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Abstract As connections from the brain to an exter-
nal device, Brain-Computer Interface (BCI) systems are
a crucial aspect of assisted communication and control.
When equipped with well-designed feature extraction and
classification approaches, information can be accurately
acquired from the brain using such systems. The Hierarchi-
cal Extreme Learning Machine (HELM) has been developed
as an effective and accurate classification approach due
to its deep structure and extreme learning mechanism. A
classification system for motor imagery EEG signals is pro-
posed based on the HELM combined with a kernel, herein
called the Kernel Hierarchical Extreme Learning Machine
(KHELM). Principle Component Analysis (PCA) is used to
reduce the dimensionality of the data, and Linear Discrimi-
nant Analysis (LDA) is introduced to push the features away
from different classes. To demonstrate the performance, the
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proposed system is applied to the BCI competition 2003 Da-
taset Ia, and the results are compared with those from state-of-
the-art methods; we find that the accuracy is up to 94.54%.

Keywords Electroencephalogram classification · Motor
imagery · Extreme learning machine · Hierarchical extreme
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Introduction

Brain science is one of the most challenging research fields
and attempts to reveal and perceive the inner mechanisms of
brain activities and functions. A Brain-Computer Interface
(BCI) [1, 8, 28] provides a bridge between the brain and an
external device for brain science studies. Electroencephalo-
gram (EEG) [2, 4] data are collected using BCI devices to
obtain information about brain activities. EEGs present the
responses of the brain to external stimuli and are widely
used for monitoring brain activities. Motor imagery EEG
[20] has aroused the enthusiasm of many researchers and
plays an important role in dyskinesia study, especially for
patients with neuromuscular disorders.

EEG recognition is divided into two parts: feature extrac-
tion and classification. For feature extraction, various meth-
ods have been developed such as band power (BP) [21],
power spectral density (PSD) values [26], and wavelet pack-
age (WP) [29]. For classification, support vector machines
(SVM) [3], neural networks [22], and naive Bayes [15] are
widely used. Gert [20] uses band power values and a neural
network for the online classification of right and left motor
imagery, and they also analyze offline classification using
an adaptive autoregressive (AAR) model. An algorithm for
epileptic seizure detection using lacunarity and Bayesian
linear discriminant analysis (BLDA) [30] is proposed for
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long-term intracranial EEG. Luis [18] presents an adaptive
semi-supervised classification algorithm for online multi-
class motor imagery EEG and achieves the highest accuracy
(77%) to date. A combination of linear and nonlinear EEG
features and a k-nearest neighbor (k-NN) classifier [16] is
used to detect mild depression in college students with a
high accuracy.

Although neural networks have been widely used in
EEG classification, the iteration process in the parame-
ter fine tuning limits the learning speed. Hence, a type
of single-hidden-layer feed-forward neural network (SLFN)
named the Extreme Learning Machine (ELM) is proposed
by Huang [5, 11, 31], in which the weight between the input
and hidden layers is randomly generated, and the weight
between the hidden and output layers is computed without
an iteration process. Recently, the HELM [24], an approach
based on the ELM, was presented and extended the ELM
into a deep ELM neural network without back propaga-
tion or an iteration process. The HELM performances better
than the ELM; however, the random parameters in the net-
work influence the stability of the network. Combining with
the Kernel-based Extreme Learning Machine (Kernel-ELM)
[9], the KHELM is proposed. This method not only main-
tains the high training speed but also performs better than
the HELM and Kernel-ELM. Therefore, it is applied to
the classification of motor imagery EEG with PCA and
LDA.

The contributions of this paper are as follows:

(1) To improve the stability of the HELM, the HELM is
combined with a Gaussian Kernel to form the KHELM
method.

(2) The KHELM is introduced first to the classification
of motor imagery EEG signals, and a classification
system based on the KHELM is proposed.

(3) The classification system performs better than state-
of-the-art methods with respect to accuracy as well as
training and testing speeds.

The remainder of this paper is organized as follows.
In the “Method” section, the classification system, includ-
ing feature extraction and classification, is presented. In
the “Experiments” section, experiments are conducted on
the BCI competition 2003 Dataset Ia, and the performance

results are given. In the “Conclusion” section, the conclu-
sions are presented.

Method

The original EEG signals are easily affected by the envi-
ronment, which results in a low signal-to-noise ratio (SNR).
In addition, given their complicated components, EEG sig-
nals are difficult to recognize. In the proposed approach,
we first partition the sample with overlaps into segments.
Because the partitioned EEG data are still characterized by
high dimensionality and low SNR, it is important to extract
typical and distinctive features. Then, PCA is used to extract
the principal dimensions of each segment. However, PCA
cannot reveal information indicating different classes. After
PCA, an LDA process is introduced to decrease the cou-
pling between the classes. To further integrate and analyze
all segments in each sample, the features are rearranged
as the inputs of the KHELM for classification. Therefore,
the system involves two parts: (1) feature extraction with
PCA and LDA and (2) classification based on the KHELM.
The framework of the proposed method is shown in
Fig. 1.

Feature Extraction with PCA and LDA

As a common tool in dimensional reduction, PCA projects
the original high-dimensional data into lower dimensional
data by relying on the maximization of the total scatter
matrix of the projected samples [13]. In this way, the SNR
of the signal can be increased. Then, LDA is introduced to
search for the best projection direction and decrease the cou-
pling between classes, which reduces the dimension to 1 for
binary-class data [19]. Features obtained by PCA and LDA
are more discriminative.

Denoting the training data as Z and the testing data as
T, the procedure is described as follows. First, the eigen-
vectors and eigenvalues of all the data are calculated using
covariance matrix decomposition. The eigenvectors corre-
sponding to the top l eigenvalues form the basis LPCA =
[φ1, φ2, . . . , φl]. Because a larger eigenvalue represents a
larger contribution rate of the principle component, we

EEG Signal

Feature Extraction Classification
Feature Space

KHELMPCA LDA

Hidden1 Hidden2 Others Kernel_ELM

Fig. 1 The framework of the system
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choose l principle components using a threshold of the accu-
racy contribution rate (ACR). Then, we obtain the training
features ZPCA = Z ·LPCA and the testing features TPCA =
T · TPCA. Finally, LDA is applied to ZPCA and TPCA to
obtain the remapped matrices Xtrain and Xtest as the final
features.

Classification Based on KHELM

The ELM is advantageous as a result of its learning speed
for machine learning and artificial intelligence. However,
the ELM is limited to simple data due to its shallow architec-
ture. Therefore, the Hierarchical Extreme Learning Machine
is built, and the structure is extended into a more complex
architecture [24]. In this paper, the KHELM is proposed
based on a combination of the HELM and the Kernel-ELM.
The technique is divided into two parts, as shown in Fig. 2:
(1) the unsupervised feature extraction based on the ELM-
based sparse auto-encoder and (2) the supervised feature
classifier based on the Kernel-ELM.

For the KHELM learning algorithm, the first-layer
weights of the KHELM are set as the transposition of
the output weights β1 that are learned by the ELM-based
Sparse Auto-Encoder shown in Fig. 2a, and the ith-layer
weights of the KHELM are set as the transposition of the

output weights βi+1 of the ELM-based Sparse Auto-
Encoder shown in Fig. 2b. The framework of the KHELM
includes two phases: multi-layer forward encoding followed
by the Kernel-ELM classifier.

For the training features {(xi, yi)}Ni=1εR
d × Rm of the

EEG data, xi is the input vector and yi is the class label. The
output of each hidden layer is represented as follows:

Hi = g(Hi−1 · βT ), (1)

where Hi is the ith-hidden-layer output matrix, and the input
x is considered as the 0th hidden layer, where i = 0. g is the
activation function of the hidden layers, and β is the output
weight. It is shown in Fig. 2 that once the feature of the
previous hidden layer is extracted, the weights of the current
hidden layer can be learned without fine tuning.

To extract the abstract representation of the input fea-
tures, the ELM-based Sparse Auto-Encoder is chosen to
model the feature representation part of the KHELM, and
its structure is shown in Fig. 2a.

The ELM is a promising technology with a high learn-
ing speed and trivial human intervention requirement [10].
Compared with other techniques, the ELM provides a better
generalization performance and can obtain globally optimal
solutions [12]. We use the ELM to build an auto-encoder
with the target replaced by the input, called the ELM-AE.

Fig. 2 The architecture of the
KHELM learning algorithm [24]
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To generate more sparse and compact features of the inputs,
an l1 constraint is added to extend it into the ELM-based
Sparse Auto-Encoder. Its optimization model is extended as
follows:

Oβ = arg min
β

{‖Hβ − X‖2 + ‖β‖l1}, (2)

where X denotes the input data and output target and β is
the weight between the hidden and output layers. With the
l1 and l2 constraints, the ELM-based Sparse Auto-Encoder
is less sensitive to the input, and thus, its generalization
performance is enhanced.

The method of the ELM-based Sparse Auto-Encoder is
summarized in Algorithm 1, and its structure is shown in
Fig. 2a. In the ELM-based Sparse Auto-Encoder, with the
weight β, the output H of the hidden layer is decoded into
the input X. It is proved that the input X can be transformed
into H ∗ with the weight βT , where H ∗ is the output of the
hidden layer in the KHELM, being an approximation to H ,
and βT is the transposition of β.

The KELM method is the combination of the ELM and a
kernel. The output of the hidden layer HHT is replaced by
the kernel function

HHT = �ELM =
⎡
⎢⎣

K(x1, x1) · · · K(x1, xL)
...

. . .
...

K(xL, x1) · · · K(xL, xL)

⎤
⎥⎦, (3)

where K(·) is the kernel function; the most popular ker-
nel of the Kernel-ELM is the Gaussian kernel K(xi, xj ) =
exp(−‖xi − xj‖/K), in which K is the kernel parameter.

The output of the Kernel-ELM is as follows:

f (x) = h(x)β = h(x)HT (HHT + I

C
)†Y

=
⎡
⎢⎣

K(x, x1)

. . .

K(x, xL)

⎤
⎥⎦

T

(�ELM + I

C
)†T , (4)

where C is the regularization coefficient, (·)† represents the
Moore-Penrose generalized inverse, and T is the label of the
samples.

The procedures for training the KHELM are given in
Algorithm 2.

Using the ELM-based Sparse Auto-Encoder, the
KHELM is extended into a deep neural network, and the
features are extracted in a more compact and sparse form
again, which improves the KHELM performance in classi-
fication. Meanwhile, because the hidden layer is replaced
by a kernel function in the Kernel-ELM, the randomness of
the parameters in the KHELM is lower than in the HELM,
which provides a more stable network for the KELM
compared to the HELM.

Experiments

Dataset Description

In this section, we first introduce the EEG dataset for the
motor imagery. The dataset is from the BCI competition
2003 Dataset Ia taken from a healthy subject. The subject
is asked to imagine the movement of a cursor up and down
on a computer screen. Meanwhile, his cortical potentials
are recorded, and he receives visual feedback of his slow
cortical potentials. Cortical positivity leads to a downward
movement of the cursor on the screen, whereas cortical neg-
ativity leads to an upward movement of the cursor. All the

Fig. 3 Distribution of EEG electrodes for 6 channels
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Fig. 4 ACR for PCA of the segments of channel A1

trails are composed of a training set (268 trials, with 135
for class 0 and 133 for class 1) and a testing set (293 tri-
als, with 147 for class 0 and 146 for class 1), and each trial
lasts 6 s. During each trial, the task is visually presented by
a highlighted goal at either the top or bottom of the screen
to indicate negativity or positivity from 0.5 s until the end of
the trial. The visual feedback is presented from 2 s to 5.5 s.
Only this 3.5-s interval for each trial is used for training
and testing. The 256 Hz sampling rate and 3.5-s recording
length result in 896 samples per channel for each trial. Here,
the central parietal region electrode (Cz-Mastoids) is chosen
as the reference electrode, and the remaining six electrodes,
which are located as shown in Fig. 3, are used to collect the
signals.

In the experiment, first, we only choose the signals from
channel 1 and channel 2 (A1 and A2) to generate the dis-
criminative feature sets based on previous work [6]. Then,
the continuous recording samples are partitioned to sub-

epochs of 500 ms, with a 125 ms overlap. Therefore, the
raw data are split into 9 segments for each channel, and each
segment has 128 dimensions. Thus, there are 18 segments
in the end.

Discussion of Results

Parameter Selection for Feature Extraction For the fea-
ture extraction, we use a combination of PCA and LDA.
First, PCA is used for the dimensional reduction. Although
the Accuracy Contribution Rate (ACR) is greater than 99%
for all segments shown in Fig. 4, the corresponding fea-
ture dimension of 16 is selected. Then, the 16-dimensional
features of each segment are reduced into 1-dimensional
features using LDA. Finally, the features of channels A1 and
A2 are combined to form the input of the KHELM in 18
dimensions.

Parameter Selection of KHELM For the KHELM,
three parameters are required for tuning: the parame-
ter C for the regularized least mean square calcula-
tion, the number of hidden nodes L, and the param-
eter of the kernel function K. In the experiment, C
is confined to {10−10, 10−9, . . . , 109, 1010}, L is con-
fined to {500, 600, . . . , 1400, 1500}, and K is confined to
{10−10, 10−9, . . . , 109, 1010}. The influences of L, C and K
on the performance of the KHELM are shown in Fig. 5.

Figure 5a shows the impact of L on the performance
of the KHELM, and the parameters C and K are fixed
beforehand. It is shown in Fig. 5a that the accuracy slightly
fluctuates around a central line, and the amplitude of the
fluctuation is less than 1%. Therefore, it is demonstrated
that the KHELM is not sensitive to the node number of the
hidden layers. In Fig. 5b, the 3-D accuracy curves of the
KHELM in terms of C and K are shown. Clearly, C and K
are the main influential factors for the KHELM. Therefore,

Fig. 5 Classification accuracy of KHELM. a Accuracy of the KHELM with respect to L. b Accuracy of the KHELM with respect to C and K
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Fig. 6 Comparison of the KHELM and the HELM

one must be careful when selecting C and K, and the best
choice for C and K is 104 and 105, respectively.

Evaluation of the Classification System To demonstrate
the effectiveness of the classification system,first, the performance
of the KHELM is compared with other classifiers based
on the ELM using the same features. The performance of the state
of the art is also given on the same dataset as a comparison.

For all experiments, the hardware and software specifi-
cations are as follows: PC, Intel-i5 3.30 GHz CPU, 8.00 GB
RAM, Windows 7, and MATLAB R2012a.

To certify the superiority of the KHELM, the accuracies
of 50 experiments are averaged for comparison with the
HELM based on a similar structure. The results are shown in
Fig. 6. It is shown that the average accuracy of the KHELM
is higher than that of the HELM, and the amplitudes of the
fluctuations of the KHELM are substantially smaller than
those of the HELM. Clearly, the HELM is more sensitive to

the node number of the hidden layers than is the KHELM.
Therefore, the KHELM is more stable than the HELM.

We compare the performance of the KHELM with other
ELM-based methods such as the avg-ELM, Kernel-ELM,
V-ELM [7], ML-ELM, and HELM. The result from the avg-
ELM is an average over 50 ELMs. To obtain the results of
the V-ELM, we use 50 ELMs to vote. The ML-ELM is a
simple stacked layer-by-layer architecture with the ELM-
AE; here, we set it to have three hidden layers, and the
numbers of hidden nodes are (20, 20, 2000). The HELM
has three hidden layers, similar to the KHELM. Table 1
gives the results of the comparison. The average accuracy
of the KHELM is 91.99%, while those of the HELM and
Kernel-ELM are 90.94 and 91.81%, respectively. Mean-
while, the best accuracies of the KHELM and HELM
are equal: 94.54%. The training and testing speeds of the
KHELM are approximately five times higher than those
of the HELM. Specifically, in terms of both accuracy and
speed, the performance of the KHELM is superior to that
of the Kernel-ELM and the HELM. It is obvious (from
Table 1) that the best accuracy achieved by the KHELM is
the highest accuracy, and the speed is higher than that of the
other methods based on the ELM, except for the avg-ELM.
Because the avg-ELM has only one hidden layer, it obvi-
ously obtains a high speed. The results demonstrate that the
sparse weights and kernel function have an important effect
on the performance of the system with respect to speed and
accuracy.

We also compare our system with some state-of-the-art
methods on the same dataset. Table 2 gives the final results
of the selected methods. It is shown that the proposed sys-
tem performs better than the state-of-the-art methods. The
accuracy increase is at least 2.39%. The results demonstrate
that the classification system is more effective for motor
imagery EEG data, and introducing the KHELM to the
classification of motor imagery EEG data is thus necessary.

Table 1 Comparison with other methods based on the ELM

Method � Accuracy (%) Training time (s) Testing time (s)

avg-ELM Average 89.20±1.63 0.0006±0.0044 0.0025±0.0086

Best 92.83 − −
Kernel-ELM − 91.81 0.0024±0.0006 0.0017±0.0002

V-ELM [7] Average 92.30±0.43 0.1033±0.0478 0.0118±0.0177

Best 93.52 − −
ML-ELM Average 89.83±1.34 0.3136±0.0694 0.0059±0.0007

Best 94.20 − −
HELM Average 90.94±1.06 0.3182±0.021 0.0173±0.001

Best 94.54 − −
KHELM Average 91.99±0.72 0.0640±0.0024 0.0089±0.0004

Best 94.54 − −
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Table 2 Comparison with various related methods

Classification method Feature extraction Accuracy (%)

Linear Gamma band power 88.70

(2004) [17] combined with SCP

Bayes Combing SCP with 90.44

(2005) [23] the spectral centroid

Neural Network SCP and beta band 91.47

(2005) [27] specific energy

Neural Network Wavelet package 90.80

(2008) [25]

k-NN Coefficients of the 92.15

(2010) [14] second-order polynomial

KHELM PCA and LDA 94.54

Conclusion

In this paper, a new system is proposed for motor imagery
EEG signal classification based on PCA, LDA, and the
KHELM. To improve the stability of the HELM, the
KHELM is proposed in this paper; the results demon-
strate that it is a successful improvement on the HELM.
Compared with various other feature extraction methods,
features obtained by PCA and LDA are suitable for motor
imagery signals with low dimensionality and high discrim-
ination. Compared with other classification methods, the
KHELM is easy to implement and requires trivial human
intervention. When deep and compact feature information
is extracted, the KHELM achieves a high accuracy and high
speed in classification. The best results from the experiment
demonstrate that the system is effective and efficient when
applied to the binary-class signals of motor imagery.
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