Cogn Comput (2018) 10:359-367
DOI 10.1007/s12559-017-9506-0

@ CrossMark

Compressing and Accelerating Neural Network for Facial

Point Localization

Dan Zeng! © . Fan Zhao! - Wei Shen! - Shiming Ge?

Received: 23 March 2017 / Accepted: 5 September 2017 / Published online: 17 September 2017

© Springer Science+Business Media, LLC 2017

Abstract State-of-the-art deep neural networks (DNNs)
have greatly improved the accuracy of facial landmark local-
ization. However, DNN models usually have a huge number
of parameters which cause high memory cost and compu-
tational complexity. To address this issue, a novel method
is proposed to compress and accelerate large DNN models
while maintaining the performance. It includes three steps:
(1) importance-based pruning: compared with traditional
connection pruning, weight correlations are introduced to
find and prune unimportant neurons or connections. (2)
Product quantization: product quantization helps to enforce
weights shared. With the same size codebook, product quan-
tization can achieve higher compression rate than scalar
quantization. (3) Network retraining: to reduce compres-
sion difficulty and performance degradation, the network is
retrained iteratively after compressing one layer at a time.
Besides, all pooling layers are removed and the strides of
their neighbor convolutional layers are increased to acceler-
ate the network simultaneously. The experimental results of

0< Dan Zeng
dzeng @shu.edu.cn

Fan Zhao
shu_zfan @i.shu.edu.cn
Wei Shen

shenweil231@gmail.com

Shiming Ge
geshiming @iie.ac.cn

Key Laboratory of Specialty Fiber Optics and Optical Access
Networks, Shanghai University, Shanghai 200072, China

Institute of Information Engineering, Chinese Academy
of Sciences, Beijing 100195, China

compressing a VGG-like model demonstrate the effective-
ness of our proposed method, which achieves 26 x compres-
sion and 4 x acceleration while the root mean squared error
(RMSE) increases by just 3.6%.

Keywords Network compression - Network acceleration -
Pruning - Product quantization - Facial point localization

Introduction

Facial landmark localization is a fundamental problem of
many face-related vision tasks, such as head pose estimation
[1, 2], facial emotion recognition [3], and face verifica-
tion [4, 5]. Recent deep neural networks (DNNs) have
significantly improved the performance of facial landmark
localization under extreme conditions [6—8]. However, an
excellent localization method should not only be robust to
facial deformation, expression, and illumination but also be
efficient for storage and computation. DNNs generally have
a huge number of parameters which lead to extensive stor-
age and time cost. These are especially undesirable when
detecting landmarks on mobile devices. To address this
issue, model miniaturization and acceleration techniques are
greatly needed.

In this paper, an effective framework is proposed to solve
the above problems. It integrates importance-based prun-
ing and product quantization [9] to compress the model. All
pooling layers are merged with their neighbor convolutional
layers to accelerate the model simultaneously. More specif-
ically, a VGG-like [11] baseline model is firstly trained to
locate 68 facial landmarks. This dense network has excel-
lent performance but a large model size. Then this network
is retrained iteratively after compressing one layer at a
time. When compressing each layer, unimportant neurons or

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s12559-017-9506-0&domain=pdf
http://orcid.org/0000-0003-2255-0815
mailto:dzeng@shu.edu.cn
mailto:shu_zfan@i.shu.edu.cn
mailto:shenwei1231@gmail.com
mailto:geshiming@iie.ac.cn

360

Cogn Comput (2018) 10:359-367

connections are pruned based on weight correlations. Prod-
uct quantization is then applied on the absolute values of
remaining weights. To accelerate the model further, all pool-
ing layers are abandoned and the strides of their neighbor
convolutional layers are increased before retraining. Finally,
we successfully achieve 26 x compression and 4 x acceler-
ation while the root mean squared error (RMSE) increases
by just 3.6%.

Pruning aims at removing redundancy and constructing
a sparser network. It shares some similarity with Dropout
[13], which is used to avoid overfitting through randomly
setting the neural outputs to zeros. Pruning is a common
method in dense network compression [14-16]. It is usu-
ally used to prune connections between neurons. Although
this kind of pruning can reduce the model size, it needs
to reconstruct the sparse weight matrix during testing. That
means the computation complexity and memory cost will
stay the same. Instead of pruning connections, we introduce
a neuron-pruning method, which is equal to build a smaller
net with less neurons as shown in Fig. 1. Product quantiza-
tion decomposes the original high-dimensional weights into
several low-dimensional Cartesian product subspaces which
are then quantized separately. Compared with scalar quan-
tization in DeepCompression [16], product quantization
needs fewer cluster indexes and codes with same quanti-
zation error. It means a higher compressing ratio can be
obtained without noticeable accuracy loss. After pruning
and product quantization, we remove all pooling layers and
increase the strides of their neighbor convolutional layers.
It can save much time of im2col-based [10] convolutional
computation.

On the other hand, there is not enough public datasets for
facial landmark detection as training data. There are only
4000 images of 68 labeled landmarks collected from sev-
eral public datasets [27-30], which means it must be careful
to avoid overfitting. Fortunately, pruning and quantization
both can be regarded as some regularizers. It is no longer
needed to over-worry about the overfitting problem, and a
larger learning rate can be used without a dropout layer.

The rest of the paper is organized as follows. The
“Related Work™ section briefly reviews the related work.
The “Our Method” section describes the three parts of our
method: neuron or connection pruning, production quanti-
zation, and network retaining. In the “Experiments” section,
the baseline model is introduced and compressed to evaluate

Fig.1 An illustration of
differences between pruning
connections and neurons.
Pruning a neuron will remove all
related connections

Original Network

@ Springer

the effectiveness of our method. Finally, the conclusion is
given in the “Conclusion” section.

Related Work

To reduce the storage and time cost of DNNSs, an increasing
number of works begin to explore network miniaturization
and acceleration techniques.

Some works achieve this goal by carefully designing
small network architectures. Googl.eNet-V3 [17] not only
used 1 x 1 convolution kernels to reduce the feature dimen-
sion but also replaced the n x n convolution with a 1 x
n convolution followed by a n x 1 convolution. Unlike
this, Courbariaux et al. [18] trained a binarized neural net-
work with binary weights and activations, which drastically
reduced memory consumption. Denil et al. [19] represented
the weight matrix as a product of two low-rank factors.
During training, they fixed one factor and only updated
the other factor. Similarly, Sainath et al. [21] utilized the
low-rank matrix factorization to reduce the parameters of
fully connected layers. However, training a network with
factorized representation directly usually performs poorly.
Recently, Scardapane et al. [20] designed a new loss func-
tion to perform feature selection, network training, and
weight compression simultaneously, but their work is not
suitable for convolutional network.

In addition to training small models directly, compress-
ing a large model into a small one is another popular choice.
Denton et al. [22] first considered singular value decompo-
sition (SVD) to compress parameters. Gong et al. [23] sys-
tematically explored quantization methods for compressing
the dense connected layers, including binarization, scalar
quantization, product quantization, and residual quantiza-
tion. Their experiments showed that product quantization is
obviously superior to other methods. However, these meth-
ods have no network retraining schemes and inevitably
cause the performance degradation. In our method, the
production quantization is applied with the retraining pro-
cedure. So a high compression ratio can be achieved with
negligible performance loss.

Han et al. [16] compressed the network by combining
pruning connections, scalar quantization, and Huffman cod-
ing, which is a popular work recently. In contrast, we prune
not only neural connections but also neurons. So it will cost

Pruning Connections

Pruning Neurons

Cogn Comput (2018) 10:359-367

361

less to store the sparse structure and the inference speed will
be significantly improved simultaneously. We also replace
its scalar quantization with product quantization on absolute
values and introduce an iterative way to retrain the network
layer by layer. In addition, Sun et al. [15] found that weight
magnitude is not a good indicator to the importance of neu-
ral connections. So they pruned the network connections
based on weight correlations. We improve this method and
bring it into our work.

Moreover, some researchers have turned their attentions to
the hardware for model compression and acceleration. Han
et al. [24] designed a specific hardware accelerator called
EIE. It could run a compressed network with sparse and
weight sharing neurons directly. IBM team [25] applied struc-
tured kernels into convolutional layers on their TrueNorth
hardware architecture. It achieved a good trade-off between
energy efficiency and classification accuracy. But yet, these
techniques have almost not reached a practical level.

Our Method

We first train a dense network as our baseline and then
compress it with the following steps.

Pruning Neurons and Connections

With the pre-trained dense network, a pruning ratio R (R >
1) is used to control the number of neurons or connections
that will be pruned. Concretely, only 1/R of neurons or
connections will be preserved. The key problem here is to
decide which neurons or connections will be kept. Deep-
Compression [16] removed all connections with weights
below a specified threshold. However, weight magnitude
cannot indicate the importance of neural connections well.
A fairly straightforward approach is to iteratively drop a
neuron with minimum prediction error:

Ay = ||Wx — Wx|*. (1)

where x is the input, Ay is the error of output, and W and 1%
are the original weight matrix and the pruned weight matrix,
respectively. To build the W, all matrix columns correspond-
ing to the pruned neurons will be set to zeros. However, this
greedy algorithm is inefficient, especially when there are
too many neurons. Inspired by Sun et al. [15], we measure
the importance of neuron based on the sum of connection
correlations. It contains two parts:

(1) For fully connected layers that have no weight sharing,
the correlation coefficient between neuron x; and y; is
computed as follows:

E[(xi - ux;)(yj - uyj)]

Oy, Oy,

2

rij =

where p,;, and oy, separately denote the mean and
standard deviation of all weights related to input neu-
ron x;, and py; and oy; separately denote the mean
and standard deviation of all weights related to out-
put neuron y;. Then the importance of output neuron

Yj is

L= "1Irijl - 3)

i=1

We keep the most important 1/R of output neurons
and remove the rest.

(2) For convolutional layers with weight sharing, it is
impracticable to prune neurons. So we decide to prune
connections instead. The correlation coefficients are
firstly computed with the method described by Sun
et al. [15] to indicate the importance of the weights.
Then the same number of weights with minimum
importance are removed from each convolution kernel.
This specific pruning operation relates to our strategy
for convolutional computation. We use im2col [10] to
perform fast convolution which reduces this problem
to matrix-matrix multiplication. So an aligned weight
matrix after pruning will help the reconstruction of
the sparse matrix and make it easy to apply product
quantization further, as shown in Fig. 2.

Product Quantization

The network performance is sensitive to the pruning ratio.
Although a larger pruning ratio can generate a higher com-
pression ratio, the network performance will be severely
curtailed as shown in Fig. 7. Therefore, product quantiza-
tion [9] is applied to compress the network further. Product
quantization is a popular vector quantization method. With
decomposing original high-dimensional space into several
low-dimensional subspaces and taking quantization sepa-
rately, the data distribution can be described well with less
centroid codes.

Given a pruned weight matrix W € R™*" the positive
or negative sign of each weight is first recorded and the
W is substituted for its absolute value. Then the W is split
column-wisely into S submatrices:

~ ~

W= (W' w2 ... WS].)

For each submatrix Wi € R™*P (D = n/S,i =
1,...S), the K-means clustering algorithm is performed on
it to generate a sub-codebook C; with k codes. The whole
code space is therefore defined as their Cartesian product:

C=CxCyx...xCg.
c; =[cl c? ..., ch.)

@ Springer

362

Cogn Comput (2018) 10:359-367

Fig. 2 a Convolutional kernels.
b Weight matrix from reshaping
and merging all kernels. ¢ Each
row has the same number of
weights left after pruning, where
white squares mean the pruned
connections (or weights). d A
new weight matrix is established
from remaining weights, then
product quantization can be
applied to it directly

=>

For each row Wr in W, it can be reconstructed with the
closest code vector:

W, = [W!, W2,... W5].
Wr’ <« Ci],jzargmin||Wri—Cij||. ©6)
J

Supposing that all submatrices have the same cluster
number k, we can use kS subcodes to generate a large
codebook with k¥ codes. It is the reason why product quan-
tization consumes less memory than scalar quantization
with the same quantization error.

We further find that the distribution of the weight values
is symmetrical about the zero. So, we apply product quan-
tization on the absolute values. It reduces the quantization
error with the same amount of quantization centroids. And
the only extra expense is one bit for each weight to record
its positive or negative sign.

Network Retraining

The network is compressed layer by layer from backward
to forward. In each iteration, the correlated coefficients are
firstly calculated from the previously trained model. Then
one additional layer is pruned and quantified. To retrain the
network, we use deep learning framework Caffe [26] and
simply modify its convolutional and fully connected lay-
ers by adding another two blobs to store indexes and codes.
Each time before forward-propagation, the weight matrix is
reconstructed with the indexes and codes. Particularly, if the
index is zero, it means the corresponding connection has
been pruned. Otherwise, this connection will be recovered
by looking up tables and adding a positive or negative sign,
as shown in Fig. 3. During back-propagation, the centroid
codes are updated using the method described in DeepCom-
pression [16]. Layers after pruning and quantization become
very sparse. It is no longer needed to use the dropout layers
to restrict overfitting.

@ Springer

s => .
(b)
(d)

(c)

On the other hand, the parameter size and computa-
tion time of the whole convolutional layers are measured
in our baseline model. We find that convolutional layers
take up more than 44% of operation time while have less
than 7% of parameters. It is because im2col [10] spends
much time rearranging all convolution patches into a large
dense matrix. To optimize this process, we abandon all max-
pooling layers and increase the strides of their neighbor con-
volutional layers. For example, after the first max-pooling
layer is removed, the stride of the first convolutional layer
will increase from 2 to 6. Increasing the stride reduces both
the frequencies of catching pathes and the size of dense
matrix. Therefore, the convolution cost can be reduced by
about two-thirds.

Experiments

In this section, the baseline model is introduced and com-
pared with SDM [12] and TCDCN [31]. Then the model is
compressed and the performance before and after compres-
sion are compared. Finally, the impact of some parameters
on the trade-off between accuracy and compression ratio is
discussed.

Index Codes Reconstruct weights
-1 0 -2 0 l 0.01
0 0 -3 1 0.16
+2 | 4 0 0 0.07
0 4 0 3 0.29

Fig. 3 Reconstructing weights with indexes and codes. Only if the
index is nonzero, the corresponding weight will be recovered by look-
ing up code tables and adding a corresponding positive or negative
sign

Cogn Comput (2018) 10:359-367 363
Table 1 The structure of our baseline model Table 2 Configurations for compressed network
Layer Input size Kernel size Stride Layer Params Proportion R K D
Convl 224 x 224 x 3 96 x7x7x3 2 Convl 14K 0.0001 - - -
MaxPool 109 x 109 x 96 3x3 3 Conv2 614K 0.0062 - - -
Conv2 37 x 37 x 96 256 x 5 x 5 x 96 1 Conv3 LI8M 0.0119 - 128 4
MaxPool 33 x 33 x 256 2 %2 2 Conv4 2.36 M 0.0237 2 128 4
Conv3 17 x 17 x 256 512 x 3 x 3 x 256 1 Conv> 236 M 0.0237 4 128 4
Conv4 17 x 17 x 512 512 x 3 x 3 x 512 1 FC6 7550 M 0.7598 4 256 8
Convs 17 x 17 x 512 512 x 3 x 3 x 512 1 FC7 16.78 M 0.1689 2 128 4
MaxPool 17 x 17 x 512 3x3 3 FC8 557K 0.0056 2 64 4
FC6 6 x6x512 18432 x 4096 1
FC7 1 % 4096 4096 x 4096 1 R ratio of pruning, D dimensionality of subspace in product quantiza-
FCS8 1 % 4096 4096 x 136 | tion, K cluster number in each subspace
also replaced with a modified Euclidean loss layer as the
following formula:
Baseline Model

There are 4025 images with 68 landmarks collected from
LFPW [27], AFW [28], HELEN [29], and 300W [30]. Four
hundred twenty-five images are randomly selected for test-
ing and the rest are for training. Then the training images
are augmented through mirror transformation and geometric
transformation such as shifting and rotating. The baseline
model is simplified from VGG11-Net [11] by removing
three convolutional layers. The number of outputs in the
last fully connected layer is changed to 136 for facial land-
mark regression. And the original softmax loss layer is

136
Loss =Y hi(yi — 9i)*. @)
i=1
O yi =il <a
hi = { 1 elsewise ’ ®)

where y; is the ground truth and y; is the network output.
There are 136 outputs in total for 68 facial point coordinates.
It is noted that all coordinate values have been normalized to
[—1, +1]. The « is an adjustable parameter. Prediction error
that is less than this tolerance will be ignored. It is mainly

Fig. 4 Performance of the 100
compressed network. The
“Compress all” represents the
compressed model with the 901
configuration in Table 2 and the
“Compress fc8” represents the 80
same model with fc8 layer
compressed alone
70 |
c
S 60r
s}
Q
© 501
o
s
© L
A 40
30
20 - - -- Compress all
Compress fc8
Our baseline
10 SDM
TCDCN
0 1 1 1 1
0 0.05 0.1 0.15 0.2

RMSE

@ Springer

364

Cogn Comput (2018) 10:359-367

Table 3 Comparisons between the baseline model and the com-
pressed model

Model File size Speed Mean RMSE
Baseline 379 MB 3.2 FPS 0.0526
Compressed 14.6 MB 12.7 FPS 0.0545

because labeling facial points is affected by subjective fac-
tors and the ground truth may be not entirely accurate.
Besides, this loss helps to mine hard samples online and
strength the network power.

The architecture of our baseline model is shown in
Table 1. There are five convolutional layers and three
fully connected layers. The entire network model exceeds
379 MB and has about 99.4 M float parameters.

In order to measure and compare the performance, two
metrics are introduced:

(1) Root mean squared error (RMSE):

68
rusE = =1V
68d

&)

where d is the distance between the eyes, p; is the
ground truth position of the specific facial landmark,
and p; is the predicted position.

(2) Cumulative error distribution (CED) curve: The CED
curve plots the error tolerance on the X-axis versus the
percentage of samples within the tolerance on the Y-
axis.

The mean RMSE of our baseline model is 0.0526. The
mean RMSE of SDM [12] and TCDCN [31] are 0.0837
and 0.0680 separately, which are larger than ours. The
CED curve is shown in Fig. 4, where a bigger area under
curve (AUC) corresponds with a higher regression accuracy.

Fig.5 Some example detection
results from our compressed
network

@ Springer

It is clear that the performance of our baseline model is
significantly better than SDM and TCDCN.

Compressed Network

The baseline network is compressed iteratively with the
method described in the “Related Work™ section. The
dropout layers are removed before retraining the network,
since they are unnecessary and will reduce retraining speed.
The compressing configurations are shown in Table 2.

Some connections and neurons are pruned in convo-
lutional layers and fully connected layers separately. For
example, the size of dense weight matrix in fc6 layer
becomes 18432 x 2014 after pruning neurons in fc7 layer.
This matrix further becomes four times sparser after pruning
connections in fc6 layer. Since the parameters in the fully
connected layer are mostly redundant, a larger compression
ratio is used. Parameters in convolutional layers contribute
a smaller part of the whole network and are harder to be
reduced, so a smaller (or zero) compression ratio is taken on
them. By making necessary trade-offs between performance
and compression ratio, we achieve 26 x compression of the
baseline model while the mean RMSE increases by just
3.6%. More specifically, the compressed model has about
1.6 M float parameters and 3 M 8-bit quantization indices.
With additional memory for the storage of sparse indexes,
the model finally is compressed from 379 to 14.6 MB.
The comparisons between the baseline model and the com-
pressed model are shown in Table 3. It is worth noting that
the black line in Fig. 4 represents the same model with fc8
layer compressed alone, whose performance is surprisingly
better than baseline. It is mainly because some appropriate
sparseness can improve the generalization ability of DNN
models.

In retraining, all three max-pooling layers are removed
and the strides of their neighbor convolutional layers are

Cogn Comput (2018) 10:359-367

365

Fig. 6 Some samples with
obvious degradation in
performance

increased accordingly. Therefore, the speed of the com-
pressed network is further improved.

Some detection examples in Fig. 5 verify the robust-
ness of the compressed model to deformation, expression,

Ground Truth

Baseline model = Compressed model

and illumination. Moreover, the RMSE of the compressed
model is just 3.6% higher than the baseline model. For most
testing images, it is hard to see the difference between the
baseline model and the compressed model with the naked

Fig.7 Comparison of different 100 r
pruning ratios on fully
connected layers. The pruning
method is described in [15]. 90 r
“Prune X” represents all fully
connected layers are pruned 80+
with the same pruning ratio X
70 r
c
2 60
o}
Q
© 50r
o
8
m -
S 40
30
Our baseline
201 Prune 8
———— Prune 16
10 F SDM
TCDCN
0 1 1 1
0 0.05 0.1 0.15 0.2

RMSE

@ Springer

366

Cogn Comput (2018) 10:359-367

Fig. 8 Comparison of product

quantization on absolute values
or original values with different
dimensionality D of subspace.
Product quantization can use
fewer quantization centroids

with less error on absolute values
0.035

0.03
0.025

0.02

Product Quantization Error

0.015%F

0.01

0.005

eye. We select several samples with obvious differences to
show the slight degradation in performance in Fig. 6.

Discussion About Different Configurations

Quantization can only reduce parameter size while pruning
can not only reduce parameter size but also improve infer-
ence speed. It seems that pruning should be heavily used
to get both high compression ratio and speed improvement.
However, for facial landmark detection, we find that a higher
pruning ratio leads to significant performance degradation.
Figure 7 shows the comparison of different pruning ratios on
fully connected layers and the pruning method is described
in [15]. The results indicate that the method [15] is not suit-
able for our facial landmark detection and pruning too many
connections will severely degrade the performance.

In this case, it must be careful to prune neurons or con-
nections and use product quantization to compress more
parameters. The performance of product quantization is
positively correlated with the cluster number K in each sub-
space and negatively correlated with the dimensionality D
of subspace. To get a higher compression ratio, it obviously
needs a small K and a large D, but the performance will
suffer from this. Fortunately, applying product quantization
on the absolute values can improve this situation. The only
extra expense is that each value needs one bit to record its
positive or negative sign. Figure 8 shows the comparison
between taking product quantization on the absolute val-
ues and original values in fc7 layer. It demonstrates that our
method can use fewer quantization centroids with less error
and compress the network further.

@ Springer

128 192 256

Conclusion

In this paper, an efficient method is proposed to compress
a large DNN model and reduce the runtime cost. First of
all, unimportant neurons or connections are pruned based
on weight correlations. It can reduce both index storage
and inference computation cost. Product quantization is
then applied to generate higher compression. Especially,
this quantization is taken on the absolute values of the
remaining weights. So the same amount of quantization
centroids can bring smaller quantization error. Addition-
ally, all pooling layers are removed and the strides of their
neighbor convolutional layers are increased during retrain-
ing. It accelerates the network further. The experiments of
compressing a large dense model for facial landmark detec-
tion demonstrate the effectiveness of our proposed method,
which achieves 26 x compression and 4 x acceleration while
the mean RMSE increases by just 3.6%. In the future, we
will apply our compression and acceleration technique to
more existing algorithms for different tasks to further verify
the effectiveness and robustness.

Acknowledgments We would like to thank professor Tian Qi (the
University of Texas at San Antonio) and Zhou Xi (Chongqing Institute
of Green and Intelligent Technology, Chinese Academy of Sciences)
for their suggestions to this project.

Funding This work is supported by the National Natural Science
Foundation of China (61572307).

Compliance with Ethical Standards This article does not contain
any studies with human participants or animals performed by any of
the authors.

Cogn Comput (2018) 10:359-367

367

Conlflict of Interest The authors declare that they have no conflict

of interest.
References
1. Yan Y, Ricci E, Subramanian R, et al. A multi-task learning

10.

11.

12.

13.

14.

framework for head pose estimation under target motion. IEEE
Trans Pattern Anal Mach Intell. 2016;38(6):1070-1083.

. Carreira J, Agrawal P, Fragkiadaki K, et al. Human pose esti-

mation with iterative error feedback. Proceedings of the IEEE
conference on computer vision and pattern recognition; 2016. p.
4733-4742.

. Dhall A, Goecke R, JoshiJ, Sikka K, Gedeon T. Emotion recog-

nition in the wild challenge 2014: baseline, data and protocol.
Proceedings of the 16th international conference on multimodal
interaction; 2014. p. 461-466.

. Taigman Y, Yang M, Ranzato MA, Wolf L. Web-scale train-

ing for face identification. Proceedings of the IEEE conference on
computer vision and pattern recognition; 2015. p. 2746-2754.

. Chen JC, Patel VM, Chellappa R. Unconstrained face verifica-

tion using deep cnn features. 2016 IEEE Winter conference on
applications of computer vision; 2016. p. 1-9.

. Sun Y, Wang X, Tang X. Deep convolutional network cascade

for facial point detection. Proceedings of the IEEE conference on
computer vision and pattern recognition; 2013. p. 3476-3483.

. Zhang Z, Luo P, Loy CC, Tang X. Facial landmark detection

by deep multi-task learning. European conference on computer
vision; 2014. p. 94-108.

. Chen Y, Yang J, Qian J. Recurrent neural network for facial

landmark detection. Neurocomputing. 2017:26-38.

. Jegou H, Douze M, Schmid C. Product quantization for nearest

neighbor search. IEEE Trans Pattern Anal Mach Intell. 2011:117—
128.

Chellapilla K, Puri S, Simard P. High performance convolutional
neural networks for document processing. Tenth international
workshop on frontiers in handwriting recognition; 2006.
Simonyan K, Zisserman A. Very deep convolutional networks for
large-scale image recognition. arXiv:1409.1556. 2014.

Xiong X, De la Torre F. Supervised descent method and its
applications to face alignment. Proceedings of the IEEE confer-
ence on computer vision and pattern recognition; 2013. p. 532—
539.

Hinton GE, Srivastava N, Krizhevsky A, Sutskever I, Salakhut-
dinov RR. Improving neural networks by preventing co-adaptation
of feature detectors. arXiv:1207.0580. 2012.

Han S, Pool J, Tran J, Dally W. Learning both weights
and connections for efficient neural network. Advances in neural
information processing systems; 2015. p. 1135-1143.

. Sun'Y, Wang X, Tang X. Sparsifying neural network connections

for face recognition. arXiv:1512.01891. 2015.

16.

17.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

Han S, Mao H, Dally WIJ. Deep compression: compressing deep
neural network with pruning, trained quantization and huffman
coding. arXiv:1510.00149. 2015.

Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna
Z. Rethinking the inception architecture for computer vision.
arXiv:1512.00567. 2015.

. Courbariaux M, Bengio Y. Binarynet: training deep neural net-

works with weights and activations constrained to + 1 or — 1.
arXiv:1602.02830. 2016.

Denil M, Shakibi B, Dinh L, de Freitas N. Predicting parame-
ters in deep learning. Advances in neural information processing
systems; 2013. p. 2148-2156.

Scardapane S, Comminiello D, Hussain A, Uncini A. Group
sparse regularization for deep neural networks. arXiv:1607.00485.
2016.

Sainath TN, Kingsbury B, Sindhwani V, Arisoy E, Ramab-
hadran B. Low-rank matrix factorization for deep neural network
training with high-dimensional output targets. 2013 IEEE inter-
national conference on acoustics, speech and signal processing;
2013. p. 6655-6659.

Denton EL, Zaremba W, BrunaJ, LeCun Y, Fergus R. Exploit-
ing linear structure within convolutional networks for efficient
evaluation. Advances in neural information processing systems;
2014. p. 1269-1277.

Gong Y, Liu L, Yang M, Bourdev L. Compressing deep con-
volutional networks using vector quantization. arXiv:1412.6115.
2014.

Han S, Liu X, Mao H, et al. EIE: efficient inference engine on
compressed deep neural network. arXiv:1602.01528. 2016.
Appuswamy R, Nayak T, Arthur J, et al. Structured convolution
matrices for energy-efficient deep learning|[j]. arXiv:1606.02407.
2016.

Jia Y, Shelhamer E, Donahue J, Karayev S, Long J, Gir-
shick R, ..., Darrell T. Caffe: convolutional architecture for fast
feature embedding. Proceedings of the 22nd ACM international
conference on multimedia; 2014. p. 675-678.

Belhumeur PN, Jacobs DW, Kriegman DJ, Kumar N. Localizing
parts of faces using a consensus of exemplars. IEEE Trans Pattern
Anal Mach Intell. 2013:2930-2940.

Zhu X, Ramanan D. Face detection, pose estimation, and land-
mark localization in the wild. Computer vision and pattern recog-
nition (CVPR); 2012. p. 2879-2886.

Liang L, Xiao R, Wen F, Sun J. Face alignment via component-
based discriminative search. European conference on computer
vision; 2008. p. 72-85.

Sagonas C, Tzimiropoulos G, Zafeiriou S, Pantic M. A
semi-automatic methodology for facial landmark annotation. Pro-
ceedings of the IEEE conference on computer vision and pattern
recognition workshops; 2013. p. 896-903.

Zhang Z, Luo P, Loy CC, et al. Learning deep representation for
face alignment with auxiliary attributes. IEEE Trans Pattern Anal
Mach Intell. 2016:918-930.

@ Springer

http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1207.0580
http://arxiv.org/abs/1512.01891
http://arxiv.org/abs/1510.00149
http://arxiv.org/abs/1512.00567
http://arxiv.org/abs/1602.02830
http://arxiv.org/abs/1607.00485
http://arxiv.org/abs/1412.6115
http://arxiv.org/abs/1602.01528
http://arxiv.org/abs/1606.02407

	Compressing and Accelerating Neural Network for Facial Point Localization
	Abstract
	Introduction
	Related Work
	Our Method
	Pruning Neurons and Connections
	Product Quantization
	Network Retraining

	Experiments
	Baseline Model
	Compressed Network
	Discussion About Different Configurations

	Conclusion
	Acknowledgments
	Funding
	Compliance with Ethical Standards
	Conflict of Interest
	References

