention model based vehicle target detection in synthetic aperture
radar images: a novel approach. Cogn Comput. 2015;7(4):434–44.

14. Garcia S, Luengo J, Saez JA, Lopez V, Herrera F. A sur-
vey of discretization techniques Taxonomy and empirical analysis
in supervised learning. IEEE Trans Knowl Data Eng. 2013;25
(4):734–50.

15. Gong Y, Beck JE, Heffernan NT. Comparing knowledge tracing
and performance factor analysis by using multiple model fitting
procedures. In: Proceedings of the 10th International Conference
on Intelligent Tutoring Systems, ITS 2010, Part I, Pittsburgh, PA,
USA, June 14-18; 2010. p. 35–44.

16. Goodfellow IJ, Bengio Y, Courville AC. Deep Learning. Adap-
tive computation and machine learning. MIT Press. 2016.

17. Graves A, Mohamed A, Hinton GE. Speech recognition with
deep recurrent neural networks. In: IEEE ICASSP; 2013. p. 6645–
6649.

18. Hastie T, Tibshirani R, Friedman J. The elements of statistical
learning: data mining, inference, and prediction, 2nd ed. Berlin:
Springer; 2009.

19. Hinton GE, Osindero S, Teh YW. A fast learning algorithm for
deep belief nets. Neural Comput. 2006;18(7):1527–54.

20. Hochreiter S, Schmidhuber J. Long short-term memory. Neural
Comput. 1997;9(8):1735–80.

21. Hu D. How Khan Academy is using machine learning to assess
student mastery. 2011.

22. Hu J, Yang H, Lyu MR, King I, So AM-C. Online nonlinear
AUC maximization for imbalanced data sets. IEEE Trans Neural
Netw Learning Syst. 2017.

23. Hu Z, Zhang Z, Yang H, Chen Q, Zuo D. A deep learn-
ing approach for predicting the quality of online health expert
question-answering services. J Biomed Inform. 2017;71:241–53.

24. Huang Y, González-brenes JP, Brusilovsky P. General fea-
tures in knowledge tracing to model multiple subskills, temporal
item response theory, and expert knowledge. In: EDM; 2014.
p. 84–91.

25. Huang Y, Guerra J, Brusilovsky P. A data-driven framework
of modeling skill combinations for deeper knowledge tracing. In:
EDM; 2016. p. 593–594.

26. Khajah M, Lindsey RV, Mozer M. How deep is knowledge
tracing? In: EDM; 2016.

27. Khajah M, Wing R, Lindsey RV, Mozer M. Integrating
latent-factor and knowledge-tracing models to predict individual
differences in learning. In: EDM; 2014. p. 99–106.

28. Koedinger KR, Cunningham K, Skogsholm A, Leber B. An open
repository and analysis tools for fine-grained, longitudinal learner
data. In: EDM; 2008. p. 157–166.

29. Kotsiantis S, techniques D. Kanellopoulos. Discretization a recent
survey. GESTS International Transactions on Computer Science
and Engineering. 2006;32(1):47–58.

30. Krizhevsky A, Sutskever I, Hinton GE. ImageNet classifica-
tion with deep convolutional neural networks. Commun ACM.
2017;60(6):84–90.

31. Labutov I, Studer C. Calibrated self-assessment. In: EDM; 2016.
32. LeCun Y, Bengio Y, Hinton GE. Deep learning. Nature.

2015;521(7553):436–44.
33. Louppe G, Wehenkel L, Sutera A, Geurts P. Understanding vari-

able importances in forests of randomized trees. In: NIPS; 2013.
p. 431–439.

34. Mikolov T, Karafiát M, Burget L, Cernocký J, Khudanpur
S. Recurrent neural network based language model. In: INTER-
SPEECH; 2010. p. 1045–1048.

35. Mingers J. An empirical comparison of pruning methods for
decision tree induction. Mach Learn. 1989;4(2):227–43.

36. Pardos ZA, Heffernan NT. Modeling individualization in a
Bayesian networks implementation of knowledge tracing. In: Pro-
ceedings of the 18th International Conference on User Modeling,
Adaptation, and Personalization, UMAP 2010, Big Island, HI,
USA, June 20–24; 2010. p. 255–266.

37. Pavlik JrPI, Cen H, Koedinger KR. Performance factors
analysis—a new alternative to knowledge tracing. Online Submis-
sion. 2009.

38. Piech C, Bassen J, Huang J, Ganguli S, Sahami M, Guibas
LJ, Sohl-Dickstein J. Deep knowledge tracing. In: NIPS; 2015. p.
505–513.

39. Quinlan JR. C4.5: programs for machine learning. Amsterdam:
Elsevier; 2014.

40. Schmidhuber J. Deep learning in neural networks: an overview.
Neural Netw. 2015;61:85–117.

41. Silver D, Huang A, Maddison CJ, Guez A, Sifre L, van den
Driessche G, Schrittwieser J, Antonoglou I, Panneershelvam V,
Lanctot M, Dieleman S, Grewe D, Nham J, Kalchbrenner N,
Sutskever I, Lillicrap TP, Leach M, Kavukcuoglu K, Graepel T,
Hassabis D. Mastering the game of go with deep neural networks
and tree search. Nature. 2016;529(7587):484–9.

42. Spratling MW. A hierarchical predictive coding model of object
recognition in natural images. Cogn Comput. 2017;9(2):151–67.

43. Sun R. Anatomy of the mind: a quick overview. Cogn Comput.
2017;9(1):1–4.

44. Sweeney M, Lester J, Rangwala H, Johri A. Next-term stu-
dent performance prediction: a recommender systems approach.
In: EDM; 2016. p. 7.

45. Tang J, Alelyani S, Liu H. Feature selection for classification A
review. In: Data classification: algorithms and applications; 2014.
p. 37.

14 Cogn Comput (2018) 10:3–14

46. Timofeev R. Classification and regression trees (CART) the-
ory and applications. Berlin: PhD thesis, Humboldt University;
2004.

47. Vinyals O, Toshev A, Bengio S, Erhan D. Show and tell:
lessons learned from the 2015 MSCOCO image captioning chal-
lenge. IEEE Trans Pattern Anal Mach Intell. 2017;39(4):652–
63.

48. Wang L, Sy A, Liu L, Piech C. Deep knowledge tracing on
programming exercises. In: L@S; 2017. p. 201–204.

49. Xiong X, Zhao S, Inwegen EV, Beck J. Going deeper with deep
knowledge tracing. In: EDM; 2016. p. 545–550.

50. Xu C, Li P. Dynamics in four-neuron bidirectional associative
memory networks with inertia and multiple delays. Cogn Comput.
2016;8(1):78–104.

51. Yang H, Ling G, Su Y, Lyu MR, King I. Boosting response
aware model-based collaborative filtering. IEEE Trans Knowl
Data Eng. 2015;27(8):2064–77.

52. Zhang J, Shi X, King I, Yeung D. Dynamic key-value memory
networks for knowledge tracing. In: WWW; 2017. p. 765–774.

53. Zhang L, Xiong X, Zhao S, Botelho A, Heffernan NT. Incorpo-
rating rich features into deep knowledge tracing. In: L@S; 2017.
p. 169–172.

	Implicit Heterogeneous Features Embedding in Deep Knowledge Tracing
	Abstract
	Introduction
	Related Work
	Knowledge Tracing
	Tree-Based Classifiers

	Methods
	Input and Output
	Models
	Tree-Based Classifiers
	Random forest
	GBDT

	Recurrent Neural Networks
	Prediction

	Experiments
	Datasets
	Model Comparison
	Effect of Encoding Scheme
	Importance of the Features
	Effect of Tree-Based Classifiers and Tree Results

	Conclusions
	Funding Information
	Compliance with Ethical Standards
	Ethical Approval
	References

